151
|
Sousa GR, Pober D, Galderisi A, Lv H, Yu L, Pereira AC, Doria A, Kosiborod M, Lipes MA. Glycemic Control, Cardiac Autoimmunity, and Long-Term Risk of Cardiovascular Disease in Type 1 Diabetes Mellitus. Circulation 2019; 139:730-743. [PMID: 30586738 DOI: 10.1161/circulationaha.118.036068] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Poor glycemic control is associated with increased risk of cardiovascular disease (CVD) in type 1 diabetes mellitus (T1DM); however, little is known about mechanisms specific to T1DM. In T1DM, myocardial injury can induce persistent cardiac autoimmunity. Chronic hyperglycemia causes myocardial injury, raising the possibility that hyperglycemia-induced cardiac autoimmunity could contribute to long-term CVD complications in T1DM. METHODS We measured the prevalence and profiles of cardiac autoantibodies (AAbs) in longitudinal samples from the DCCT (Diabetes Control and Complications Trial) in participants with mean hemoglobin A1c (HbA1c) ≥9.0% (n=83) and ≤7.0% (n=83) during DCCT. We assessed subsequent coronary artery calcification (measured once during years 7-9 in the post-DCCT EDIC [Epidemiology of Diabetes Interventions and Complications] observational study), high-sensitivity C-reactive protein (measured during EDIC years 4-6), and CVD events (defined as nonfatal myocardial infarction, stroke, death resulting from CVD, heart failure, or coronary artery bypass graft) over a 26-year median follow-up. Cardiac AAbs were also measured in matched patients with type 2 diabetes mellitus with HbA1c ≥9.0% (n=70) and ≤7.0% (n=140) and, as a control for cardiac autoimmunity, patients with Chagas cardiomyopathy (n=51). RESULTS Apart from HbA1c levels, the DCCT groups shared similar CVD risk factors at the beginning and end of DCCT. The DCCT HbA1c ≥9.0% group showed markedly higher cardiac AAb levels than the HbA1c ≤7.0% group during DCCT, with a progressive increase and decrease in AAb levels over time in the 2 groups, respectively ( P<0.001). In the HbA1c ≥9.0% group, 46%, 22%, and 11% tested positive for ≥1, ≥2, and ≥3 different cardiac AAb types, respectively, similar to patients with Chagas cardiomyopathy, compared with 2%, 1%, and 0% in the HbA1c ≤7.0% group. Glycemic control was not associated with AAb prevalence in type 2 diabetes mellitus. Positivity for ≥2 AAbs during DCCT was associated with increased risk of CVD events (4 of 6; hazard ratio, 16.1; 95% CI, 3.0-88.2) and, in multivariable analyses, with detectable coronary artery calcification (13 of 31; odds ratio, 60.1; 95% CI, 8.4-410.0). Patients with ≥2 AAbs subsequently also showed elevated high-sensitivity C-reactive protein levels (6.0 mg/L versus 1.4 mg/L in patients with ≤1 AAbs; P=0.003). CONCLUSIONS Poor glycemic control is associated with cardiac autoimmunity in T1DM. Furthermore, cardiac AAb positivity is associated with an increased risk of CVD decades later, suggesting a role for autoimmune mechanisms in the development of CVD in T1DM, possibly through inflammatory pathways.
Collapse
Affiliation(s)
- Giovane R Sousa
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.).,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.R.S., H.L., A.D., M.A.L.)
| | - David Pober
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.)
| | - Alfonso Galderisi
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.).,Department of Pediatrics, Yale University, New Haven, CT (A.G.).,Department of Women and Children's Health, University of Padova, Italy (A.G.)
| | - HuiJuan Lv
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.).,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.R.S., H.L., A.D., M.A.L.)
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Anschutz Medical Campus, Aurora (L.Y.)
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo, Brazil (A.C.P.)
