151
|
Mayer MS, Portella AF, Maçalai C, Zambra AL, Mori NC, Kessler Nunes VC, Bortolotto JW, Azzolin GB, Parisi MM. Yerba Mate as a Protectant against Lipoproteins Oxidation. Chem Biodivers 2024; 21:e202301770. [PMID: 38330241 DOI: 10.1002/cbdv.202301770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Oxidative modification of low-density lipoproteins (LDL) and high-density lipoproteins (HDL) are important factors determining cardiovascular risk. This study investigated the antioxidant mechanisms and potential protective effect of a hydroethanolic extract of yerba mate (Ilex paraguaiensis; EHEM) on the in vitro oxidation of LDL and HDL. EHEM was found to possess ferric reducing power, DPPH free radical scavenging capacity, metal chelating activity, and NO radical scavenging activity. In addition, EHEM reduced the lipoperoxidation induced by α,α'-Azodiisobutyramidine dihydrochloride (AAPH) in HDL and LDL at all tested concentrations. In this study, we demonstrate the antioxidant properties of yerba mate and its phytochemical compounds. These properties may effectively prevent the in vitro oxidation of LDL and HDL molecules, a phenomenon linked to the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Mariana Spanamberg Mayer
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
| | - Amanda Felipe Portella
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
| | - Camila Maçalai
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
| | - Andressa Leal Zambra
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
| | - Natacha Cossettin Mori
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
| | - Viviane Cecília Kessler Nunes
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
| | - Josiane Woutheres Bortolotto
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
| | - Gabriela Bonfanti Azzolin
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
| | - Mariana Migliorini Parisi
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
- Center for Health and Rural Sciences, University of Cruz Alta, Rodovia Municipal Jacob Della Mea, s/n km 5,6 - Parada Benito, Cruz Alta, RS-98020-290, Brazil
| |
Collapse
|
152
|
Li Q, Nie J, Cao M, Luo C, Sun C. Association between inflammation markers and all-cause mortality in critical ill patients with atrial fibrillation: Analysis of the Multi-Parameter Intelligent Monitoring in Intensive Care (MIMIC-IV) database. IJC HEART & VASCULATURE 2024; 51:101372. [PMID: 38435383 PMCID: PMC10905960 DOI: 10.1016/j.ijcha.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Background Inflammation is related to cardiovascular disease. Among the many inflammatory markers, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammatory index (SII) were considered as novel predictors for atherosclerosis outcomes. We aimed to investigate the impact of these inflammatory markers on the prognosis of patients with atrial fibrillation (AF). Methods We obtained data on AF patients from the Medical Information Mart for Intensive Care (MIMIC)-IV database. These patients were classified into two groups based on their survival status within 30 days. Then, they were divided into three groups based on the tertile of baseline NLR, PLR, and SII, respectively. We comprehensively explored the relationship between those inflammatory indicators and all-cause mortality in patients with AF by Kaplan-Meier analysis, multivariate Cox regression analysis, receiver operating characteristic (ROC) analyses, restricted cubic spline regression (RCS), and subgroup analysis. Results A total of 4562 patients with AF were included. Statistically significant differences were found between survivor and non-survivor groups for NLR, PLR and SII. Patients in the high tertile of the NLR had a higher mortality rate than those in the low and intermediate tertiles, as did patients in the PLR and the SII. NLR, PLR and SII were independently associated with increased risk of all-cause mortality. RCS showed that the 30-day and 365-day risk of death were linearly associated with increases in NLR, PLR, and SII, respectively. Conclusion NLR, PLR, and SII have the potential to be used as indicators for stratifying the risk of mortality in critically ill patients with AF.
Collapse
Affiliation(s)
- Qian Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, PR China
| | - Jian Nie
- Department of Senile Diseases, Shaanxi Provincial People’s Hospital, No. 256 Youyi West Road, Xi’an 710068, PR China
| | - Miaomiao Cao
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, PR China
| | - Chaodi Luo
- Department of Peripheral Vascular Diseases, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, PR China
| | - Chaofeng Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, PR China
| |
Collapse
|
153
|
Hurtado-Genovés G, Herrero-Cervera A, Vinué Á, Martín-Vañó S, Aguilar-Ballester M, Taberner-Cortés A, Jiménez-Martí E, Martínez-Hervás S, González-Navarro H. Light deficiency in Apoe-/-mice increases atheroma plaque size and vulnerability by modulating local immunity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167052. [PMID: 38336102 DOI: 10.1016/j.bbadis.2024.167052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Previous research suggests a potential involvement of the cytokine LIGHT (TNFSF14) in atherosclerosis. In this study, the genetic inactivation of Light in Apolipoprotein E deficient mice (male and female C57BL) augmented plaque size and vulnerability while decreasing Treg cells. Human and mouse transcriptomic results demonstrated deranged immune pathways in human atheromas with low LIGHT expression levels and in Light-deficient murine atheromas. In agreement with this, in vitro LIGHT-treatment of human lymphocytes, induced an elevation of Treg cell prevalence while proteomic analysis showed a downregulation of apoptotic and leukocyte cytotoxic pathways. Consistently, Light-deficient mouse lesions displayed increased plaque apoptosis and detrimental adventitial T-lymphocyte aggregates. Altogether suggested that LIGHT could promote a Treg prevalence in the local immunity to prevent the generation of vulnerable plaques via decreased cytotoxic microenvironment and apoptosis. Light gene delivery in Apoe-/-Light-/- mice, through bone marrow transplantation approaches, consistently diminished lesion size and restored local plaque immunity. Altogether demonstrate that Light-deficiency promotes atheroma plaque progression, at least in part through local loss of immune homeostasis and increased apoptosis. This study suggest that therapies based on the local delivery of LIGHT within plaques might therefore prevent immune cell derangement and advanced atherosclerosis.
Collapse
Affiliation(s)
| | | | - Ángela Vinué
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | | | | | | | - Elena Jiménez-Martí
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Sergio Martínez-Hervás
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; Endocrinology and Nutrition Department, Clinic Hospital and Department of Medicine, University of Valencia, 46010 Valencia, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Herminia González-Navarro
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
154
|
Liu S, Han Y, Kong L, Wang G, Ye Z. Atomic force microscopy in disease-related studies: Exploring tissue and cell mechanics. Microsc Res Tech 2024; 87:660-684. [PMID: 38063315 DOI: 10.1002/jemt.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Despite significant progress in human medicine, certain diseases remain challenging to promptly diagnose and treat. Hence, the imperative lies in the development of more exhaustive criteria and tools. Tissue and cellular mechanics exhibit distinctive traits in both normal and pathological states, suggesting that "force" represents a promising and distinctive target for disease diagnosis and treatment. Atomic force microscopy (AFM) holds great promise as a prospective clinical medical device due to its capability to concurrently assess surface morphology and mechanical characteristics of biological specimens within a physiological setting. This review presents a comprehensive examination of the operational principles of AFM and diverse mechanical models, focusing on its applications in investigating tissue and cellular mechanics associated with prevalent diseases. The findings from these studies lay a solid groundwork for potential clinical implementations of AFM. RESEARCH HIGHLIGHTS: By examining the surface morphology and assessing tissue and cellular mechanics of biological specimens in a physiological setting, AFM shows promise as a clinical device to diagnose and treat challenging diseases.
Collapse
Affiliation(s)
- Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
155
|
Gao Z, Yang C, Zeng G, Lin M, Li W, Sun M, Zhang Y, Fan B, Kumar Y, Yan K. Sinomenine protects against atherosclerosis in apolipoprotein E-knockout mice by inhibiting of inflammatory pathway. Inflammopharmacology 2024; 32:1387-1400. [PMID: 38430414 DOI: 10.1007/s10787-024-01437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/15/2024] [Indexed: 03/03/2024]
Abstract
Atherosclerosis, a multifaceted and persistent inflammatory condition, significantly contributes to the progression of cardiocerebrovascular disorders, such as myocardial infarctions and cerebrovascular accidents. It involves the accumulation of cholesterol, fatty deposits, calcium and cellular debris in the walls of arteries, leading to the formation of plaques. Our aim is to investigate the potential of sinomenine to counteract atherosclerosis in mice lacking Apolipoprotein E (ApoE-/-) Mice. We employed the high-fat diet-induced method to induce atherosclerosis in ApoE-/- mice, and the mice were treated with sinomenine (5, 10, and 15 mg/kg) and simvastatin (0.5 mg/kg) for 12 weeks. Body weight, water intake, and food intake were assessed. Lipid parameters, oxidative stress, inflammatory cytokines, and mRNA levels were estimated. Sinomenine treatment remarkably (P < 0.001) suppressed body weight, along with food and water intake. Sinomenine altered the levels of total cholesterol (TC), high-density lipoprotein (HDL), triglyceride (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL), which were modulated in the atherosclerosis group. Sinomenine treatment also altered the levels of oxidative stress parameters such as glutathione peroxidase (GPx), catalase (CAT), malonaldehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH). In addition, it modulated cardiac parameters like C-reactive protein (CRP), endothelin-1 (ET-1), thromboxane B2 (TXB2), nitric oxide (NO), cardiac troponin I (cTnI), lactate dehydrogenase (LDH), and creatinine kinase isoenzymes (CK-MB). Inflammatory cytokines interleukin (IL)-1α, IL-1β, TNF-α, IL-6, and IL-10 were also affected. Sinomenine further suppressed the mRNA expression of IL-6, IL-17, IL-10, tumor necrosis factor-α (TNF-α), Il-1β, monocyte chemoattractant protein-1 (MCP-1), MCP-2, MCP-3, transforming Growth Factor-1β (TGF-1β), vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). The results suggest that sinomenine remarkably suppressed the development of atherosclerosis in the early stage.
Collapse
Affiliation(s)
- Zhao Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Chao Yang
- Department of Nephrology, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, 710054, China
| | - Guangwei Zeng
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Ming Lin
- Akshita College of Pharmacy, Meerut, India
| | - Wei Li
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Mengna Sun
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Yantao Zhang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Beibei Fan
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | | | - Kun Yan
- Department of Outpatient, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, 710054, China.
| |
Collapse
|
156
|
Liang Y, Fu J, Shi Y, Jiang X, Lu F, Liu S. Integration of 16S rRNA sequencing and metabolomics to investigate the modulatory effect of ginsenoside Rb1 on atherosclerosis. Heliyon 2024; 10:e27597. [PMID: 38500998 PMCID: PMC10945261 DOI: 10.1016/j.heliyon.2024.e27597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Background /aims: Atherosclerosis (AS) is the common pathological basis of a variety of cardiovascular diseases (CVD), and has become the main cause of human death worldwide, and the incidence is increasing and younger trend. Ginsenoside Rb1 (Rb1), an important monomer component of the traditional Chinese herb ginseng, known for its ability to improve blood lipid disorders and anti-inflammatory. In addition, Rb1 was proved to be an effective treatment for AS. However, the effect of Rb1 on AS remains to be elucidated. The aim of this study was to investigate the mechanisms of Rb1 in ameliorating AS induced by high-fat diet (HFD). Materials and methods In this study, we developed an experimental AS model in Sprague-Dawley rats by feeding HFD with intraperitoneal injection of vitamin D3. The potential therapeutic mechanism of Rb1 in AS rats was investigated by detecting the expression of inflammatory factors, microbiome 16S rRNA gene sequencing, short-chain fatty acids (SCFAs) targeted metabolomics and untargeted metabolomics. Results Rb1 could effectively alleviate the symptoms of AS and suppress the overexpression of inflammation-related factors. Meanwhile, Rb1 altered gut microbial composition and concentration of SCFAs characterized by Bacteroidetes, Actinobacteria, Lactobacillus, Prevotella, Oscillospira enrichment and Desulfovibrio depletion, accompanied by increased production of acetic acid and propionic acid. Moreover, untargeted metabolomics showed that Rb1 considerably improved faecal metabolite profiles, particularly arachidonic acid metabolism and primary bile acid biosynthesis. Conclusion Rb1 ameliorated the HFD-induced AS, and the mechanism is related to improving intestinal metabolic homeostasis and inhibiting systemic inflammation by regulating gut microbiota.
