151
|
Kannan M, Ahmad F, Shankar EM. Editorial: Innate immunity: platelets and their interaction with other cellular elements in host defense and disease pathogenesis. Front Immunol 2023; 14:1292316. [PMID: 37841277 PMCID: PMC10569416 DOI: 10.3389/fimmu.2023.1292316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Meganathan Kannan
- Blood and Vascular Biology Research Lab, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Esaki M. Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
152
|
Tang Y, Qian C, Zhou Y, Yu C, Song M, Zhang T, Min X, Wang A, Zhao Y, Lu Y. Activated platelets facilitate hematogenous metastasis of breast cancer by modulating the PDGFR-β/COX-2 axis. iScience 2023; 26:107704. [PMID: 37680480 PMCID: PMC10480622 DOI: 10.1016/j.isci.2023.107704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Platelets have been widely recognized as a bona fide mediator of malignant diseases, and they play significant roles in influencing various aspects of tumor progression. Paracrine interactions between platelets and tumor cells have been implicated in promoting the dissemination of malignant cells to distant sites. However, the underlying mechanisms of the platelet-tumor cell interactions for promoting hematogenous metastasis are not yet fully understood. We found that activated platelets with high expression of CD36 were prone to release a plethora of growth factors and cytokines, including high levels of PDGF-B, compared to resting platelets. PDGF-B activated the PDGFR-β/COX-2 signaling cascade, which elevated an array of pro-inflammatory factors levels, thereby aggravating tumor metastasis. The collective administration of CD36 inhibitor and COX-2 inhibitor resolved the interactions between platelets and tumor cells. Collectively, our findings demonstrated that targeting the crosstalk between platelets and tumor cells offers potential therapeutic strategies for inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Teng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuewen Min
- Department of Outpatient, Jurong People’s Hospital, Zhenjiang 212400, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
153
|
Zhao J, Xu X, Gao Y, Yu Y, Li C. Crosstalk between Platelets and SARS-CoV-2: Implications in Thrombo-Inflammatory Complications in COVID-19. Int J Mol Sci 2023; 24:14133. [PMID: 37762435 PMCID: PMC10531760 DOI: 10.3390/ijms241814133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 virus, causing the devastating COVID-19 pandemic, has been reported to affect platelets and cause increased thrombotic events, hinting at the possible bidirectional interactions between platelets and the virus. In this review, we discuss the potential mechanisms underlying the increased thrombotic events as well as altered platelet count and activity in COVID-19. Inspired by existing knowledge on platelet-pathogen interactions, we propose several potential antiviral strategies that platelets might undertake to combat SARS-CoV-2, including their abilities to internalize the virus, release bioactive molecules to interfere with viral infection, and modulate the functions of immune cells. Moreover, we discuss current and potential platelet-targeted therapeutic strategies in controlling COVID-19, including antiplatelet drugs, anticoagulants, and inflammation-targeting treatments. These strategies have shown promise in clinical settings to alleviate the severity of thrombo-inflammatory complications and reduce the mortality rate among COVID-19 patients. In conclusion, an in-depth understanding of platelet-SARS-CoV-2 interactions may uncover novel mechanisms underlying severe COVID-19 complications and could provide new therapeutic avenues for managing this disease.
Collapse
Affiliation(s)
| | | | | | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| |
Collapse
|
154
|
Thom CS, Davenport P, Fazelinia H, Liu ZJ, Zhang H, Ding H, Roof J, Spruce LA, Ischiropoulos H, Sola-Visner M. Phosphoproteomics reveals content and signaling differences between neonatal and adult platelets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557268. [PMID: 37745418 PMCID: PMC10515911 DOI: 10.1101/2023.09.13.557268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background and Objective Recent clinical studies have shown that transfusions of adult platelets increase morbidity and mortality in preterm infants. Neonatal platelets are hyporesponsive to agonist stimulation, and emerging evidence suggests developmental differences in platelet immune functions. This study was designed to compare the proteome and phosphoproteome of resting adult and neonatal platelets. Methods We isolated resting umbilical cord blood-derived platelets from healthy full term neonates (n=9) and resting blood platelets from healthy adults (n=7), and compared protein and phosphoprotein contents using data independent acquisition mass spectrometry. Results We identified 4745 platelet proteins with high confidence across all samples. Adult and neonatal platelets clustered separately by principal component analysis. Adult platelets were significantly enriched for immunomodulatory proteins, including β2 microglobulin and CXCL12, whereas neonatal platelets were enriched for ribosomal components and proteins involved in metabolic activities. Adult platelets were enriched for phosphorylated GTPase regulatory enzymes and proteins participating in trafficking, which may help prime them for activation and degranulation. Neonatal platelets were enriched for phosphorylated proteins involved in insulin growth factor signaling. Conclusions Using state-of-the-art mass spectrometry, our findings expanded the known neonatal platelet proteome and identified important differences in protein content and phosphorylation compared with adult platelets. These developmental differences suggested enhanced immune functions for adult platelets and presence of a molecular machinery related to platelet activation. These findings are important to understanding mechanisms underlying key platelet functions as well as the harmful effects of adult platelet transfusions given to preterm infants.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Davenport
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hossein Fazelinia
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhi-Jian Liu
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Haorui Zhang
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hua Ding
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer Roof
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Harry Ischiropoulos
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
155
|
Ding D, Zhu H, Zheng M, Kang C. Effect of platelet content on occurrence and prognosis of distal radius fracture. Medicine (Baltimore) 2023; 102:e35043. [PMID: 37682171 PMCID: PMC10489189 DOI: 10.1097/md.0000000000035043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Fractures of the distal radius are a common fracture with an increasing incidence. However, the underlying factors for distal radius fractures (DRFs) remain unclear. A total of 123 patients with distal radial fractures were recruited. To document clinical and follow-up data, and measure the levels of white blood cells, hemoglobin, platelets, and red blood cells in the bloodstream for qualitative observation of their expression effects within the human body, specifically assessing whether the magnitudes of these indicators are associated with potential factors influencing DRF. Pearson chi-square test and Spearman correlation were used to analyze the relationship between DRF and related parameters. Univariate and multivariate logistic regression and multivariate Cox proportional risk regression were used for further analysis. Pearson chi-square test and Spearman correlation analysis showed a significant correlation between platelet and red blood cell levels and the occurrence of DRFs. Univariate logistic regression analysis demonstrated a significant correlation between platelet count (OR [odds ratio] = 6.286, 95% CI [confidence interval]: 2.862-13.808, P < .001) and red blood cell count (OR = 2.780, 95% CI: 1.322-5.843, P = .007) with DRFs. Increasing levels of both indicators were associated with a higher susceptibility to DRFs. Multivariate logistic regression showed that platelets (OR = 6.344, 95% CI: 2.709-14.855, P < .001) were significantly associated with DRFs. Multivariate Cox regression analysis showed sex (HR [hazard ratio] = 0.596, 95% CI: 0.381-0.931, P = .023) and platelet (HR = 3.721, 95% CI: 2.364-5.855, P < .001) were significantly associated with maintenance time from recovery to recurrence (MTRR) of DRFs. In other words, the platelet content in the body of different genders is different, and the MTRR of DRF is different. Platelets were significantly associated with DRFs. The higher the platelet count, the higher the risk of DRF and the shorter the time of DRF recurrence.
Collapse
Affiliation(s)
- Danyang Ding
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Shijingshan District, Beijing, P.R. China
| | - Hao Zhu
- Department of Orthopedics, Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, P.R. China
| | - Meiliang Zheng
- Department of Orthopedics, Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, P.R. China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Shijingshan District, Beijing, P.R. China
| |
Collapse
|
156
|
Zhao X, Wu X, Si Y, Xie J, Wang L, Liu S, Duan C, Wang Q, Wu D, Wang Y, Chen J, Yang J, Hu S, Yin W, Li J. D-DI/PLT can be a prognostic indicator for sepsis. PeerJ 2023; 11:e15910. [PMID: 37692119 PMCID: PMC10487589 DOI: 10.7717/peerj.15910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Aims To investigate the indicators affecting the early outcome of patients with sepsis and to explore its prognostic efficacy for sepsis. Methods We collected clinical data from 201 patients with sepsis admitted to the emergency department of Xijing Hospital between June 2019 and June 2022. The patients were categorized into groups (survival or fatality) based on their 28-day prognosis. The clinical characteristics, biochemical indexes, organ function-related indicators, and disease scores of the patients were analyzed for both groups. Risk factor analysis was conducted for the indicators with significant differences. Results Among the indicators with significant differences between the deceased and survival groups, D-dimer (D-DI), Sequential Organ Failure Assessment (SOFA) score, platelet (PLT), international normalized ratio (INR), and D-DI/PLT were identified as independent risk factors affecting the prognosis of sepsis patients. Receiver operating characteristic (ROC) curves showed that D-DI/PLT (area under the curve (AUC) = 93.9), D-DI (AUC = 89.6), PLT (AUC = 81.3), and SOFA (AUC = 78.4) had good judgment efficacy. Further, Kaplan Meier (K-M) survival analysis indicated that the 28-day survival rates of sepsis patients were significantly decreased when they had high levels of D-DI/PLT, D-DI, and SOFA as well as low PLTs. The hazard ratio (HR) of D-DI/PLT between the two groups was the largest (HR = 16.19). Conclusions D-DI/PLT may be an independent risk factor for poor prognosis in sepsis as well as a clinical predictor of patient prognosis.
Collapse
Affiliation(s)
- Xiaojun Zhao
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Xiuhua Wu
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Yi Si
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Linxiao Wang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Shanshou Liu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Chujun Duan
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Dan Wu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Yifan Wang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Jijun Chen
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Jing Yang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Shanbo Hu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Junjie Li
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| |
Collapse
|
157
|
Nepal A, Tran HD, Nguyen NT, Ta HT. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis. Bioact Mater 2023; 27:231-256. [PMID: 37122895 PMCID: PMC10130630 DOI: 10.1016/j.bioactmat.2023.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
In traumatized patients, the primary cause of mortality is uncontrollable continuous bleeding and unexpected intraoperative bleeding which is likely to increase the risk of complications and surgical failure. High expansion sponges are effective clinical practice for the treatment of wound bleeding (irregular/deep/narrow) that are caused by capillaries, veins and even arterioles as they possess a high liquid absorption ratio so can absorb blood platelets easily in comparison with traditional haemostasis treatments, which involve compression, ligation, or electrical coagulation etc. When in contact with blood, haemostatic sponges can cause platelet adhesion, aggregation, and thrombosis, preventing blood from flowing out from wounds, triggering the release of coagulation factors, causing the blood to form a stable polymerized fibre protein, forming blood clots, and achieving the goal of wound bleeding control. Haemostatic sponges are found in a variety of shapes and sizes. The aim of this review is to facilitate an overview of recent research around haemostatic sponge materials, products, and technology. This paper reviews the synthesis, properties, and characteristics of haemostatic sponges, together with the haemostasis mechanisms of haemostatic sponges (composite materials), such as chitosan, cellulose, gelatin, starch, graphene oxide, hyaluronic acid, alginate, polyethylene glycol, silk fibroin, synthetic polymers silver nanoparticles, zinc oxide nanoparticles, mesoporous silica nanoparticles, and silica nanoparticles. Also, this paper reviews commercial sponges and their properties. In addition to this, we discuss various in-vitro/in-vivo approaches for the evaluation of the effect of sponges on haemostasis.