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.).,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.R.S., H.L., A.D., M.A.L.)
| | - Mikhail Kosiborod
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City (M.K.)
| | - Myra A Lipes
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (G.R.S., D.P., A.G., H.L., A.D., M.A.L.).,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.R.S., H.L., A.D., M.A.L.)
| |
Collapse
|
152
|
Sousa RCD, Deus DBD, Costa TÁD, Silva MVD, Rodrigues Junior V, Correia D. Correlation between the cytokine profile and anticongestive medication in patients with chronic chagasic cardiopathy. Rev Soc Bras Med Trop 2019; 52:e20190386. [PMID: 31800924 DOI: 10.1590/0037-8682-0386-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Chronic chagasic cardiopathy (CCC) is essentially a dilated cardiomyopathy in which a subacute, but constant chronic inflammatory process causes progressive destruction of the heart tissue. The action of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and anti-inflammatory cytokines, like interleukin IL-10 and IL-17, plays a fundamental role in the immunopathogenesis and evolution of disease. Early anti-congestive therapy, aimed at changing the morbidity and mortality rate, has been shown to reduce disease progression and to alter patients' immune response pattern. METHODS This cross-sectional study aimed to evaluate the profile of Th1 and Th17 cytokines and IL-17, TNF-α, and IFN-γ expressions in different stages of CCC. Forty patients affected by chronic Chagas disease were divided into different groups according to the stage of the pathology. In agreement with the Brazilian consensus on Chagas disease, patients were classified as presenting an undetermined form, a cardiac form and a digestive form. Serum IFN-γ, TNF-α, IL-10, and IL-17 were evaluated. RESULTS Lower serum IFN-γ concentrations were detected in patients receiving angiotensin-converting enzyme inhibitors (p = 0.0182), but not in those using angiotensin receptor blockers (p = 0.0783). Patients using amiodarone and aldosterone antagonist presented higher serum TNF-α concentrations (p = 0.0106 and 0.0187, respectively). IL-10 and IL-17 levels did not differ between the study groups (p = 0.7273 and p = 0.6697, respectively). CONCLUSIONS These results suggest that the cytokine profile and disease progression are altered by anti-congestive medications commonly prescribed for CCC.
Collapse
Affiliation(s)
- Rodrigo Cunha de Sousa
- Universidade Federal do Triângulo Mineiro, Departamento de Medicina Interna, Uberaba, MG, Brasil
| | - Diego Bernardo de Deus
- Universidade Federal do Triângulo Mineiro, Departamento de Medicina Interna, Uberaba, MG, Brasil
| | - Thiago Álvares da Costa
- Universidade Federal do Triângulo Mineiro, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| | - Marcos Vinícius da Silva
- Universidade Federal do Triângulo Mineiro, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| | - Virmondes Rodrigues Junior
- Universidade Federal do Triângulo Mineiro, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| | - Dalmo Correia
- Universidade Federal do Triângulo Mineiro, Departamento de Medicina Interna, Uberaba, MG, Brasil
| |
Collapse
|
153
|
Rios LE, Vázquez-Chagoyán JC, Pacheco AO, Zago MP, Garg NJ. Immunity and vaccine development efforts against Trypanosoma cruzi. Acta Trop 2019; 200:105168. [PMID: 31513763 PMCID: PMC7409534 DOI: 10.1016/j.actatropica.2019.105168] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022]
Abstract
Trypanosoma cruzi (T. cruzi) is the causative agent for Chagas disease (CD). There is a critical lack of methods for prevention of infection or treatment of acute infection and chronic disease. Studies in experimental models have suggested that the protective immunity against T. cruzi infection requires the elicitation of Th1 cytokines, lytic antibodies and the concerted activities of macrophages, T helper cells, and cytotoxic T lymphocytes (CTLs). In this review, we summarize the research efforts in vaccine development to date and the challenges faced in achieving an efficient prophylactic or therapeutic vaccine against human CD.