Collapse
Affiliation(s)
- Yuqin Liang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yunhe Shi
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xin Jiang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
157
|
Zhang W, Cui J, Li L, Zhu T, Guo Z. Identification of Plasma Exosomes hsa_circ_0001360 and hsa_circ_0000038 as Key Biomarkers of Coronary Heart Disease. Cardiol Res Pract 2024; 2024:5557143. [PMID: 38566808 PMCID: PMC10987246 DOI: 10.1155/2024/5557143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Background Coronary heart disease (CHD) is the leading cause of death and disability worldwide. Accumulating evidence reveals that atherosclerosis (AS), characterized by systemic, chronic, and multifocal disease, and is the primary pathological basis of cardiovascular diseases, including CHD. However, the molecular underpinnings of CHD are still far from well understood. Our study attempted to identify aberrant plasma exosome-derived circRNAs and key exosomal circRNA biomarkers for CHD. Methods The expression profiles of mRNAs, circRNAs, and lncRNAs in the blood exosomes of CHD patients and healthy controls were obtained from the exoRBase database. The corresponding miRNAs of the differentially expressed mRNAs, circRNAs, and lncRNAs were predicted via ENCORI and the miRcode database. LncRNAs/circRNAs and mRNAs with the cotargeted miRNAs were selected to construct an interaction network. Multiple machine learning algorithms have been used to explore potential biomarkers, followed by verification in patients with CHD using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Results Based on the cutoff criterion of P < 0.05, we identified 85 differentially expressed circRNAs (4 upregulated and 81 downregulated), 43 differentially expressed lncRNAs (24 upregulated and 19 downregulated), and 312 differentially expressed mRNAs (55 upregulated and 257 downregulated). Functional enrichment analysis revealed that the differentially expressed mRNAs were involved mainly in neutrophil extracellular trap (NET) formation and the nucleotide-binding oligomerization domain- (NOD-) like receptor signaling pathway. Further analysis revealed that the DEGs in the circRNA/lncRNA-miRNA-mRNA interaction network were closely related to lipid and atherosclerotic signaling pathways. Hsa_circ_0001360 and hsa_circ_0000038 were identified as potential biomarkers for CHD based on three machine learning algorithms. The relative expression levels of hsa_circ_0001360 and hsa_circ_0000038 were significantly altered in plasma exosomes from patients with CHD. ROC curve analysis revealed that the areas under the curve (AUCs) were 0.860, 0.870, and 0.940 for hsa_circ_0001360, hsa_circ_0000038, and the two-gene combination, respectively. Conclusion The circRNA/lncRNA-miRNA-mRNA interaction network might help to elucidate the pathogenesis of CHD. Hsa_circ_0001360 combined with hsa_circ_0000038 might be an important diagnostic biomarker.
Collapse
Affiliation(s)
- Wan Zhang
- Department of Vascular Surgery of Huadong Hospital, Affiliated to Fudan University, Shanghai 200040, China
| | - Jiasen Cui
- Department of Vascular Surgery of Huadong Hospital, Affiliated to Fudan University, Shanghai 200040, China
| | - Li Li
- Department of Vascular Surgery of Huadong Hospital, Affiliated to Fudan University, Shanghai 200040, China
| | - Ting Zhu
- Department of Vascular Surgery of Zhongshan Hospital, Affiliated to Fudan University, Shanghai 200032, China
| | - Zhenyu Guo
- Department of Vascular Surgery of Zhongshan Hospital, Affiliated to Fudan University, Shanghai 200032, China
| |
Collapse
|
158
|
Li Z, Zhu H, Liu H, Liu D, Liu J, Zhang Y, Qin Z, Xu Y, Peng Y, Ruan L, Li J, He Y, Liu B, Long Y. Synergistic dual cell therapy for atherosclerosis regression: ROS-responsive Bio-liposomes co-loaded with Geniposide and Emodin. J Nanobiotechnology 2024; 22:129. [PMID: 38528554 DOI: 10.1186/s12951-024-02389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
The development of nanomaterials for delivering natural compounds has emerged as a promising approach for atherosclerosis therapy. However, premature drug release remains a challenge. Here, we present a ROS-responsive biomimetic nanocomplex co-loaded with Geniposide (GP) and Emodin (EM) in nanoliposome particles (LP NPs) for targeted atherosclerosis therapy. The nanocomplex, hybridized with the macrophage membrane (Møm), effectively evades immune system clearance and targets atherosclerotic plaques. A modified thioketal (TK) system responds to ROS-rich plaque regions, triggering controlled drug release. In vitro, the nanocomplex inhibits endothelial cell apoptosis and macrophage lipid accumulation, restores endothelial cell function, and promotes cholesterol effluxion. In vivo, it targets ROS-rich atherosclerotic plaques, reducing plaque area ROS levels and restoring endothelial cell function, consequently promoting cholesterol outflow. Our study demonstrates that ROS-responsive biomimetic nanocomplexes co-delivering GP and EM exert a synergistic effect against endothelial cell apoptosis and lipid deposition in macrophages, offering a promising dual-cell therapy modality for atherosclerosis regression.
Collapse
Affiliation(s)
- Zhenxian Li
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Haimei Zhu
- Department of Pain, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hao Liu
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Dayue Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianhe Liu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yi Zhang
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Zhang Qin
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yijia Xu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yuan Peng
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Lihua Ruan
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Jintao Li
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yao He
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Yun Long
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
159
|
Zhu J, Chen W, Yang L, Zhang Y, Cheng B, Gu W, Li Q, Miao Q. A Self-Sustaining Near-Infrared Afterglow Chemiluminophore for High-Contrast Activatable Imaging. Angew Chem Int Ed Engl 2024; 63:e202318545. [PMID: 38247345 DOI: 10.1002/anie.202318545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Afterglow imaging holds great promise for ultrasensitive bioimaging due to its elimination of autofluorescence. Self-sustaining afterglow molecules (SAMs), which enable all-in-one photon sensitization, chemical defect formation and afterglow generation, possess a simplified, reproducible, and efficient superiority over commonly used multi-component systems. However, there is a lack of SAMs, particularly those with much brighter near-infrared (NIR) emission and structural flexibility for building high-contrast activatable imaging probes. To address these issues, this study for the first time reports a methylene blue derivative-based self-sustaining afterglow agent (SAN-M) with brighter NIR afterglow chemiluminescence peaking at 710 nm. By leveraging the structural flexibility and tunability, an activatable nanoprobe (SAN-MO) is customized for simultaneously activatable fluoro-photoacoustic and afterglow imaging of peroxynitrite (ONOO- ), notably with a superior activation ratio of 4523 in the afterglow mode, which is at least an order of magnitude higher than other reported activatable afterglow systems. By virtue of the elimination of autofluorescence and ultrahigh activation contrast, SAN-MO enables early monitoring of the LPS-induced acute inflammatory response within 30 min upon LPS stimulation and precise image-guided resection of tiny metastatic tumors, which is unattainable for fluorescence imaging.
Collapse
Affiliation(s)
- Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Li Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuyang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Baoliang Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wei Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
160
|
Rani D, Kaur S, Shahjahan, Dey JK, Dey SK. Engineering immune response to regulate cardiovascular disease and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:381-417. [PMID: 38762276 DOI: 10.1016/bs.apcsb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are major contributors to global morbidity and mortality. This book chapter delves into the intricate relationship between the immune system and the pathogenesis of both cardiovascular and cancer diseases, exploring the roles of innate and adaptive immunities, immune regulation, and immunotherapy in these complex conditions. The innate immune system acts as the first line of defense against tissue damage and infection, with a significant impact on the initiation and progression of CVD and cancer. Endothelial dysfunction, a hallmark in CVD, shares commonalities with the tumor microenvironment in cancer, emphasizing the parallel involvement of the immune system in both conditions. The adaptive immune system, particularly T cells, contributes to prolonged inflammation in both CVD and cancer. Regulatory T cells and the intricate balance between different T cell subtypes influence disease progression, wound healing, and the outcomes of ischemic injury and cancer immunosurveillance. Dysregulation of immune homeostasis can lead to chronic inflammation, contributing to the development and progression of both CVD and cancer. Thus, immunotherapy emerged as a promising avenue for preventing and managing these diseases, with strategies targeting immune cell modulation, cytokine manipulation, immune checkpoint blockade, and tolerance induction. The impact of gut microbiota on CVD and cancer too is explored in this chapter, highlighting the role of gut leakiness, microbial metabolites, and the potential for microbiome-based interventions in cardiovascular and cancer immunotherapies. In conclusion, immunomodulatory strategies and immunotherapy hold promise in reshaping the landscape of cardiovascular and cancer health. Additionally, harnessing the gut microbiota for immune modulation presents a novel approach to prevent and manage these complex diseases, emphasizing the importance of personalized and precision medicine in healthcare. Ongoing research and clinical trials are expected to further elucidate the complex immunological underpinnings of CVD and cancer thereby refining these innovative approaches.
Collapse
Affiliation(s)
- Diksha Rani
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Smaranjot Kaur
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India.
| |
Collapse
|
161
|
Volpatti LR, de Matos SN, Borjas G, Reda J, Watkins EA, Zhou Z, Nguyen M, Solanki A, Fang Y, Hubbell JA. LDL-Binding IL-10 Reduces Vascular Inflammation in Atherosclerotic Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.582839. [PMID: 38496521 PMCID: PMC10942346 DOI: 10.1101/2024.03.04.582839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease associated with the accumulation of low-density lipoprotein (LDL) in arterial walls. Higher levels of the anti-inflammatory cytokine IL-10 in serum are correlated with reduced plaque burden. However, cytokine therapies have not translated well to the clinic, partially due to their rapid clearance and pleiotropic nature. Here, we engineered IL-10 to overcome these challenges by hitchhiking on LDL to atherosclerotic plaques. Specifically, we constructed fusion proteins in which one domain is IL-10 and the other is an antibody fragment (Fab) that binds to protein epitopes of LDL. In murine models of atherosclerosis, we show that systemically administered Fab-IL-10 constructs bind circulating LDL and traffic to atherosclerotic plaques. One such construct, 2D03-IL-10, significantly reduces aortic immune cell infiltration to levels comparable to healthy mice, whereas non-targeted IL-10 has no therapeutic effect. Mechanistically, we demonstrate that 2D03-IL-10 preferentially associates with foamy macrophages and reduces pro-inflammatory activation markers. This platform technology can be applied to a variety of therapeutics and shows promise as a potential targeted anti-inflammatory therapy in atherosclerosis.
Collapse
Affiliation(s)
- Lisa R. Volpatti
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Salvador Norton de Matos
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
- Medical Scientist Training Program, Pritzker School of Medicine, University of Chicago, IL, 60637, United States
| | - Gustavo Borjas
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Joseph Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Elyse A. Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Zhengjie Zhou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Mindy Nguyen
- Animal Resources Center, University of Chicago, Chicago, IL 60637, United States
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL 60637, United States
| | - Yun Fang
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637, United States
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Committee on Molecular Medicine, University of Chicago, Chicago, IL, 60637, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
- Committee on Immunology, University of Chicago, Chicago, IL 60637, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
162
|
Vos WG, van Os BW, den Toom M, Beckers L, van Roomen CP, van Tiel CM, Mohapatra BC, Band H, Nitz K, Weber C, Atzler D, de Winther MP, Bosmans LA, Lutgens E, Seijkens TT. T cell specific deletion of Casitas B lineage lymphoma-b reduces atherosclerosis, but increases plaque T cell infiltration and systemic T cell activation. Front Immunol 2024; 15:1297893. [PMID: 38504977 PMCID: PMC10949527 DOI: 10.3389/fimmu.2024.1297893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Atherosclerosis is a lipid-driven inflammatory disease of the arterial wall, and the underlying cause of the majority of cardiovascular diseases. Recent advances in high-parametric immunophenotyping of immune cells indicate that T cells constitute the major leukocyte population in the atherosclerotic plaque. The E3 ubiquitin ligase Casitas B-lymphoma proto-oncogene-B (CBL-B) is a critical intracellular regulator that sets the threshold for T cell activation, making CBL-B a potential therapeutic target to modulate inflammation in atherosclerosis. We previously demonstrated that complete knock-out of CBL-B aggravated atherosclerosis in Apoe-/- mice, which was attributed to increased macrophage recruitment and increased CD8+ T cell activation in the plaque. Methods To further study the T cell specific role of CBL-B in atherosclerosis, Apoe-/- CD4cre Cblb fl/fl (Cbl-bcKO) mice and Apoe-/-CD4WTCblbfl/fl littermates (Cbl-bfl/fl) were fed a high cholesterol diet for ten weeks. Results Cbl-bcKO mice had smaller atherosclerotic lesions in the aortic arch and root compared to Cbl-bfl/fl, and a substantial increase in CD3+ T cells in the plaque. Collagen content in the plaque was decreased, while other plaque characteristics including plaque necrotic core, macrophage content, and smooth muscle cell content, remained unchanged. Mice lacking T cell CBL-B had a 1.4-fold increase in CD8+ T cells and a 1.8-fold increase in regulatory T cells in the spleen. Splenic CD4+ and CD8+ T cells had increased expression of C-X-C Motif Chemokine Receptor 3 (CXCR3) and interferon-γ (IFN-γ), indicating a T helper 1 (Th1)-like/effector CD8+ T cell-like phenotype. Conclusion In conclusion, Cbl-bcKO mice have reduced atherosclerosis but show increased T cell accumulation in the plaque accompanied by systemic T cell activation.
