151
|
Hanif A, Edin ML, Zeldin DC, Morisseau C, Falck JR, Nayeem MA. Vascular Endothelial Over-Expression of Human Soluble Epoxide Hydrolase (Tie2-sEH Tr) Attenuates Coronary Reactive Hyperemia in Mice: Role of Oxylipins and ω-Hydroxylases. PLoS One 2017; 12:e0169584. [PMID: 28056085 PMCID: PMC5215949 DOI: 10.1371/journal.pone.0169584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/19/2016] [Indexed: 02/03/2023] Open
Abstract
Cytochromes P450 metabolize arachidonic acid (AA) into two vasoactive oxylipins with opposing biologic effects: epoxyeicosatrienoic acids (EETs) and omega-(ω)-terminal hydroxyeicosatetraenoic acids (HETEs). EETs have numerous beneficial physiological effects, including vasodilation and protection against ischemia/reperfusion injury, whereas ω-terminal HETEs induce vasoconstriction and vascular dysfunction. We evaluated the effect of these oxylipins on post-ischemic vasodilation known as coronary reactive hyperemia (CRH). CRH prevents the potential harm associated with transient ischemia. The beneficial effects of EETs are reduced after their hydrolysis to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). ω-terminal HETEs are formed by ω-hydroxylase family members. The relationship among endothelial over-expression of sEH (Tie2-sEH Tr), the changes in oxylipins it may produce, the pharmacologic inhibition of ω-hydroxylases, activation of PPARγ, and CRH response to a brief ischemia is not known. We hypothesized that CRH is attenuated in isolated mouse hearts with endothelial sEH over-expression through modulation of oxylipin profiles, whereas both inhibition of ω-hydroxylases and activation of PPARγ enhance CRH. Compared to WT mice, Tie2-sEH Tr mice had decreased CRH, including repayment volume, repayment duration, and repayment/debt ratio (P < 0.05), whereas inhibition of ω-hydroxylases increased these same CRH parameters in Tie2-sEH Tr mice. Inhibition of sEH with t-AUCB reversed the decreased CRH in Tie2-sEH Tr mice. Endothelial over-expression of sEH significantly changed oxylipin profiles, including decreases in DHETs, mid-chain HETEs, and prostaglandins (P < 0.05). Treatment with rosiglitazone, PPARγ-agonist, enhanced CRH (P < 0.05) in both Tie2-sEH Tr and wild type (WT) mice. These data demonstrate that endothelial over-expression of sEH (through changing the oxylipin profiles) attenuates CRH, whereas inhibition of ω-hydroxylases and activation of PPARγ enhance it.
Collapse
Affiliation(s)
- Ahmad Hanif
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research. West Virginia University, Morgantown, West Virginia, United States of America
| | - Matthew L. Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, United States of America
| | - Darryl C. Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, United States of America
| | - Christophe Morisseau
- University of California at Davis, One Shields Avenue, Davis, California, United States of America
| | - John R. Falck
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mohammed A. Nayeem
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research. West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
152
|
Rezende F, Prior KK, Löwe O, Wittig I, Strecker V, Moll F, Helfinger V, Schnütgen F, Kurrle N, Wempe F, Walter M, Zukunft S, Luck B, Fleming I, Weissmann N, Brandes RP, Schröder K. Cytochrome P450 enzymes but not NADPH oxidases are the source of the NADPH-dependent lucigenin chemiluminescence in membrane assays. Free Radic Biol Med 2017; 102:57-66. [PMID: 27863990 DOI: 10.1016/j.freeradbiomed.2016.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/21/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
Abstract
UNLABELLED Measuring NADPH oxidase (Nox)-derived reactive oxygen species (ROS) in living tissues and cells is a constant challenge. All probes available display limitations regarding sensitivity, specificity or demand highly specialized detection techniques. In search for a presumably easy, versatile, sensitive and specific technique, numerous studies have used NADPH-stimulated assays in membrane fractions which have been suggested to reflect Nox activity. However, we previously found an unaltered activity with these assays in triple Nox knockout mouse (Nox1-Nox2-Nox4-/-) tissue and cells compared to wild type. Moreover, the high ROS production of intact cells overexpressing Nox enzymes could not be recapitulated in NADPH-stimulated membrane assays. Thus, the signal obtained in these assays has to derive from a source other than NADPH oxidases. Using a combination of native protein electrophoresis, NADPH-stimulated assays and mass spectrometry, mitochondrial proteins and cytochrome P450 were identified as possible source of the assay signal. Cells lacking functional mitochondrial complexes, however, displayed a normal activity in NADPH-stimulated membrane assays suggesting that mitochondrial oxidoreductases are unlikely sources of the signal. Microsomes overexpressing P450 reductase, cytochromes b5 and P450 generated a NADPH-dependent signal in assays utilizing lucigenin, L-012 and dihydroethidium (DHE). Knockout of the cytochrome P450 reductase by CRISPR/Cas9 technology (POR-/-) in HEK293 cells overexpressing Nox4 or Nox5 did not interfere with ROS production in intact cells. However, POR-/- abolished the signal in NADPH-stimulated assays using membrane fractions from the very same cells. Moreover, membranes of rat smooth muscle cells treated with angiotensin II showed an increased NADPH-dependent signal with lucigenin which was abolished by the knockout of POR but not by knockout of p22phox. IN CONCLUSION the cytochrome P450 system accounts for the majority of the signal of Nox activity chemiluminescence based assays.
Collapse
Affiliation(s)
- Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Kim-Kristin Prior
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Oliver Löwe
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Goethe-Universität, Frankfurt, Germany
| | - Valentina Strecker
- Functional Proteomics, SFB 815 Core Unit, Goethe-Universität, Frankfurt, Germany
| | - Franziska Moll
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Valeska Helfinger
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Frank Schnütgen
- Institute for Molecular Hematology, Goethe-University, Frankfurt, Germany
| | - Nina Kurrle
- Institute for Molecular Hematology, Goethe-University, Frankfurt, Germany
| | - Frank Wempe
- Institute for Molecular Hematology, Goethe-University, Frankfurt, Germany
| | - Maria Walter
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Sven Zukunft
- Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany
| | - Bert Luck
- Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany
| | | | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
153
|
Boldt C, Röschel T, Himmerkus N, Plain A, Bleich M, Labes R, Blum M, Krause H, Magheli A, Giesecke T, Mutig K, Rothe M, Weldon SM, Dragun D, Schunck WH, Bachmann S, Paliege A. Vasopressin lowers renal epoxyeicosatrienoic acid levels by activating soluble epoxide hydrolase. Am J Physiol Renal Physiol 2016; 311:F1198-F1210. [PMID: 27681558 DOI: 10.1152/ajprenal.00062.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022] Open
Abstract
Activation of the thick ascending limb (TAL) Na+-K+-2Cl- cotransporter (NKCC2) by the antidiuretic hormone arginine vasopressin (AVP) is an essential mechanism of renal urine concentration and contributes to extracellular fluid and electrolyte homeostasis. AVP effects in the kidney are modulated by locally and/or by systemically produced epoxyeicosatrienoic acid derivates (EET). The relation between AVP and EET metabolism has not been determined. Here, we show that chronic treatment of AVP-deficient Brattleboro rats with the AVP V2 receptor analog desmopressin (dDAVP; 5 ng/h, 3 days) significantly lowered renal EET levels (-56 ± 3% for 5,6-EET, -50 ± 3.4% for 11,12-EET, and -60 ± 3.7% for 14,15-EET). The abundance of the principal EET-degrading enzyme soluble epoxide hydrolase (sEH) was increased at the mRNA (+160 ± 37%) and protein levels (+120 ± 26%). Immunohistochemistry revealed dDAVP-mediated induction of sEH in connecting tubules and cortical and medullary collecting ducts, suggesting a role of these segments in the regulation of local interstitial EET signals. Incubation of murine kidney cell suspensions with 1 μM 14,15-EET for 30 min reduced phosphorylation of NKCC2 at the AVP-sensitive threonine residues T96 and T101 (-66 ± 5%; P < 0.05), while 14,15-DHET had no effect. Concomitantly, isolated perfused cortical thick ascending limb pretreated with 14,15-EET showed a 30% lower transport current under high and a 70% lower transport current under low symmetric chloride concentrations. In summary, we have shown that activation of AVP signaling stimulates renal sEH biosynthesis and enzyme activity. The resulting reduction of EET tissue levels may be instrumental for increased NKCC2 transport activity during AVP-induced antidiuresis.
Collapse
Affiliation(s)
- Christin Boldt
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Röschel
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nina Himmerkus
- Department of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - Allein Plain
- Department of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - Markus Bleich
- Department of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - Robert Labes
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Blum
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Hans Krause
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed Magheli
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Giesecke
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerim Mutig
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Steven M Weldon
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut
| | - Duska Dragun
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany; and.,Berlin Institute of Health, Berlin, Germany
| | | | - Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Paliege
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany; and .,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
154
|
El-Sherbeni AA, El-Kadi AOS. Microsomal cytochrome P450 as a target for drug discovery and repurposing. Drug Metab Rev 2016; 49:1-17. [DOI: 10.1080/03602532.2016.1257021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed A. El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
155
|
Epoxyeicosatrienoic Acid as Therapy for Diabetic and Ischemic Cardiomyopathy. Trends Pharmacol Sci 2016; 37:945-962. [DOI: 10.1016/j.tips.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
|
156
|
Fleming I. The factor in EDHF: Cytochrome P450 derived lipid mediators and vascular signaling. Vascul Pharmacol 2016; 86:31-40. [DOI: 10.1016/j.vph.2016.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 03/06/2016] [Indexed: 12/31/2022]
|
157
|
Erectile Dysfunction Drugs Changed the Protein Expressions and Activities of Drug-Metabolising Enzymes in the Liver of Male Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4970906. [PMID: 27800121 PMCID: PMC5075309 DOI: 10.1155/2016/4970906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/21/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022]
Abstract
Erectile dysfunction (ED) is a major health problem and is mainly associated with the persistent inability of men to maintain sufficient erection for satisfactory sexual performance. Millions of men are using sildenafil, vardenafil, and/or tadalafil for ED treatment. Cytochrome P450s (CYPs) play a central role in the metabolism of a wide range of xenobiotics as well as endogenous compounds. Susceptibility of individuals to the adverse effects of different drugs is mainly dependent on the expression of CYPs proteins. Therefore, changes in activities of phase I drug-metabolising enzymes [arylhydrocarbon hydroxylase (AHH), dimethylnitrosamine N-demethylase (DMN-dI), 7-ethoxycoumarin-O-deethylase (ECOD), and ethoxyresorufin-O-deethylase ((EROD)] and the protein expression of different CYPs isozymes (CYP1A2, CYP2E1, CYP2B1/2, CYP3A4, CYP2C23, and CYP2C6) were determined after treatment of male rats with either low or high doses of sildenafil (Viagra), tadalafil (Cialis), and/or vardenafil (Levitra) for 3 weeks. The present study showed that low doses of tadalafil and vardenafil increased DMN-dI activity by 32 and 23%, respectively. On the other hand, high doses of tadalafil, vardenafil, and sildenafil decreased such activity by 50, 56, and 52%, respectively. In addition, low doses of tadalafil and vardenafil induced the protein expression of CYP2E1. On the other hand, high doses of either tadalafil or sildenafil were more potent inhibitors to CYP2E1 expression than vardenafil. Moreover, low doses of both vardenafil and sildenafil markedly increased AHH activity by 162 and 247%, respectively, whereas high doses of tadalafil, vardenafil, and sildenafil inhibited such activity by 36, 49, and 57% and inhibited the EROD activity by 39, 49, and 33%, respectively. Low and high doses of tadalafil, vardenafil, and sildenafil inhibited the activity of NADPH-cytochrome c reductase as well as its protein expression. In addition, such drugs inhibited the expression of CYP B1/2 along with its corresponding enzyme marker ECOD activity. It is concluded that changes in the expression and activity of phase I drug-metabolising enzymes could change the normal metabolic pathways and might enhance the deleterious effects of exogenous as well as endogenous compounds.