Collapse
Affiliation(s)
- Akriti Nepal
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Huong D.N. Tran
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Corresponding author. Bioscience Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia..
| |
Collapse
|
158
|
Vilella-Figuerola A, Cordero A, Mirabet S, Muñoz-García N, Suades R, Padró T, Badimon L. Platelet-Released Extracellular Vesicle Characteristics Differ in Chronic and in Acute Heart Disease. Thromb Haemost 2023; 123:892-903. [PMID: 37075787 DOI: 10.1055/s-0043-57017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs), shed in response to cell activation, stress, or injury, are increased in the blood of patients with cardiovascular disease. EVs are characterized by expressing parental-cell antigens, allowing the determination of their cellular origin. Platelet-derived EVs (pEVs) are the most abundant in blood. Although not universally given, EVs generally express phosphatidylserine (PS) in their membrane. OBJECTIVES To investigate pEVs in chronic and acute conditions, such as chronic heart failure (CHF) and first-onset acute coronary syndrome (ACS), in patients treated as per guidelines. METHODS EVs in CHF patients (n = 119), ACS patients (n = 58), their respective controls (non-CHF [n = 21] and non-ACS [n = 24], respectively), and a reference control group (n = 31) were characterized and quantified by flow cytometry, using monoclonal antibodies against platelet antigens, and annexin V (AV) to determine PS exposure. RESULTS CHF patients had higher EVs-PS- numbers, while ACS had predominantly EVs-PS+. In contrast to ACS, CHF patients had significantly reduced numbers of pEVs carrying PECAM and αIIb-integrin epitopes (CD31+/AV+, CD41a+/AV+, and CD31+/CD41a+/AV+), while no differences were observed in P-selectin-rich pEVs (CD62P+/AV+) compared with controls. Additionally, background etiology of CHF (ischemic vs. nonischemic) or ACS type (ST-elevation myocardial infarction [STEMI] vs. non-STEMI [NSTEMI]) did not affect pEV levels. CONCLUSION PS exposure in EV and pEV-release differ between CHF and ACS patients, with tentatively different functional capacities beyond coagulation to inflammation and cross-talk with other cell types.
Collapse
Affiliation(s)
- Alba Vilella-Figuerola
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Alberto Cordero
- Cardiology Department, Hospital Universitario de San Juan, Alicante, Spain
- Unidad de Investigación en Cardiología, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Sònia Mirabet
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Heart Failure Group, Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Natàlia Muñoz-García
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- UAB-Chair Cardiovascular Research, Barcelona, Spain
| |
Collapse
|
159
|
Ma Y, Jiang Q, Yang B, Hu X, Shen G, Shen W, Xu J. Platelet mitochondria, a potent immune mediator in neurological diseases. Front Physiol 2023; 14:1210509. [PMID: 37719457 PMCID: PMC10502307 DOI: 10.3389/fphys.2023.1210509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Dysfunction of the immune response is regarded as a prominent feature of neurological diseases, including neurodegenerative diseases, malignant tumors, acute neurotraumatic insult, and cerebral ischemic/hemorrhagic diseases. Platelets play a fundamental role in normal hemostasis and thrombosis. Beyond those normal functions, platelets are hyperactivated and contribute crucially to inflammation and immune responses in the central nervous system (CNS). Mitochondria are pivotal organelles in platelets and are responsible for generating most of the ATP that is used for platelet activation and aggregation (clumping). Notably, platelet mitochondria show marked morphological and functional alterations under heightened inflammatory/oxidative stimulation. Mitochondrial dysfunction not only leads to platelet damage and apoptosis but also further aggravates immune responses. Improving mitochondrial function is hopefully an effective strategy for treating neurological diseases. In this review, the authors discuss the immunomodulatory roles of platelet-derived mitochondria (PLT-mitos) in neurological diseases and summarize the neuroprotective effects of platelet mitochondria transplantation.
Collapse
Affiliation(s)
- Yan Ma
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Yang
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Hu
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Shen
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
| | - Wei Shen
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Xu
- Wuhan Blood Center, Wuhan, Hubei, China
| |
Collapse
|
160
|
Zhang Y, Zhang X, Xu X, Guo X, Xu S, Ma S, Chen J, Qi X. Association of C-type lectin-like receptor 2 and galectin-1 with portal vein system thrombosis in HBV-related liver cirrhosis. Front Med (Lausanne) 2023; 10:1228636. [PMID: 37720512 PMCID: PMC10501130 DOI: 10.3389/fmed.2023.1228636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Background and aims Hepatitis B virus (HBV) infection is the most common cause of liver cirrhosis. Portal venous system thrombosis (PVST) is a major complication of liver cirrhosis. Recently, it has been shown that C-type lectin-like receptor 2 (CLEC-2) and galectin-1 participate in the activation and aggregation of platelets, thereby promoting the development of thrombosis. This cross-sectional study aims to evaluate the association of serum CLEC-2 and galectin-1 levels with PVST in patients with HBV-related liver cirrhosis. Methods Overall, 65 patients with HBV-related liver cirrhosis were included, of whom 23 had PVST and 42 did not have. Serum CLEC-2 and galectin-1 levels were measured using enzyme-linked immunosorbent assay kits. PVST was assessed by contrast-enhanced computed tomography and/or magnetic resonance imaging scans. Subgroup analyses were conducted according to the degree and location of PVST. Results Patients with PVST had significantly higher serum CLEC-2 (p = 0.006) and galectin-1 (p = 0.009) levels than those without. Patients with partial/complete PVST or fibrotic cord (p = 0.007; p = 0.002), but not those with mural PVST (p = 0.199; p = 0.797), had significantly higher serum CLEC-2 and galectin-1 levels than those without PVST. Patients with superior mesenteric vein thrombosis had significantly higher serum CLEC-2 (p = 0.013) and galectin-1 (p = 0.025) levels than those without PVST. Patients with main portal vein thrombosis had higher serum CLEC-2 (p = 0.020) and galectin-1 (p = 0.066) levels than those without PVST, but the difference in serum galectin-1 level was not significant between them. Conclusion Serum CLEC-2 and galectin-1 levels may be associated with the presence of PVST in HBV-related cirrhotic patients, but this association should be dependent upon the degree of PVST.
Collapse
Affiliation(s)
- Yiyan Zhang
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Xintong Zhang
- Chinese People’s Liberation Army General Hospital, Chinese People’s Liberation Army Medical School, Beijing, China
| | - Xiangbo Xu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaozhong Guo
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shixue Xu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Shaoze Ma
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Jihong Chen
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xingshun Qi
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
161
|
Stanford S, Roy A, Cecil T, Hegener O, Schulz P, Turaj A, Lim S, Arbuthnot E. Differences in coagulation-relevant parameters: Comparing cryoprecipitate and a human fibrinogen concentrate. PLoS One 2023; 18:e0290571. [PMID: 37647278 PMCID: PMC10468048 DOI: 10.1371/journal.pone.0290571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Variable fibrinogen content within cryoprecipitate makes accurate dosing challenging in patients with coagulopathic bleeding, in addition to pathogen transmission risks associated with its administration. Purified and standardized human fibrinogen concentrates (HFCs) represent reliable alternatives. Full cryoprecipitate characterization is required to inform selection of an appropriate fibrinogen source for supplementation therapy. METHODS Extended biochemical comparison of pooled cryoprecipitate and HFC (Fibryga, Octapharma) was performed using commercially available assays to determine levels of variability in cryoprecipitate and HFC. In addition to standard procoagulant factors, measurements included activities of platelet-derived microparticles (PMPs) and plasminogen, and levels of fibrin degradation products. RESULTS Cryoprecipitate contains lower fibrinogen levels than HFC (4.83 vs.19.73 g/L; p<0.001), translating to approximately half the amount of fibrinogen per standard cryoprecipitate dose (two pools, pre-pooled from five donations each) vs. HFC (2.14 vs. 3.95 g; p<0.001). Factor XIII (FXIII) levels were also lower in cryoprecipitate vs. HFC (192.17 vs. 328.33 IU/dL; p = 0.002). Levels of procoagulants in cryoprecipitate, such as von Willebrand Factor (VWF) and factor VIII (FVIII), were highly variable, as was PMP activity. A standard cryoprecipitate dose contains significantly higher levels of measured plasminogen and D-dimer fragments than a standard HFC dose. CONCLUSION The tested HFC is a more reliable fibrinogen and FXIII source for accurate dosing compared with cryoprecipitate. Cryoprecipitate appears considerably less predictable for bleeding management due to wide variation in pro- and anticoagulation factors, the presence of PMPs, and the potential to elevate VWF and FVIII to prothrombotic levels.
Collapse
Affiliation(s)
- Sophia Stanford
- Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital, Basingstoke, United Kingdom
| | - Ashok Roy
- Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital, Basingstoke, United Kingdom
| | - Tom Cecil
- Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital, Basingstoke, United Kingdom
| | | | - Petra Schulz
- Octapharma Pharmazeutika Produktionsges.m.b.H., Vienna, Austria
| | - Anna Turaj
- Faculty of Medicine, Centre for Cancer Immunology, University of Southampton, University Hospital Southampton, Southampton, United Kingdom
| | - Sean Lim
- Faculty of Medicine, Centre for Cancer Immunology, University of Southampton, University Hospital Southampton, Southampton, United Kingdom
| | - Emily Arbuthnot
- Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital, Basingstoke, United Kingdom
| |
Collapse
|
162
|
González-Jiménez P, Méndez R, Latorre A, Mengot N, Piqueras M, Reyes S, Moscardó A, Alonso R, Amara-Elori I, Menéndez R. Endothelial Damage, Neutrophil Extracellular Traps and Platelet Activation in COVID-19 vs. Community-Acquired Pneumonia: A Case-Control Study. Int J Mol Sci 2023; 24:13194. [PMID: 37686001 PMCID: PMC10488034 DOI: 10.3390/ijms241713194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
COVID-19 has been a diagnostic and therapeutic challenge. It has marked a paradigm shift when considering other types of pneumonia etiology. We analyzed the biomarkers related to endothelial damage and immunothrombosis in COVID-19 in comparison to community-acquired pneumonia (CAP) through a case-control study of 358 patients with pneumonia (179 hospitalized with COVID-19 vs. 179 matched hospitalized with CAP). Endothelial damage markers (endothelin and proadrenomedullin), neutrophil extracellular traps (NETs) (citrullinated-3 histone, cell-free DNA), and platelet activation (soluble P-selectin) were measured. In-hospital and 1-year follow-up outcomes were evaluated. Endothelial damage, platelet activation, and NET biomarkers are significantly higher in CAP compared to COVID-19. In-hospital mortality in COVID-19 was higher compared to CAP whereas 1-year mortality and cardiovascular complications were higher in CAP. In the univariate analysis (OR 95% CIs), proADM and endothelin were associated with in-hospital mortality (proADM: CAP 3.210 [1.698-6.070], COVID-19 8.977 [3.413-23.609]; endothelin: CAP 1.014 [1.006-1.022], COVID-19 1.024 [1.014-1.034]), in-hospital CVE (proADM: CAP 1.623 [1.080-2.439], COVID-19 2.146 [1.186-3.882]; endothelin: CAP 1.005 [1.000-1.010], COVID-19 1.010 [1.003-1.018]), and 1-year mortality (proADM: CAP 2.590 [1.644-4.080], COVID-19 13.562 [4.872-37.751]; endothelin: CAP 1.008 [1.003-1.013], COVID-19 1.026 [1.016-1.037]). In conclusion, COVID-19 and CAP showed different expressions of endothelial damage and NETs. ProADM and endothelin are associated with short- and long-term mortality.
Collapse
Affiliation(s)
- Paula González-Jiménez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
- Medicine Department, University of Valencia, 46010 Valencia, Spain;
| | - Raúl Méndez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
- Medicine Department, University of Valencia, 46010 Valencia, Spain;
- Center for Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Ana Latorre
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
| | - Noé Mengot
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
| | - Mónica Piqueras
- Medicine Department, University of Valencia, 46010 Valencia, Spain;
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain;
| | - Soledad Reyes
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
| | - Antonio Moscardó
- Hemostasis and Thrombosis Unit, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain;
| | - Ricardo Alonso
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain;
| | - Isabel Amara-Elori
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
- Medicine Department, University of Valencia, 46010 Valencia, Spain;
| | - Rosario Menéndez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (P.G.-J.); (N.M.); (S.R.); (I.A.-E.); (R.M.)