Collapse
Affiliation(s)
- Winnie G. Vos
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Bram W. van Os
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Cindy P.A.A. van Roomen
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Claudia M. van Tiel
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Bhopal C. Mohapatra
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid Band
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, United States
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walther Straub Institute of Parmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Laura A. Bosmans
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, United States
| | - Tom T.P. Seijkens
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
163
|
Haybar H, Hadi H, Purrahman D, Mahmoudian-Sani MR, Saki N. Emerging roles of HOTAIR lncRNA in the pathogenesis and prognosis of cardiovascular diseases. Biomark Med 2024; 18:203-219. [PMID: 38411079 DOI: 10.2217/bmm-2023-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Highlights HOTAIR, a long noncoding RNA, plays a role in the regulation of proteins involved in the pathogenesis of cardiovascular disease. Furthermore, it has been identified as a biomarker of this type of disease. Several factors and cells contribute to atherosclerosis, a progressive disease. However, the prognosis of HOTAIR in this disease varies depending on the path in which it plays a role. For this condition, there is no single prognosis to consider.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hakimeh Hadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
164
|
Tang X, Zhou Y, Chen Z, Liu C, Wu Z, Zhou Y, Zhang F, Lu X, Tang L. Identification of key biomarkers for predicting CAD progression in inflammatory bowel disease via machine-learning and bioinformatics strategies. J Cell Mol Med 2024; 28:e18175. [PMID: 38451044 PMCID: PMC10919158 DOI: 10.1111/jcmm.18175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/07/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
The study aimed to identify the biomarkers for predicting coronary atherosclerotic lesions progression in patients with inflammatory bowel disease (IBD). Related transcriptome datasets were seized from Gene Expression Omnibus database. IBD-related modules were identified via Weighted Gene Co-expression Network Analysis. The 'Limma' was applied to screen differentially expressed genes between stable coronary artery disease (CAD) and acute myocardial infarction (AMI). Subsequently, we employed protein-protein interaction (PPI) network and three machine-learning strategies to further screen for candidate hub genes. Application of the receiver operating characteristics curve to quantitatively evaluate candidates to determine key diagnostic biomarkers, followed by a nomogram construction. Ultimately, we performed immune landscape analysis, single-gene GSEA and prediction of target-drugs. 3227 IBD-related module genes and 570 DEGs accounting for AMI were recognized. Intersection yielded 85 shared genes and mostly enriched in immune and inflammatory pathways. After filtering through PPI network and multi-machine learning algorithms, five candidate genes generated. Upon validation, CTSD, CEBPD, CYP27A1 were identified as key diagnostic biomarkers with a superior sensitivity and specificity (AUC > 0.8). Furthermore, all three genes were negatively correlated with CD4+ T cells and positively correlated with neutrophils. Single-gene GSEA highlighted the importance of pathogen invasion, metabolism, immune and inflammation responses during the pathogenesis of AMI. Ten target-drugs were predicted. The discovery of three peripheral blood biomarkers capable of predicting the risk of CAD proceeding into AMI in IBD patients. These identified biomarkers were negatively correlated with CD4+ T cells and positively correlated with neutrophils, indicating a latent therapeutic target.
Collapse
Affiliation(s)
- Xiaoqi Tang
- School of MedicineShaoxing UniversityZhejiangChina
| | - Yufei Zhou
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan UniversityShanghaiChina
| | - Zhuolin Chen
- Department of OrthopedicsShaoxing People's Hospital (Zhejiang University School of Medicine)ShaoxingChina
| | - Chunjiang Liu
- Department of General Surgery, Division of Vascular SurgeryShaoxing People's HospitalShaoxingChina
| | - Zhifeng Wu
- School of MedicineShaoxing UniversityZhejiangChina
| | - Yue Zhou
- Department of General Surgery, Division of Vascular SurgeryShaoxing People's HospitalShaoxingChina
| | - Fan Zhang
- School of MedicineShaoxing UniversityZhejiangChina
| | - Xuanyuan Lu
- Department of OrthopedicsShaoxing People's Hospital (Zhejiang University School of Medicine)ShaoxingChina
| | - Liming Tang
- Department of General Surgery, Division of Vascular SurgeryShaoxing People's HospitalShaoxingChina
| |
Collapse
|
165
|
Yu Y, Sun Y, Wang Y, Yu Y, Wang B, Chen C, Tan X, Lu Y, Wang N. Immune-mediated diseases and risk of incident cardiovascular diseases: a prospective cohort study. Rheumatology (Oxford) 2024; 63:706-714. [PMID: 37261866 DOI: 10.1093/rheumatology/kead266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVES Disorders of immune system may impact cardiovascular health; however, comprehensive study is lacking. We aimed to analyse the association of total and 20 individual immune-mediated diseases (IMDs) with risk of incident cardiovascular disease (CVD). METHODS In this prospective cohort study, 414 495 participants (55.6% women; mean age 55.9 years) from UK Biobank with baseline assessment at 2006-10 were included. Among them, 21 784 participants had prevalent IMDs. Information on IMDs at baseline and incidence of CVDs during follow-up were recorded. Cox proportional hazard models were used to estimate the association between IMDs and CVDs risk. RESULTS During the median follow-up of 12.1 years, there were 6506 cases of CVDs in participants with IMDs (29.9%) and 77 699 cases in those without IMDs (19.8%). After multivariable adjustment, participants with IMDs were significantly associated with an increased risk of total CVD [hazard ratio (HR) 1.57; 95% CI 1.52-1.61]. Among the 20 IMDs, 16 showed significant associations with CVD (all P < 0.0025 after Bonferroni correction), with HR ranging from 1.34 (1.16-1.54) for celiac disease to 2.75 (2.10-3.61) for SLE. Participants with any IMD exposure had a higher risk of all individual CVD events, with HR ranging from 1.34 (1.14-1.58) for cerebral hemorrhage to 1.80 (1.54-2.11) for pericardium diseases. IMD duration <5, 5-10 and >10 years was associated with 55%, 59% and 56% increased risk of total CVD, respectively. CONCLUSION Total and individual IMDs were associated with an increased risk of overall CVDs. It is important to consider primary prevention of CVD in patients with IMD and dysregulation of immune system in the cardiovascular health.
Collapse
Affiliation(s)
- Yuetian Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bin Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiao Tan
- School of Public Health, Zhejiang University, Hangzhou, China
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
166
|
Shen S, Sun T, Ding X, Gu X, Wang Y, Ma X, Li Z, Gao H, Ge S, Feng Q. The exoprotein Gbp of Fusobacterium nucleatum promotes THP-1 cell lipid deposition by binding to CypA and activating PI3K-AKT/MAPK/NF-κB pathways. J Adv Res 2024; 57:93-105. [PMID: 37100345 PMCID: PMC10918358 DOI: 10.1016/j.jare.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
INTRODUCTION Growing evidence has shown the correlation between periodontitis and atherosclerosis, while our knowledge on the pathogenesis of periodontitis-promoting atherosclerosis is far from sufficient. OBJECTIVES Illuminate the pathogenic effects of Fusobacterium nucleatum (F. nucleatum) on intracellular lipid deposition in THP-1-derived macrophages and elucidate the underlying pathogenic mechanism of how F. nucleatum promoting atherosclerosis. METHODS AND RESULTS F. nucleatum was frequently detected in different kinds of atherosclerotic plaques and its abundance was positively correlated with the proportion of macrophages. In vitro assays showed F. nucleatum could adhere to and invade THP-1 cells, and survive continuously in macrophages for 24 h. F. nucleatum stimulation alone could significantly promote cellular inflammation, lipid uptake and inhibit lipid outflow. The dynamic gene expression of THP-1 cells demonstrated that F. nucleatum could time-serially induce the over-expression of multiple inflammatory related genes and activate NF-κB, MAPK and PI3K-AKT signaling pathways. The exoprotein of F. nucleatum, D-galactose-binding protein (Gbp), acted as one of the main pathogenic proteins to interact with the Cyclophilin A (CypA) of THP-1 cells and induced the activation of the NF- κB, MAPK and PI3K-AKT signaling pathways. Furthermore, use of six candidate drugs targeting to the key proteins in NF- κB, MAPK and PI3K-AKT pathways could dramatically decrease F. nucleatum induced inflammation and lipid deposition in THP-1 cells. CONCLUSIONS This study suggests that the periodontal pathogen F. nucleatum can activate macrophage PI3K-AKT/MAPK/NF-κB signal pathways, promotes inflammation, enhances cholesterol uptake, reduces lipid excretion, and promotes lipid deposition, which may be one of its main strategies promoting the development of atherosclerosis.
Collapse
Affiliation(s)
- Song Shen
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Tianyong Sun
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xiangjiu Ding
- Department of Vascular Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiufeng Gu
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Yushang Wang
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xiaomei Ma
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Zixuan Li
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Haiting Gao
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shaohua Ge
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China.
| | - Qiang Feng
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
167
|
Tan W, Zhang J, Dai F, Yang D, Gu R, Tang L, Liu H, Cheng YX. Insights on the NF-κB system in polycystic ovary syndrome, attractive therapeutic targets. Mol Cell Biochem 2024; 479:467-486. [PMID: 37097332 DOI: 10.1007/s11010-023-04736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023]
Abstract
The nuclear factor κappa B (NF-κB) signaling plays a well-known function in inflammation and regulates a wide variety of biological processes. Low-grade chronic inflammation is gradually considered to be closely related to the pathogenesis of Polycystic ovary syndrome (PCOS). In this review, we provide an overview on the involvement of NF-κB in the progression of PCOS particularly, such as hyperandrogenemia, insulin resistance, cardiovascular diseases, and endometrial dysfunction. From a clinical perspective, progressive recognition of NF-κB pathway provides opportunities for therapeutic interventions aimed at inhibiting pathway-specific mechanisms. With the accumulation of basic experimental and clinical data, NF-κB signaling pathway was recognized as a therapeutic target. Although there have been no specific small molecule NF-κB inhibitors in PCOS, a plethora of natural and synthetic compound have emerged for the pharmacologic intervention of the pathway. The traditional herbs developed for NF-κB pathway have become increasingly popular in recent years. Abundant evidence elucidated that NF-κB inhibitors can significantly improve the symptoms of PCOS. Herein, we summarized evidence relating to how NF-κB pathway is involved in the development and progression of PCOS. Furthermore, we present an in-depth overview of NF-κB inhibitors for therapy interventions of PCOS. Taken together, the NF-κB signaling may be a futuristic treatment strategy for PCOS.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
168
|
Liu Y, Huang Q, He M, Chen T, Chu X. A nano-bioconjugate modified with anti-SIRPα antibodies and antisense oligonucleotides of mTOR for anti-atherosclerosis therapy. Acta Biomater 2024; 176:356-366. [PMID: 38160854 DOI: 10.1016/j.actbio.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is the main cause of a series of fatal cardiovascular diseases, characterized by pathological accumulation of apoptotic cells and lipids. Pro-phagocytic antibody-based or pro-autophagy gene-based therapies are currently being explored to stimulate the phagocytic clearance of apoptotic cells and lipid metabolism; however, monotherapies are only moderately effective or require high doses with unacceptable side effects. Herein, we engineered a specific nano-bioconjugate loaded with antisense oligonucleotides (ASOs) of mammalian target of rapamycin (mTOR) and modified with anti-signal-regulated protein-α antibody (aSIRPα) for macrophage-mediated atherosclerosis therapy. The specific nano-bioconjugate utilized acid-responsive calcium phosphate (CaP) as a carrier to load mTOR ASOs, coated with lipid on the surface of CaP nanoparticles (ASOs@CaP), and subsequently modified with aSIRPα. The resulting nano-bioconjugates could accumulate within atherosclerotic plaques, target to macrophages and reactivate lesional phagocytosis through blocking the CD47-SIRPα signaling axis. In addition, efficient delivery of mTOR ASOs inhibited mTOR expression, which significantly restored impaired autophagy. The combined action of mTOR ASOs and aSIRPα reduced apoptotic cells and lipids accumulation. This nanotherapy significantly reduced plaque burden and inhibited progression of atherosclerotic lesions. These results show the potential of specific nano-bioconjugates for the prevention of atherosclerotic cardiovascular disease. STATEMENT OF SIGNIFICANCE: Atherosclerosis is the main cause of a series of fatal cardiovascular diseases. Pro-phagocytic antibody-based or pro-autophagy gene-based therapies are currently being explored to stimulate the phagocytic clearance of apoptotic cells and lipid metabolism; however, monotherapies are only moderately effective or require high doses with unacceptable side effects. Herein, we engineered a specific nano-bioconjugate loaded with antisense oligonucleotides (ASOs) of mammalian target of rapamycin (mTOR) and modified with anti-signal-regulated protein-α antibody (aSIRPα) for macrophage-mediated atherosclerosis therapy. Our study demonstrated that the combined action of mTOR ASOs and aSIRPα reduced apoptotic cells and lipids accumulation. This nanotherapy significantly reduced plaque burden and inhibited progression of atherosclerotic lesions. These results show the potential of specific nano-bioconjugates for the prevention of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Qian Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
169
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
170
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
171
|
Song Y, Lin Z, He J, Cui K, Song C, Zhang R, Liu Z, An T, Gao G, Gao Y, Dou K. Association of platelet-to-lymphocyte ratio levels with the risk of cardiac adverse events in people with type 2 diabetes undergoing percutaneous coronary intervention: A large-scale prospective cohort study. Diabetes Metab Syndr 2024; 18:102987. [PMID: 38518450 DOI: 10.1016/j.dsx.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND The platelet-to-lymphocyte ratio (PLR), a promising inflammatory biomarker, contributes to the development of atherosclerosis and type 2 diabetes (T2D). Therefore, this study aimed to elucidate the importance of PLR in predicting adverse events in people undergoing percutaneous coronary intervention (PCI) with T2D. METHODS We consecutively enrolled 8831 people who underwent PCI and divided them into four groups according to PLR and glycemic metabolic status (PLR-Low/High without T2D, PLR-Low/High with T2D). The endpoints were major adverse cardiovascular and cerebrovascular events (MACCE) and stent thrombosis. A multivariate Cox regression analysis was performed to determine this association. RESULTS During the 2.4-year follow-up, 663 (7.5%) MACCE and 75 (0.85%) stent thromboses were recorded. The risk of MACCE (hazard ratio [HR]: 1.30, 95% confidence interval [CI]: 1.10-1.53, P = 0.002) and stent thrombosis (HR: 2.32, 95% CI: 1.38-3.90, P = 0.002) was significantly higher in people with high PLR levels than in those with low PLR. Among people with T2D, the PLR-High group showed a significantly higher risk of MACCE (HR: 1.59, 95% CI: 1.21-2.09, P = 0.001) and stent thrombosis (HR: 3.15, 95% CI: 1.32-7.52, P = 0.010). However, these associations were not significant in people without T2D. CONCLUSIONS PLR has been originally documented as a significant predictor of poor prognosis and a high incidence of stent thrombosis in people undergoing PCI, especially in those with T2D.