Collapse
|
158
|
Joshi SR, Lakhkar A, Dhagia V, Zias AL, Soldatos V, Oshima K, Jiang H, Gotlinger K, Capdevila JH, Schwartzman ML, McMurtry IF, Gupte SA. Cyp2c44 gene disruption exacerbated pulmonary hypertension and heart failure in female but not male mice. Pulm Circ 2016; 6:360-8. [PMID: 27683613 DOI: 10.1086/688060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epoxyeicosatrienoicacids (EETs), synthesized from arachidonic acid by epoxygenases of the CYP2C and CYP2J gene subfamilies, contribute to hypoxic pulmonary vasoconstriction (HPV) in mice. Despite their roles in HPV, it is controversial whether EETs mediate or ameliorate pulmonary hypertension (PH). A recent study showed that deficiency of Cyp2j did not protect male and female mice from hypoxia-induced PH. Since CYP2C44 is a functionally important epoxygenase, we hypothesized that knockout of the Cyp2c44 gene would protect both sexes of mice from hypoxia-induced PH. We tested this hypothesis in wild-type (WT) and Cyp2c44 knockout (Cyp2c44 (-/-)) mice exposed to normoxia (room air) and hypoxia (10% O2) for 5 weeks. Exposure of WT and Cyp2c44 (-/-) mice to hypoxia resulted in pulmonary vascular remodeling, increased pulmonary artery resistance, and decreased cardiac function in both sexes. However, in female Cyp2c44 (-/-) mice, compared with WT mice, (1) pulmonary artery resistance and right ventricular hypertrophy were greater, (2) cardiac index was lower, (3) left ventricular and arterial stiffness were higher, and (4) plasma aldosterone levels were higher, but (5) there was no difference in levels of EET in lungs and heart. Paradoxically and unexpectedly, we found that Cyp2c44 disruption exacerbated hypoxia-induced PH in female but not male mice. We attribute exacerbated PH in female Cyp2c44 (-/-) mice to elevated aldosterone and as-yet-unknown systemic factors. Therefore, we suggest a role for the human CYP2C genes in protecting women from severe PH and that this could be one of the underlying causes for a better 5-year survival rate in women than in men.
Collapse
Affiliation(s)
- Sachindra Raj Joshi
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Anand Lakhkar
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Vidhi Dhagia
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Ariadne L Zias
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Vasiliki Soldatos
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Kaori Oshima
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA
| | - Houli Jiang
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Katherine Gotlinger
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michal L Schwartzman
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Ivan F McMurtry
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA
| | - Sachin A Gupte
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
159
|
Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A 1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K + channels. Mol Cell Biochem 2016; 422:197-206. [PMID: 27629787 DOI: 10.1007/s11010-016-2821-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Soluble epoxide hydrolase (sEH) converts epoxyeicosatrienoic acids that are endothelium-derived hyperpolarizing factors into less active dihydroxyeicosatrienoic acids. Previously, we reported a decrease in adenosine A1 receptor (A1AR) protein levels in sEH knockout (sEH-/-) and an increase in sEH and A1AR protein levels in A2AAR-/- mice. Additionally, KATP channels are involved in adenosine receptor (AR)-dependent vascular relaxation. Thus, we hypothesize that a potential relationship may exist among sEH over-expression, A1AR upregulation, inactivation of KATP channels, and increased in vascular tone. We performed DMT myograph muscle tension measurements and western blot analysis in isolated mouse mesenteric arteries (MAs) from wild-type (WT) and endothelial over-expression of sEH (Tie2-sEH Tr) mice. Our data revealed that NECA (a non-selective adenosine receptors agonist)-induced relaxation was significantly reduced in Tie2-sEH Tr mice, and CCPA (A1AR agonist)-induced contraction was increased in Tie2-sEH Tr mice. A1AR-dependent contraction in Tie2-sEH Tr mice was significantly attenuated by pharmacological inhibition of CYP4A (HET0016, 10 µM), PKCα (GO6976, 1 µM), and ERK1/2 (PD58059, 1 µM). Our western blot analysis revealed significantly higher basal protein expression of CYP4A, A1AR, and reduced p-ERK in MAs of Tie2-sEH Tr mice. Notably, pinacidil (KATP channel opener)-induced relaxation was also significantly reduced in MAs of Tie2-sEH Tr mice. Furthermore, KATP channel-dependent relaxation in MAs was enhanced by inhibition of PKCα and ERK1/2 in WT but not Tie2-sEH Tr mice. In conclusion, our data suggest that over-expression of sEH enhances A1AR-dependent contraction and reduces KATP channel-dependent relaxation in MAs. These results suggest a possible interaction between sEH, A1AR, and KATP channels in regulating vascular tone.
Collapse
|
160
|
Katary MM, Pye C, Elmarakby AA. Meloxicam fails to augment the reno-protective effects of soluble epoxide hydrolase inhibition in streptozotocin-induced diabetic rats via increased 20-HETE levels. Prostaglandins Other Lipid Mediat 2016; 132:3-11. [PMID: 27596333 DOI: 10.1016/j.prostaglandins.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/24/2016] [Accepted: 08/25/2016] [Indexed: 01/11/2023]
Abstract
The pro-inflammatory cyclooxygenase (COX)-derived prostaglandins and the anti-inflammatory cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) play an important role in the regulation of renal injury. The current study examined whether COX inhibition augments the reno-protective effects of increased EETs levels via inhibiting EETs degradation by soluble epoxide hydrolase (sEH) in diabetic rats. Streptozotocin (50mg/kg, i.v) was used to induce diabetes in male Sprague Dawley rats. Rats were then divided into 5 groups (n=6-8); control non diabetic, diabetic, diabetic treated with the sEH inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), diabetic treated with the COX inhibitor meloxicam and diabetic treated with meloxicam plus t-AUCB for 2 months. Glomerular albumin permeability and urinary albumin and nephrin excretion levels were significantly elevated in diabetic rats together with decreased glomerular α3 integrin and nephrin expression levels. Inhibition of sEH reduced glomerular albumin permeability, albumin and nephrin excretion levels and restored the decrease in glomerular α3 integrin and nephrin expression in diabetic rats. Meloxicam failed to reduce renal injury or even to synergize the reno-protective effects of sEH inhibition in diabetic rats. Furthermore, inhibition of sEH reduced the elevation in renal collagen deposition and urinary MCP-1 excretion levels together with a reduction in the number of renal TUNEL positive cells in diabetic vs. control rats (P<0.05). Meloxicam did not reduce renal inflammation or apoptosis in diabetic rats or even exacerbate the anti-inflammatory and anti-apoptotic effects of sEH inhibition. Renal 20-hydroxyeicosatetranoic acid (20-HETE) levels were elevated in diabetic rats and meloxicam further exacerbated this elevation. In conclusion, our study suggests that inhibition of COX failed to provide renal protection or to augment the reno-protective effects of sEH inhibition in diabetic rats, at least in part, via increased inflammatory 20-HETE levels.
Collapse
Affiliation(s)
- Mohamed M Katary
- Department of Oral Biology & Pharmacology, Augusta University, Augusta, GA, United States; Department of Pharmacology, Faculty of Pharmacy, Damanhur University, Egypt
| | - Chelsey Pye
- Department of Oral Biology & Pharmacology, Augusta University, Augusta, GA, United States
| | - Ahmed A Elmarakby
- Department of Oral Biology & Pharmacology, Augusta University, Augusta, GA, United States.
| |
Collapse
|
161
|
EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat 2016; 125:65-79. [DOI: 10.1016/j.prostaglandins.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023]
|
162
|
The soluble epoxide hydrolase determines cholesterol homeostasis by regulating AMPK and SREBP activity. Prostaglandins Other Lipid Mediat 2016; 125:30-9. [DOI: 10.1016/j.prostaglandins.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/28/2022]
|
163
|
Xu J, Morisseau C, Yang J, Lee KSS, Kamita SG, Hammock BD. Ingestion of the epoxide hydrolase inhibitor AUDA modulates immune responses of the mosquito, Culex quinquefasciatus during blood feeding. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:62-69. [PMID: 27369469 PMCID: PMC5010450 DOI: 10.1016/j.ibmb.2016.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 05/14/2023]
Abstract
Epoxide hydrolases (EHs) are enzymes that play roles in metabolizing xenobiotic epoxides from the environment, and in regulating lipid signaling molecules, such as juvenile hormones in insects and epoxy fatty acids in mammals. In this study we fed mosquitoes with an epoxide hydrolase inhibitor AUDA during artificial blood feeding, and we found the inhibitor increased the concentration of epoxy fatty acids in the midgut of female mosquitoes. We also observed ingestion of AUDA triggered early expression of defensin A, cecropin A and cecropin B2 at 6 h after blood feeding. The expression of cecropin B1 and gambicin were not changed more than two fold compared to controls. The changes in gene expression were transient possibly because more than 99% of the inhibitor was metabolized or excreted at 42 h after being ingested. The ingestion of AUDA also affected the growth of bacteria colonizing in the midgut, but did not affect mosquito longevity, fecundity and fertility in our laboratory conditions. When spiked into the blood, EpOMEs and DiHOMEs were as effective as the inhibitor AUDA in reducing the bacterial load in the midgut, while EETs rescued the effects of AUDA. Our data suggest that epoxy fatty acids from host blood are immune response regulators metabolized by epoxide hydrolases in the midgut of female mosquitoes, inhibition of which causes transient changes in immune responses, and affects growth of microbes in the midgut.