- Respiratory Infections, Health Research Institute La Fe (IISLAFE), 46026 Valencia, Spain;
- Medicine Department, University of Valencia, 46010 Valencia, Spain;
- Center for Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
163
|
van der Mescht MA, Steel HC, de Beer Z, Abdullah F, Ueckermann V, Anderson R, Rossouw TM. Comparison of platelet-and endothelial-associated biomarkers of disease activity in people hospitalized with Covid-19 with and without HIV co-infection. Front Immunol 2023; 14:1235914. [PMID: 37646024 PMCID: PMC10461055 DOI: 10.3389/fimmu.2023.1235914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction SARS-CoV-2 elicits a hyper-inflammatory response that contributes to increased morbidity and mortality in patients with COVID-19. In the case of HIV infection, despite effective anti-retroviral therapy, people living with HIV (PLWH) experience chronic systemic immune activation, which renders them particularly vulnerable to the life-threatening pulmonary, cardiovascular and other complications of SARS-CoV-2 co-infection. The focus of the study was a comparison of the concentrations of systemic indicators o\f innate immune dysfunction in SARS-CoV-2-PCR-positive patients (n=174) admitted with COVID-19, 37 of whom were co-infected with HIV. Methods Participants were recruited from May 2020 to November 2021. Biomarkers included platelet-associated cytokines, chemokines, and growth factors (IL-1β, IL-6, IL-8, MIP-1α, RANTES, PDGF-BB, TGF-β1 and TNF-α) and endothelial associated markers (IL-1β, IL-1Ra, ICAM-1 and VEGF). Results PLWH were significantly younger (p=0.002) and more likely to be female (p=0.001); median CD4+ T-cell count was 256 (IQR 115 -388) cells/μL and the median HIV viral load (VL) was 20 (IQR 20 -12,980) copies/mL. Fractional inspired oxygen (FiO2) was high in both groups, but higher in patients without HIV infection (p=0.0165), reflecting a greater need for oxygen supplementation. With the exception of PDGF-BB, the levels of all the biomarkers of innate immune activation were increased in SARS-CoV-2/HIV-co-infected and SARS-CoV-2/HIV-uninfected sub-groups relative to those of a control group of healthy participants. The magnitudes of the increases in the levels of these biomarkers were comparable between the SARS-CoV-2 -infected sub-groups, the one exception being RANTES, which was significantly higher in the sub-group without HIV. After adjusting for age, sex, and diabetes in the multivariable model, only the association between HIV status and VEGF was statistically significant (p=0.034). VEGF was significantly higher in PLWH with a CD4+ T-cell count >200 cells/μL (p=0.040) and those with a suppressed VL (p=0.0077). Discussion These findings suggest that HIV co-infection is not associated with increased intensity of the systemic innate inflammatory response during SARS-CoV-2 co-infection, which may underpin the equivalent durations of hospital stay, outcome and mortality rates in the SARS-CoV-2/HIV-infected and -uninfected sub-groups investigated in the current study. The apparent association of increased levels of plasma VEGF with SARS-CoV-2/HIV co-infection does, however, merit further investigation.
Collapse
Affiliation(s)
- Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Zelda de Beer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Family Medicine, Tshwane District Hospital, Pretoria, South Africa
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
- Office of AIDS and TB Research, South African Medical Research Council, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Family Medicine, Tshwane District Hospital, Pretoria, South Africa
| |
Collapse
|
164
|
Yan M, Zheng H, Yan R, Lang L, Wang Q, Xiao B, Zhang D, Lin H, Jia Y, Pan S, Chen Q. Vinculin Identified as a Potential Biomarker in Hand-Arm Vibration Syndrome Based on iTRAQ and LC-MS/MS-Based Proteomic Analysis. J Proteome Res 2023; 22:2714-2726. [PMID: 37437295 PMCID: PMC10408646 DOI: 10.1021/acs.jproteome.3c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 07/14/2023]
Abstract
Local vibration can induce vascular injuries, one example is the hand-arm vibration syndrome (HAVS) caused by hand-transmitted vibration (HTV). Little is known about the molecular mechanism of HAVS-induced vascular injuries. Herein, the iTRAQ (isobaric tags for relative and absolute quantitation) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was applied to conduct the quantitative proteomic analysis of plasma from specimens with HTV exposure or HAVS diagnosis. Overall, 726 proteins were identified in iTRAQ. 37 proteins upregulated and 43 downregulated in HAVS. Moreover, 37 upregulated and 40 downregulated when comparing severe HAVS and mild HAVS. Among them, Vinculin (VCL) was found to be downregulated in the whole process of HAVS. The concentration of vinculin was further verified by ELISA, and the results suggested that the proteomics data was reliable. Bioinformative analyses were used, and those proteins mainly engaged in specific biological processes like binding, focal adhesion, and integrins. The potential of vinculin application in HAVS diagnosis was validated by the receiver operating characteristic curve.
Collapse
Affiliation(s)
- Maosheng Yan
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
- Department
of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Hanjun Zheng
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
- Department
of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Rong Yan
- The
Centers for Disease Control and Prevention of Haizhu District, Guangzhou, Guangdong 510230, China
| | - Li Lang
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Qia Wang
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Bin Xiao
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Danying Zhang
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Hansheng Lin
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Yanxia Jia
- Department
of Public Health, Shanxi Medical University, Tai Yuan, Shanxi 030000, China
| | - Siyu Pan
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
- Department
of Public Health, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510230, China
| | - Qingsong Chen
- Department
of Public Health, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510230, China
| |
Collapse
|
165
|
Cheng W, Bu X, Xu C, Wen G, Kong F, Pan H, Yang S, Chen S. Higher systemic immune-inflammation index and systemic inflammation response index levels are associated with stroke prevalence in the asthmatic population: a cross-sectional analysis of the NHANES 1999-2018. Front Immunol 2023; 14:1191130. [PMID: 37600830 PMCID: PMC10436559 DOI: 10.3389/fimmu.2023.1191130] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Significant evidence suggests that asthma might originate from low-grade systemic inflammation. Previous studies have established a positive association between the systemic immune-inflammation index (SII) and the systemic inflammation response index (SIRI) levels and the risk of stroke. However, it remains unclear whether SII, SIRI and the prevalence of stroke are related in individuals with asthma. Methods The present cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2018. SII was calculated using the following formula: (platelet count × neutrophil count)/lymphocyte count. SIRI was calculated using the following formula: (neutrophil count × monocyte count)/lymphocyte count. The Spearman rank correlation coefficient was used to determine any correlation between SII, SIRI, and the baseline characteristics. Survey-weighted logistic regression was employed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) to determine the association between SII, SIRI, and stroke prevalence. The predictive value of SII and SIRI for stroke prevalence was assessed through receiver operating characteristic (ROC) curve analysis, with the area under the ROC curve (AUC) being indicative of its predictive value. Additionally, clinical models including SIRI, coronary heart disease, hypertension, age, and poverty income ratio were constructed to evaluate their clinical applicability. Results Between 1999 and 2018, 5,907 NHANES participants with asthma were identified, of which 199 participants experienced a stroke, while the remaining 5,708 participants had not. Spearman rank correlation analysis indicated that neither SII nor SIRI levels exhibited any significant correlation with the baseline characteristics of the participants (r<0.1). ROC curves were used to determine the optimal cut-off values for SII and SIRI levels to classify participants into low- and high-level groups. Higher SII and SIRI levels were associated with a higher prevalence of stroke, with ORs of 1.80 (95% CI, 1.18-2.76) and 2.23 (95% CI, 1.39-3.57), respectively. The predictive value of SIRI (AUC=0.618) for stroke prevalence was superior to that of SII (AUC=0.552). Furthermore, the clinical model demonstrated good predictive value (AUC=0.825), with a sensitivity of 67.1% and specificity of 87.7%. Conclusion In asthmatics, higher levels of SII and SIRI significantly increased the prevalence of stroke, with its association being more pronounced in individuals with coexisting obesity and hyperlipidaemia. SII and SIRI are relatively stable novel inflammatory markers in the asthmatic population, with SIRI having a better predictive value for stroke prevalence than SII.
Collapse
Affiliation(s)
- Wenke Cheng
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Xiancong Bu
- Department of Neurology, Zaozhuang Municipal Hospital, Shandong, China
| | - Chunhua Xu
- Department of Recuperation, Lintong Rehabilitation and Recuperation Center, Shanxi, China
| | - Grace Wen
- University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Fanliang Kong
- University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shumin Yang
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Siwei Chen
- Department of Cardiovascular Medicine, Nanchang People's Hospital (The Third Hospital of Nanchang), Jiangxi, China
| |
Collapse
|
166
|
Pei Z, Wu M, Zhu W, Pang Y, Niu Y, Zhang R, Zhang H. Associations of long-term exposure to air pollution with prevalence of pulmonary nodules: A cross-sectional study in Shijiazhuang, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115311. [PMID: 37531926 DOI: 10.1016/j.ecoenv.2023.115311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
A complete understanding of the associations of ambient air pollution with prevalence of pulmonary nodule is lacking. We aimed to investigate the associations of ambient air pollutants with prevalence of pulmonary nodule. A total of 9991 health examination participants was enrolled and 3166 was elected in the final in Shijiazhuang between April 1st, 2018, and December 31st, 2018. 107 participants were diagnosed in pulmonary nodule while 3059 participants were diagnosed in non-pulmonary (named control). The individual exposure of participants was evaluation by Empirical Bayesian Kriging model according to their residential or work addresses. The pulmonary nodules were found and diagnosed by health examination through chest x-ray detection. Our results suggested that there were positive associations between prevalence of pulmonary nodules and PM2.5 (OR = 1.06, 95% CI: 1.02, 1.11) as well as O3 (OR = 1.49, 95% CI: 1.35, 1.66) levels. The platelet count (PLT) acted as the mediator of pulmonary nodules related with the PM2.5 exposure, while the neutrophil-to-lymphocyte ratio (NLR) as well as platelet-to-lymphocyte ratio (PLR) were the mediators of pulmonary nodules related with the O3 exposure. This study suggests that long-term exposure to PM2.5 and O3 may significantly associated with prevalence of pulmonary nodules, and the above associations are mediated by PLT, NLR and PLR.
Collapse
Affiliation(s)
- Zijie Pei
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenyuan Zhu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China.
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China.
| | - Helin Zhang
- Department of Thoracic Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
167
|
Liu F, Yang P, Wang Y, Shi M, Wang R, Xu Q, Peng Y, Chen J, Zhang J, Wang A, Xu T, Zhang Y, He J. HS-CRP Modifies the Prognostic Value of Platelet Count for Clinical Outcomes After Ischemic Stroke. J Am Heart Assoc 2023:e030007. [PMID: 37449575 PMCID: PMC10382093 DOI: 10.1161/jaha.123.030007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/24/2023] [Indexed: 07/18/2023]
Abstract
Background We examined whether the relationship between baseline platelet count and clinical outcomes is modulated by HS-CRP (high-sensitivity C-reactive protein) in patients with ischemic stroke. Methods and Results A total of 3267 patients with ischemic stroke were included in the analysis. The primary outcome was a combination of death and major disability at 1 year after ischemic stroke. Secondary outcomes included major disability, death, vascular events, composite outcome of vascular events or death, and an ordered 7-level categorical score of the modified Rankin Scale at 1 year. Multivariate logistic regression and Cox proportional hazards regression models were used to assess the association between the baseline platelet count and clinical outcomes stratified by HS-CRP levels when appropriate. There was an interaction effect of platelet count and HS-CRP on the adverse clinical outcomes after ischemic stroke (all Pinteraction<0.05). The elevated platelet count was significantly associated with the primary outcome (odds ratio [OR], 3.14 [95% CI, 1.77-5.58]), major disability (OR, 2.07 [95% CI, 1.15-3.71]), death (hazard ratio [HR], 2.75 [95% CI, 1.31-5.79]), and composite outcome of vascular events or death (HR, 2.57 [95% CI, 1.38-4.87]) among patients with high HS-CRP levels (all Ptrend<0.05). Conclusions The HS-CRP levels had a modifying effect on the association between platelet count and clinical outcomes in patients with ischemic stroke. Elevated platelet count was significantly associated with adverse clinical outcomes in patients with ischemic stroke with high HS-CRP levels, but not in those with low HS-CRP levels. These findings suggest that strategies for anti-inflammatory and antiplatelet therapy should be developed according to the results of both platelet and HS-CRP testing.