Collapse
Affiliation(s)
- Yanjun Song
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Zhangyu Lin
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Jining He
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Kongyong Cui
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Chenxi Song
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Rui Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Zechen Liu
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Tao An
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Guofeng Gao
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Ying Gao
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Beijing, China; Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| |
Collapse
|
172
|
Mangoni AA, Zinellu A. A systematic review and meta-analysis of circulating adhesion molecules in rheumatoid arthritis. Inflamm Res 2024; 73:305-327. [PMID: 38240792 PMCID: PMC10894129 DOI: 10.1007/s00011-023-01837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The availability of robust biomarkers of endothelial activation might enhance the identification of subclinical atherosclerosis in rheumatoid arthritis (RA). We investigated this issue by conducting a systematic review and meta-analysis of cell adhesion molecules in RA patients. METHODS We searched electronic databases from inception to 31 July 2023 for case-control studies assessing the circulating concentrations of immunoglobulin-like adhesion molecules (vascular cell, VCAM-1, intercellular, ICAM-1, and platelet endothelial cell, PECAM-1, adhesion molecule-1) and selectins (E, L, and P selectin) in RA patients and healthy controls. Risk of bias and certainty of evidence were assessed using the JBI checklist and GRADE, respectively. RESULTS In 39 studies, compared to controls, RA patients had significantly higher concentrations of ICAM-1 (standard mean difference, SMD = 0.81, 95% CI 0.62-1.00, p < 0.001; I2 = 83.0%, p < 0.001), VCAM-1 (SMD = 1.17, 95% CI 0.73-1.61, p < 0.001; I2 = 95.8%, p < 0.001), PECAM-1 (SMD = 0.82, 95% CI 0.57-1.08, p < 0.001; I2 = 0.0%, p = 0.90), E-selectin (SMD = 0.64, 95% CI 0.42-0.86, p < 0.001; I2 = 75.0%, p < 0.001), and P-selectin (SMD = 1.06, 95% CI 0.50-1.60, p < 0.001; I2 = 84.8%, p < 0.001), but not L-selectin. In meta-regression and subgroup analysis, significant associations were observed between the effect size and use of glucocorticoids (ICAM-1), erythrocyte sedimentation rate (VCAM-1), study continent (VCAM-1, E-selectin, and P-selectin), and matrix assessed (P-selectin). CONCLUSIONS The results of our study support a significant role of cell adhesion molecules in mediating the interplay between RA and atherosclerosis. Further studies are warranted to determine whether the routine use of these biomarkers can facilitate the detection and management of early atherosclerosis in this patient group. PROSPERO Registration Number: CRD42023466662.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, SA, 5042, Australia.
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
173
|
Yin T, Zhang H, Liu X, Wei D, Ren C, Cui L, Li Y, Wang L, Wang J, Zhao Z, Liu D, Wang L, Han X. Elucidating the anti-hypertensive mechanisms of Uncaria rhynchophylla-Alisma plantago-aquatica L: an integrated network pharmacology, cluster analysis, and molecular docking approach. Front Chem 2024; 12:1356458. [PMID: 38496269 PMCID: PMC10941343 DOI: 10.3389/fchem.2024.1356458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background: With the increasing global prevalence of hypertension, a condition that can severely affect multiple organs, there is a growing need for effective treatment options. Uncaria rhynchophylla-Alisma plantago-aquatica L. (UR-AP) is a traditional drug pair used for treating hypertension based on the liver-kidney synergy concept. However, the detailed molecular mechanisms underlying its efficacy remain unclear. Methods: This study utilized an integrative approach combining network pharmacology, cluster analysis, and molecular docking to uncover the bioactive components and targets of UR-AP in the treatment of hypertension. Initially, we extracted data from public databases to identify these components and targets. A Protein-Protein Interaction (PPI) network was constructed, followed by enrichment analysis to pinpoint the bioactive components, core targets, and pivotal pathways. Cluster analysis helped in identifying key sub-networks and hypothesizing primary targets. Furthermore, molecular docking was conducted to validate the interaction between the core targets and major bioactive components, thus confirming their potential efficacy in hypertension treatment. Results: Network pharmacological analysis identified 58 bioactive compounds in UR-AP, notably quercetin, kaempferol, beta-sitosterol (from Uncaria rhynchophylla), and Alisol B, alisol B 23-acetate (from Alisma plantago-aquatica L.), as pivotal bioactives. We pinpointed 143 targets common to both UR-AP and hypertension, highlighting MAPK1, IL6, AKT1, VEGFA, EGFR, and TP53 as central targets involved in key pathways like diastolic and endothelial function, anti-atherosclerosis, AGE-RAGE signaling, and calcium signaling. Cluster analysis emphasized IL6, TNF, AKT1, and VEGFA's roles in atherosclerosis and inflammation. Molecular docking confirmed strong interactions between these targets and UR-AP's main bioactives, underscoring their therapeutic potential. Conclusion: This research delineates UR-AP's pharmacological profile in hypertension treatment, linking traditional medicine with modern pharmacology. It highlights key bioactive components and their interactions with principal targets, suggesting UR-AP's potential as a novel therapeutic option for hypertension. The evidence from molecular docking studies supports these interactions, indicating the relevance of these components in affecting hypertension pathways. However, the study acknowledges its limitations, including the reliance on in silico analyses and the need for in vivo validation. These findings pave the way for future clinical research, aiming to integrate traditional medicine insights with contemporary scientific approaches for developing innovative hypertension therapies.
Collapse
Affiliation(s)
- Tong Yin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingfang Liu
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cong Ren
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liangyu Cui
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yukun Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaheng Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwei Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dasheng Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liying Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuejie Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
174
|
Prapiadou S, Živković L, Thorand B, George MJ, van der Laan SW, Malik R, Herder C, Koenig W, Ueland T, Kleveland O, Aukrust P, Gullestad L, Bernhagen J, Pasterkamp G, Peters A, Hingorani AD, Rosand J, Dichgans M, Anderson CD, Georgakis MK. Proteogenomic Data Integration Reveals CXCL10 as a Potentially Downstream Causal Mediator for IL-6 Signaling on Atherosclerosis. Circulation 2024; 149:669-683. [PMID: 38152968 PMCID: PMC10922752 DOI: 10.1161/circulationaha.123.064974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/17/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Genetic and experimental studies support a causal involvement of IL-6 (interleukin-6) signaling in atheroprogression. Although trials targeting IL-6 signaling are underway, any benefits must be balanced against an impaired host immune response. Dissecting the mechanisms that mediate the effects of IL-6 signaling on atherosclerosis could offer insights about novel drug targets with more specific effects. METHODS Leveraging data from 522 681 individuals, we constructed a genetic instrument of 26 variants in the gene encoding the IL-6R (IL-6 receptor) that proxied for pharmacological IL-6R inhibition. Using Mendelian randomization, we assessed its effects on 3281 plasma proteins quantified with an aptamer-based assay in the INTERVAL cohort (n=3301). Using mediation Mendelian randomization, we explored proteomic mediators of the effects of genetically proxied IL-6 signaling on coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease. For significant mediators, we tested associations of their circulating levels with incident cardiovascular events in a population-based study (n=1704) and explored the histological, transcriptomic, and cellular phenotypes correlated with their expression levels in samples from human atherosclerotic lesions. RESULTS We found significant effects of genetically proxied IL-6 signaling on 70 circulating proteins involved in cytokine production/regulation and immune cell recruitment/differentiation, which correlated with the proteomic effects of pharmacological IL-6R inhibition in a clinical trial. Among the 70 significant proteins, genetically proxied circulating levels of CXCL10 (C-X-C motif chemokine ligand 10) were associated with risk of coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease, with up to 67% of the effects of genetically downregulated IL-6 signaling on these end points mediated by decreases in CXCL10. Higher midlife circulating CXCL10 levels were associated with a larger number of cardiovascular events over 20 years, whereas higher CXCL10 expression in human atherosclerotic lesions correlated with a larger lipid core and a transcriptomic profile reflecting immune cell infiltration, adaptive immune system activation, and cytokine signaling. CONCLUSIONS Integrating multiomics data, we found a proteomic signature of IL-6 signaling activation and mediators of its effects on cardiovascular disease. Our analyses suggest the interferon-γ-inducible chemokine CXCL10 to be a potentially causal mediator for atherosclerosis in 3 vascular compartments and, as such, could serve as a promising drug target for atheroprotection.
Collapse
Affiliation(s)
- Savvina Prapiadou
- University of Patras School of Medicine, Patras, Greece
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luka Živković
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Marc J. George
- Department of Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rainer Malik
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Wolfgang Koenig
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
- German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Thor Ueland
- Thrombosis Research Center (TREC), Division of internal medicine, University hospital of North Norway, Tromsø, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ola Kleveland
- Clinic of Cardiology, St Olavs Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Health (DZHK e.V., partner-site Munich), Munich, Germany
| | - Aroon D. Hingorani
- Department of Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
- Centre for Translational Genomics, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Christopher D. Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Marios K. Georgakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
175
|
Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, Azadfallah A, Mahdizade Ari M, Hemmati M, Darban M, Alavi Toosi P, Banihashemian SZ. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm 2024; 2024:5830491. [PMID: 38445291 PMCID: PMC10914434 DOI: 10.1155/2024/5830491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Atherosclerosis is a leading cause of death in the world. A significant body of evidence suggests that inflammation and various players are implicated and have pivotal roles in the formation of atherosclerotic plaques. Toll-like receptor 4 (TLR4) is linked with different stages of atherosclerosis. This receptor is highly expressed in the endothelial cells (ECs) and atherosclerotic plaques. TLR4 activation can lead to the production of inflammatory cytokines and related responses. Lectin-like oxidized low-density lipoprotein-1 (LOX-1), an integral membrane glycoprotein with widespread expression on the ECs, is involved in atherosclerosis and has some common pathways with TLR4 in atherosclerotic lesions. In addition, proprotein convertase subtilisin/kexin type9 (PCSK9), which is a regulatory enzyme with different roles in cholesterol uptake, is implicated in atherosclerosis. At present, TLR4, PCSK9, and LOX-1 are increasingly acknowledged as key players in the pathogenesis of atherosclerotic cardiovascular diseases. Herein, we presented the current evidence on the structure, functions, and roles of TLR4, PCSK9, and LOX-1 in atherosclerosis.
Collapse
Affiliation(s)
- Bahador Bagheri
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Ahmad Nouri
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahyar Mahdizade Ari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemmati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Darban
- Department of Internal Medicine, Kowsar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Alavi Toosi
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
176
|
Li X, Yu C, Liu X, Chen Y, Wang Y, Liang H, Qiu S, Lei L, Xiu J. A Prediction Model Based on Systemic Immune-Inflammatory Index Combined with Other Predictors for Major Adverse Cardiovascular Events in Acute Myocardial Infarction Patients. J Inflamm Res 2024; 17:1211-1225. [PMID: 38410422 PMCID: PMC10895983 DOI: 10.2147/jir.s443153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Objective To evaluate the prognostic value of the systemic immune-inflammatory index (SII) for predicting in-hospital major adverse cardiovascular events (MACEs) in patients with acute myocardial infarction (AMI) and establish a relevant nomogram. Methods This study included 954 AMI patients. We examined three inflammatory factors (SII, platelet to lymphocyte ratio (PLR) and neutrophil to lymphocyte ratio (NLR)) to see which one predicts in-hospital MACEs better. The predictors were subsequently screened using bidirectional stepwise regression method, and a MACE nomogram was constructed via logistic regression analysis. The predictive value of the model was evaluated using the area under the curve (AUC), sensitivity and specificity. In addition, the clinical utility of the nomogram was evaluated using decision curve analysis. We also compared the nomogram with the Global Registry of Acute Coronary Events (GRACE) scoring system. Results 334 (35.0%) patients had MACEs. The SII (AUC =0.684) had a greater predictive value for in-hospital MACEs in AMI patients than the PLR (AUC =0.597, P<0.001) or NLR (AUC=0.654, P=0.01). The area under the curve (AUC) of the SII-based multivariable model for predicting MACEs, which was based on the SII, Killip classification, left ventricular ejection fraction, age, urea nitrogen (BUN) concentration and electrocardiogram-based diagnosis, was 0.862 (95% CI: 0.833-0.891). Decision curve and calibration curve analysis revealed that SII-based multivariable model demonstrated a good fit and calibration and provided positive net benefits than the model without SII. The predictive value of the SII-based multivariable model was greater than that of the GRACE scoring system (P<0.001). Conclusion SII is a promising, reliable biomarker for identifying AMI patients at high risk of in-hospital MACEs, and SII-based multivariable model may serve as a quick and easy tool to identify these patients.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Department of Cardiology, Xiangdong Hospital, Hunan Normal University, Liling, Hunan, People’s Republic of China
| | - Chen Yu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xuewei Liu
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Southern Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Yejia Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yutian Wang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Hongbin Liang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - ShiFeng Qiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Li Lei
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiancheng Xiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
177
|
Duan X, Liu N, Lv K, Wang J, Li M, Zhang Y, Huo X, Bao S, Shen Z, Zhang X. Synthesis and Anti-Inflammatory Activity of Ferulic Acid-Sesquiterpene Lactone Hybrids. Molecules 2024; 29:936. [PMID: 38474447 DOI: 10.3390/molecules29050936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Acute lung injury (ALI) is a respiratory failure disease associated with high mortality rates in patients. The primary pathological damage is attributed to the excessive release of pro-inflammatory mediators in pulmonary tissue. However, specific therapy for ALI has not been developed. In this study, a series of novel ferulic acid-parthenolide (FA-PTL) and ferulic acid-micheliolide (FA-MCL) hybrid derivatives were designed, synthesized, and evaluated for their anti-inflammatory activities in vitro. Compounds 2, 4, and 6 showed pronounced anti-inflammatory activity against LPS-induced expression of pro-inflammatory cytokines in vitro. Importantly, compound 6 displayed good water solubility, and treatment of mice with compound 6 (10 mg/kg) significantly prevented weight loss and ameliorated inflammatory cell infiltration and edema in lung tissue, as well as improving the alveolar structure. These results suggest that compound 6 (((1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-1a-methyl-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan-5-yl)methyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate 2-hydroxypropane-1,2,3-tricarboxylate) might be considered as a lead compound for further evaluation as a potential anti-ALI agent.