Collapse
Affiliation(s)
- Jiawen Xu
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Kin Sing Stephen Lee
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Shizuo G Kamita
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
164
|
Effect of Soluble Epoxide Hydrolase on the Modulation of Coronary Reactive Hyperemia: Role of Oxylipins and PPARγ. PLoS One 2016; 11:e0162147. [PMID: 27583776 PMCID: PMC5008628 DOI: 10.1371/journal.pone.0162147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022] Open
Abstract
Coronary reactive hyperemia (CRH) is a physiological response to ischemic insult that prevents the potential harm associated with an interruption of blood supply. The relationship between the pharmacologic inhibition of soluble epoxide hydrolase (sEH) and CRH response to a brief ischemia is not known. sEH is involved in the main catabolic pathway of epoxyeicosatrienoic acids (EETs), which are converted into dihydroxyeicosatrienoic acids (DHETs). EETs protect against ischemia/reperfusion injury and have numerous beneficial physiological effects. We hypothesized that inhibition of sEH by t-AUCB enhances CRH in isolated mouse hearts through changing the oxylipin profiles, including an increase in EETs/DHETs ratio. Compared to controls, t-AUCB-treated mice had increased CRH, including repayment volume (RV), repayment duration, and repayment/debt ratio (p < 0.05). Treatment with t-AUCB significantly changed oxylipin profiles, including an increase in EET/DHET ratio, increase in EpOME/DiHOME ratio, increase in the levels of HODEs, decrease in the levels of mid-chain HETEs, and decrease in prostanoids (p < 0.05). Treatment with MS-PPOH (CYP epoxygenase inhibitor) reduced CRH, including RV (p < 0.05). Involvement of PPARγ in the modulation of CRH was demonstrated using a PPARγ-antagonist (T0070907) and a PPARγ-agonist (rosiglitazone). T0070907 reduced CRH (p < 0.05), whereas rosiglitazone enhanced CRH (p < 0.05) in isolated mouse hearts compared to the non-treated. These data demonstrate that sEH inhibition enhances, whereas CYP epoxygenases-inhibition attenuates CRH, PPARγ mediate CRH downstream of the CYP epoxygenases-EET pathway, and the changes in oxylipin profiles associated with sEH-inhibition collectively contributed to the enhanced CRH.
Collapse
|
165
|
Hanif A, Edin ML, Zeldin DC, Morisseau C, Nayeem MA. Deletion of soluble epoxide hydrolase enhances coronary reactive hyperemia in isolated mouse heart: role of oxylipins and PPARγ. Am J Physiol Regul Integr Comp Physiol 2016; 311:R676-R688. [PMID: 27488890 DOI: 10.1152/ajpregu.00237.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022]
Abstract
The relationship between soluble epoxide hydrolase (sEH) and coronary reactive hyperemia (CRH) response to a brief ischemic insult is not known. Epoxyeicosatrienoic acids (EETs) exert cardioprotective effects in ischemia/reperfusion injury. sEH converts EETs into dihydroxyeicosatrienoic-acids (DHETs). Therefore, we hypothesized that knocking out sEH enhances CRH through modulation of oxylipin profiles, including an increase in EET/DHET ratio. Compared with sEH+/+, sEH-/- mice showed enhanced CRH, including greater repayment volume (RV; 28% higher, P < 0.001) and repayment/debt ratio (32% higher, P < 0.001). Oxylipins from the heart perfusates were analyzed by LC-MS/MS. The 14,15-EET/14,15-DHET ratio was 3.7-fold higher at baseline (P < 0.001) and 5.6-fold higher post-ischemia (P < 0.001) in sEH-/- compared with sEH+/+ mice. Likewise, the baseline 9,10- and 12,13-EpOME/DiHOME ratios were 3.2-fold (P < 0.01) and 3.7-fold (P < 0.001) higher, respectively in sEH-/- compared with sEH+/+ mice. 13-HODE was also significantly increased at baseline by 71% (P < 0.01) in sEH-/- vs. sEH+/+ mice. Levels of 5-, 11-, 12-, and 15-hydroxyeicosatetraenoic acids were not significantly different between the two strains (P > 0.05), but were decreased postischemia in both groups (P = 0.02, P = 0.04, P = 0.05, P = 0.03, respectively). Modulation of CRH by peroxisome proliferator-activated receptor gamma (PPARγ) was demonstrated using a PPARγ-antagonist (T0070907), which reduced repayment volume by 25% in sEH+/+ (P < 0.001) and 33% in sEH-/- mice (P < 0.01), and a PPARγ-agonist (rosiglitazone), which increased repayment volume by 37% in both sEH+/+ (P = 0.04) and sEH-/- mice (P = 0.04). l-NAME attenuated CRH in both sEH-/- and sEH+/+ These data demonstrate that genetic deletion of sEH resulted in an altered oxylipin profile, which may have led to an enhanced CRH response.
Collapse
Affiliation(s)
- Ahmad Hanif
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina; and
| | | | - Mohammed A Nayeem
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia;
| |
Collapse
|
166
|
Zhang K, Liu Y, Liu X, Chen J, Cai Q, Wang J, Huang H. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids. Oncotarget 2016; 6:24699-708. [PMID: 26322503 PMCID: PMC4694789 DOI: 10.18632/oncotarget.5084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/07/2015] [Indexed: 12/28/2022] Open
Abstract
Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight / body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Yu Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Xiaoqiang Liu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.,Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Hui Huang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| |
Collapse
|
167
|
Wells MA, Vendrov KC, Edin ML, Ferslew BC, Zha W, Nguyen BKH, Church RJ, Lih FB, DeGraff LM, Brouwer KLR, Barritt AS, Zeldin DC, Lee CR. Characterization of the Cytochrome P450 epoxyeicosanoid pathway in non-alcoholic steatohepatitis. Prostaglandins Other Lipid Mediat 2016; 125:19-29. [PMID: 27401401 DOI: 10.1016/j.prostaglandins.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/24/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is an emerging public health problem without effective therapies. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into bioactive epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory and protective effects. However, the functional relevance of the CYP epoxyeicosanoid metabolism pathway in the pathogenesis of NASH remains poorly understood. Our studies demonstrate that both mice with methionine-choline deficient (MCD) diet-induced NASH and humans with biopsy-confirmed NASH exhibited significantly higher free EET concentrations compared to healthy controls. Targeted disruption of Ephx2 (the gene encoding for soluble epoxide hydrolase) in mice further increased EET levels and significantly attenuated MCD diet-induced hepatic steatosis, inflammation and injury, as well as high fat diet-induced adipose tissue inflammation, systemic glucose intolerance and hepatic steatosis. Collectively, these findings suggest that dysregulation of the CYP epoxyeicosanoid pathway is a key pathological consequence of NASH in vivo, and promoting the anti-inflammatory and protective effects of EETs warrants further investigation as a novel therapeutic strategy for NASH.
Collapse
Affiliation(s)
- Michael A Wells
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kimberly C Vendrov
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Brian C Ferslew
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Weibin Zha
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Bobbie K H Nguyen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rachel J Church
- University of North Carolina Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fred B Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Laura M DeGraff
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - A Sidney Barritt
- Division of Gastroenterology and Hepatology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
168
|
Imig JD, Hye Khan MA, Sharma A, Fish BL, Mandel NS, Cohen EP. Radiation-induced afferent arteriolar endothelial-dependent dysfunction involves decreased epoxygenase metabolites. Am J Physiol Heart Circ Physiol 2016; 310:H1695-701. [PMID: 27106038 DOI: 10.1152/ajpheart.00023.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Abstract
Chronic kidney disease is a known complication of hematopoietic stem cell transplant (HSCT) and can be caused by irradiation at the time of the HSCT. In our rat model there is a 6- to 8-wk latent period after irradiation that leads to the development of proteinuria, azotemia, and hypertension. The current study tested the hypothesis that decreased endothelial-derived factors contribute to impaired afferent arteriolar function in rats exposed to total body irradiation (TBI). WAG/RijCmcr rats underwent 11 Gy TBI, and afferent arteriolar responses to acetylcholine were determined at 1, 3, and 6 wk. Blood pressure and blood urea nitrogen were not different between control and irradiated rats. Afferent arteriolar diameters were not altered in irradiated rats. Impaired endothelial-dependent responses to acetylcholine were evident at 3 and 6 wk following TBI. Nitric oxide synthase (NOS), cyclooxygenase (COX), and epoxygenase (EPOX) contribution to acetylcholine dilator responses were evaluated. NOS inhibition with N(G)-nitro-l-arginine methyl ester (l-NAME) reduced acetylcholine responses by 50% in controls and 90% in 3-wk TBI rats. COX inhibition with indomethacin did not significantly alter the acetylcholine response in the presence or absence of l-NAME. EPOX inhibition with N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide significantly decreased acetylcholine responses (35%) in controls but did not significantly alter acetylcholine responses (4%) in TBI rats. Biochemical analysis revealed decreased urinary EPOX metabolites but no change in COX, NOS, or reactive oxygen species at 3 wk TBI. Taken together, these results indicate that afferent arteriolar endothelial dysfunction involves a decrease in EPOX metabolites that precedes the development of proteinuria, azotemia, and hypertension in irradiated rats.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| | - Md Abdul Hye Khan
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amit Sharma
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Neil S Mandel
- Clement J. Zablocki Veterans Affairs Medical Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Eric P Cohen
- Baltimore Veterans Affairs Medical Center and University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
169
|
Imig JD. Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:105-41. [PMID: 27451096 DOI: 10.1016/bs.apha.2016.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial and vascular smooth cells generate cytochrome P450 (CYP) arachidonic acid metabolites that can impact endothelial cell function and vascular homeostasis. The objective of this review is to focus on the physiology and pharmacology of endothelial CYP metabolites. The CYP pathway produces two types of eicosanoid products: epoxyeicosatrienoic acids (EETs), formed by CYP epoxygenases, and hydroxyeicosatetraenoic acids (HETEs), formed by CYP hydroxylases. Advances in CYP enzymes, EETs, and 20-HETE by pharmacological and genetic means have led to a more complete understanding of how these eicosanoids impact on endothelial cell function. Endothelial-derived EETs were initially described as endothelial-derived hyperpolarizing factors. It is now well recognized that EETs importantly contribute to numerous endothelial cell functions. On the other hand, 20-HETE is the predominant CYP hydroxylase synthesized by vascular smooth muscle cells. Like EETs, 20-HETE acts on endothelial cells and impacts importantly on endothelial and vascular function. An important aspect for EETs and 20-HETE endothelial actions is their interactions with hormonal and paracrine factors. These include interactions with the renin-angiotensin system, adrenergic system, puringeric system, and endothelin. Alterations in CYP enzymes, 20-HETE, or EETs contribute to endothelial dysfunction and cardiovascular diseases such as ischemic injury, hypertension, and atherosclerosis. Recent advances have led to the development of potential therapeutics that target CYP enzymes, 20-HETE, or EETs. Thus, future investigation is required to obtain a more complete understanding of how CYP enzymes, 20-HETE, and EETs regulate endothelial cell function.