Collapse
Affiliation(s)
- Lizette E Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Antonio Ortega Pacheco
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
154
|
Cardiac Chagas Disease: MMPs, TIMPs, Galectins, and TGF- β as Tissue Remodelling Players. DISEASE MARKERS 2019; 2019:3632906. [PMID: 31885735 PMCID: PMC6899287 DOI: 10.1155/2019/3632906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023]
Abstract
A century after the discovery of Chagas disease, studies are still needed to establish the complex pathophysiology of this disease. However, it is known that several proteins and molecules are related to the establishment of this disease, its evolution, and the appearance of its different clinical forms. Metalloproteinases and their tissue inhibitors, galectins, and TGF-β are involved in the process of infection and consequently the development of myocarditis, tissue remodeling, and fibrosis upon infection with Trypanosoma cruzi. Thus, considering that the heart is one of the main target organs in Chagas disease, knowledge regarding the mechanisms of action of these molecules is essential to understand how they interact and trigger local and systemic reactions and, consequently, determine whether they contribute to the development of Chagas' heart disease. In this sense, it is believed that the inflammatory microenvironment caused by the infection alters the expression of these proteins favoring progression of the host-parasite cycle and thereby stimulating cardiac tissue remodeling mechanisms and fibrosis. The aim of this review was to gather information on metalloproteinases and their tissue inhibitors, galectins, and TGF-β and discuss how these molecules and their different interrelationships contribute to the development of Chagas' heart disease.
Collapse
|
155
|
Affiliation(s)
- John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
156
|
Patterson S, Fairlamb AH. Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis. Curr Med Chem 2019; 26:4454-4475. [PMID: 29701144 DOI: 10.2174/0929867325666180426164352] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/01/2018] [Accepted: 04/13/2018] [Indexed: 01/13/2023]
Abstract
Interest in nitroheterocyclic drugs for the treatment of infectious diseases has undergone a resurgence in recent years. Here we review the current status of monocyclic and bicyclic nitroheterocyclic compounds as existing or potential new treatments for visceral leishmaniasis, Chagas' disease and human African trypanosomiasis. Both monocyclic (nifurtimox, benznidazole and fexinidazole) and bicyclic (pretomanid (PA-824) and delamanid (OPC-67683)) nitro-compounds are prodrugs, requiring enzymatic activation to exert their parasite toxicity. Current understanding of the nitroreductases involved in activation and possible mechanisms by which parasites develop resistance is discussed along with a description of the pharmacokinetic / pharmacodynamic behaviour and chemical structure-activity relationships of drugs and experimental compounds.
Collapse
Affiliation(s)
- Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan H Fairlamb
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
157
|
Tanaka DM, de Oliveira LFL, Marin-Neto JA, Romano MMD, de Carvalho EEV, de Barros Filho ACL, Ribeiro FFF, Cabeza JM, Lopes CD, Fabricio CG, Kesper N, Moreira HT, Wichert-Ana L, Schmidt A, Higuchi MDL, Cunha-Neto E, Simões MV. Prolonged dipyridamole administration reduces myocardial perfusion defects in experimental chronic Chagas cardiomyopathy. J Nucl Cardiol 2019; 26:1569-1579. [PMID: 29392628 DOI: 10.1007/s12350-018-1198-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/20/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Myocardial perfusion defects (MPD) due to coronary microvascular dysfunction is frequent in chronic Chagas cardiomyopathy (CCC) and may be involved with development of myocardial damage. We investigated whether MPD precedes left ventricular systolic dysfunction and tested the hypothesis that prolonged use of dipyridamole (DIPY) could reduce MPD in an experimental model of CCC in hamsters. METHODS AND RESULTS We investigated female hamsters 6-months after T. cruzi infection (baseline condition) and control animals, divided into T. cruzi-infected animals treated with DIPY (CH + DIPY) or placebo (CH + PLB); and uninfected animals treated with DIPY (CO + DIPY) or placebo (CO + PLB). The animals were submitted to echocardiogram and rest SPECT-Sestamibi-Tc99m myocardial perfusion scintigraphy. Next, the animals were treated with DIPY (4 mg/kg bid, intraperitoneal) or saline for 30 days, and reevaluated with the same imaging methods. At baseline, the CH + PLB and CH + DIPY groups showed larger areas of perfusion defect (13.2 ± 13.2% and 17.3 ± 13.2%, respectively) compared with CO + PLB and CO + DIPY (3.8 ± 2.2% e 3.5 ± 2.7%, respectively), P < .05. After treatment, we observed: reduction of perfusion defects only in the CH + DIPY group (17.3 ± 13.2% to 6.8 ± 7.6%, P = .001) and reduction of LVEF in CH + DIPY and CH + PLB groups (from 65.3 ± 9.0% to 53.6 ± 6.9% and from 69.3 ± 5.0% to 54.4 ± 8.6%, respectively, P < .001). Quantitative histology revealed greater extents of inflammation and interstitial fibrosis in both Chagas groups, compared with control group (P < .001), but no difference between Chagas groups (P > .05). CONCLUSIONS The prolonged use of DIPY in this experimental model of CCC has reduced the rest myocardial perfusion defects, supporting the notion that those areas correspond to viable hypoperfused myocardium.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo Elias Vieira de Carvalho
- Department of Applied Physical Therapy, Institute of Health Sciences, Federal University of Triangulo Mineiro, Minas Gerais, Brazil
| | | | | | | | - Carla Duque Lopes
- Medical School of Ribeirao Preto, University of São Paulo, Sao Paulo, Brazil
| | | | - Norival Kesper
- Instituto de Medicina Tropical, Faculty of Medicine, University os Sao Paulo, Sao Paulo, Brazil
| | | | - Lauro Wichert-Ana
- Medical School of Ribeirao Preto, University of São Paulo, Sao Paulo, Brazil
| | - André Schmidt
- Medical School of Ribeirao Preto, University of São Paulo, Sao Paulo, Brazil
| | | | - Edécio Cunha-Neto
- Heart Institute (InCor), Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
158
|
Petretta M, Cuocolo A. The long way to defeating Chagas cardiomyopathy. J Nucl Cardiol 2019; 26:1580-1583. [PMID: 29468468 DOI: 10.1007/s12350-018-1238-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Mario Petretta
- Department of Translational Medical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy.
| |
Collapse
|
159
|
Ferreira Silva NC, Reis MDCM, Póvoa RMDS, de Paola AAV, Luna Filho B. Ventricular arrhythmias in the Chagas disease are not random phenomena: Long-term monitoring in Chagas arrhythmias. J Cardiovasc Electrophysiol 2019; 30:2370-2376. [PMID: 31506997 DOI: 10.1111/jce.14162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/14/2019] [Accepted: 08/25/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Variability of ventricular arrhythmias among days in patients with Chagas disease is not detected by 24 hours of Holter monitoring. OBJECTIVE To analyze whether ventricular arrhythmias are a random phenomenon or have a reproducible behavior in patients with Chagas cardiomyopathy. METHOD Holter monitoring was recorded in 16 subjects with a mean age of 52 ± 8 years. They were clinically stable and had ventricular couplets, isolated premature ventricular contractions (PVCs), and nonsustained ventricular tachycardia (NSVT). The recordings occurred for 7 days. Hurst exponent (HE) evaluated randomness and predictability index (PI) and repeated analysis of variance (ANOVA) assessed reproducibility. RESULTS The HE was significantly greater than 0.5 in all 16 patients, which confirms the nonrandomness of arrhythmias in this Chagas sample. The PI for ventricular couplets and isolated PVCs was, on average, 38% and 54%, respectively. ANOVA with repeated measurement showed significant differences in the daily frequency of ventricular couplets (n = 15, P ≤ .05), isolated PVC (n = 12, P ≤ .05), and NSVT (n = 7, P ≤ .05). CONCLUSION Ventricular arrhythmias in Chagas cardiomyopathy are not random. Dissimilarities in arrhythmias frequency make unlikely that 24 hours of Holter recording can capture this variability.