Collapse
Affiliation(s)
- Fanghua Liu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Suzhou Medical College of Soochow University Suzhou China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Suzhou Medical College of Soochow University Suzhou China
| | - Yinan Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Suzhou Medical College of Soochow University Suzhou China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Suzhou Medical College of Soochow University Suzhou China
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA
| | - Ruirui Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Suzhou Medical College of Soochow University Suzhou China
| | - Qingyun Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Suzhou Medical College of Soochow University Suzhou China
| | - Yanbo Peng
- Department of Neurology Affiliated Hospital of North China University of Science and Technology Tangshan Hebei China
| | - Jing Chen
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA
- Department of Medicine Tulane University School of Medicine New Orleans LA
| | - Jintao Zhang
- Department of Neurology The 960th Hospital of People's Liberation Army Jinan Shandong China
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Suzhou Medical College of Soochow University Suzhou China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Suzhou Medical College of Soochow University Suzhou China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Suzhou Medical College of Soochow University Suzhou China
| | - Jiang He
- Department of Epidemiology Tulane University School of Public Health and Tropical Medicine New Orleans LA
- Department of Medicine Tulane University School of Medicine New Orleans LA
| |
Collapse
|
168
|
Shao K, Zhang F, Li Y, Cai H, Paul Maswikiti E, Li M, Shen X, Wang L, Ge Z. A Nomogram for Predicting the Recurrence of Acute Non-Cardioembolic Ischemic Stroke: A Retrospective Hospital-Based Cohort Analysis. Brain Sci 2023; 13:1051. [PMID: 37508983 PMCID: PMC10377670 DOI: 10.3390/brainsci13071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Non-cardioembolic ischemic stroke (IS) is the predominant subtype of IS. This study aimed to construct a nomogram for recurrence risks in patients with non-cardioembolic IS in order to maximize clinical benefits. From April 2015 to December 2019, data from consecutive patients who were diagnosed with non-cardioembolic IS were collected from Lanzhou University Second Hospital. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to optimize variable selection. Multivariable Cox regression analyses were used to identify the independent risk factors. A nomogram model was constructed using the "rms" package in R software via multifactor Cox regression. The accuracy of the model was evaluated using the receiver operating characteristic (ROC), calibration curve, and decision curve analyses (DCA). A total of 729 non-cardioembolic IS patients were enrolled, including 498 (68.3%) male patients and 231 (31.7%) female patients. Among them, there were 137 patients (18.8%) with recurrence. The patients were randomly divided into training and testing sets. The Kaplan-Meier survival analysis of the training and testing sets consistently revealed that the recurrence rates in the high-risk group were significantly higher than those in the low-risk group (p < 0.01). Moreover, the receiver operating characteristic curve analysis of the risk score demonstrated that the area under the curve was 0.778 and 0.760 in the training and testing sets, respectively. The nomogram comprised independent risk factors, including age, diabetes, platelet-lymphocyte ratio, leukoencephalopathy, neutrophil, monocytes, total protein, platelet, albumin, indirect bilirubin, and high-density lipoprotein. The C-index of the nomogram was 0.752 (95% CI: 0.705~0.799) in the training set and 0.749 (95% CI: 0.663~0.835) in the testing set. The nomogram model can be used as an effective tool for carrying out individualized recurrence predictions for non-cardioembolic IS.
Collapse
Affiliation(s)
- Kangmei Shao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fan Zhang
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Hongbin Cai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Ewetse Paul Maswikiti
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xueyang Shen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Longde Wang
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
169
|
Ravera S, Signorello MG, Panfoli I. Platelet Metabolic Flexibility: A Matter of Substrate and Location. Cells 2023; 12:1802. [PMID: 37443836 PMCID: PMC10340290 DOI: 10.3390/cells12131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are cellular elements that are physiologically involved in hemostasis, inflammation, thrombotic events, and various human diseases. There is a link between the activation of platelets and their metabolism. Platelets possess considerable metabolic versatility. Although the role of platelets in hemostasis and inflammation is known, our current understanding of platelet metabolism in terms of substrate preference is limited. Platelet activation triggers an oxidative metabolism increase to sustain energy requirements better than aerobic glycolysis alone. In addition, platelets possess extra-mitochondrial oxidative phosphorylation, which could be one of the sources of chemical energy required for platelet activation. This review aims to provide an overview of flexible platelet metabolism, focusing on the role of metabolic compartmentalization in substrate preference, since the metabolic flexibility of stimulated platelets could depend on subcellular localization and functional timing. Thus, developing a detailed understanding of the link between platelet activation and metabolic changes is crucial for improving human health.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | | | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
170
|
Amalia M, Puteri MU, Saputri FC, Sauriasari R, Widyantoro B. Platelet Glycoprotein-Ib (GPIb) May Serve as a Bridge between Type 2 Diabetes Mellitus (T2DM) and Atherosclerosis, Making It a Potential Target for Antiplatelet Agents in T2DM Patients. Life (Basel) 2023; 13:1473. [PMID: 37511848 PMCID: PMC10381765 DOI: 10.3390/life13071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic condition that contributes to the development of cardiovascular diseases. Numerous studies have provided evidence that individuals with T2DM are at a greater risk of developing cardiovascular diseases, typically two to four times more likely than those without T2DM, mainly due to an increased risk of atherosclerosis. The rupture of an atherosclerotic plaque leading to pathological thrombosis is commonly recognized as a significant factor in advancing cardiovascular diseases caused by TD2M, with platelets inducing the impact of plaque rupture in established atherosclerosis and predisposing to the primary expansion of atherosclerosis. Studies suggest that individuals with T2DM have platelets that display higher baseline activation and reactivity than those without the condition. The expression enhancement of several platelet receptors is known to regulate platelet activation signaling, including platelet glycoprotein-Ib (GPIb). Furthermore, the high expression of platelet GP1b has been reported to increase the risk of platelet adhesion, platelet-leucocyte interaction, and thrombo-inflammatory pathology. However, the study exploring the role of GP1b in promoting platelet activation-induced cardiovascular diseases in T2DM patients is still limited. Therefore, we summarize the important findings regarding pathophysiological continuity between T2DM, platelet GPIb, and atherosclerosis and highlight the potential therapy targeting GPIb as a novel antiplatelet agent for preventing further cardiovascular incidents in TD2M patients.
Collapse
Affiliation(s)
- Muttia Amalia
- Doctoral Program, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Meidi Utami Puteri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Fadlina Chany Saputri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Rani Sauriasari
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Bambang Widyantoro
- National Cardiovascular Center Harapan Kita, Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 11420, Indonesia
| |
Collapse
|
171
|
Shen WY, Li H, Zha AH, Luo RY, Zhang YL, Luo C, Dai RP. Platelets reprogram monocyte functions by secreting MMP-9 to benefit postoperative outcomes following acute aortic dissection. iScience 2023; 26:106805. [PMID: 37250799 PMCID: PMC10209398 DOI: 10.1016/j.isci.2023.106805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Platelets have a great ability to modulate immune responses. Monocyte-platelet aggregates (MPAs) are associated with the pathogenesis of cardiac disease. Notably, a low preoperative platelet count often indicates poor postoperative recovery following acute aortic dissection (AAD). The functions of platelets and MPAs in AAD, however, remain poorly understood. We found that, despite decreased platelet counts, platelets were also activated in AAD patients, with significant alterations in immune-modulating mediators. Of interest, monocytes in AAD patients had a suppressed immune status, which was correlated with poor outcomes following surgery. Interestingly, platelets preferentially aggregated with monocytes, and the levels of MPAs were related to recovery after surgical repair in AAD patients. Platelets restored suppressed monocyte functions in AAD patients by forming aggregates and partly by secreting matrix metalloproteinase-9 (MMP-9). Thus, the results point to a previously unknown mechanism for platelets involving monocyte reprogramming, which may improve postoperative outcomes following complex cardiovascular surgery.
Collapse
Affiliation(s)
- Wei-Yun Shen
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, Hunan, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, Hunan, China
| | - An-Hui Zha
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, Hunan, China
| | - Ru-Yi Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, Hunan, China
| | - Yan-Ling Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, Hunan, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, Hunan, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, Hunan, China
| |
Collapse
|
172
|
Jiang J, Liu Y. The Technical Feasibility of Digital Spatial Profiling in Immune/Inflammation Study of Thrombosis. J Inflamm Res 2023; 16:2431-2436. [PMID: 37313309 PMCID: PMC10259595 DOI: 10.2147/jir.s405903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Background A comprehensive study of the distribution and role of immune/inflammatory cells in thrombosis is still lacking because traditional pathology techniques cannot accomplish the analysis of numerous protein and genetic data simultaneously. We aimed to evaluate the feasibility of digital spatial profiling (DSP) to study immune/inflammation reaction in thrombosis progression. Methods and Results An 82-year-old male patient underwent iliofemoral thrombectomy at our institution. The white, mixed and red thrombi were fixed in formalin, dehydrated in ethanol and embedded in paraffin, which were incubated with morphology-labeled fluorescent antibodies (CD45, SYTO13) and the entire target mixture in GeoMx Whole Transcriptome Atlas panel. DSP system was applied to investigate the regions of interest from fluorescence imaging. Fluorescence imaging showed infiltration of immune/inflammation cells in white, mixed and red thrombosis. Whole genome sequencing revealed 16 genes differentially expressed. Pathway enrichment analysis revealed that these genes were significantly enriched in ligand binding and uptake related signaling pathways of the scavenger receptor. The distribution of immune/inflammation cell subsets was different in white, mixed and red thrombosis. The abundance of endothelial cells, CD8 naive T cells, and macrophages in red thrombosis was significantly higher than in mixed and white thrombosis. Conclusion The results showed that DSP can facilitate efficient analysis using very few thrombosis samples and provide valuable new leads, suggesting that DSP may be a viable and important new tool to study thrombosis and inflammation.
Collapse
Affiliation(s)
- Jianjun Jiang
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yang Liu
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
173
|
Ball EE, Weiss CM, Liu H, Jackson K, Keel MK, Miller CJ, Van Rompay KKA, Coffey LL, Pesavento PA. Severe Acute Respiratory Syndrome Coronavirus 2 Vasculopathy in a Syrian Golden Hamster Model. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:690-701. [PMID: 36906263 PMCID: PMC9998130 DOI: 10.1016/j.ajpath.2023.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human coronavirus disease 2019 (COVID-19). Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in patients with COVID-19. Herein, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19. The results show that regions of active pulmonary inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2-inoculated hamsters likely occur due to endothelial damage followed by platelet and macrophage infiltration.