Collapse
Affiliation(s)
- Xiyan Duan
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Ning Liu
- School of Nursing, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Lv
- The State Key Laboratory of Medicinal Chemical Biology & College of Chemistry, Nankai University, Tianjin 300071, China
| | - Junqi Wang
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Mingyue Li
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yanwei Zhang
- Accendatech Company, Ltd., Tianjin 300384, China
| | | | - Shiqi Bao
- Accendatech Company, Ltd., Tianjin 300384, China
| | - Zhuo Shen
- Accendatech Company, Ltd., Tianjin 300384, China
| | - Xuemei Zhang
- Accendatech Company, Ltd., Tianjin 300384, China
| |
Collapse
|
178
|
魏 婷, 丁 洋, 张 佳, 李 金, 张 恒, 康 品, 张 宁. [Correlation of serum ferredoxin 1 and lipoic acid levels with severity of coronary artery disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:308-316. [PMID: 38501416 PMCID: PMC10954524 DOI: 10.12122/j.issn.1673-4254.2024.02.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To analyze the correlation of copper death inducer ferredoxin 1 (FDX1) and lipoic acid (LA) with the occurrence and severity of coronary atherosclerosis and explore their roles in coronary heart disease (CHD). METHODS We analyzed the data of 226 patients undergoing coronary artery angiography (CAG) in our hospital between October, 2021 and October, 2022, including 47 patients with normal CAG findings (control group) and 179 patients with mild, moderate or severe coronary artery stenosis (CHD group). Serum FDX1 and LA levels were determined with ELISA for all the patients. We also examined pathological changes in the aorta of normal and ApoE-/- mice using HE staining and observed collagen fiber deposition with Sirius red staining. Immunohistochemistry was used to detect the expression and distribution of FDX1 and LA in the aorta, and RT-PCR was performed to detect the expressions of FDX1, LIAS and ACO2 mRNAs in the myocardial tissues. RESULTS Compared with the control patients, CHD patients had significantly lower serum FDX1 and LA levels, which decreased progressively as coronary artery stenosis worsened (P < 0.01) and as the number of involved coronary artery branches increased (P < 0.05). Serum FDX1 and LA levels were positively correlated (r=0.451, P < 0.01) and they both negatively correlated with the Gensini score (r=-0.241 and -0.273, respectively; P < 0.01). Compared with normal mice, ApoE-/- mice showed significantly increased lipid levels (P < 0.01) and atherosclerosis index, obvious thickening, lipid aggregation, and collagen fiber hyperplasia in the aorta, and significantly reduced expressions of FDX1, LA, LIAS, and ACO2 (P < 0.05). CONCLUSION Serum FDX1 and LA levels decrease with worsening of coronary artery lesions, and theirs expressions are correlated with coronary artery lesions induced by hyperlipidemia.
Collapse
Affiliation(s)
- 婷 魏
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 洋洋 丁
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 佳佳 张
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 金龙 李
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 恒 张
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 品方 康
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Preclinical and Clinical Cardiovascular Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 宁汝 张
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
179
|
Li Z, Liu J, Liu Z, Zhu X, Geng R, Ding R, Xu H, Huang S. Comprehensive analysis identifies crucial genes associated with immune cells mediating progression of carotid atherosclerotic plaque. Aging (Albany NY) 2024; 16:3880-3895. [PMID: 38382092 PMCID: PMC10929796 DOI: 10.18632/aging.205566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUNDS Carotid atherosclerosis is prone to rupture and cause ischemic stroke in advanced stages of development. Our research aims to provide markers for the progression of atherosclerosis and potential targets for its treatment. METHODS We performed a thorough analysis using various techniques including DEGs, GO/KEGG, xCell, WGCNA, GSEA, and other methods. The gene expression omnibus datasets GSE28829 and GSE43292 were utilized for this comprehensive analysis. The validation datasets employed in this study consisted of GSE41571 and GSE120521 datasets. Finally, we validated PLEK by immunohistochemistry staining in clinical samples. RESULTS Using the WGCNA technique, we discovered 636 differentially expressed genes (DEGs) and obtained 12 co-expression modules. Additionally, we discovered two modules that were specifically associated with atherosclerotic plaque. A total of 330 genes that were both present in DEGs and WGCNA results were used to create a protein-protein network in Cytoscape. We used four different algorithms to get the top 10 genes and finally got 6 overlapped genes (TYROBP, ITGB2, ITGAM, PLEK, LCP2, CD86), which are identified by GSE41571 and GSE120521 datasets. Interestingly, the area under curves (AUC) of PLEK is 0.833. Besides, we found PLEK is strongly positively correlated with most lymphocytes and myeloid cells, especially monocytes and macrophages, and negatively correlated with most stromal cells (e.g, neurons, myocytes, and fibroblasts). The expression of PLEK were consistent with the immunohistochemistry results. CONCLUSIONS Six genes (TYROBP, ITGB2, ITGAM, PLEK, LCP2, CD86) were found to be connected with carotid atherosclerotic plaques and PLEK may be an important biomarker and a potential therapeutic target.
Collapse
Affiliation(s)
- Zhen Li
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Junhui Liu
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Zhichun Liu
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Xiaonan Zhu
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Rongxin Geng
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Rui Ding
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Haitao Xu
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| | - Shulan Huang
- Department of Neurosurgery III, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P.R. China
| |
Collapse
|
180
|
Britsch S, Langer H, Duerschmied D, Becher T. The Evolving Role of Dendritic Cells in Atherosclerosis. Int J Mol Sci 2024; 25:2450. [PMID: 38397127 PMCID: PMC10888834 DOI: 10.3390/ijms25042450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, a major contributor to cardiovascular morbidity and mortality, is characterized by chronic inflammation of the arterial wall. This inflammatory process is initiated and maintained by both innate and adaptive immunity. Dendritic cells (DCs), which are antigen-presenting cells, play a crucial role in the development of atherosclerosis and consist of various subtypes with distinct functional abilities. Following the recognition and binding of antigens, DCs become potent activators of cellular responses, bridging the innate and adaptive immune systems. The modulation of specific DC subpopulations can have either pro-atherogenic or atheroprotective effects, highlighting the dual pro-inflammatory or tolerogenic roles of DCs. In this work, we provide a comprehensive overview of the evolving roles of DCs and their subtypes in the promotion or limitation of atherosclerosis development. Additionally, we explore antigen pulsing and pharmacological approaches to modulate the function of DCs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Simone Britsch
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Harald Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Tobias Becher
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
| |
Collapse
|
181
|
Toribio-Fernández R, Tristão-Pereira C, Carlos Silla-Castro J, Callejas S, Oliva B, Fernandez-Nueda I, Garcia-Lunar I, Perez-Herreras C, María Ordovás J, Martin P, Blanco-Kelly F, Ayuso C, Lara-Pezzi E, Fernandez-Ortiz A, Garcia-Alvarez A, Dopazo A, Sanchez-Cabo F, Ibanez B, Cortes-Canteli M, Fuster V. Apolipoprotein E-ε2 and Resistance to Atherosclerosis in Midlife: The PESA Observational Study. Circ Res 2024; 134:411-424. [PMID: 38258600 DOI: 10.1161/circresaha.123.323921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND APOE is a known genetic contributor to cardiovascular disease, but the differential role APOE alleles play in subclinical atherosclerosis remains unclear. METHODS The PESA (Progression of Early Subclinical Atherosclerosis) is an observational cohort study that recruited 4184 middle-aged asymptomatic individuals to be screened for cardiovascular risk and multiterritorial subclinical atherosclerosis. Participants were APOE-genotyped, and omics data were additionally evaluated. RESULTS In the PESA study, the frequencies for APOE -ε2, -ε3, and -ε4 alleles were 0.060, 0.844, and 0.096, respectively. This study included a subcohort of 3887 participants (45.8±4.3 years of age; 62% males). As expected, APOE-ε4 carriers were at the highest risk for cardiovascular disease and had significantly greater odds of having subclinical atherosclerosis compared with ε3/ε3 carriers, which was mainly explained by their higher levels of low-density lipoprotein (LDL)-cholesterol. In turn, APOE-ε2 carriers were at the lowest risk for cardiovascular disease and had significantly lower odds of having subclinical atherosclerosis in several vascular territories (carotids: 0.62 [95% CI, 0.47-0.81]; P=0.00043; femorals: 0.60 [0.47-0.78]; P=9.96×10-5; coronaries: 0.53 [0.39-0.74]; P=0.00013; and increased PESA score: 0.58 [0.48-0.71]; P=3.16×10-8). This APOE-ε2 atheroprotective effect was mostly independent of the associated lower LDL-cholesterol levels and other cardiovascular risk factors. The protection conferred by the ε2 allele was greater with age (50-54 years: 0.49 [95% CI, 0.32-0.73]; P=0.00045), and normal (<150 mg/dL) levels of triglycerides (0.54 [0.44-0.66]; P=4.70×10-9 versus 0.90 [0.57-1.43]; P=0.67 if ≥150 mg/dL). Omics analysis revealed an enrichment of several canonical pathways associated with anti-inflammatory mechanisms together with the modulation of erythrocyte homeostasis, coagulation, and complement activation in ε2 carriers that might play a relevant role in the ε2's atheroprotective effect. CONCLUSIONS This work sheds light on the role of APOE in cardiovascular disease development with important therapeutic and prevention implications on cardiovascular health, especially in early midlife. REGISTRATION URL: https://www.clinicaltrials.gov: NCT01410318.
Collapse
Affiliation(s)
- Raquel Toribio-Fernández
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain (R.T.-F., F.B.-K., C.A., B.I., M.C.-C.)
| | - Catarina Tristão-Pereira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Juan Carlos Silla-Castro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Sergio Callejas
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Belen Oliva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Irene Fernandez-Nueda
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Ines Garcia-Lunar
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Cardiology Department, University Hospital La Moraleja, Madrid, Spain (I.G.-L.)
- CIBER de enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (I.G.-L., P.M., A.F.-O., A.G.-A., B.I.)
| | | | - José María Ordovás
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Precision Nutrition and Obesity Research Program, IMDEA Food Institute, CEI UAM+CSI, Madrid, Spain (J.M.O.)
- U.S. Department of Agriculture Human Nutrition Research Center of Aging, Tufts University, MA (J.M.O.)
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- CIBER de enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (I.G.-L., P.M., A.F.-O., A.G.-A., B.I.)
| | - Fiona Blanco-Kelly
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain (R.T.-F., F.B.-K., C.A., B.I., M.C.-C.)
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain (F.B.-K., C.A.)
| | - Carmen Ayuso
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain (R.T.-F., F.B.-K., C.A., B.I., M.C.-C.)
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain (F.B.-K., C.A.)
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Antonio Fernandez-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- CIBER de enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (I.G.-L., P.M., A.F.-O., A.G.-A., B.I.)
- Hospital Clínico San Carlos, IdISSC, Universidad Complutense, Madrid, Spain (A.F.-O.)
| | - Ana Garcia-Alvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- CIBER de enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (I.G.-L., P.M., A.F.-O., A.G.-A., B.I.)
- Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Spain (A.G.-A.)
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Fatima Sanchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain (R.T.-F., F.B.-K., C.A., B.I., M.C.-C.)