Collapse
Affiliation(s)
| | | | - Rui M Dos S Póvoa
- Department of Cardiology, Federal University of São Paulo, São Paulo, Brazil
| | - Angelo A V de Paola
- Department of Cardiology, Federal University of São Paulo, São Paulo, Brazil
| | - Bráulio Luna Filho
- Department of Cardiology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
160
|
Sanmarco LM, Eberhardt N, Bergero G, Quebrada Palacio LP, Adami PM, Visconti LM, Minguez ÁR, Hernández-Vasquez Y, Carrera Silva EA, Morelli L, Postan M, Aoki MP. Monocyte glycolysis determines CD8+ T cell functionality in human Chagas disease. JCI Insight 2019; 4:123490. [PMID: 31479429 DOI: 10.1172/jci.insight.123490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Chagas disease is a lifelong pathology resulting from Trypanosoma cruzi infection. It represents one of the most frequent causes of heart failure and sudden death in Latin America. Herein, we provide evidence that aerobic glycolytic pathway activation in monocytes drives nitric oxide (NO) production, triggering tyrosine nitration (TN) on CD8+ T cells and dysfunction in patients with chronic Chagas disease. Monocytes from patients exhibited a higher frequency of hypoxia-inducible factor 1α and increased expression of its target genes/proteins. Nonclassical monocytes are expanded in patients' peripheral blood and represent an important source of NO. Monocytes entail CD8+ T cell surface nitration because both the frequency of nonclassical monocytes and that of NO-producing monocytes positively correlated with the percentage of TN+ lymphocytes. Inhibition of glycolysis in in vitro-infected peripheral blood mononuclear cells decreased the inflammatory properties of monocytes/macrophages, diminishing the frequency of IL-1β- and NO-producing cells. In agreement, glycolysis inhibition reduced the percentage of TN+CD8+ T cells, improving their functionality. Altogether, these results clearly show that glycolysis governs oxidative stress on monocytes and modulates monocyte-T cell interplay in human chronic Chagas disease. Understanding the pathological immune mechanisms that sustain an inflammatory environment in human pathology is key to designing improved therapies.
Collapse
Affiliation(s)
- Liliana María Sanmarco
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Natalia Eberhardt
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Gastón Bergero
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | | | - Pamela Martino Adami
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Marina Visconti
- Hospital Nuestra Señora de la Misericordia, Córdoba, Argentina.,Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, II Cátedra de Infectología, Córdoba, Argentina
| | | | | | - Eugenio Antonio Carrera Silva
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, Academia Nacional de Medicina, CONICET, Buenos Aires, Argentina
| | - Laura Morelli
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén," Buenos Aires, Argentina
| | - Maria Pilar Aoki
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| |
Collapse
|
161
|
Vergara C, Muñoz G, Martínez G, Apt W, Zulantay I. Detection of Trypanosoma cruzi by PCR in adults with chronic Chagas disease treated with nifurtimox. PLoS One 2019; 14:e0221100. [PMID: 31433828 PMCID: PMC6703690 DOI: 10.1371/journal.pone.0221100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Chagas disease, a vector-borne parasitosis caused by Trypanosoma cruzi, is endemic to Latin America and has spread to other countries due to immigration of infected persons. It is estimated that 160,000 people are infected in Chile, most of them in the chronic phase and without etiological treatment. The infection is confirmed by conventional serological methods while molecular methods have become in valuable tools to evaluate parasitemia in treated and non-treated chronic Chagas disease patients. The objective of this study was to determine, by conventional Polymerase Chain Reaction, the presence of T. cruzi kinetoplastid DNA in peripheral blood samples from 114 adult individuals with confirmed chronic Chagas disease, before and 6.6 years (average) after treatment with nifurtimox. The samples were received and preserved in guanidine-EDTA until DNA purification. Conventional PCR assays were performed in triplicate with T. cruzi kinetoplastid DNA primers 121 and 122. The amplified products were fractionated by electrophoresis in 2% agarose gels. A 330 bp product represented a positive assay. 84.2% (96 cases) and 6.1% (7 cases) of the samples taken before and after the treatment, respectively, were positive. The McNemar test showed a statistically significant difference between the groups of samples (p<0.001). Since serological negativization (the current cure criterion) delay many years after therapy and positive parasitological results represent a treatment failure, the conversion of pre-therapy positive conventional PCR is a qualitative and complementary tool that could be included in protocols of prolonged follow-up.