Collapse
Affiliation(s)
- Erin E Ball
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California; US Army Veterinary Corps, Washington, District of Columbia
| | - Christopher M Weiss
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Hongwei Liu
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Kenneth Jackson
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - M Kevin Keel
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Christopher J Miller
- California National Primate Center, University of California, Davis, California; Center for Immunology and Infectious Diseases, University of California, Davis, California
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California; California National Primate Center, University of California, Davis, California
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California.
| | - Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| |
Collapse
|
174
|
Zhang J, Liu C, Hu Y, Yang A, Zhang Y, Hong Y. The trend of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in spontaneous intracerebral hemorrhage and the predictive value of short-term postoperative prognosis in patients. Front Neurol 2023; 14:1189898. [PMID: 37305759 PMCID: PMC10248083 DOI: 10.3389/fneur.2023.1189898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Background Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) play an important role in the inflammatory response in various diseases, but the role in the course of spontaneous intracerebral hemorrhage (ICH) is unclear. Methods This study retrospectively collected baseline characteristics and laboratory findings, including NLR and PLR at different time points, from spontaneous ICH patients undergoing surgery between January 2016 and June 2021. Patients were scored using the modified Rankin Scale (mRS) to evaluate their functional status at 30 days post-operation. Patients with mRS score ≥3 were defined as poor functional status, and mRS score <3 was defined as good functional status. The NLR and PLR were calculated at admission, 48 h after surgery and 3-7 days after surgery, respectively, and their trends were observed by connecting the NLR and PLR at different time points. Multivariate logistic regression analysis was used to identify independent risk factors affecting the prognosis of ICH patients at 30 days after surgery. Results A total of 101 patients were included in this study, and 59 patients had a poor outcome at 30 days after surgery. NLR and PLR gradually increased and then decreased, peaking at 48 h after surgery. Univariate analysis demonstrated that admission Glasgow Coma Scale (GCS) score, interval from onset to admission, hematoma location, NLR within 48 h after surgery and PLR within 48 h after surgery were associated with poor 30-day prognosis. In multivariate logistic regression analysis, NLR within 48 h after surgery (OR, 1.147; 95% CI, 1.005, 1.308; P, 0.042) was an independent risk factor for 30-day after surgery prognosis in spontaneous ICH patients. Conclusion In the course of spontaneous intracerebral hemorrhage, NLR and PLR initially increased and subsequently decreased, reaching their peak values at 48 h after surgery. High NLR within 48 h after surgery was an independent risk factor for poor prognosis 30 days after surgery in spontaneous ICH patients.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Neurosurgery, The Seventh Clinical College of China Medical University, Fushun, China
| | - Chunlong Liu
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Anhui Medical University, Fuyang, China
| | - Yaofeng Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Aoran Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yonghui Zhang
- Department of Neurosurgery, The Seventh Clinical College of China Medical University, Fushun, China
| | - Yang Hong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
175
|
Zhang W, Wang Y, Zhang Q, Hou F, Wang L, Zheng Z, Guo Y, Chen Z, Hernesniemi J, Feng G, Gu J. Prognostic significance of white blood cell to platelet ratio in delayed cerebral ischemia and long-term clinical outcome after aneurysmal subarachnoid hemorrhage. Front Neurol 2023; 14:1180178. [PMID: 37273707 PMCID: PMC10234150 DOI: 10.3389/fneur.2023.1180178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Objectives The ratio of white blood cell to platelet count (WPR) is considered a promising biomarker in some diseases. However, its prediction of delayed cerebral ischemia (DCI) and prognosis after aneurysmal subarachnoid hemorrhage (aSAH) has not been studied. The primary objective of this study was to investigate the predictive value of WPR in DCI after aSAH and its impact on 90-day functional outcome. Materials and methods This study retrospectively analyzed the data of blood biochemical parameters in 447 patients with aSAH at early admission. Univariate and multivariate analyses were used to determine the risk factors for DCI. According to multivariate analysis results, a nomogram for predicting DCI is developed and verified by R software. The influence of WPR on 90-day modified Rankin score (mRS) was also analyzed. Results Among 447 patients with aSAH, 117 (26.17%) developed DCI during hospitalization. Multivariate logistic regression analysis showed that WPR [OR = 1.236; 95%CI: 1.058-1.444; p = 0.007] was an independent risk factor for DCI. The receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive ability of WPR for DCI, and the cut-off value of 5.26 (AUC 0.804, 95% CI: 0.757-0.851, p < 0.001). The ROC curve (AUC 0.875, 95% CI: 0.836-0.913, p < 0.001) and calibration curve (mean absolute error = 0.017) showed that the nomogram had a good predictive ability for the occurrence of DCI. Finally, we also found that high WPR levels at admission were closely associated with poor prognosis. Conclusion WPR level at admission is a novel serum marker for DCI and the poor prognosis after aSAH. A nomogram model containing early WPR will be of great value in predicting DCI after aSAH.
Collapse
Affiliation(s)
- Wanwan Zhang
- Department of Neurosurgery, Henan University People's Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yifei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qingqing Zhang
- Department of Neurosurgery, Henan University People's Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Fandi Hou
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Lintao Wang
- Department of Neurosurgery, Henan University People's Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Zhanqiang Zheng
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yong Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zhongcan Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Juha Hernesniemi
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Guang Feng
- Department of Neurosurgery, Henan University People's Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Jianjun Gu
- Department of Neurosurgery, Henan University People's Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| |
Collapse
|
176
|
Abstract
COVID-19 is characterized by dysregulated thrombosis and coagulation that can increase mortality in patients. Platelets are fast responders to pathogen presence, alerting the surrounding immune cells and contributing to thrombosis and intravascular coagulation. The SARS-CoV-2 genome has been found in platelets from patients with COVID-19, and its coverage varies according to the method of detection, suggesting direct interaction of the virus with these cells. Antibodies against Spike and Nucleocapsid have confirmed this platelet-viral interaction. This review discusses the immune, prothrombotic, and procoagulant characteristics of platelets observed in patients with COVID-19. We outline the direct and indirect interaction of platelets with SARS-CoV-2, the contribution of the virus to programmed cell death pathway activation in platelets and the consequent extracellular vesicle release. We discuss platelet activation and immunothrombosis in patients with COVID-19, the effect of Spike on platelets, and possible activation of platelets by classical platelet activation triggers as well as contribution of platelets to complement activation. As COVID-19-mediated thrombosis and coagulation are still not well understood in vivo, we discuss available murine models and mouse adaptable strains.
Collapse
Affiliation(s)
- Anthony Sciaudone
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Heather Corkrey
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Fiachra Humphries
- Innate Immunity (F.H.). University of Massachusetts Chan Medical School, Worcester, MA
| | - Milka Koupenova
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
177
|
Li C, Ture SK, Nieves-Lopez B, Blick-Nitko SK, Maurya P, Livada AC, Stahl TJ, Kim M, Pietropaoli AP, Morrell CN. Thrombocytopenia Independently Leads to Monocyte Immune Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540214. [PMID: 37214993 PMCID: PMC10197656 DOI: 10.1101/2023.05.10.540214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In addition to their well-studied hemostatic functions, platelets are immune cells. Platelets circulate at the interface between the vascular wall and leukocytes, and transient platelet-leukocyte complexes are found in both healthy and disease states, positioning platelets to provide physiologic cues of vascular health and injury. Roles for activated platelets in inducing and amplifying immune responses have received an increasing amount of research attention, but our past studies also showed that normal platelet counts are needed in healthy conditions to maintain immune homeostasis. We have now found that thrombocytopenia (a low platelet count) leads to monocyte dysfunction, independent of the cause of thrombocytopenia, in a manner that is dependent on direct platelet-monocyte CD47 interactions that regulate monocyte immunometabolism and gene expression. Compared to monocytes from mice with normal platelet counts, monocytes from thrombocytopenic mice had increased toll-like receptor (TLR) responses, including increased IL-6 production. Furthermore, ex vivo co-incubation of resting platelets with platelet naïve bone marrow monocytes, induced monocyte metabolic programming and durable changes in TLR agonist responses. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) on monocytes from thrombocytopenic mice showed persistently open chromatin at LPS response genes and resting platelet interactions with monocytes induced histone methylation in a CD47 dependent manner. Using mouse models of thrombocytopenia and sepsis, normal platelet numbers were needed to limit monocyte immune dysregulation and IL6 expression in monocytes from human patients with sepsis also inversely correlated with patient platelet counts. Our studies demonstrate that in healthy conditions, resting platelets maintain monocyte immune tolerance by regulating monocyte immunometabolic processes that lead to epigenetic changes in TLR-related genes. This is also the first demonstration of sterile cell interactions that regulate of innate immune-metabolism and monocyte pathogen responses.
Collapse
|
178
|
Cao J, Li R, He T, Zhang L, Liu H, Wu X. Role of combined use of mean platelet volume-to-lymphocyte ratio and monocyte to high-density lipoprotein cholesterol ratio in predicting patients with acute myocardial infarction. J Cardiothorac Surg 2023; 18:172. [PMID: 37149659 PMCID: PMC10163726 DOI: 10.1186/s13019-023-02268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/04/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Atherosclerosis and thrombosis play important roles in the pathophysiology of acute coronary syndrome, with platelet activation and inflammation as the key and initiative factors. Recently mean platelet volume-to-lymphocyte ratio (MPVLR) and monocyte to high-density lipoprotein cholesterol ratio (MHR) have emerged as new prognostic indicators of cardiovascular diseases. However, the predicting effect of the combination of MPVLR and MHR in myocardial infarction has not been reported. OBJECTIVE The aim of this study was to investigate the usefulness of combination of MPVLR and MHR in predicting patients with AMI. METHODS 375 patients who had chest pain or stuffiness were retrospectively enrolled in this study. According to the results of coronary angiography and cardiac troponin, patients were divided into AMI group (n = 284) and control group (n = 91). MPVLR, MHR, Gensini score and Grace score were calculated. RESULTS MPVLR and MHR were significantly higher in AMI group than that in control group (6.47 (4.70-9.58) VS 4.88 (3.82-6.44), 13.56 (8.44-19.01) VS 9.14 (7.00-10.86), P < 0.001, respectively). Meanwhile, both were positively correlated with Gensini score and Grace score. Patients with a high level of MPVLR or MHR had an increased risk for AMI (odds ratio (OR) = 1.2, 95% confidence interval (CI) 1.1-1.4, OR = 1.2, 95% CI 1.2-1.3). Combination of MPVLR and MHR identified a greater ROC area than its individual parameters (P < 0.001). CONCLUSION Both MPVLR and MHR are independent predictors of AMI. Combination of MPVLR and MHR had higher predicting value in AMI, and thus appears to be a new risk factor and biomarker in the evaluation of risk and severity of atherosclerosis in AMI.
Collapse
Affiliation(s)
- Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Rui Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Tao He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Lin Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Huixia Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
179
|
Ye Y, Xu Q, Wuren T. Inflammation and immunity in the pathogenesis of hypoxic pulmonary hypertension. Front Immunol 2023; 14:1162556. [PMID: 37215139 PMCID: PMC10196112 DOI: 10.3389/fimmu.2023.1162556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is a complicated vascular disorder characterized by diverse mechanisms that lead to elevated blood pressure in pulmonary circulation. Recent evidence indicates that HPH is not simply a pathological syndrome but is instead a complex lesion of cellular metabolism, inflammation, and proliferation driven by the reprogramming of gene expression patterns. One of the key mechanisms underlying HPH is hypoxia, which drives immune/inflammation to mediate complex vascular homeostasis that collaboratively controls vascular remodeling in the lungs. This is caused by the prolonged infiltration of immune cells and an increase in several pro-inflammatory factors, which ultimately leads to immune dysregulation. Hypoxia has been associated with metabolic reprogramming, immunological dysregulation, and adverse pulmonary vascular remodeling in preclinical studies. Many animal models have been developed to mimic HPH; however, many of them do not accurately represent the human disease state and may not be suitable for testing new therapeutic strategies. The scientific understanding of HPH is rapidly evolving, and recent efforts have focused on understanding the complex interplay among hypoxia, inflammation, and cellular metabolism in the development of this disease. Through continued research and the development of more sophisticated animal models, it is hoped that we will be able to gain a deeper understanding of the underlying mechanisms of HPH and implement more effective therapies for this debilitating disease.