Collapse
Affiliation(s)
- J D Imig
- Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
170
|
Sun C, Simon SI, Foster GA, Radecke CE, Hwang HV, Zhang X, Hammock BD, Chiamvimonvat N, Knowlton AA. 11,12-Epoxyecosatrienoic acids mitigate endothelial dysfunction associated with estrogen loss and aging: Role of membrane depolarization. J Mol Cell Cardiol 2016; 94:180-188. [PMID: 27079253 PMCID: PMC4972711 DOI: 10.1016/j.yjmcc.2016.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/18/2016] [Accepted: 03/31/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Endothelial dysfunction, including upregulation of inflammatory adhesion molecules and impaired vasodilatation, is a key element in cardiovascular disease. Aging and estrogen withdrawal in women are associated with endothelial inflammation, vascular stiffness and increased cardiovascular disease. Epoxyecosatrienoic acids (EETs), the products of arachidonic acid metabolism mediated by cytochrome P450 (CYP) 2J, 2C and other isoforms, are regulated by soluble epoxide hydrolase (sEH)-catalyzed conversion into less active diols. We hypothesized that 11,12-EETs would reduce the endothelial dysfunction associated with aging and estrogen loss. APPROACH/RESULTS When stabilized by an sEH inhibitor (seHi), 11,12-EET at a physiologically low dose (0.1nM) reduced cytokine-stimulated upregulation of adhesion molecules on human aorta endothelial cells (HAEC) and monocyte adhesion under shear flow through marked depolarization of the HAEC when combined with TNFα. Mechanistically, neither 11,12-EETs nor 17β-estradiol (E2) at physiologic concentrations prevented activation of NFκB by TNFα. E2 at physiological concentrations reduced sEH expression in HAEC, but did not alter CYP expression, and when combined with TNFα depolarized the cell. We also examined vascular dysfunction in adult and aged ovariectomized Norway brown rats (with and without E2 replacement) using an ex-vivo model to analyze endothelial function in an intact segment of artery. sEHi and 11,12-EET with or without E2 attenuated phenylephrine induced constriction and increased endothelial-dependent dilation of aortic rings from ovariectomized rats. CONCLUSIONS Increasing 11,12-EETs through sEH inhibition effectively attenuates inflammation and may provide an effective strategy to preserve endothelial function and prevent atherosclerotic heart disease in postmenopausal women.
Collapse
Affiliation(s)
- Chongxiu Sun
- The Department of Veterans Affairs, Northern California VA, Sacramento, CA, United States; Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California, Davis, Davis, CA, United States; Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Greg A Foster
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Christopher E Radecke
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - HyunTae V Hwang
- The Department of Veterans Affairs, Northern California VA, Sacramento, CA, United States; Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California, Davis, Davis, CA, United States
| | - Xiaodong Zhang
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California, Davis, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States; Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - N Chiamvimonvat
- The Department of Veterans Affairs, Northern California VA, Sacramento, CA, United States; Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California, Davis, Davis, CA, United States
| | - Anne A Knowlton
- The Department of Veterans Affairs, Northern California VA, Sacramento, CA, United States; Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California, Davis, Davis, CA, United States; Department of Pharmacology, University of California, Davis, Davis, CA, United States.
| |
Collapse
|
171
|
Sporková A, Reddy RN, Falck JR, Imig JD, Kopkan L, Sadowski J, Červenka L. Interlobular Arteries From 2-Kidney, 1-Clip Goldblatt Hypertensive Rats' Exhibit-Impaired Vasodilator Response to Epoxyeicosatrienoic Acids. Am J Med Sci 2016; 351:513-9. [PMID: 27140711 PMCID: PMC5021442 DOI: 10.1016/j.amjms.2016.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/12/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Small renal arteries have a significant role in the regulation of renal hemodynamics and blood pressure (BP). To study potential changes in the regulation of vascular function in hypertension, we examined renal vasodilatory responses of small arteries from nonclipped kidneys of the 2-kidney, 1-clip Goldblatt hypertensive rats to native epoxyeicosatrienoic acids (EETs) that are believed to be involved in the regulation of renal vascular function and BP. A total of 2 newly synthesized EET analogues were also examined. MATERIALS AND METHODS Renal interlobular arteries isolated from the nonclipped kidneys on day 28 after clipping were preconstricted with phenylephrine, pressurized and the effects of a 14,15-EET analogue, native 14,15-EET and 11,12-ether-EET-8ZE, an analogue of 11,12-EET, on the vascular diameter were determined and compared to the responses of arteries from the kidneys of sham-operated rats. RESULTS In the arteries from nonclipped kidneys isolated in the maintenance phase of Goldblatt hypertension, the maximal vasodilatory response to 14,15-EET analogue was 30.1 ± 2.8% versus 49.8 ± 7.2% in sham-operated rats; the respective values for 11,12-ther-EET-8ZE were 31.4 ± 6.4% versus 80.4 ± 6%, and for native EETs they were 41.7 ± 6.6% versus 62.8 ± 4.4% (P ≤ 0.05 for each difference). CONCLUSIONS We propose that reduced vasodilatory action and decreased intrarenal bioavailability of EETs combined with intrarenal angiotensin II levels that are inappropriately high for hypertensive rats underlie functional derangements of the nonclipped kidneys of 2-kidney, 1-clip Goldblatt hypertensive rats. These derangements could play an important role in pathophysiology of sustained BP elevation observed in this animal model of human renovascular hypertension.
Collapse
Affiliation(s)
- Alexandra Sporková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Rami N Reddy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
172
|
Ulven T, Christiansen E. Dietary Fatty Acids and Their Potential for Controlling Metabolic Diseases Through Activation of FFA4/GPR120. Annu Rev Nutr 2016; 35:239-63. [PMID: 26185978 DOI: 10.1146/annurev-nutr-071714-034410] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well known that the amount and type of ingested fat impacts the development of obesity and metabolic diseases, but the potential for beneficial effects from fat has received less attention. It is becoming clear that the composition of the individual fatty acids in diet is important. Besides acting as precursors of potent signaling molecules, dietary fatty acids act directly on intracellular and cell surface receptors. The free fatty acid receptor 4 (FFA4, previously GPR120) is linked to the regulation of body weight, inflammation, and insulin resistance and represents a potential target for the treatment of metabolic disorders, including type 2 diabetes and obesity. In this review, we discuss the various types of dietary fatty acids, the link between FFA4 and metabolic diseases, the potential effects of the individual fatty acids on health, and the ability of fatty acids to activate FFA4. We also discuss the possibility of dietary schemes that implement activation of FFA4.
Collapse
Affiliation(s)
- Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark;
| | | |
Collapse
|
173
|
Waltenberger B, Garscha U, Temml V, Liers J, Werz O, Schuster D, Stuppner H. Discovery of Potent Soluble Epoxide Hydrolase (sEH) Inhibitors by Pharmacophore-Based Virtual Screening. J Chem Inf Model 2016; 56:747-62. [DOI: 10.1021/acs.jcim.5b00592] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Birgit Waltenberger
- Institute
of Pharmacy/Pharmacognosy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Ulrike Garscha
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Veronika Temml
- Institute
of Pharmacy/Pharmacognosy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Josephine Liers
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Oliver Werz
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | | | - Hermann Stuppner
- Institute
of Pharmacy/Pharmacognosy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
174
|
Goswami SK, Inamdar MN, Dethe SM, Gururaj GM, Jamwal R, Bhaskar A, Mundkinajeddu D, Agarwal A. Erectogenic and Aphrodisiac Property of Moringa oleifera: Involvement of Soluble Epoxide Hydrolase Enzyme. Phytother Res 2016; 30:1119-27. [PMID: 27020843 DOI: 10.1002/ptr.5614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 01/12/2016] [Accepted: 02/28/2016] [Indexed: 12/20/2022]
Abstract
Soluble epoxide hydrolase (sEH) inhibitors have been reported to improve penile erection; therefore, sEH could be useful for management of erectile dysfunction. Methanolic and aqueous extracts of 30 Indian medicinal plants were screened for their sEH inhibition potential. Fifteen extracts showed >50% inhibition when screened at 50 µg/mL in sEH inhibition assay. Methanolic extract of Moringa oleifera Lam. (Moringaceae) seeds (MEMO) was most potent with IC50 1.7 ± 0.1 µg/mL and was selected for in vitro studies on isolated rat corpus cavernosum smooth muscle and in vivo sexual behaviour studies on healthy and diabetic rats. Rats were divided into five groups, each containing six animals and treated orally with either water, vehicle (1% Tween-20), MEMO (45 and 90 mg/kg/day for 21 days), and standard drug, sildenafil (5 mg/kg/day for 7 days). An equal number of female rats were used, and the effect of MEMO and sildenafil was compared with that of vehicle. MEMO significantly relaxed isolated rat corpus cavernosum smooth muscle at 0.1-100 µg/mL in vitro and significantly increased (p < 0.05) sexual activity, intracavernous pressure/mean arterial pressure in normal and diabetic rats. The increase in erectile function of rats by MEMO could be because of its sEH inhibitory activity. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - Shekhar M Dethe
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| | - Giligar M Gururaj
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| | - Rohitash Jamwal
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| | - Anirban Bhaskar
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| | - Deepak Mundkinajeddu
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| | - Amit Agarwal
- R&D Centre, Natural Remedies Pvt. Ltd., Plot No. 5B, Veerasandra Industrial Area, Bangalore, 560100, India
| |
Collapse
|
175
|
El-Sherbeni AA, El-Kadi AOS. Repurposing Resveratrol and Fluconazole To Modulate Human Cytochrome P450-Mediated Arachidonic Acid Metabolism. Mol Pharm 2016; 13:1278-88. [PMID: 26918316 DOI: 10.1021/acs.molpharmaceut.5b00873] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (P450) enzymes metabolize arachidonic acid (AA) to several biologically active epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs). Repurposing clinically-approved drugs could provide safe and readily available means to control EETs and HETEs levels in humans. Our aim was to determine how to significantly and selectively modulate P450-AA metabolism in humans by clinically-approved drugs. Liquid chromatography-mass spectrometry was used to determine the formation of 15 AA metabolites by human recombinant P450 enzymes, as well as human liver and kidney microsomes. CYP2C19 showed the highest EET-forming activity, while CYP1B1 and CYP2C8 showed the highest midchain HETE-forming activities. CYP1A1 and CYP4 showed the highest subterminal- and 20-HETE-forming activity, respectively. Resveratrol and fluconazole produced the most selective and significant modulation of hepatic P450-AA metabolism, comparable to investigational agents. Monte Carlo simulations showed that 90% of human population would experience a decrease by 6-22%, 16-39%, and 16-35% in 16-, 18-, and 20-HETE formation, respectively, after 2.5 g daily of resveratrol, and by 22-31% and 14-23% in 8,9- and 14,15-EET formation after 50 mg of fluconazole. In conclusion, clinically-approved drugs can provide selective and effective means to modulate P450-AA metabolism, comparable to investigational drugs. Resveratrol and fluconazole are good candidates to be repurposed as new P450-based treatments.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| |
Collapse
|
176
|
Abstract
Heart failure accounts for a significant portion of heart diseases. Molecular mechanisms gradually emerge that participate in pathways leading to left ventricular dysfunction in common systolic heart failure (SHF) and diastolic heart failure (DHF). A human genome-wide association study (GWAS) identified two markers for SHF and no GWAS on DHF has been documented. However, genetic analyses in rat models of SHF and DHF have begun to unravel the genetic components known as quantitative trait loci (QTLs) initiating systolic and diastolic function. A QTL for systolic function was detected and the gene responsible for it is identified to be that encoding the soluble epoxide hydrolase. Diastolic function is determined by multiple QTLs and the Ccl2/monocyte chemotactic protein gene is the strongest candidate. An amelioration on diastolic dysfunction is merely transient from changing such a single QTL accompanied by a blood pressure reduction. A long-term protection can be achieved only via combining alleles of several QTLs. Thus, distinct genes in synergy are involved in physiological mechanisms durably ameliorating or reversing diastolic dysfunction. These data lay the foundation for identifying causal genes responsible for individual diastolic function QTLs and the essential combination of them to attain a permanent protection against diastolic dysfunction, and consequently will facilitate the elucidation of pathophysiological mechanisms underlying hypertensive diastolic dysfunction. Novel pathways triggering systolic and diastolic dysfunction have emerged that will likely provide new diagnostic tools, innovative therapeutic targets and strategies in reducing, curing and even reversing SHF and DHF.