- CIBER de enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (I.G.-L., P.M., A.F.-O., A.G.-A., B.I.)
| | - Marta Cortes-Canteli
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain (R.T.-F., F.B.-K., C.A., B.I., M.C.-C.)
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (R.T.-F., C.T.-P., J.C.S.-C., S.C., B.O., I.F.-N., I.G.-L., J.M.O., P.M., E.L.-P., A.F.-O., A.G.-A., A.D., F.S.-C., B.I., M.C.-C., V.F.)
- Icahn School of Medicine at Mount Sinai, New York (V.F.)
| |
Collapse
|
182
|
Ding W, Chen J, Zhao L, Wu S, Chen X, Chen H. Mitochondrial DNA leakage triggers inflammation in age-related cardiovascular diseases. Front Cell Dev Biol 2024; 12:1287447. [PMID: 38425502 PMCID: PMC10902119 DOI: 10.3389/fcell.2024.1287447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Mitochondrial dysfunction is one of the hallmarks of cardiovascular aging. The leakage of mitochondrial DNA (mtDNA) is increased in senescent cells, which are resistant to programmed cell death such as apoptosis. Due to its similarity to prokaryotic DNA, mtDNA could be recognized by cellular DNA sensors and trigger innate immune responses, resulting in chronic inflammatory conditions during aging. The mechanisms include cGAS-STING signaling, TLR-9 and inflammasomes activation. Mitochondrial quality controls such as mitophagy could prevent mitochondria from triggering harmful inflammatory responses, but when this homeostasis is out of balance, mtDNA-induced inflammation could become pathogenic and contribute to age-related cardiovascular diseases. Here, we summarize recent studies on mechanisms by which mtDNA promotes inflammation and aging-related cardiovascular diseases, and discuss the potential value of mtDNA in early screening and as therapeutic targets.
Collapse
Affiliation(s)
- Wanyue Ding
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Jingyu Chen
- Department of Chinese Medicine Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Zhao
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shuang Wu
- Southern Medical University Affiliated Qiqihar Hospital, The First Hospital of Qiqihar, Qiqihaer, Heilongjiang, China
| | - Xiaomei Chen
- Integrated Traditional Chinese and Western Medicine Syndrome Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong Chen
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
183
|
Wu Q, Zhang W, Lu Y, Li H, Yang Y, Geng F, Liu J, Lin L, Pan Y, Li C. Association between periodontitis and inflammatory comorbidities: The common role of innate immune cells, underlying mechanisms and therapeutic targets. Int Immunopharmacol 2024; 128:111558. [PMID: 38266446 DOI: 10.1016/j.intimp.2024.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Periodontitis, which is related to various systemic diseases, is a chronic inflammatory disease caused by periodontal dysbiosis of the microbiota. Multiple factors can influence the interaction of periodontitis and associated inflammatory disorders, among which host immunity is an important contributor to this interaction. Innate immunity can be activated aberrantly because of the systemic inflammation induced by periodontitis. This aberrant activation not only exacerbates periodontal tissue damage but also impairs systemic health, triggering or aggravating inflammatory comorbidities. Therefore, innate immunity is a potential therapeutic target for periodontitis and associated inflammatory comorbidities. This review delineates analogous aberrations of innate immune cells in periodontitis and comorbid conditions such as atherosclerosis, diabetes, obesity, and rheumatoid arthritis. The mechanisms behind these changes in innate immune cells are discussed, including trained immunity and clonal hematopoiesis of indeterminate potential (CHIP), which can mediate the abnormal activation and myeloid-biased differentiation of hematopoietic stem and progenitor cells. Besides, the expansion of myeloid-derived suppressor cells (MDSCs), which have immunosuppressive and osteolytic effects on peripheral tissues, also contributes to the interaction between periodontitis and its inflammatory comorbidities. The potential treatment targets for relieving the risk of both periodontitis and systemic conditions are also elucidated, such as the modulation of innate immunity cells and mediators, the regulation of trained immunity and CHIP, as well as the inhibition of MDSCs' expansion.
Collapse
Affiliation(s)
- Qibing Wu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Weijia Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaqiong Lu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hongxia Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yaru Yang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jinwen Liu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
184
|
Kounatidis D, Vallianou NG, Poulaki A, Evangelopoulos A, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Dalamaga M. ApoB100 and Atherosclerosis: What's New in the 21st Century? Metabolites 2024; 14:123. [PMID: 38393015 PMCID: PMC10890411 DOI: 10.3390/metabo14020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
ApoB is the main protein of triglyceride-rich lipoproteins and is further divided into ApoB48 in the intestine and ApoB100 in the liver. Very low-density lipoprotein (VLDL) is produced by the liver, contains ApoB100, and is metabolized into its remnants, intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL). ApoB100 has been suggested to play a crucial role in the formation of the atherogenic plaque. Apart from being a biomarker of atherosclerosis, ApoB100 seems to be implicated in the inflammatory process of atherosclerosis per se. In this review, we will focus on the structure, the metabolism, and the function of ApoB100, as well as its role as a predictor biomarker of cardiovascular risk. Moreover, we will elaborate upon the molecular mechanisms regarding the pathophysiology of atherosclerosis, and we will discuss the disorders associated with the APOB gene mutations, and the potential role of various drugs as therapeutic targets.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Second Department of Internal Medicine, Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Aikaterini Poulaki
- Hematology Unit, Second Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
185
|
Wang C, He J, Chen C, Luo W, Dang X, Mao L. A potential role of human esophageal cancer-related gene-4 in cardiovascular homeostasis. Gene 2024; 894:147977. [PMID: 37956966 DOI: 10.1016/j.gene.2023.147977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Human esophageal cancer related gene-4 (ECRG-4) encodes a 148-aminoacid pre-pro-peptide that can be processed tissue-dependently into multiple small peptides possessing multiple functions distinct from, similar to, or opposite to the tumor suppressor function of the full-length Ecrg4. Ecrg-4 is covalently bound to the cell surface through its signal peptide, colocalized with the innate immunity complex (TLR4-CD14-MD2), and functions as a 'sentinel' molecule in the maintenance of epithelium and leukocyte homeostasis, meaning that the presence of Ecrg-4 on the cell surface signals the maintained homeostasis, whereas the loss of Ecrg-4 due to tissue injury activates pro-inflammatory and tissue proliferative responses, and the level of Ecrg-4 gradually returns to its pre-injury level upon wound healing. Interestingly, Ecrg-4 is also highly expressed in the heart and its conduction system, endothelial cells, and vascular smooth muscle cells. Accumulating evidence has shown that Ecrg-4 is involved in cardiac rate/rhythm control, the development of atrial fibrillation, doxorubicin-induced cardiotoxicity, the ischemic response of the heart and hypoxic response in the carotid body, the pathogenesis of atherosclerosis, and likely the endemic incidence of idiopathic dilated cardiomyopathy. These preliminary discoveries suggest that Ecrg-4 may function as a 'sentinel' molecule in cardiovascular system as well. Here, we briefly review the basic characteristics of ECRG-4 as a tumor suppressor gene and its regulatory functions on inflammation and apoptosis; summarize the discoveries about its distribution in cardiovascular system and involvement in the development of CVDs, and discuss its potential as a novel therapeutic target for the maintenance of cardiovascular system homeostasis.
Collapse
Affiliation(s)
- Chaoying Wang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Jianghui He
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Chunyue Chen
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Wenjun Luo
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China.
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
186
|
Zhao Z, Zhang X, Sun T, Huang X, Ma M, Yang S, Zhou Y. Prognostic value of systemic immune-inflammation index in CAD patients: Systematic review and meta-analyses. Eur J Clin Invest 2024; 54:e14100. [PMID: 37776036 DOI: 10.1111/eci.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Systemic immune-inflammation index (SII) is a novel inflammatory marker based on neutrophils, platelets and lymphocytes counts, which has potential prognostic value among coronary artery disease (CAD) patients as described by some observational studies. We aimed to provide higher-certainty evidence to verify the association of SII with poor outcomes of CAD patients. METHODS PubMed, Web of Science, Embase, Ovid and Scopus were searched to find relevant literature exploring the prognostic value of SII among CAD patients. Hazard ratios (HRs) with 95% confidence intervals (CIs) extracted from the literature included were pooled with the fixed-effect or random-effect model. Sensitivity analyses and subgroup analyses were conducted to detect the source of heterogeneity and evaluate the stability of results. RESULTS A total of nine studies with 15,832 participants were included. The quantitative synthesis including eight studies with 15,657 participants showed that the high SII was related to the major adverse cardiovascular event in CAD patients (HR with 95% CI: 2.36 [1.67, 3.33]). After eliminating heterogeneity and adjusting for publication bias, the above result was still robust (HR with 95% CI: 1.67 [1.32, 2.12]). Additionally, we also demonstrated the prognostic values of SII for all-cause death, cardiovascular death, myocardial infarction and stroke. CONCLUSION Higher SII has prognostic values for adverse outcomes in CAD patients.
Collapse
Affiliation(s)
- Zehao Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tienan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin Huang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meishi Ma
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Shiwei Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| |
Collapse
|
187
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
188
|
Yuan D, Zheng Z, Shen C, Ye J, Zhu L. Cytoprotective effects of C1s enzyme in macrophages in atherosclerosis mediated through the LRP5 and Wnt/β-catenin pathway. Mol Immunol 2024; 166:29-38. [PMID: 38218080 DOI: 10.1016/j.molimm.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
C1s enzyme (active C1s) is a subunit of the complement C1 complex that cleaves low-density lipoprotein receptor-related proteins 5 and 6, leading to Wnt/β-catenin pathway activation in some cell lines. Macrophages have two major functional polarization states (the classically activated M1 state and the alternatively activated M2 state) and play an essential role in atherosclerosis. An increasing amount of evidence suggests that canonical Wnt signaling is related to macrophage polarization. In this study, we explored the cytoprotective effects of C1s enzyme in macrophages. The results show that C1s enzyme activates canonical Wnt signaling in macrophages, exacerbates macrophage M2 polarization, and inhibits M1 polarization. Moreover, C1s enzyme reduces foam cell formation and simultaneously enhances efferocytosis. This study reveals a novel function of C1s enzyme in macrophages in the context of atherosclerosis.
Collapse
Affiliation(s)
- Dong Yuan
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | | | - Cheng Shen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Ye
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Li Zhu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| |
Collapse
|
189
|
LIU H, FENG J, LIU J, CHENG C, HU G. Efficacy of Jiangzhi Xiaoban tablet on toll-like receptor 4/nuclear factor-kappa B/nod-like receptor protein 3 signaling pathway in mice with atherosclerosis induced by high-fat diet. J TRADIT CHIN MED 2024; 44:88-94. [PMID: 38213243 PMCID: PMC10774719 DOI: 10.19852/j.cnki.jtcm.20231121.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/02/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To study the effect of Jiangzhi Xiaoban tablet (, JZXB) on toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/Nod-like receptor protein 3 (NLRP3) signaling pathway expression in atherosclerosis (AS) mice by establishing a mouse model of AS, and to explore its mechanism of prevention and treatment of AS. METHODS Sixty-four male C57BL/6J mice were randomly divided into two groups, 12 in the normal control group and 52 in the model group (MOD). Seven weeks later, two mice in each of the above two groups were randomly sacrificed, and the whole aortic tissue of the mice was taken out for hematoxylin-eosin staining. After successful modeling, 50 mice in the modeling group were randomly divided into 5 groups: MOD, atorvastatin group (ATO), low-dose group of JZXB (JZXB-L), middle-dose group of JZXB (JZXB-M), and high-dose group of JZXB (JZXB-H), 10 mice in each group. The mice in each group were killed after 6 weeks of preventive administration. HE staining was used to observe the pathological changes of aorta in AS mice. The levels of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were detected by automatic biochemical analyzer. The levels of inflammatory factor interleukin-1β (IL-1β) were detected by enzyme linked immunosorbent assay. The expression of TLR4, NF-κB and NLRP3 proteins in aortic tissue was detected by immunohistochemistry. RESULTS Compared with the MOD, the levels of serum TC, TG and LDL-C in the JZXB-H and ATO were significantly decreased, while the level of HDL-C was significantly increased. The levels of serum TG, LDL-C in the JZXB-M were significantly decreased, and the level of HDL-C was significantly increased. Compared with the MOD, the levels of IL-1β were significantly decreased, aortic lesions were significantly improved, and the expression of TLR4, NF-κB, and NLRP3 proteins in the aortic tissue was significantly decreased in the JZXB-H, JZXB-M, and ATO. CONCLUSION JZXB has inhibitory effect on atherosclerosis in mice, and its mechanism may be through regulating the TLR4/NF-κB/NLRP3 signaling pathway and reducing the inflammatory response, so as to play a role in inhibiting atherosclerosis.