Collapse
Affiliation(s)
- Yi Ye
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| |
Collapse
|
180
|
Asgari A, Jurasz P. Role of Nitric Oxide in Megakaryocyte Function. Int J Mol Sci 2023; 24:ijms24098145. [PMID: 37175857 PMCID: PMC10179655 DOI: 10.3390/ijms24098145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Megakaryocytes are the main members of the hematopoietic system responsible for regulating vascular homeostasis through their progeny platelets, which are generally known for maintaining hemostasis. Megakaryocytes are characterized as large polyploid cells that reside in the bone marrow but may also circulate in the vasculature. They are generated directly or through a multi-lineage commitment step from the most primitive progenitor or Hematopoietic Stem Cells (HSCs) in a process called "megakaryopoiesis". Immature megakaryocytes enter a complicated development process defined as "thrombopoiesis" that ultimately results in the release of extended protrusions called proplatelets into bone marrow sinusoidal or lung microvessels. One of the main mediators that play an important modulatory role in hematopoiesis and hemostasis is nitric oxide (NO), a free radical gas produced by three isoforms of nitric oxide synthase within the mammalian cells. In this review, we summarize the effect of NO and its signaling on megakaryopoiesis and thrombopoiesis under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G-2H7, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G-2S2, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB T6G-2R7, Canada
| |
Collapse
|
181
|
Zhou M, Liu Y, Qin H, Shang T, Xue Z, Yang S, Zhang H, Yang J. Xuanfei Baidu Decoction regulates NETs formation via CXCL2/CXCR2 signaling pathway that is involved in acute lung injury. Biomed Pharmacother 2023; 161:114530. [PMID: 36933379 PMCID: PMC10019344 DOI: 10.1016/j.biopha.2023.114530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening symptoms in Coronavirus Disease 2019 (COVID-19) patients. Xuanfei Baidu Decoction (XFBD) is a recommend first-line traditional Chinese medicine (TCM) formula therapeutic strategy for COVID-19 patients. Prior studies demonstrated the pharmacological roles and mechanisms of XFBD and its derived effective components against inflammation and infections through multiple model systems, which provided the biological explanations for its clinical use. Our previous work revealed that XFBD inhibited macrophages and neutrophils infiltration via PD-1/IL17A signaling pathway. However, the subsequent biological processes are not well elucidated. Here, we proposed a hypothesis that XFBD can regulate the neutrophils-mediated immune responses, including neutrophil extracellular traps (NETs) formation and the generation of platelet-neutrophil aggregates (PNAs) after XFBD administration in lipopolysaccharide (LPS)-induced ALI mice. The mechanism behind it was also firstly explained, that is XFBD regulated NETs formation via CXCL2/CXCR2 axis. Altogether, our findings demonstrated the sequential immune responses of XFBD after inhibiting neutrophils infiltration, as well as shedding light on exploiting the therapy of XFBD targeting neutrophils to ameliorate ALI during the clinical course.
Collapse
Affiliation(s)
- Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Yiman Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Honglin Qin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Ting Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Shuang Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China; Hai he Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China; Hai he Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
182
|
El Bannoudi H, Cornwell M, Luttrell-Williams E, Engel A, Rolling C, Barrett TJ, Izmirly P, Belmont HM, Ruggles K, Clancy R, Buyon J, Berger JS. Platelet LGALS3BP as a Mediator of Myeloid Inflammation in Systemic Lupus Erythematosus. Arthritis Rheumatol 2023; 75:711-722. [PMID: 36245285 DOI: 10.1002/art.42382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Platelets are mediators of inflammation with immune effector cell properties and have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). This study investigated the role of platelet-associated lectin, galactoside-binding, soluble 3 binding protein (LGALS3BP) as a mediator of inflammation in SLE and as a potential biomarker associated with clinical phenotypes. METHODS We performed RNA sequencing on platelets from patients with SLE (n = 54) and on platelets from age-, sex-, and race/ethnicity-matched healthy controls (n = 18) and measured LGALS3BP levels in platelet releasate and in circulating serum. We investigated the association between LGALS3BP levels and the prevalence, disease severity, and clinical phenotypes of SLE and studied platelet-mediated effects on myeloid inflammation. RESULTS Platelets from patients with SLE exhibited increased expression of LGALS3BP (fold change 4.0, adjusted P = 6.02 × 10-11 ). Platelet-released LGALS3BP levels were highly correlated with circulating LGALS3BP (R = 0.69, P < 0.0001), and circulating LGALS3BP levels were correlated with the severity of disease according to the SLE Disease Activity Index (r = 0.32, P = 0.0006). Specifically, circulating LGALS3BP levels were higher in SLE patients with lupus nephritis than in patients with inactive disease (4.0 μg/ml versus 2.3 μg/ml; P < 0.001). Interferon-α induced LGALS3BP transcription and translation in a megakaryoblastic cell line (MEG-01) in a dose-dependent manner. Recombinant LGALS3BP and platelet releasates from SLE patients enhanced proinflammatory cytokine production by macrophages. CONCLUSIONS Our results support that platelets act as potent effector cells that contribute to the pathogenesis of SLE by secreting proinflammatory LGALS3BP, which also represents a novel biomarker of SLE clinical activity.
Collapse
Affiliation(s)
- Hanane El Bannoudi
- Department of Medicine, New York University Grossman School of Medicine, New York
| | - MacIntosh Cornwell
- Department of Medicine and Institute for Systems Genetics, New York University Grossman School of Medicine, New York
| | | | - Alexis Engel
- Department of Medicine, New York University Grossman School of Medicine, New York
| | - Christina Rolling
- Department of Medicine, New York University Grossman School of Medicine, New York, and Medizinische Klinik, Universitaetsklinikum Hamburg-Eppendorf
| | - Tessa J Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York
| | - Peter Izmirly
- Department of Medicine, New York University Grossman School of Medicine, New York
| | - H Michael Belmont
- Department of Medicine, New York University Grossman School of Medicine, New York
| | - Kelly Ruggles
- Department of Medicine and Institute for Systems Genetics, New York University Grossman School of Medicine, New York
| | - Robert Clancy
- Department of Medicine, New York University Grossman School of Medicine, New York
| | - Jill Buyon
- Department of Medicine, New York University Grossman School of Medicine, New York
| | - Jeffrey S Berger
- Department of Medicine, New York University Grossman School of Medicine, New York
| |
Collapse
|
183
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
184
|
Hernández-García S, Flores-García M, Maldonado-Vega M, Hernández G, Meneses-Melo F, López-Vanegas NC, Calderón-Salinas JV. Adaptive changes in redox response and decreased platelet aggregation in lead-exposed workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104134. [PMID: 37116628 DOI: 10.1016/j.etap.2023.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/11/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Chronic lead exposure can generate pro-oxidative and pro-inflammatory conditions in the blood, related to high platelet activation and aggregation, altering cell functions. We studied ADP-stimulated aggregation and the oxidant/antioxidant system of platelets from chronically lead-exposed workers and non-exposed workers. Platelet aggregation was low in lead-exposed workers (62 vs. 97%), who had normal platelet counts and showed no clinical manifestations of hemostatic failure. ADP-activated platelets from lead-exposed workers failed to increase superoxide release (3.3 vs. 6.6 µmol/g protein), had low NADPH concentration (60 vs. 92 nmol/mg protein), high concentration of hydrogen peroxide (224 vs. 129 nmol/mg protein) and high plasma PGE2 concentration (287 vs. 79 pg/mL). Altogether, those conditions, on the one hand, could account for the low platelet aggregation and, on the other, indicate an adaptive mechanism for the oxidative status of platelets and anti-aggregating molecules to prevent thrombotic problems in the pro-oxidant and pro-inflammatory environment of chronic lead exposure.
Collapse
Affiliation(s)
- Sandra Hernández-García
- Biochemistry Department, Centro de Investigación y de Estudios Avanzados-IPN (Cinvestav), Mexico City, Mexico
| | - Mirthala Flores-García
- Molecular Biology Department, Instituto Nacional de Cardiología "Dr. Ignacio Chávez", Mexico City, Mexico
| | - María Maldonado-Vega
- Planning, Teaching and Research Department, Hospital Regional de Alta Especialidad del Bajío. León, Guanajuato, Mexico
| | - Gerardo Hernández
- Section Methodology of Science, Centro de Investigación y de Estudios Avanzados-IPN (Cinvestav), Mexico City, Mexico
| | | | | | | |
Collapse
|
185
|
Kim Y, Sohn JH, Kim C, Park SY, Lee SH. The Clinical Value of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Predicting Hematoma Expansion and Poor Outcomes in Patients with Acute Intracerebral Hemorrhage. J Clin Med 2023; 12:jcm12083004. [PMID: 37109337 PMCID: PMC10145379 DOI: 10.3390/jcm12083004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
There is little knowledge of the effect of inflammatory markers on the prognoses of hematoma expansion (HE) in patients with intracranial hemorrhage (ICH). We evaluated the impact of neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) on HE and worse outcomes after acute ICH. This study included 520 consecutive patients with ICH from the registry database enrolled over 80 months. Patients' whole blood samples were collected upon arrival in the emergency department. Brain computed tomography scans were performed during hospitalization and repeated at 24 h and 72 h. The primary outcome measure was HE, defined as relative growth >33% or absolute growth <6 mL. A total of 520 patients were enrolled in this study. Multivariate analysis showed that NLR and PLR were associated with HE (NLR: odds ratio [OR], [95% CI] = 1.19 [1.12-1.27], p < 0.001; PLR: OR, [95% CI] = 1.01 [1.00-1.02], p = 0.04). Receiver operating characteristic curve analysis revealed that NLR and PLR could predict HE (AUC of NLR: 0.84, 95% CI [0.80-0.88], p < 0.001; AUC of PLR: 0.75 95% CI [0.70-0.80], p < 0.001). The cut-off value of NLR for predicting HE was 5.63, and that of PLR was 23.4. Higher NLR and PLR values increase HE risk in patients with ICH. NLR and PLR were reliable for predicting HE after ICH.
Collapse
Affiliation(s)
- Yejin Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jong-Hee Sohn
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Neurology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| | - Chulho Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Neurology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| | - So Young Park
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul 02447, Republic of Korea
| | - Sang-Hwa Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Neurology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon 24252, Republic of Korea
| |
Collapse
|
186
|
Xu Z, Huang J, Zhang T, Xu W, Liao X, Wang Y, Wang G. RGD peptide modified RBC membrane functionalized biomimetic nanoparticles for thrombolytic therapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:18. [PMID: 37043085 PMCID: PMC10097782 DOI: 10.1007/s10856-023-06719-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
In recent years, the fabrication of nano-drug delivery systems for targeted treatment of thrombus has become a research hotspot. In this study, we intend to construct a biomimetic nanomedicine for targeted thrombus treatment. The poly lactic-co-glycolic acid (PLGA) was selected as the nanocarrier material. Then, urokinase and perfluoro-n-pentane (PFP) were co-loaded into PLGA by the double emulsification solvent evaporation method to prepare phase change nanoparticles PPUNPs. Subsequently, the RGD peptide-modified red blood cell membrane (RBCM) was coated on the surface of PPUNPs to prepare a biomimetic nano-drug carrier (RGD-RBCM@PPUNPs). The as-prepared RGD-RBCM@PPUNPs possessed a "core-shell" structure, have good dispersibility, and inherited the membrane protein composition of RBCs. Under ultrasound stimulation, the loaded urokinase could be rapidly released. In vitro cell experiments showed that RGD-RBCM@PPUNPs had good hemocompatibility and cytocompatibility. Due to the coated RGD-RBC membrane, RGD-RBCM@PPUNPs could effectively inhibit the uptake of macrophages. In addition, RGD-RBCM@PPUNPs showed better thrombolytic function in vitro. Overall, the results suggested that this biomimetic nanomedicine provided a promising therapeutic strategy for the targeted therapy of thrombosis.