Collapse
|
177
|
The Gatekeepers in the Mouse Ophthalmic Artery: Endothelium-Dependent Mechanisms of Cholinergic Vasodilation. Sci Rep 2016; 6:20322. [PMID: 26831940 PMCID: PMC4735817 DOI: 10.1038/srep20322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/04/2016] [Indexed: 01/25/2023] Open
Abstract
Cholinergic regulation of arterial luminal diameter involves intricate network of intercellular communication between the endothelial and smooth muscle cells that is highly dependent on the molecular mediators released by the endothelium. Albeit the well-recognized contribution of nitric oxide (NO) towards vasodilation, the identity of compensatory mechanisms that maintain vasomotor tone when NO synthesis is deranged remain largely unknown in the ophthalmic artery. This is the first study to identify the vasodilatory signalling mechanisms of the ophthalmic artery employing wild type mice. Acetylcholine (ACh)-induced vasodilation was only partially attenuated when NO synthesis was inhibited. Intriguingly, the combined blocking of cytochrome P450 oxygenase (CYP450) and lipoxygenase (LOX), as well as CYP450 and gap junctions, abolished vasodilation; demonstrating that the key compensatory mechanisms comprise arachidonic acid metabolites which, work in concert with gap junctions for downstream signal transmission. Furthermore, the voltage-gated potassium ion channel, Kv1.6, was functionally relevant in mediating vasodilation. Its localization was found exclusively in the smooth muscle. In conclusion, ACh-induced vasodilation of mouse ophthalmic artery is mediated in part by NO and predominantly via arachidonic acid metabolites, with active involvement of gap junctions. Particularly, the Kv1.6 channel represents an attractive therapeutic target in ophthalmopathologies when NO synthesis is compromised.
Collapse
|
178
|
Khan NS, Song CY, Thirunavukkarasu S, Fang XR, Bonventre JV, Malik KU. Cytosolic Phospholipase A2α Is Essential for Renal Dysfunction and End-Organ Damage Associated With Angiotensin II-Induced Hypertension. Am J Hypertens 2016; 29:258-65. [PMID: 26045535 DOI: 10.1093/ajh/hpv083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/13/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The kidney plays an important role in regulating blood pressure (BP). cPLA2α in the kidney is activated by various agents including angiotensin II (Ang II) and selectively releases arachidonic acid (AA) from tissue lipids, generating pro- and antihypertensive eicosanoids. Since activation of cPLA2α is the rate-limiting step in AA release, this study was conducted to determine its contribution to renal dysfunction and end-organ damage associated with Ang II-induced hypertension. METHODS cPLA2α(+/+) and cPLA2α(-/-) mice were infused with Ang II (700 ng/ kg/min) or its vehicle for 13 days. Mice were placed in metabolic cages to monitor their food and water intake, and urine was collected and its volume was measured. Doppler imaging was performed to assess renal hemodynamics. On the 13th day of Ang II infusion, mice were sacrificed and their tissues and blood collected for further analysis. RESULTS Ang II increased renal vascular resistance, water intake, and urine output and Na(+) excretion, decreased urine osmolality, and produced proteinuria in cPLA2α(+/+) mice. Ang II also caused accumulation of F4/80(+) macrophages and CD3(+) T cells and renal fibrosis, and increased oxidative stress in the kidneys of cPLA2α(+/+) mice. All these effects of Ang II were minimized in cPLA2α(-/-) mice. CONCLUSION cPLA2α contributes to renal dysfunction, inflammation, and end-organ damage, most likely via the action of pro-hypertensive eicosanoids and increased oxidative stress associated with Ang II-induced hypertension. Thus, cPLA2α could serve as a potential therapeutic target for treating renal dysfunction and end-organ damage in hypertension.
Collapse
Affiliation(s)
- Nayaab S Khan
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chi Young Song
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shyamala Thirunavukkarasu
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xiao R Fang
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital Boston, Harvard Medical School, Harvard Institute of Medicine, Boston, Massachusetts, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| |
Collapse
|
179
|
Goldenberg NM, Kuebler WM. Endothelial cell regulation of pulmonary vascular tone, inflammation, and coagulation. Compr Physiol 2016; 5:531-59. [PMID: 25880504 DOI: 10.1002/cphy.c140024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pulmonary endothelium represents a heterogeneous cell monolayer covering the luminal surface of the entire lung vasculature. As such, this cell layer lies at a critical interface between the blood, airways, and lung parenchyma, and must act as a selective barrier between these diverse compartments. Lung endothelial cells are able to produce and secrete mediators, display surface receptor, and cellular adhesion molecules, and metabolize circulating hormones to influence vasomotor tone, both local and systemic inflammation, and coagulation functions. In this review, we will explore the role of the pulmonary endothelium in each of these systems, highlighting key regulatory functions of the pulmonary endothelial cell, as well as novel aspects of the pulmonary endothelium in contrast to the systemic cell type. The interactions between pulmonary endothelial cells and both leukocytes and platelets will be discussed in detail, and wherever possible, elements of endothelial control over physiological and pathophysiological processes will be examined.
Collapse
Affiliation(s)
- Neil M Goldenberg
- The Keenan Research Centre for Biomedical Science of St. Michael's, Toronto, Ontario, Canada; Department of Anesthesia, University of Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- The Keenan Research Centre for Biomedical Science of St. Michael's, Toronto, Ontario, Canada; German Heart Institute Berlin, Germany; Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany; Department of Surgery, University of Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Ontario,Canada
| |
Collapse
|
180
|
Abstract
Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Md Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
181
|
Characterization of changes in plasma and tissue oxylipin levels in LPS and CLP induced murine sepsis. Inflamm Res 2015; 65:133-42. [DOI: 10.1007/s00011-015-0897-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022] Open
|
182
|
Kim JH, Cho CW, Tai BH, Yang SY, Choi GS, Kang JS, Kim YH. Soluble Epoxide Hydrolase Inhibitory Activity of Selaginellin Derivatives from Selaginella tamariscina. Molecules 2015; 20:21405-14. [PMID: 26633335 PMCID: PMC6331899 DOI: 10.3390/molecules201219774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 11/22/2022] Open
Abstract
Selaginellin derivatives 1–3 isolated from Selaginellatamariscina were evaluated for their inhibition of soluble epoxide hydrolase (sEH) to demonstrate their potential for the treatment of cardiovascular disease. All selaginellin derivatives (1–3) inhibited sEH enzymatic activity and PHOME hydrolysis, in a dose-dependent manner, with IC50 values of 3.1 ± 0.1, 8.2 ± 2.2, and 4.2 ± 0.2 μM, respectively. We further determined that the derivatives function as non-competitive inhibitors. Moreover, the predicted that binding sites and interaction between 1–3 and sEH were solved by docking simulations. According to quantitative analysis, 1–3 were confirmed to have high content in the roots of S. tamariscina; among them, selaginellin 3 exhibited the highest content of 189.3 ± 0.0 μg/g.
Collapse
Affiliation(s)
- Jang Hoon Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju-gun, Jeollabuk-do 595-890, Korea.
| | - Chong Woon Cho
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Bui Huu Tai
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Caugiay, Hanoi 364-545, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Gug-Seoun Choi
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju-gun, Jeollabuk-do 595-890, Korea.