Collapse
Affiliation(s)
- Huihui LIU
- 1 Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jun FENG
- 2 Department of Geriatrics, the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Jianhe LIU
- 3 Department of Cardiology, the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Choufu CHENG
- 3 Department of Cardiology, the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Guoheng HU
- 4 Department of Neurology, the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| |
Collapse
|
190
|
Gonzalez AL, Dungan MM, Smart CD, Madhur MS, Doran AC. Inflammation Resolution in the Cardiovascular System: Arterial Hypertension, Atherosclerosis, and Ischemic Heart Disease. Antioxid Redox Signal 2024; 40:292-316. [PMID: 37125445 PMCID: PMC11071112 DOI: 10.1089/ars.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Significance: Chronic inflammation has emerged as a major underlying cause of many prevalent conditions in the Western world, including cardiovascular diseases. Although targeting inflammation has emerged as a promising avenue by which to treat cardiovascular disease, it is also associated with increased risk of infection. Recent Advances: Though previously assumed to be passive, resolution has now been identified as an active process, mediated by unique immunoresolving mediators and mechanisms designed to terminate acute inflammation and promote tissue repair. Recent work has determined that failures of resolution contribute to chronic inflammation and the progression of human disease. Specifically, failure to produce pro-resolving mediators and the impaired clearance of dead cells from inflamed tissue have been identified as major mechanisms by which resolution fails in disease. Critical Issues: Drawing from a rapidly expanding body of experimental and clinical studies, we review here what is known about the role of inflammation resolution in arterial hypertension, atherosclerosis, myocardial infarction, and ischemic heart disease. For each, we discuss the involvement of specialized pro-resolving mediators and pro-reparative cell types, including T regulatory cells, myeloid-derived suppressor cells, and macrophages. Future Directions: Pro-resolving therapies offer the promise of limiting chronic inflammation without impairing host defense. Therefore, it is imperative to better understand the mechanisms underlying resolution to identify therapeutic targets. Antioxid. Redox Signal. 40, 292-316.
Collapse
Affiliation(s)
- Azuah L. Gonzalez
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Matthew M. Dungan
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - C. Duncan Smart
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amanda C. Doran
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
191
|
Wang C, Liu S, Yang Y, Kamronbek R, Ni S, Cheng Y, Zhou C, Yan H, Li L, Liu H, Wang Y, Qin Y, Yin C, Zhang M. Interleukin-4 and Interleukin-17 are associated with coronary artery disease. Clin Cardiol 2024; 47:e24188. [PMID: 38146141 PMCID: PMC10823557 DOI: 10.1002/clc.24188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/27/2023] Open
Abstract
INTRODUCTION The present study aimed to examine the correlation between serum cytokine levels and the incidence of coronary artery disease (CAD), a leading cause of mortality globally, which is known to have a strong association with inflammatory factors. The study further sought to determine the predictors of CAD to distinguish patients with coronary artery lesions from those suspected of having CAD. METHODS AND RESULTS In this study, 487 patients who underwent coronary angiography as a result of suspected CAD but without acute myocardial infarction (AMI) were recruited. The serum levels of the cytokines interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, tumor necrosis factor-α, interferon (IFN)-α, and IFN-γ were measured using a multiplexed particle-based flow cytometric assay technique. The results of the study revealed that the levels of IL-4, IL-12p70, IL-17, IFN-α, and IFN-γ in the CAD group were significantly lower compared to those in the non-CAD group. Multivariate logistic regression analysis indicated that two serum cytokines (IL-4 and IL-17), one protective factor (high-density lipoprotein cholesterol [HDL-C]), and three risk factors (sex, smoking, and diabetes) were independently predictive of CAD. The receiver operating characteristic curve analysis showed that the combined use of these predictors in a multivariate model demonstrated good predictive performance for CAD, as evidenced by an area under the curve value of 0.826. CONCLUSION The results of the study indicated that serum IL-4 and IL-17 levels serve as independent predictors of CAD. The risk prediction model established in the research, which integrates these serum cytokines (IL-4 and IL-17) with relevant clinical risk factors (gender, smoking, and diabetes) and the protective factor HDL-C, holds the potential to differentiate patients with CAD from those suspected of having CAD but without AMI.
Collapse
Affiliation(s)
- Chenyang Wang
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Sheng Liu
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yunxiao Yang
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Raimov Kamronbek
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Siyao Ni
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yunjiu Cheng
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Can Zhou
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Huiyuan Yan
- Department of CardiologyHangjinqi People's HospitalInner MongoliaChina
| | - Li Li
- Liver Research Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Hao Liu
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yu Wang
- Key Laboratory of Upper Airway Dysfunction‐Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel DiseaseCapital Medical UniversityBeijingChina
| | - Yanwen Qin
- Key Laboratory of Upper Airway Dysfunction‐Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel DiseaseCapital Medical UniversityBeijingChina
| | - Chengqian Yin
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Ming Zhang
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
192
|
Song YJ, Ma Y, Meng T, Zhuang T, Ruan CC, Li Y, Zhang GN. The Characteristics of Macrophage Heterogeneity in Atherosclerotic Aortas. J Cardiovasc Transl Res 2024; 17:153-166. [PMID: 37713049 DOI: 10.1007/s12265-023-10434-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Macrophage is the main effector cell during atherosclerosis. We applied single-cell RNA sequencing (scRNA) data to investigate the role of macrophage subsets in atherosclerosis. Monocyte and macrophage clusters were divided into 6 subclusters. Each subcluster's markers were calculated and validated by immunofluorescence. Elevated macrophage subclusters in the WD group were subject to enrichment pathway analysis and exhibited different phenotypes. Pseudotime analysis shows the subclusters originate from monocytes. We cultured bone marrow-derived macrophages with CSF-1 and ox-LDL to simulate an atherosclerotic-like environment and detected the transformation of subclusters. Macrophage-Vegfa and Macrophage-C1qb increased in the WD group. Macrophage-Vegfa acquires the characteristics of phagocytosis and immune response, while Macrophage-C1qb is not involved in lipid metabolism. The two subclusters are both enriched in cell movement and migration pathways. Experimental verification proved Monocyte-Ly6C evolved into Macrophage-Vegfa and Macrophage-C1qb during atherosclerosis progression.
Collapse
Affiliation(s)
- Yu-Jie Song
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ma
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Meng
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, Shanghai, China
| | - Tao Zhuang
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, Shanghai, China
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- Department of Cardiology, RuiJin Hospital/LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guan-Nan Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
193
|
Domínguez López I, Arancibia-Riveros C, Casas R, Galkina P, Pérez M, Martínez-González MÁ, Fitó M, Ros E, Estruch R, Lamuela-Raventós RM. Moderate wine consumption measured using the biomarker urinary tartaric acid concentration decreases inflammatory mediators related to atherosclerosis. J Nutr Health Aging 2024; 28:100003. [PMID: 38388107 DOI: 10.1016/j.jnha.2023.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 02/24/2024]
Abstract
OBJECTIVES Several studies suggest that moderate wine consumption, particularly red wine, may have benefits for cardiovascular health. Red wine contains a variety of bioactive compounds, including polyphenols like phenolic acids, which have demonstrated anti-inflammatory effects in experimental models. The aim of this study was to assess the anti-inflammatory properties of wine, measured as urinary tartaric acid, a new biomarker of wine consumption. DESIGN, SETTINGS, AND PARTICIPANTS One-year longitudinal study that included 217 participants from the PREDIMED trial. MEASUREMENTS Plasma inflammatory biomarkers and urinary tartaric acid were analyzed using xMAP technology and high-performance liquid chromatography, respectively. Multivariable regression analyses were performed to assess the relationship between variations over 1-year in urinary tartaric acid concentrations and 1-year changes in serum inflammatory molecules, including adhesion cell molecules, interleukine-6, tumour necrosis factor alpha, and monocyte chemotactic protein 1. Three categories were built according to tertiles of 1-y changes in urinary tartaric acid. RESULTS Using a ROC curve, urinary tartaric acid was corroborated as a reliable biomarker of wine consumption (AUC = 0.818 (95% CI: 0.76; 0.87). In the continuous analysis, participants with higher increases in tartaric acid significantly reduced their concentrations in soluble vascular adhesion molecule (sVCAM-1) after 1-year of follow-up (-0.20 (-0.38; -9,93) ng/mL per 1-SD increment, p-value = 0.031). Moreover, tertiles 2 and 3 of 1-year changes in tartaric acid presented a significant reduction in soluble intercellular cell adhesion molecule (sICAM-1) as compared to tertile 1 (-0.31 (-0.52; -0.10) ng/mL, p-value = 0.014 and -0.29 (-0.52; -0.07) ng/mL, p-value = 0.023, respectively). Participants in the third tertile also exhibited a reduced concentration of sVCAM-1 compared to those in the first tertile (-0.31 (-0.55; -0.06) ng/mL, p-value = 0.035). CONCLUSIONS Our findings suggest that wine consumption is associated with lower levels of inflammation due to the anti-inflammatory properties of wine compounds.
Collapse
Affiliation(s)
- Inés Domínguez López
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomía, Facultat de Farmacia, Universitat de Barcelona (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Camila Arancibia-Riveros
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomía, Facultat de Farmacia, Universitat de Barcelona (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramanet, Spain
| | - Rosa Casas
- Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Polina Galkina
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomía, Facultat de Farmacia, Universitat de Barcelona (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramanet, Spain
| | - Maria Pérez
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomía, Facultat de Farmacia, Universitat de Barcelona (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Ángel Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas (IMIM), 08007 Barcelona, Spain
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, 08036 Barcelona, Spain
| | - Ramon Estruch
- Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain.
| | - Rosa M Lamuela-Raventós
- Polyphenol Research Group, Departament de Nutrició, Ciències de l'Alimentació i Gastronomía, Facultat de Farmacia, Universitat de Barcelona (UB), Av. de Joan XXII, 27-31, 08028 Barcelona, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
194
|
He J, Gao Y, Yang C, Guo Y, Liu L, Lu S, He H. Navigating the landscape: Prospects and hurdles in targeting vascular smooth muscle cells for atherosclerosis diagnosis and therapy. J Control Release 2024; 366:261-281. [PMID: 38161032 DOI: 10.1016/j.jconrel.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Vascular smooth muscle cells (VSMCs) have emerged as pivotal contributors throughout all phases of atherosclerotic plaque development, effectively dispelling prior underestimations of their prevalence and significance. Recent lineage tracing studies have unveiled the clonal nature and remarkable adaptability inherent to VSMCs, thereby illuminating their intricate and multifaceted roles in the context of atherosclerosis. This comprehensive review provides an in-depth exploration of the intricate mechanisms and distinctive characteristics that define VSMCs across various physiological processes, firmly underscoring their paramount importance in shaping the course of atherosclerosis. Furthermore, this review offers a thorough examination of the significant strides made over the past two decades in advancing imaging techniques and therapeutic strategies with a precise focus on targeting VSMCs within atherosclerotic plaques, notably spotlighting meticulously engineered nanoparticles as a promising avenue. We envision the potential of VSMC-targeted nanoparticles, thoughtfully loaded with medications or combination therapies, to effectively mitigate pro-atherogenic VSMC processes. These advancements are poised to contribute significantly to the pivotal objective of modulating VSMC phenotypes and enhancing plaque stability. Moreover, our paper also delves into recent breakthroughs in VSMC-targeted imaging technologies, showcasing their remarkable precision in locating microcalcifications, dynamically monitoring plaque fibrous cap integrity, and assessing the therapeutic efficacy of medical interventions. Lastly, we conscientiously explore the opportunities and challenges inherent in this innovative approach, providing a holistic perspective on the potential of VSMC-targeted strategies in the evolving landscape of atherosclerosis research and treatment.
Collapse
Affiliation(s)
- Jianhua He
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China.
| | - Yu Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Can Yang
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yujie Guo
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Lisha Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Shan Lu
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China.