Collapse
Affiliation(s)
- Zichen Xu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Jinxia Huang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Wenfeng Xu
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
187
|
Cornwell MG, Bannoudi HE, Luttrell-Williams E, Engel A, Barrett TJ, Myndzar K, Izmirly P, Belmont HM, Clancy R, Ruggles KV, Buyon JP, Berger JS. Modeling of clinical phenotypes in systemic lupus erythematosus based on the platelet transcriptome and FCGR2a genotype. J Transl Med 2023; 21:247. [PMID: 37029410 PMCID: PMC10082503 DOI: 10.1186/s12967-023-04059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/12/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND The clinical heterogeneity of SLE with its complex pathogenesis remains challenging as we strive to provide optimal management. The contribution of platelets to endovascular homeostasis, inflammation and immune regulation highlights their potential importance in SLE. Prior work from our group showed that the Fcγ receptor type IIa (FcγRIIa)-R/H131 biallelic polymorphism is associated with increased platelet activity and cardiovascular risk in SLE. The study was initiated to investigate the platelet transcriptome in patients with SLE and evaluate its association across FcγRIIa genotypes and distinct clinical features. METHODS Fifty-one patients fulfilling established criteria for SLE (mean age = 41.1 ± 12.3, 100% female, 45% Hispanic, 24% black, 22% Asian, 51% white, mean SLEDAI = 4.4 ± 4.2 at baseline) were enrolled and compared with 18 demographically matched control samples. The FCGR2a receptor was genotyped for each sample, and RNA-seq was performed on isolated, leukocyte-depleted platelets. Transcriptomic data were used to create a modular landscape to explore the differences between SLE patients and controls and various clinical parameters in the context of FCGR2a genotypes. RESULTS There were 2290 differentially expressed genes enriched for pathways involved in interferon signaling, immune activation, and coagulation when comparing SLE samples vs controls. When analyzing patients with proteinuria, modules associated with oxidative phosphorylation and platelet activity were unexpectedly decreased. Furthermore, genes that were increased in SLE and in patients with proteinuria were enriched for immune effector processes, while genes increased in SLE but decreased in proteinuria were enriched for coagulation and cell adhesion. A low-binding FCG2Ra allele (R131) was associated with decreases in FCR activation, which further correlated with increases in platelet and immune activation pathways. Finally, we were able to create a transcriptomic signature of clinically active disease that performed significantly well in discerning SLE patients with active clinical disease form those with inactive clinical disease. CONCLUSIONS In aggregate, these data demonstrate the platelet transcriptome provides insight into lupus pathogenesis and disease activity, and shows potential use as means of assessing this complex disease using a liquid biopsy.
Collapse
Affiliation(s)
- MacIntosh G Cornwell
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Hanane El Bannoudi
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Elliot Luttrell-Williams
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexis Engel
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, 530 First Avenue, Skirball 9R, New York, NY, 10016, USA
| | - Khrystyna Myndzar
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA
| | - Peter Izmirly
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA
| | - H Michael Belmont
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA
| | - Robert Clancy
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA
| | - Kelly V Ruggles
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jill P Buyon
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, NYU Grossman School of Medicine, Medical Science Building 593, 530 First Avenue, New York, NY, 10016, USA.
| | - Jeffrey S Berger
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, 530 First Avenue, Skirball 9R, New York, NY, 10016, USA.
| |
Collapse
|
188
|
Mehdi-Alamdarlou S, Ahmadi F, Shahbazi MA, Azadi A, Ashrafi H. Platelets and platelet-derived vesicles as an innovative cellular and subcellular platform for managing multiple sclerosis. Mol Biol Rep 2023; 50:4675-4686. [PMID: 37022526 PMCID: PMC10078055 DOI: 10.1007/s11033-023-08322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/02/2023] [Indexed: 04/07/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease that involves young individuals. The drug delivery systems now are available for this disease have chronic and non-targeted effects on the patients. Because of the presence of BBB (blood-brain-barrier), their concentration in the CNS (central nervous system) is low. Because of this flaw, it is critical to use innovative active targeted drug delivery methods. RESULT Platelets are blood cells that circulate freely and play an important role in blood hemostasis. In this review, we emphasize the various roles of activated platelets in the inflammatory condition to recruit other cells to the injured area and limit inflammation. Besides, the activated platelets in the different stages of the MS disease play a significant role in limiting the progression of inflammation in the peripheral area and CNS. DISCUSSION This evidence indicates that a platelet-based drug delivery system can be an efficient biomimetic candidate for drug targeting to the CNS and limiting the inflammation in the peripheral and central areas for MS therapy.
Collapse
Affiliation(s)
- Sanaz Mehdi-Alamdarlou
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
- Department of Micro and Nanotechnology, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
189
|
Mu X, Gerhard-Herman MD, Zhang YS. Building Blood Vessel Chips with Enhanced Physiological Relevance. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201778. [PMID: 37693798 PMCID: PMC10489284 DOI: 10.1002/admt.202201778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 09/12/2023]
Abstract
Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marie Denise Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
190
|
Su R, Li B, Wu R, Xie Y, Gao A, Gao C, Li X, Wang C. Stratified distribution of Th17 and Treg cells in patients with multi-stage rheumatoid arthritis. Arthritis Res Ther 2023; 25:55. [PMID: 37016395 PMCID: PMC10071616 DOI: 10.1186/s13075-023-03041-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a typical, progressive autoimmune disease. Its occurrence and development are associated with dysregulation of T and B cell numbers. However, the specific immune characteristics of different RA courses remain incompletely defined. Here, we describe the peripheral blood lymphocyte subsets, particularly CD4 + T subsets, of different RA courses with a focus on early RA (Ea-RA). METHODS In all, 131 patients with Ea-RA, 117 with advanced RA (Ad-RA), and 109 with treated RA (Tr-RA) were enrolled. We collected general clinical data. Whole blood samples obtained from the patients and 97 healthy controls (HCs) were analysed via flow cytometry. RESULTS Decreased absolute NK cell numbers and increased CD4/CD8 T cell ratios were observed in different RA groups, including Ea-RA, compared to healthy controls. In Ea-RA patients, the Th17 and Treg cell numbers were similar to those in HCs. We performed k-means clustering based on the profiles of Th17 and Treg cells for patients with multi-stage of RA. We identified three patient types: type A characterised by relatively low Treg and Th17 cell numbers, type B with moderate levels of Treg cells and levels of Th17 cells similar to that of type C patients, and type C with high levels of Treg cells and levels of Th17 cells similar to that of type B patients. CONCLUSION The immune characteristics of Ea-RA patients differ from those of HCs; an immune system disorder is apparent although no differences in Th17 and Treg levels were evident between Ea-RA patients and HCs. We found distributional heterogeneities of Th17 and Treg cells in patients with multi-stage of RA. Stratified management based on such heterogeneity may serve as a useful novel immunotherapy allowing of early intervention.
Collapse
Affiliation(s)
- Rui Su
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Baochen Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Yuhuan Xie
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Anqi Gao
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Brigham and Women's Hospital/Children's Hospital Boston, Joint Program in Transfusion Medicine, Harvard Medical School, PathologyBoston, USA
| | - Xiaofeng Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China.
| |
Collapse
|
191
|
González-Jiménez P, Méndez R, Latorre A, Piqueras M, Balaguer-Cartagena MN, Moscardó A, Alonso R, Hervás D, Reyes S, Menéndez R. Neutrophil Extracellular Traps and Platelet Activation for Identifying Severe Episodes and Clinical Trajectories in COVID-19. Int J Mol Sci 2023; 24:ijms24076690. [PMID: 37047662 PMCID: PMC10094814 DOI: 10.3390/ijms24076690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The role of NETs and platelet activation in COVID-19 is scarcely known. We aimed to evaluate the role of NETs (citrullinated histone H3 [CitH3], cell-free DNA [cfDNA]) and platelet activation markers (soluble CD40 ligand [CD40L] and P-selectin) in estimating the hazard of different clinical trajectories in patients with COVID-19. We performed a prospective study of 204 patients, categorized as outpatient, hospitalized and ICU-admitted. A multistate model was designed to estimate probabilities of clinical transitions across varying states, such as emergency department (ED) visit, discharge (outpatient), ward admission, ICU admission and death. Levels of cfDNA, CitH3 and P-selectin were associated with the severity of presentation and analytical parameters. The model showed an increased risk of higher levels of CitH3 and P-selectin for ED-to-ICU transitions (Hazard Ratio [HR]: 1.35 and 1.31, respectively), as well as an elevated risk of higher levels of P-selectin for ward-to-death transitions (HR: 1.09). Elevated levels of CitH3 (HR: 0.90), cfDNA (HR: 0.84) and P-selectin (HR: 0.91) decreased the probability of ward-to-discharge transitions. A similar trend existed for elevated levels of P-selectin and ICU-to-ward transitions (HR 0.40); In conclusion, increased NET and P-selectin levels are associated with more severe episodes and can prove useful in estimating different clinical trajectories.
Collapse
Affiliation(s)
- Paula González-Jiménez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
- Medicine Department, University of Valencia, 46010 Valencia, Spain
| | - Raúl Méndez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ana Latorre
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Mónica Piqueras
- Medicine Department, University of Valencia, 46010 Valencia, Spain
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| | | | - Antonio Moscardó
- Platelet Function Unit, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ricardo Alonso
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| | - David Hervás
- Data Science, Biostatistics & Bioinformatics, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Soledad Reyes
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Rosario Menéndez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
- Medicine Department, University of Valencia, 46010 Valencia, Spain
- Center for Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
192
|
Valero P, Cornejo M, Fuentes G, Wehinger S, Toledo F, van der Beek EM, Sobrevia L, Moore-Carrasco R. Platelets and endothelial dysfunction in gestational diabetes mellitus. Acta Physiol (Oxf) 2023; 237:e13940. [PMID: 36700365 DOI: 10.1111/apha.13940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The prevalence of gestational diabetes mellitus (GDM) has increased in recent years, along with the higher prevalence of obesity in women of reproductive age. GDM is a pathology associated with vascular dysfunction in the fetoplacental unit. GDM-associated endothelial dysfunction alters the transfer of nutrients to the foetus affecting newborns and pregnant women. Various mechanisms for this vascular dysfunction have been proposed, of which the most studied are metabolic alterations of the vascular endothelium. However, different cell types are involved in GDM-associated endothelial dysfunction, including platelets. Platelets are small, enucleated cell fragments that actively take part in blood haemostasis and thrombus formation. Thus, they play crucial roles in pathologies coursing with endothelial dysfunction, such as atherosclerosis, cardiovascular diseases, and diabetes mellitus. Nevertheless, platelet function in GDM is understudied. Several reports show a potential relationship between platelet volume and mass with GDM; however, platelet roles and signaling mechanisms in GDM-associated endothelial dysfunction are unclear. This review summarizes the reported findings and proposes a link among altered amount, volume, mass, reactivity, and function of platelets and placenta development, resulting in fetoplacental vascular dysfunction in GDM.
Collapse
Affiliation(s)
- Paola Valero
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Marcelo Cornejo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - Gonzalo Fuentes
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Sergio Wehinger
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Eline M van der Beek
- Department of Pediatrics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Nestlé Institute for Health Sciences, Nestlé Research, Societé des Produits de Nestlé, Lausanne, Switzerland
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), São Paulo, Brazil
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Mexico
| | | |
Collapse
|
193
|
Zhang Y, Huber P, Praetner M, Zöllner A, Holdt L, Khandoga A, Lerchenberger M. Platelets mediate acute hepatic microcirculatory injury in a protease-activated-receptor-4-dependent manner after extended liver resection. Transpl Immunol 2023; 77:101795. [PMID: 36716976 DOI: 10.1016/j.trim.2023.101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Small-for-size syndrome (SFSS) is a major complication following extended liver resection. The role of platelets in the early development of SFSS remains to be cleared. We aimed to investigate the impact of platelets and PAR-4, a receptor for platelet activation, on the acute phase microcirculatory injury after liver resection by in vivo microscopy analyzing the changes in leukocyte recruitment, platelet-neutrophil interaction, and microthrombosis-induced perfusion failure. METHODS Sixty-percent partial hepatectomy (PH) models using C57BL/6 mice receiving platelet depletion with anti-GPIbα, PAR-4 blockade with tcY-NH2, or vehicle treatment with saline were used. Sham-operated animals served as controls. Epifluorescence microscopic analysis was performed 2 h after PH to quantify the leukocyte recruitment and microcirculatory changes. Sinusoidal neutrophil recruitment, platelet-neutrophil interaction, and microthrombosis were evaluated using two-photon microscopy. ICAM-1 expression and liver liver injury were assessed in tissue/blood samples. RESULTS The increments of leukocyte recruitment in post-sinusoidal venules and sinusoidal perfusion failure, the upregulation of ICAM-1 expression, and the deterioration of liver function 2 h after 60% PH were alleviated in the absence of platelets or by PAR-4 blockade. Intensified platelet-neutrophil interaction and microthrombosis in sinusoids were observed 2 h after 60% PH, which significantly attenuated after PAR-4 blockade. CONCLUSION Platelets play a critical role in acute liver injury after extended liver resection within 2 h. The deactivation of platelets via PAR-4 blockade ameliorated liver function deterioration by suppressing early leukocyte recruitment, platelet-neutrophil interaction, and microthrombosis in hepatic sinusoids.