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| |
Collapse
|
183
|
Oni-Orisan A, Edin ML, Lee JA, Wells MA, Christensen ES, Vendrov KC, Lih FB, Tomer KB, Bai X, Taylor JM, Stouffer GA, Zeldin DC, Lee CR. Cytochrome P450-derived epoxyeicosatrienoic acids and coronary artery disease in humans: a targeted metabolomics study. J Lipid Res 2015; 57:109-19. [PMID: 26555503 DOI: 10.1194/jlr.m061697] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) exhibit potent cardiovascular protective effects in preclinical models, and promoting the effects of EETs has emerged as a potential therapeutic strategy for coronary artery disease (CAD). The relationship between circulating EET levels and CAD extent in humans, however, remains unknown. A panel of free (unesterified) plasma eicosanoid metabolites was quantified in 162 patients referred for coronary angiography, and associations with extent of CAD [no apparent CAD (N = 39), nonobstructive CAD (N = 51), and obstructive CAD (N = 72)] were evaluated. A significant relationship between free EET levels and CAD extent was observed (P = 0.003) such that the presence of obstructive CAD was associated with lower circulating EET levels. This relationship was confirmed in multiple regression analysis where CAD extent was inversely and significantly associated with EET levels (P = 0.013), and with a biomarker of EET biosynthesis (P < 0.001), independent of clinical and demographic factors. Furthermore, quantitative enrichment analysis revealed that these associations were the most pronounced compared with other eicosanoid metabolism pathways. Collectively, these findings suggest that the presence of obstructive CAD is associated with lower EET metabolite levels secondary to suppressed EET biosynthesis. Novel strategies that promote the effects of EETs may have therapeutic promise for patients with obstructive CAD.
Collapse
Affiliation(s)
- Akinyemi Oni-Orisan
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - John Andrew Lee
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael A Wells
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Erin S Christensen
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kimberly C Vendrov
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fred B Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Kenneth B Tomer
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Xue Bai
- Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joan M Taylor
- Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - George A Stouffer
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC Division of Cardiology, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
184
|
Goswami SK, Inceoglu B, Yang J, Wan D, Kodani SD, da Silva CAT, Morisseau C, Hammock BD. Omeprazole increases the efficacy of a soluble epoxide hydrolase inhibitor in a PGE₂ induced pain model. Toxicol Appl Pharmacol 2015; 289:419-27. [PMID: 26522832 DOI: 10.1016/j.taap.2015.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are potent endogenous analgesic metabolites produced from arachidonic acid by cytochrome P450s (P450s). Metabolism of EETs by soluble epoxide hydrolase (sEH) reduces their activity, while their stabilization by sEH inhibition decreases both inflammatory and neuropathic pain. Here, we tested the complementary hypothesis that increasing the level of EETs through induction of P450s by omeprazole (OME), can influence pain related signaling by itself, and potentiate the anti-hyperalgesic effect of sEH inhibitor. Rats were treated with OME (100mg/kg/day, p.o., 7 days), sEH inhibitor TPPU (3mg/kg/day, p.o.) and OME (100mg/kg/day, p.o., 7 days)+TPPU (3mg/kg/day, p.o., last 3 days of OME dose) dissolved in vehicle PEG400, and their effect on hyperalgesia (increased sensitivity to pain) induced by PGE2 was monitored. While OME treatment by itself exhibited variable effects on PGE2 induced hyperalgesia, it strongly potentiated the effect of TPPU in the same assay. The significant decrease in pain with OME+TPPU treatment correlated with the increased levels of EETs in plasma and increased activities of P450 1A1 and P450 1A2 in liver microsomes. The results show that reducing catabolism of EETs with a sEH inhibitor yielded a stronger analgesic effect than increasing generation of EETs by OME, and combination of both yielded the strongest pain reducing effect under the condition of this study.
Collapse
Affiliation(s)
- Sumanta Kumar Goswami
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Bora Inceoglu
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Debin Wan
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Sean D Kodani
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Carlos Antonio Trindade da Silva
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA; Department of Genetics and Biochemistry, Federal University of Uberlandia, MG, Brazil
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA.
| |
Collapse
|
185
|
Lagarde M, Calzada C, Jouvène C, Bernoud-Hubac N, Létisse M, Guichardant M, Véricel E. Functional fluxolipidomics of polyunsaturated fatty acids and oxygenated metabolites in the blood vessel compartment. Prog Lipid Res 2015; 60:41-9. [PMID: 26484703 DOI: 10.1016/j.plipres.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022]
Abstract
Synthesis of bioactive oxygenated metabolites of polyunsaturated fatty acids and their degradation or transformation products are made through multiple enzyme processes. The kinetics of the enzymes responsible for the different steps are known to be quite diverse, although not precisely determined. The location of the metabolites biosynthesis is diverse as well. Also, the biological effects of the primary and secondary products, and their biological life span are often completely different. Consequently, phenotypes of cells in response to these bioactive lipid mediators must then depend on their concentrations at a given time. This demands a fluxolipidomics approach that can be defined as a mediator lipidomics, with all measurements done as a function of time and biological compartments. This review points out what is known, even qualitatively, in the blood vascular compartment for arachidonic acid metabolites and number of other metabolites from polyunsaturated fatty acids of nutritional value. The functional consequences are especially taken into consideration.
Collapse
Affiliation(s)
- M Lagarde
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France.
| | - C Calzada
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| | - C Jouvène
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| | - N Bernoud-Hubac
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| | - M Létisse
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| | - M Guichardant
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| | - E Véricel
- Université de Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Villeurbanne, France
| |
Collapse
|
186
|
Lee GY, Kim JH, Choi SK, Kim YH. Constituents of the seeds of Cassia tora with inhibitory activity on soluble expoxide hydrolease. Bioorg Med Chem Lett 2015; 25:5097-101. [PMID: 26483136 DOI: 10.1016/j.bmcl.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/17/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Efforts to extract soluble epoxide hydrolase (sEH) inhibitors from food sources through bioactivity-guided fractionation of Cassia tora seed extracts led to the isolation of one new compound, 1, and 15 known compounds, 2-16. Structural elucidations were performed using 1D/2D NMR spectroscopy and mass spectrometry. Compounds 1, 3, 4, 6, 10, 11, and 13-16 exhibited inhibitory activities on sEH with IC50 values of 2.2±2.1-40.6±3.4 μM. Compound 13 was particularly active and exhibited a reversible-uncompetitive behavior in enzyme kinetic studies. A binding site on the enzyme for compound 13 was also predicted by Autodock 4.2 simulations.
Collapse
Affiliation(s)
- Ga Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jang Hoon Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea; Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju 565-852, Republic of Korea
| | - Seung-Kook Choi
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju 565-852, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
187
|
Oguro A, Oida S, Imaoka S. Down-regulation of EPHX2 gene transcription by Sp1 under high-glucose conditions. Biochem J 2015; 470:281-91. [PMID: 26341485 DOI: 10.1042/bj20150397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/15/2015] [Indexed: 12/16/2023]
Abstract
sEH (soluble epoxide hydrolase), which is encoded by the EPHX2 gene, regulates the actions of bioactive lipids, EETs (epoxyeicosatrienoic acids). Previously, we found that high-glucose-induced oxidative stress suppressed sEH levels in a hepatocarcinoma cell line (Hep3B) and sEH was decreased in streptozotocin-induced diabetic mice in vivo. In the present study, we investigated the regulatory mechanisms underlying EPHX2 transcriptional suppression under high-glucose conditions. The decrease in sEH was prevented by an Sp1 (specificity protein 1) inhibitor, mithramycin A, and overexpression or knockdown of Sp1 revealed that Sp1 suppressively regulated sEH expression, in contrast with the general role of Sp1 on transcriptional activation. In addition, we found that AP2α (activating protein 2α) promoted EPHX2 transcription. The nuclear transport of Sp1, but not that of AP2α, was increased under high glucose concomitantly with the decrease in sEH. Within the EPHX2 promoter -56/+32, five Sp1-binding sites were identified, and the mutation of each of these sites showed that the first one (SP1_1) was important in both suppression by Sp1 and activation by AP2α. Furthermore, overexpression of Sp1 diminished the binding of AP2α by DNA-affinity precipitation assay and ChIP, suggesting competition between Sp1 and AP2α on the EPHX2 promoter. These findings provide novel insights into the role of Sp1 in transcriptional suppression, which may be applicable to the transcriptional regulation of other genes.
Collapse
Affiliation(s)
- Ami Oguro
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Shoko Oida
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Susumu Imaoka
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| |
Collapse
|
188
|
Alánová P, Husková Z, Kopkan L, Sporková A, Jíchová Š, Neckář J, Imig JD, Klevstig M, Kolář F, Rami Reddy N, Falck JR, Sadowski J, Nishiyama A, Kramer HJ, Melenovský V, Červenková L, Kujal P, Vernerová Z, Červenka L. Orally active epoxyeicosatrienoic acid analog does not exhibit antihypertensive and reno- or cardioprotective actions in two-kidney, one-clip Goldblatt hypertensive rats. Vascul Pharmacol 2015; 73:45-56. [PMID: 26304700 DOI: 10.1016/j.vph.2015.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 07/20/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022]
Abstract
This study examined the effects of a novel orally active 14,15-epoxyeicosatrienoic acid analog (EET-A) on blood pressure (BP) and myocardial infarct size (IS) in two-kidney, one-clip (2K1C) Goldblatt hypertensive rats during sustained phase of hypertension. Between days 31 and 35 after clip placement the rats were treated with EET-A and BP was monitored by radiotelemetry; sham-operated normotensive rats were used as controls. Tissue concentrations of epoxyeicosatrienoic acids served as a marker of production of epoxygenase metabolites. The rats were subjected to acute myocardial ischemia/reperfusion (I/R) injury and IS was determined. We found that EET-A treatment did not lower BP in 2K1C rats and did not alter availability of biologically active epoxygenase metabolites in 2K1C or in sham-operated rats. The myocardial IS was significantly smaller in untreated 2K1C rats as compared with normotensive controls and EET-A reduced it in controls but not in 2K1C rats. Our findings suggest that during the phase of sustained hypertension 2K1C Goldblatt hypertensive rats exhibit increased cardiac tolerance to I/R injury as compared with normotensive controls, and that in this animal model of human renovascular hypertension short-term treatment with EET-A does not induce any antihypertensive and cardioprotective actions.
Collapse
Affiliation(s)
- Petra Alánová
- Department of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Alexandra Sporková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Šárka Jíchová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Jan Neckář
- Department of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Pharmacology and Toxicology, Medical College of Wisconsin, WI, USA.
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, WI, USA.
| | - Martina Klevstig
- Department of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - František Kolář
- Department of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - N Rami Reddy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland.
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kagawa, Japan.
| | - Herbert J Kramer
- Section of Nephrology, Medical Polyclinic, Department of Medicine, University of Bonn, Bonn, Germany.