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
195
|
Hou C, Jiang X, Sheng W, Zhang Y, Lin Q, Hong S, Zhao J, Wang T, Ye X. Xinmaikang (XMK) tablets alleviate atherosclerosis by regulating the SREBP2-mediated NLRP3/ASC/Caspase-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117240. [PMID: 37777030 DOI: 10.1016/j.jep.2023.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinmaikang (XMK) tablets, a Chinese patent medicine, have been used for the prevention and treatment of atherosclerosis (AS) clinically. However, the underlying mechanism of XMK is far from completely illustrated. AIM OF THE STUDY This study aimed to determine whether XMK alleviates AS in Apolipoprotein E-knockout (ApoE-/-) mice and to explore the potential mechanism of action in bone marrow-derived macrophages (BMDMs). MATERIALS AND METHODS XMK decoction was analyzed by an LC‒MS/MS assay. Molecular docking was conducted to determine the interaction of XMK molecular ligands and AS targets. In vivo, 10 ApoE-/- mice were selected as the control group. Fifty ApoE-/- mice were randomly divided into 5 groups: the model group, low-, medium-, and high-dose XMK groups and the simvastatin group. Mice in the control group were fed a chow diet, and the other 5 groups were fed a high-fat diet (HFD) for 12 weeks. After 12 weeks, the treatment groups were administered low-dose XMK (2.28·kg-1·d), medium-dose XMK (4.55·kg-1·d), high-dose XMK (9.1 kg-1 d) and simvastatin (91 mg-1 d) for another 12 weeks. Serum enzymology assays tested AST/ALT, Cr, LDH and CK-MB levels. The atherosclerotic plaques and lipid deposition were measured by Oil red O (ORO) staining and Hematoxylin and Eosin (H&E) staining. Then, we examined the body weight and serum lipids (TC, TG, LDL-C and HDL-C) of the mice. ELISA was performed to determine the levels of inflammatory factors (IL-6, TNF-ɑ, VCAM-1, CXCL8 and CCL2). SREBP2/NLRP3 signaling pathway-related genes (SREBP2, NLRP3, ASC, IL-1β and Caspase-1) were analyzed by RT‒qPCR and western blotting. In vitro, LPS-stimulated BMDMs were treated with different concentrations of XMK (1, 2.5, 5, 10, 20, and 40 μg/ml). Immunofluorescence staining (SREBP2, NLRP3), adenovirus infection and siRNA knockdown (SREBP2, NLRP3, Caspase-1 and ASC) were conducted as complements to the in vivo experiment. RESULTS Molecular docking showed a stable interaction between the effective components of XMK and SREBP2 and NLRP3. Serum enzymology assays revealed the medication safety of XMK in cardiac, hepatic and renal function. Studies in vivo indicated that XMK improved serum lipids (TC, TG, LDL-C and HDL-C) and reduced plaque area. Body weight decreased, and the expression of inflammatory cytokines (IL-6, TNF-ɑ and VCAM-1) was inhibited. Then, XMK downregulated the mRNA and protein expression of SREBP2, NLRP3, ASC, IL-1β and Caspase-1. In vitro, the above findings were reinforced in BMDMs, and knocking down SREBP2 restrained the effect of XMK on the NLRP3/ASC/Caspase-1 signaling pathway. CONCLUSIONS XMK restrains AS by improving inflammation through the SREBP2-mediated NLRP3/ASC/Caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Chijun Hou
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Xinyue Jiang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Wenjuan Sheng
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Yuling Zhang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Qianbei Lin
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Shihan Hong
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jiale Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ting Wang
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Xiaohan Ye
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China.
| |
Collapse
|
196
|
Wu C, Li W, Li P, Niu X. Identification of a hub gene VCL for atherosclerotic plaques and discovery of potential therapeutic targets by molecular docking. BMC Med Genomics 2024; 17:42. [PMID: 38287421 PMCID: PMC10826019 DOI: 10.1186/s12920-024-01815-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a pathology factor for cardiovascular diseases and instability of atherosclerotic plaques contributes to acute coronary events. This study identified a hub gene VCL for atherosclerotic plaques and discovered its potential therapeutic targets for atherosclerotic plaques. METHODS Differential expressed genes (DEGs) were screened between unstable and stable plaques from GSE120521 dataset and then used for construction of a protein-protein interactions (PPI) network. Through topological analysis, hub genes were identified within this PPI network, followed by construction of a diagnostic model. GSE41571 dataset was utilized to validate the diagnostic model. A key hub gene was identified and its association with immune characteristics and pathways were further investigated. Molecular docking and molecular dynamics (MD) simulation were employed to discover potential therapeutic targets. RESULTS According to the PPI network, 3 tightly connected protein clusters were found. Topological analysis identified the top 5 hub genes, Vinculin (VCL), Dystrophin (DMD), Actin alpha 2 (ACTA2), Filamin A (FLNA), and transgelin (TAGLN). Among these hub genes, VCL had the highest diagnostic value. VCL was selected for further analysis and we found that VCL was negatively correlated with immune score and AS-related inflammatory pathways. Next, we identified 408 genes that were highly correlated with VCL and determined potential drug candidates. The results from molecular docking and MD simulation showed compound DB07117 combined with VCL protein stably, the binding energy is -7.7 kcal/mol, indicating that compound DB07117 was a potential inhibitor of VCL protein. CONCLUSION This study identified VCL as a key gene for atherosclerotic plaques and provides a potential therapeutic target of VCL for the treatment of atherosclerotic plaques.
Collapse
Affiliation(s)
- Chong Wu
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450046, China.
| | - Wei Li
- Clinical Laboratory, Qingdao Women and Children's Hospital Affiliated, Qingdao University, Qingdao, 266034, China
| | - Panfeng Li
- Department of Vascular Surgery, Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Xiaoyang Niu
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
197
|
Yang Q, Saaoud F, Lu Y, Pu Y, Xu K, Shao Y, Jiang X, Wu S, Yang L, Tian Y, Liu X, Gillespie A, Luo JJ, Shi XM, Zhao H, Martinez L, Vazquez-Padron R, Wang H, Yang X. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types. Front Immunol 2024; 14:1348238. [PMID: 38327764 PMCID: PMC10847266 DOI: 10.3389/fimmu.2023.1348238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in aortic diseases. Innate immunity is the main driving force for cardiovascular diseases. Methods To determine the roles of innate immunity in VSMC and aortic pathologies, we performed transcriptome analyses on aortas from ApoE-/- angiotensin II (Ang II)-induced aortic aneurysm (AAA) time course, and ApoE-/- atherosclerosis time course, as well as VSMCs stimulated with danger-associated molecular patterns (DAMPs). Results We made significant findings: 1) 95% and 45% of the upregulated innate immune pathways (UIIPs, based on data of 1226 innate immune genes) in ApoE-/- Ang II-induced AAA at 7 days were different from that of 14 and 28 days, respectively; and AAA showed twin peaks of UIIPs with a major peak at 7 days and a minor peak at 28 days; 2) all the UIIPs in ApoE-/- atherosclerosis at 6 weeks were different from that of 32 and 78 weeks (two waves); 3) analyses of additional 12 lists of innate immune-related genes with 1325 cytokine and chemokine genes, 2022 plasma membrane protein genes, 373 clusters of differentiation (CD) marker genes, 280 nuclear membrane protein genes, 1425 nucleoli protein genes, 6750 nucleoplasm protein genes, 1496 transcription factors (TFs) including 15 pioneer TFs, 164 histone modification enzymes, 102 oxidative cell death genes, 68 necrotic cell death genes, and 47 efferocytosis genes confirmed two-wave inflammation in atherosclerosis and twin-peak inflammation in AAA; 4) DAMPs-stimulated VSMCs were innate immune cells as judged by the upregulation of innate immune genes and genes from 12 additional lists; 5) DAMPs-stimulated VSMCs increased trans-differentiation potential by upregulating not only some of 82 markers of 7 VSMC-plastic cell types, including fibroblast, osteogenic, myofibroblast, macrophage, adipocyte, foam cell, and mesenchymal cell, but also 18 new cell types (out of 79 human cell types with 8065 cell markers); 6) analysis of gene deficient transcriptomes indicated that the antioxidant transcription factor NRF2 suppresses, however, the other five inflammatory transcription factors and master regulators, including AHR, NF-KB, NOX (ROS enzyme), PERK, and SET7 promote the upregulation of twelve lists of innate immune genes in atherosclerosis, AAA, and DAMP-stimulated VSMCs; and 7) both SET7 and trained tolerance-promoting metabolite itaconate contributed to twin-peak upregulation of cytokines in AAA. Discussion Our findings have provided novel insights on the roles of innate immune responses and nuclear stresses in the development of AAA, atherosclerosis, and VSMC immunology and provided novel therapeutic targets for treating those significant cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Qiaoxi Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Beloit College, Beloit, WI, United States
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yujiang Pu
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Tian
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin Jun Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
198
|
Piarulli F, Banfi C, Ragazzi E, Gianazza E, Munno M, Carollo M, Traldi P, Lapolla A, Sartore G. Multiplexed MRM-based proteomics for identification of circulating proteins as biomarkers of cardiovascular damage progression associated with diabetes mellitus. Cardiovasc Diabetol 2024; 23:36. [PMID: 38245742 PMCID: PMC10800045 DOI: 10.1186/s12933-024-02125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) increases the risk of coronary heart disease (CHD) by 2-4 fold, and is associated with endothelial dysfunction, dyslipidaemia, insulin resistance, and chronic hyperglycaemia. The aim of this investigation was to assess, by a multimarker mass spectrometry approach, the predictive role of circulating proteins as biomarkers of cardiovascular damage progression associated with diabetes mellitus. METHODS The study considered 34 patients with both T2DM and CHD, 31 patients with T2DM and without CHD, and 30 patients without diabetes with a diagnosis of CHD. Plasma samples of subjects were analysed through a multiplexed targeted liquid chromatography mass spectrometry (LC-MS)-based assay, namely Multiple Reaction Monitoring (MRM), allowing the simultaneous detection of peptides derived from a protein of interest. Gene Ontology (GO) Analysis was employed to identify enriched GO terms in the biological process, molecular function, or cellular component categories. Non-parametric multivariate methods were used to classify samples from patients and evaluate the relevance of the analysed proteins' panel. RESULTS A total of 81 proteins were successfully quantified in the human plasma samples. Gene Ontology analysis assessed terms related to blood microparticles, extracellular exosomes and collagen-containing extracellular matrix. Preliminary evaluation using analysis of variance (ANOVA) of the differences in the proteomic profile among patient groups identified 13 out of the 81 proteins as significantly different. Multivariate analysis, including cluster analysis and principal component analysis, identified relevant grouping of the 13 proteins. The first main cluster comprises apolipoprotein C-III, apolipoprotein C-II, apolipoprotein A-IV, retinol-binding protein 4, lysozyme C and cystatin-C; the second one includes, albeit with sub-grouping, alpha 2 macroglobulin, afamin, kininogen 1, vitronectin, vitamin K-dependent protein S, complement factor B and mannan-binding lectin serine protease 2. Receiver operating characteristic (ROC) curves obtained with the 13 selected proteins using a nominal logistic regression indicated a significant overall distinction (p < 0.001) among the three groups of subjects, with area under the ROC curve (AUC) ranging 0.91-0.97, and sensitivity and specificity ranging from 85 to 100%. CONCLUSIONS Targeted mass spectrometry approach indicated 13 multiple circulating proteins as possible biomarkers of cardiovascular damage progression associated with T2DM, with excellent classification results in terms of sensitivity and specificity.
Collapse
Affiliation(s)
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Milano, 20138, Italy.
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Erica Gianazza
- Centro Cardiologico Monzino, IRCCS, Milano, 20138, Italy
| | - Marco Munno
- Centro Cardiologico Monzino, IRCCS, Milano, 20138, Italy
| | - Massimo Carollo
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | | | - Giovanni Sartore
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
199
|
Liu M, Chen X, Gu Z, He H, Chen M, Kuai L, Jia Z, Li Y, Chen Y, Hong M, Xiao F. Predictive Value of CFIm25 Expression in Peripheral Blood Monocytes for Coronary Atherosclerosis. Int J Med Sci 2024; 21:562-570. [PMID: 38322593 PMCID: PMC10845263 DOI: 10.7150/ijms.91148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024] Open
Abstract
Background: Cleavage factor Im25 (CFIm25) regulates cell function by affecting mRNA editing processes and plays diverse roles in various diseases. Studies have found that peripheral blood monocytes are valuable in diagnosing and prognosing coronary atherosclerosis. However, no studies have examined the predictive value of CFIm25 expression in peripheral blood monocytes for coronary atherosclerosis. Methods and Results: We collected the coronary angiography results of 267 patients and calculated the Gensini score to evaluate their degree of coronary atherosclerosis. We isolated peripheral blood monocytes and detected CFIm25 RNA expression. Based on their Gensini score, we divided the patients into negative (0, n = 46), mild lesion (≤ 8, n = 71), moderate lesion (8-23, n = 76), and severe lesion (≥ 23, n = 74) groups. Results showed that CFIm25 expression correlated negatively with the Gensini score and the number of involved coronary vessels. Univariate and multivariate binary logistic regression analyses showed that CFIm25 expression in peripheral blood monocytes was a protective factor for severe lesions, ≥ 50% stenosis, and three-vessel lesions. The areas under the receiver operating characteristic curve of CFIm25 expression for predicting lesions, severe lesions, ≥50% stenosis, and three-vessel lesions were 0.743, 0.735, 0.791, and 0.736, respectively. Conclusions: CFIm25 expression in peripheral blood monocytes correlates negatively with the degree of coronary atherosclerosis and helps predict the severity and number of coronary artery lesions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mei Hong
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Fangping Xiao
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
200
|
Yang S, Li Y, Zhou L, Wang X, Liu L, Wu M. Copper homeostasis and cuproptosis in atherosclerosis: metabolism, mechanisms and potential therapeutic strategies. Cell Death Discov 2024; 10:25. [PMID: 38218941 PMCID: PMC10787750 DOI: 10.1038/s41420-023-01796-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024] Open
Abstract
Copper is an essential micronutrient that plays a pivotal role in numerous physiological processes in virtually all cell types. Nevertheless, the dysregulation of copper homeostasis, whether towards excess or deficiency, can lead to pathological alterations, such as atherosclerosis. With the advent of the concept of copper-induced cell death, termed cuproptosis, researchers have increasingly focused on the potential role of copper dyshomeostasis in atherosclerosis. In this review, we provide a broad overview of cellular and systemic copper metabolism. We then summarize the evidence linking copper dyshomeostasis to atherosclerosis and elucidate the potential mechanisms underlying atherosclerosis development in terms of both copper excess and copper deficiency. Furthermore, we discuss the evidence for and mechanisms of cuproptosis, discuss its interactions with other modes of cell death, and highlight the role of cuproptosis-related mitochondrial dysfunction in atherosclerosis. Finally, we explore the therapeutic strategy of targeting this novel form of cell death, aiming to provide some insights for the management of atherosclerosis.
Collapse
Affiliation(s)
- Shengjie Yang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yujuan Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Lijun Zhou
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinyue Wang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Min Wu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|