Collapse
Affiliation(s)
- Yunjie Zhang
- Walter-Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Patrick Huber
- Walter-Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Marc Praetner
- Walter-Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Alice Zöllner
- Walter-Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, LMU University Hospitals, Ludwig-Maximilians-Universität Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Andrej Khandoga
- Department of General, Visceral, and Transplant Surgery, LMU University Hospitals, Ludwig-Maximilians-Universität Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Maximilian Lerchenberger
- Department of General, Visceral, and Transplant Surgery, LMU University Hospitals, Ludwig-Maximilians-Universität Munich, Marchioninistraße 15, 81377 Munich, Germany.
| |
Collapse
|
194
|
Chen X, Chen X, Xiao Z, Wu H, Hu L, Yu R. Platelet-to-lymphocyte ratio predicts the duration of glucocorticoid therapy in the treatment of cutaneous adverse drug reactions. Toxicol Appl Pharmacol 2023; 468:116498. [PMID: 37023865 DOI: 10.1016/j.taap.2023.116498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Glucocorticoid (GC) remains the mainstay of treatment for cutaneous adverse drug reactions (cADRs) but has been associated with side effects, emphasizing the importance of precisely managing the duration of high-dose GC treatment. Although the platelet-to-lymphocyte ratio (PLR) has been proven to be closely related to inflammatory disorders, its ability to predict the timing of GC dose reduction (Tr) during cADRs treatment remains obscure. METHODS Hospitalized patients diagnosed with cADRs treated with glucocorticoids were analyzed in the present study to evaluate the association between PLR values and Tr values using linear, locally weighted scatter plot smoothing (LOWESS) and Poisson regression. Subgroup and ROC curve analyses were conducted to identify confounding variables and assess the predictive performance, respectively. RESULTS A total of 308 patients were included in the study, with a median age of 47.0 (31.0-62.0) years old and a median incubation period of 4 days. Antibiotics (n = 113, 36.7%) were the most common cause of cADRs, followed by Chinese herbs (n = 76, 24.7%). PLR values were positively correlated with Tr values during linear regression (P < 0.001, r = 0.414) and LOWESS regression analyses. Poisson regression showed PLR was an independent risk factor for higher Tr values (the incidence rate ratio ranged from 1.016 to 1.070 and P < 0.05 for all). The area under the curve of PLR for predicting Tr < 7 days was 0.917. CONCLUSIONS PLR is a simple and convenient parameter with huge prospects for application as a biomarker to assist clinicians in optimally managing patients treated with glucocorticoid therapy for cADRs.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | | | - Zupeng Xiao
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Hanyi Wu
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Li Hu
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China.
| | - Rentao Yu
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China.
| |
Collapse
|
195
|
Skouras AZ, Antonakis-Karamintzas D, Tsantes AG, Triantafyllou A, Papagiannis G, Tsolakis C, Koulouvaris P. The Acute and Chronic Effects of Resistance and Aerobic Exercise in Hemostatic Balance: A Brief Review. Sports (Basel) 2023; 11:sports11040074. [PMID: 37104148 PMCID: PMC10143125 DOI: 10.3390/sports11040074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Hemostatic balance refers to the dynamic balance between blood clot formation (coagulation), blood clot dissolution (fibrinolysis), anticoagulation, and innate immunity. Although regular habitual exercise may lower the incidence of cardiovascular diseases (CVD) by improving an individual’s hemostatic profile at rest and during exertion, vigorous exercise may increase the risk of sudden cardiac death and venous thromboembolism (VTE). This literature review aims to investigate the hemostatic system’s acute and chronic adaptive responses to different types of exercise in healthy and patient populations. Compared to athletes, sedentary healthy individuals demonstrate similar post-exercise responses in platelet function and coagulatory and fibrinolytic potential. However, hemostatic adaptations of patients with chronic diseases in regular training is a promising field. Despite the increased risk of thrombotic events during an acute bout of vigorous exercise, regular exposure to high-intensity exercise might desensitize exercise-induced platelet aggregation, moderate coagulatory parameters, and up-regulate fibrinolytic potential via increasing tissue plasminogen activator (tPA) and decreasing plasminogen activator inhibitor (PAI-1) response. Future research might focus on combining different types of exercise, manipulating each training characteristic (frequency, intensity, time, and volume), or investigating the minimal exercise dosage required to maintain hemostatic balance, especially in patients with various health conditions.
Collapse
|
196
|
Huseynov A, Reinhardt J, Chandra L, Dürschmied D, Langer HF. Novel Aspects Targeting Platelets in Atherosclerotic Cardiovascular Disease—A Translational Perspective. Int J Mol Sci 2023; 24:ijms24076280. [PMID: 37047253 PMCID: PMC10093962 DOI: 10.3390/ijms24076280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Platelets are important cellular targets in cardiovascular disease. Based on insights from basic science, translational approaches and clinical studies, a distinguished anti-platelet drug treatment regimen for cardiovascular patients could be established. Furthermore, platelets are increasingly considered as cells mediating effects “beyond thrombosis”, including vascular inflammation, tissue remodeling and healing of vascular and tissue lesions. This review has its focus on the functions and interactions of platelets with potential translational and clinical relevance. The role of platelets for the development of atherosclerosis and therapeutic modalities for primary and secondary prevention of atherosclerotic disease are addressed. Furthermore, novel therapeutic options for inhibiting platelet function and the use of platelets in regenerative medicine are considered.
Collapse
|
197
|
Platelet αIIbβ3 integrin binds to SARS-CoV-2 spike protein of alpha strain but not wild type and omicron strains. Biochem Biophys Res Commun 2023; 657:80-85. [PMID: 36996544 PMCID: PMC10033152 DOI: 10.1016/j.bbrc.2023.03.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/24/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 causes a pandemic infectious disease, Coronavirus disease 2019 (COVID-19). It causes respiratory infection. Then, it progresses into a systemic infection by involving other organs. This progression mechanism remains to be elucidated, although thrombus formation plays an important role in its progression. Platelets is involved in the thrombus formation by aggregating each other through association of activated αIIbβ3 integrin with the Arg-Gly-Asp (RGD) motif-containing its ligands such as fibrinogen and von Willebrand factor. SARS-CoV-2 enters host cells through association of the spike protein (S-protein) with its receptor, angiotensin-converting enzyme 2 (ACE-2), on the host cells. While presence of ACE2 in platelets is suspicious, S-protein harbors the RGD sequences within its receptor binding domain. Therefore, it could be possible SARS-CoV-2 enter platelets through association of S-protein with αIIbβ3. In this study, we found that receptor binding domain of S-protein of WT SARS-CoV-2 strain barely bound to isolated healthy human platelets. In contrast, highly toxic alpha-strain-based N501Y substitution strongly bound to platelets in a RGD dependent manner, although binding of S protein did not induce platelet aggregation or activation. This binding may serve for transferring the infection to systemic organs.
Collapse
|
198
|
Yan C, Wu H, Fang X, He J, Zhu F. Platelet, a key regulator of innate and adaptive immunity. Front Med (Lausanne) 2023; 10:1074878. [PMID: 36968817 PMCID: PMC10038213 DOI: 10.3389/fmed.2023.1074878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Platelets, anucleate blood components, represent the major cell type involved in the regulation of hemostasis and thrombosis. In addition to performing haemostatic roles, platelets can influence both innate and adaptive immune responses. In this review, we summarize the development of platelets and their functions in hemostasis. We also discuss the interactions between platelet products and innate or adaptive immune cells, including neutrophils, monocytes, macrophages, T cells, B cells and dendritic cells. Activated platelets and released molecules regulate the differentiation and function of these cells via platelet-derived receptors or secreting molecules. Platelets have dual effects on nearly all immune cells. Understanding the exact mechanisms underlying these effects will enable further application of platelet transfusion.
Collapse
Affiliation(s)
- Cheng Yan
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haojie Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianchun Fang
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junji He
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhu
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Feng Zhu,
| |
Collapse
|
199
|
Cell Membrane Biomimetic Nanoparticles with Potential in Treatment of Alzheimer's Disease. Molecules 2023; 28:molecules28052336. [PMID: 36903581 PMCID: PMC10005336 DOI: 10.3390/molecules28052336] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is to blame for about 60% of dementia cases worldwide. The blood-brain barrier (BBB) prevents many medications for AD from having clinical therapeutic effects that can be used to treat the affected area. Many researchers have turned their attention to cell membrane biomimetic nanoparticles (NPs) to solve this situation. Among them, NPs can extend the half-life of drugs in the body as the "core" of the wrapped drug, and the cell membrane acts as the "shell" of the wrapped NPs to functionalize the NPs, which can further improve the delivery efficiency of nano-drug delivery systems. Researchers are learning that cell membrane biomimetic NPs can circumvent the BBB's restriction, prevent harm to the body's immune system, extend the period that NPs spend in circulation, and have good biocompatibility and cytotoxicity, which increases efficacy of drug release. This review summarized the detailed production process and features of core NPs and further introduced the extraction methods of cell membrane and fusion methods of cell membrane biomimetic NPs. In addition, the targeting peptides for modifying biomimetic NPs to target the BBB to demonstrate the broad prospects of cell membrane biomimetic NPs drug delivery systems were summarized.
Collapse
|
200
|
Embaby A, Hamed MG, Ebian H, El-Korashi LA, Walaa M, Abd El-Sattar EM, Hanafy AS, Abdelmoneem S. Clinical utility of haematological inflammatory biomarkers in predicting 30-day mortality in hospitalised adult patients with COVID-19. Br J Haematol 2023; 200:708-716. [PMID: 36416009 DOI: 10.1111/bjh.18572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a multisystem disease affecting respiratory, cardiovascular, gastrointestinal, neurological, immunological and haematological systems. The most important indices that have been studied are platelet (PLT) indices in addition to the PLT count and red blood cell distribution width (RDW). This retrospective study included 95 patients with COVID-19 and was conducted at the Hospital Isolation, Scientific and Medical Research Centre and Clinical Pathology Department at Zagazig University Hospitals, Egypt over 6 months from March to August 2021. All patients on admission had a full blood count, which included white blood cell (WBC) count, haemoglobin, RDW, PLT count and its indices in addition to PLT-to-WBC ratio (PWR) and PLT-to-lymphocyte ratio (PLR), which were calculated for all the study patients. There were significant linear correlations for higher levels of the PLR, PWR and RDW and mortality rate (p = 0.03, p < 0.001 and p < 0.001 respectively). Moreover, on multivariable analysis the RDW, PLT count and PWR levels were independent prognostic predictors for mortality with a hazard ratio [HR] of 1.25 (95% confidence interval [CI] 1.09-1.44, p = 0.002), 1.00 (95% CI 0.99-1.00, p = 0.03) and 2.3 (95% CI 1.21-4.48, p = 0.01) respectively. The RDW and PLT indices are accessible predictors that can be valuable prognostic factors for survival assessment and risk stratification of COVID-19.
Collapse
Affiliation(s)
- Ahmed Embaby
- Clinical Hematology Unit, Internal Medicine Department, Zagazig University, Zagazig, Egypt
| | | | - Huda Ebian
- Clinical Pathology Department, Zagazig University, Zagazig, Egypt
| | - Lobna A El-Korashi
- Medical Microbiology and Immunology Department, Zagazig University, Zagazig, Egypt
| | | | | | | | - Shimaa Abdelmoneem
- Clinical Hematology Unit, Internal Medicine Department, Zagazig University, Zagazig, Egypt
| |
Collapse
|