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Lenka Červenková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Petr Kujal
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Vernerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
189
|
Sporková A, Jíchová S, Husková Z, Kopkan L, Nishiyama A, Hwang SH, Hammock BD, Imig JD, Kompanowska-Jezierska E, Sadowski J, Kramer HJ, Cervenka L. Different mechanisms of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: studies in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol 2015; 41:1003-13. [PMID: 25224811 DOI: 10.1111/1440-1681.12310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 01/13/2023]
Abstract
Recent studies have shown that the long-term antihypertensive action of soluble epoxide hydrolase inhibition (sEH) in angiotensin-II (AngII)-dependent hypertension might be mediated by the suppression of intrarenal AngII levels. To test this hypothesis, we examined the effects of acute (2 days) and chronic (14 days) sEH inhibition on blood pressure (BP) in transgenic rats with inducible AngII-dependent hypertension. AngII-dependent malignant hypertension was induced by 10 days' dietary administration of indole-3-carbinol (I3C), a natural xenobiotic that activates the mouse renin gene in Cyp1a1-Ren-2 transgenic rats. BP was monitored by radiotelemetry. Acute and chronic sEH inhibition was achieved using cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid, given at doses of 0.3, 3, 13, 26, 60 and 130 mg/L in drinking water. At the end of experiments, renal concentrations of epoxyeicosatrienoic acids, their inactive metabolites dihydroxyeicosatrienoic acids and AngII were measured. Acute BP-lowering effects of sEH inhibition in I3C-induced rats was associated with a marked increase in renal epoxyeicosatrienoic acids to dihydroxyeicosatrienoic acids ratio and acute natriuresis. Chronic treatment with cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid in I3C-induced rats elicited dose-dependent persistent BP lowering associated with a significant reduction of plasma and kidney AngII levels. Our findings show that the acute BP-lowering effect of sEH inhibition in I3C-induced Cyp1a1-Ren-2 transgenic rats is mediated by a substantial increase in intrarenal epoxyeicosatrienoic acids and their natriuretic action without altering intrarenal renin-angiotensin system activity. Long-term antihypertensive action of cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid in I3C-induced Cyp1a1-Ren-2 transgenic rats is mediated mostly by suppression of intrarenal AngII concentration.
Collapse
Affiliation(s)
- Alexandra Sporková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Holt RR, Yim SJ, Shearer GC, Hackman RM, Djurica D, Newman JW, Shindel AW, Keen CL. Effects of short-term walnut consumption on human microvascular function and its relationship to plasma epoxide content. J Nutr Biochem 2015; 26:1458-66. [PMID: 26396054 DOI: 10.1016/j.jnutbio.2015.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 07/12/2015] [Accepted: 07/18/2015] [Indexed: 12/21/2022]
Abstract
Improved vascular function after the incorporation of walnuts into controlled or high-fat diets has been reported; however, the mechanism(s) underlying this effect of walnuts is(are) poorly defined. The objective of the current study was to evaluate the acute and short-term effects of walnut intake on changes in microvascular function and the relationship of these effects to plasma epoxides, the cytochrome-P450-derived metabolites of fatty acids. Thirty-eight hypercholesterolemic postmenopausal women were randomized to 4 weeks of 5 g or 40 g of daily walnut intake. All outcomes were measured after an overnight fast and 4 h after walnut intake. Microvascular function, assessed as the reactive hyperemia index (RHI), was the primary outcome measure, with serum lipids and plasma epoxides as secondary measures. Compared to 5 g of daily walnut intake, consuming 40 g/d of walnuts for 4 weeks increased the RHI and Framingham RHI. Total cholesterol and low- and high-density cholesterol did not significantly change after walnut intake. The change in RHI after 4 weeks of walnut intake was associated with the change in the sum of plasma epoxides (r=0.65, P=.002) but not with the change in the sum of plasma hydroxyeicosatetraenoic acids. Of the individual plasma epoxides, arachidonic-acid-derived 14(15)-epoxyeicosatrienoic acid was most strongly associated with the change in microvascular function (r=0.72, P<.001). These data support the concept that the intake of walnut-derived fatty acids can favorably affect plasma epoxide production, resulting in improved microvascular function.
Collapse
Affiliation(s)
- Roberta R Holt
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA.
| | - Sun J Yim
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA
| | - Gregory C Shearer
- Cardiovascular Health Research Center, Sanford Research/USD 2301 E 60th St N, Sioux Falls SD 57104; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 West 22nd Street, Sioux Falls, SD 57105; Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park PA, 16802, USA
| | - Robert M Hackman
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA
| | - Dragana Djurica
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA
| | - John W Newman
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA; United States Department of Agriculture, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis CA, 95616, USA
| | - Alan W Shindel
- Department of Urology, University of California, Davis Medical Center, 4860 Y. Street, Suite 3500, Sacramento CA, 95817, USA
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA; Department of Internal Medicine, University of California, Davis Medical Center, 4150 V. Street, Suite 3100, Sacramento CA, 95817, USA
| |
Collapse
|
191
|
Varcabova S, Huskova Z, Kramer HJ, Hwang SH, Hammock BD, Imig JD, Kitada K, Cervenka L. Antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats is mediated by suppression of the intrarenal renin-angiotensin system. Clin Exp Pharmacol Physiol 2015; 40:273-81. [PMID: 23039246 DOI: 10.1111/1440-1681.12018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to evaluate the hypothesis that the antihypertensive effects of inhibition of soluble epoxide hydrolase (sEH) are mediated by increased intrarenal availability of epoxyeicosatrienoic acids (EETs), with consequent improvement in renal haemodynamic autoregulatory efficiency and the pressure-natriuresis relationship. Ren-2 transgenic rats (TGR), a model of angiotensin (Ang) II-dependent hypertension, and normotensive transgene-negative Hannover Sprague-Dawley (HanSD) rats were treated with the sEH inhibitor cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy)benzoic acid (c-AUCB; 26 mg/L) for 48 h. Then, the effects on blood pressure (BP), autoregulation of renal blood flow (RBF) and glomerular filtration rate (GFR), and on the pressure-natriuresis relationship in response to stepwise reductions in renal arterial pressure (RAP) were determined. Treatment with c-AUCB did not significantly change BP, renal autoregulation or pressure-natriuresis in normotensive HanSD rats. In contrast, c-AUCB treatment significantly reduced BP, increased intrarenal bioavailability of EETs and significantly suppressed AngII levels in TGR. However, treatment with c-AUCB did not significantly improve the autoregulatory efficiency of RBF and GFR in response to reductions of RAP and to restore the blunted pressure-natriuresis relationship in TGR. Together, the data indicate that the antihypertensive actions of sEH inhibition in TGR are predominantly mediated via significant suppression of intrarenal renin-angiotensin system activity.
Collapse
Affiliation(s)
- Sarka Varcabova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Davis CM, Ammi AY, Alkayed NJ, Kaul S. Ultrasound stimulates formation and release of vasoactive compounds in brain endothelial cells. Am J Physiol Heart Circ Physiol 2015; 309:H583-91. [PMID: 26092990 DOI: 10.1152/ajpheart.00690.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/17/2015] [Indexed: 01/07/2023]
Abstract
Stroke outcome is improved by therapeutic ultrasound. This benefit is presumed to be principally from ultrasound-mediated thrombolysis. We hypothesized that the therapeutic benefit of ultrasound in stroke may, in part, be mediated by the release of beneficial vasoactive substances. Accordingly, we investigated the effect of ultrasound on levels of cytochrome P-450, lipoxygenase, and cyclooxygenase metabolites of arachidonic acid as well as adenosine release and endothelial nitric oxide synthase (eNOS) phosphorylation in primary brain endothelial cells in vitro. Brain endothelial cells were exposed to 1.05-MHz ultrasound at peak rarefactional acoustic pressure amplitudes of 0.35, 0.55, 0.90, and 1.30 MPa. Epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraenoic acids (HETEs), PGE2, adenosine, nitrate/nitrite, and eNOS phosphorylation were measured after ultrasound exposure. Levels of 8,9-EET, 11,12-EET, and 14,15-EET increased by 230 ± 28%, 240 ± 30%, and 246 ± 31% (P < 0.05), respectively, whereas 5-HETE and 15-HETE levels were reduced to 24 ± 14% and 10 ± 3% (P < 0.05), respectively, compared with cells not exposed to ultrasound. PGE2 levels were reduced to 56 ± 14% of control. Adenosine increased more than sixfold after ultrasound exposure compared with unstimulated cells (1.36 ± 0.22 vs. 0.37 ± 0.10 ng/ml, P < 0.05), nitrate/nitrite was below levels of quantification, and eNOS phosphorylation was not altered significantly. Our results suggest that ultrasound may enhance tissue perfusion during stroke by augmenting the generation of vasodilator compounds and inhibiting that of vasoconstrictors. Such regulation supports a beneficial role for therapeutic ultrasound in stroke independent of its effect on the occlusive thrombus.
Collapse
Affiliation(s)
- Catherine M Davis
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Azzdine Y Ammi
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and
| | - Nabil J Alkayed
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and
| |
Collapse
|
193
|
Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P, Hwang SH, Hammock BD, Imig JD, Sadowski J. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol Res 2015; 64:857-73. [PMID: 26047375 DOI: 10.33549/physiolres.932977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The detailed mechanisms determining the course of congestive heart failure (CHF) and associated renal dysfunction remain unclear. In a volume overload model of CHF induced by creation of aorto-caval fistula (ACF) in Hannover Sprague-Dawley (HanSD) rats we explored the putative pathogenetic contribution of epoxyeicosatrienoic acids (EETs), active products of CYP-450 dependent epoxygenase pathway of arachidonic acid metabolism, and compared it with the role of the renin-angiotensin system (RAS). Chronic treatment with cis-4-[4-(3-adamantan-1-yl-ureido) cyclohexyloxy]benzoic acid (c-AUCB, 3 mg/l in drinking water), an inhibitor of soluble epoxide hydrolase (sEH) which normally degrades EETs, increased intrarenal and myocardial EETs to levels observed in sham-operated HanSD rats, but did not improve the survival or renal function impairment. In contrast, chronic angiotensin-converting enzyme inhibition (ACEi, trandolapril, 6 mg/l in drinking water) increased renal blood flow, fractional sodium excretion and markedly improved survival, without affecting left ventricular structure and performance. Hence, renal dysfunction rather than cardiac remodeling determines long-term mortality in advanced stage of CHF due to volume overload. Strong protective actions of ACEi were associated with suppression of the vasoconstrictor/sodium retaining axis and activation of vasodilatory/natriuretic axis of the renin-angiotensin system in the circulating blood and kidney tissue.
Collapse
Affiliation(s)
- L Červenka
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Althurwi HN, Maayah ZH, Elshenawy OH, El-Kadi AOS. Early Changes in Cytochrome P450s and Their Associated Arachidonic Acid Metabolites Play a Crucial Role in the Initiation of Cardiac Hypertrophy Induced by Isoproterenol. Drug Metab Dispos 2015; 43:1254-66. [DOI: 10.1124/dmd.115.063776] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/01/2015] [Indexed: 01/08/2023] Open
|
195
|
Yang L, Mäki-Petäjä K, Cheriyan J, McEniery C, Wilkinson IB. The role of epoxyeicosatrienoic acids in the cardiovascular system. Br J Clin Pharmacol 2015; 80:28-44. [PMID: 25655310 PMCID: PMC4500322 DOI: 10.1111/bcp.12603] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 12/29/2022] Open
Abstract
There is increasing evidence suggesting that epoxyeicosatrienoic acids (EETs) play an important role in cardioprotective mechanisms. These include regulating vascular tone, modulating inflammatory responses, improving cardiomyocyte function and reducing ischaemic damage, resulting in attenuation of animal models of cardiovascular risk factors. This review discusses the current knowledge on the role of EETs in endothelium-dependent control of vascular tone in the healthy and in subjects with cardiovascular risk factors, and considers the pharmacological potential of targeting this pathway.
Collapse
Affiliation(s)
- L Yang
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - K Mäki-Petäjä
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - J Cheriyan
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - C McEniery
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - I B Wilkinson
- Experimental Medicine and Immunotherapeutics, Department of Medicine, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
196
|
Walkowska A, Kuczeriszka M, Sadowski J, Olszyñski KH, Dobrowolski L, Červenka L, Hammock BD, Kompanowska-Jezierska E. High salt intake increases blood pressure in normal rats: putative role of 20-HETE and no evidence on changes in renal vascular reactivity. Kidney Blood Press Res 2015; 40:323-34. [PMID: 26067851 PMCID: PMC4583220 DOI: 10.1159/000368508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
Background/Aims High salt (HS) intake may elevate blood pressure (BP), also in animals without genetic salt sensitivity. The development of salt-dependent hypertension could be mediated by endogenous vasoactive agents; here we examined the role of vasodilator epoxyeicosatrienoic acids (EETs) and vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE). Methods In conscious Wistar rats on HS diet systolic BP (SBP) was examined after chronic elevation of EETs using 4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (c-AUCB), a blocker of soluble epoxide hydrolase, or after inhibition of 20-HETE with 1-aminobenzotriazole (ABT). Thereafter, in acute experiments the responses of renal artery blood flow (Transonic probe) and renal regional perfusion (laser-Doppler) to intrarenal acetylcholine (ACh) or norepinephrine were determined. Results HS diet increased urinary 20-HETE excretion. The SBP increase was not reduced by c-AUCB but prevented by ABT until day 5 of HS exposure. Renal vasomotor responses to ACh or norepinephrine were similar on standard and HS diet. ABT but not c-AUCB abolished the responses to ACh. Conclusions 20-HETE seems to mediate the early-phase HS diet-induced BP increase while EETs are not engaged in the process. Since HS exposure did not alter renal vasodilator responses to Ach, endothelial dysfunction is not a critical factor in the mechanism of salt-induced blood pressure elevation.
Collapse
Affiliation(s)
- A Walkowska
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Capdevila JH, Wang W, Falck JR. Arachidonic acid monooxygenase: Genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat 2015; 120:40-9. [PMID: 25986599 DOI: 10.1016/j.prostaglandins.2015.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/19/2015] [Accepted: 05/06/2015] [Indexed: 12/22/2022]
Abstract
Studies with rat genetic models of hypertension pointed to roles for the CYP2C and CYP4A arachidonic acid epoxygenases and ω-hydroxylases in tubular transport, hemodynamics, and blood pressure control. Further progress in defining their physiological functions and significance to human hypertension requires conclusive identifications of the relevant genes and proteins. Here we discuss unequivocal evidence of roles for the murine Cyp4a14, Cyp4a10, and Cyp2c44 genes in the pathophysiology of hypertension by showing that: (a) Cyp4a14(-/-) mice develop sexually dimorphic hypertension associated with renal vasoconstriction, and up-regulated expression of Cyp4a12a and pro-hypertensive 20-hydroxyeicosatetraenoic acid (20-HETE) levels, and b) Cyp4a10(-/-) and Cyp2c44(-/-) mice develop salt sensitive hypertension linked to downregulation or lack of the Cyp2c44 epoxygenase, reductions in anti-hypertensive epoxyeicosatrienoic acids (EETs), and increases in distal sodium reabsorption. Based on these studies, the human CYP4A11 and CYPs 2C8 and 2C9 genes and their products are identified as potential candidates for studies of the molecular basis of human hypertension.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | - Wenhui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - John R Falck
- Department of Biochemistry, UT Southwestern Medical Center , Dallas, TX 75390, USA.
| |
Collapse
|
198
|
Frömel T, Fleming I. Whatever happened to the epoxyeicosatrienoic Acid-like endothelium-derived hyperpolarizing factor? The identification of novel classes of lipid mediators and their role in vascular homeostasis. Antioxid Redox Signal 2015; 22:1273-92. [PMID: 25330284 DOI: 10.1089/ars.2014.6150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid (AA) to generate epoxyeicosatrienoic acids (EETs). The latter are biologically active and reported to act as an endothelium-derived hyperpolarizing factor as well as to affect angiogenic and inflammatory signaling pathways. RECENT ADVANCES In addition to AA, the CYP enzymes also metabolize the ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid to generate bioactive lipid epoxide mediators. The latter can be more potent than the EETs, but their actions are under investigated. The ω3-epoxides, like the EETs, are metabolized by the soluble epoxide hydrolase (sEH) to corresponding diols, and epoxide hydrolase inhibition increases epoxide levels and demonstrates anti-hypertensive as well as anti-inflammatory effects. CRITICAL ISSUES It seems that the overall consequences of CYP activation largely depend on enzyme substrate preference and the endogenous ω-3/ω-6 PUFA ratio. FUTURE DIRECTIONS More studies combining PUFA profiling with cell signaling and disease studies are required to determine the spectrum of molecular pathways affected by the different ω-6 and ω-3 PUFA epoxides and diols. Such information may help improve dietary studies aimed at promoting health via ω-3 PUFA supplementation and/or sEH inhibition.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Frankfurt, Germany
| | | |
Collapse
|
199
|
Abdelhamid G, El-Kadi AOS. Buthionine sulfoximine, an inhibitor of glutathione biosynthesis, induces expression of soluble epoxide hydrolase and markers of cellular hypertrophy in a rat cardiomyoblast cell line: roles of the NF-κB and MAPK signaling pathways. Free Radic Biol Med 2015; 82:1-12. [PMID: 25614461 DOI: 10.1016/j.freeradbiomed.2015.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/04/2023]
Abstract
Evidence suggests that upregulation of soluble epoxide hydrolase (sEH) is associated with the development of myocardial infarction, dilated cardiomyopathy, cardiac hypertrophy, and heart failure. However, the upregulation mechanism is still unknown. In this study, we treated H9C2 cells with buthionine sulfoximine (BSO) to explore whether oxidative stress upregulates sEH gene expression and to identify the molecular and cellular mechanisms behind this upregulatory response. Real-time PCR and Western blot analyses were used to measure mRNA and protein expression, respectively. We demonstrated that BSO significantly upregulated sEH at mRNA levels in a concentration- and time-dependent manner, leading to a significant increase in the cellular hypertrophic markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Furthermore, BSO significantly increased the cytosolic phosphorylated IκB-α and translocation of NF-κB p50 subunits, as measured by Western blot analysis. This level of translocation was paralleled by an increase in the DNA-binding activity of NF-κB P50 subunits. Moreover, our results demonstrated that pretreatment with the NF-κB inhibitor PDTC significantly inhibited BSO-mediated induction of sEH and cellular hypertrophic marker gene expression in a dose-dependent manner. Additionally, mitogen-activated protein kinases (MAPKs) were transiently phosphorylated by BSO treatment. To understand further the role of MAPKs pathway in BSO-mediated induction of sEH mRNA, we examined the role of extracellular signal-regulated kinase (ERK), c-JunN-terminal kinase (JNK), and p38 MAPK. Indeed, treatment with the MEK/ERK signal transduction inhibitor, PD98059, partially blocked the activation of IκB-α and translocation of NF-κB p50 subunits induced by BSO. Moreover, pretreatment with MEK/ERK signal transduction inhibitors, PD98059 and U0126, significantly inhibited BSO-mediated induction of sEH and cellular hypertrophic marker gene expression. These results clearly demonstrated that the NF-κB signaling pathway is involved in BSO-mediated induction of sEH gene expression, and appears to be associated with the activation of the MAPK pathway. Furthermore, our findings provide a strong link between sEH-induced cardiac dysfunction and involvement of NF-κB in the development of cellular hypertrophy.
Collapse
Affiliation(s)
- Ghada Abdelhamid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8.
| |
Collapse
|
200
|
Kodani SD, Hammock BD. The 2014 Bernard B. Brodie award lecture-epoxide hydrolases: drug metabolism to therapeutics for chronic pain. Drug Metab Dispos 2015; 43:788-802. [PMID: 25762541 PMCID: PMC4407705 DOI: 10.1124/dmd.115.063339] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/11/2015] [Indexed: 12/24/2022] Open
Abstract
Dr. Bernard Brodie's legacy is built on fundamental discoveries in pharmacology and drug metabolism that were then translated to the clinic to improve patient care. Similarly, the development of a novel class of therapeutics termed the soluble epoxide hydrolase (sEH) inhibitors was originally spurred by fundamental research exploring the biochemistry and physiology of the sEH. Here, we present an overview of the history and current state of research on epoxide hydrolases, specifically focusing on sEHs. In doing so, we start with the translational project studying the metabolism of the insect juvenile hormone mimic R-20458 [(E)-6,7-epoxy-1-(4-ethylphenoxy)-3,7-dimethyl-2-octene], which led to the identification of the mammalian sEH. Further investigation of this enzyme and its substrates, including the epoxyeicosatrienoic acids, led to insight into mechanisms of inflammation, chronic and neuropathic pain, angiogenesis, and other physiologic processes. This basic knowledge in turn led to the development of potent inhibitors of the sEH that are promising therapeutics for pain, hypertension, chronic obstructive pulmonary disorder, arthritis, and other disorders.
Collapse
Affiliation(s)
- Sean D Kodani
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| |
Collapse
|