Collapse
Affiliation(s)
- Camilo Vergara
- Laboratorio de Parasitología Básico-Clínico, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gabriela Muñoz
- Laboratorio de Parasitología Básico-Clínico, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gabriela Martínez
- Laboratorio de Parasitología Básico-Clínico, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Werner Apt
- Laboratorio de Parasitología Básico-Clínico, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Inés Zulantay
- Laboratorio de Parasitología Básico-Clínico, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
162
|
Wesley M, Moraes A, Rosa ADC, Lott Carvalho J, Shiroma T, Vital T, Dias N, de Carvalho B, do Amaral Rabello D, Borges TKDS, Dallago B, Nitz N, Hagström L, Hecht M. Correlation of Parasite Burden, kDNA Integration, Autoreactive Antibodies, and Cytokine Pattern in the Pathophysiology of Chagas Disease. Front Microbiol 2019; 10:1856. [PMID: 31496999 PMCID: PMC6712995 DOI: 10.3389/fmicb.2019.01856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi (T. cruzi), is the main parasitic disease in the Western Hemisphere. Unfortunately, its physiopathology is not completely understood, and cardiomegaly development is hard to predict. Trying to explain tissue lesion and the fact that only a percentage of the infected individuals develops clinical manifestations, a variety of mechanisms have been suggested as the provokers of CD, such as parasite persistence and autoimmune responses. However, holistic analysis of how parasite and host-related elements may connect to each other and influence clinical outcome is still scarce in the literature. Here, we investigated murine models of CD caused by three different pathogen strains: Colombian, CL Brener and Y strains, and employed parasitological and immunological tests to determine parasite load, antibody reactivity, and cytokine production during the acute and chronic phases of the disease. Also, we developed a quantitative PCR (qPCR) protocol to quantify T. cruzi kDNA minicircle integration into the mammalian host genome. Finally, we used a correlation analysis to interconnect parasite- and host-related factors over time. Higher parasite load in the heart and in the intestine was significantly associated with IgG raised against host cardiac proteins. Also, increased heart and bone marrow parasitism was associated with a more intense leukocyte infiltration. kDNA integration rates correlated to the levels of IgG antibodies reactive to host cardiac proteins and interferon production, both influencing tissue inflammation. In conclusion, our results shed light into how inflammatory process associates with parasite load, kDNA transfer to the host, autoreactive autoantibody production and cytokine profile. Altogether, our data support the proposal of an updated integrative theory regarding CD pathophysiology.
Collapse
Affiliation(s)
- Moisés Wesley
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Aline Moraes
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Ana de Cássia Rosa
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasília, Brazil.,Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Tatiana Shiroma
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Tamires Vital
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Bruna de Carvalho
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Doralina do Amaral Rabello
- Laboratory of Molecular Pathology of Cancer, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Tatiana Karla Dos Santos Borges
- Laboratory of Cellular and Molecular Immunology, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Bruno Dallago
- Laboratory of Animal Welfare, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
163
|
Chaves AT, Menezes CAS, Costa HS, Nunes MCP, Rocha MOC. Myocardial fibrosis in chagas disease and molecules related to fibrosis. Parasite Immunol 2019; 41:e12663. [PMID: 31309590 DOI: 10.1111/pim.12663] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 11/27/2022]
Abstract
Chronic Chagas cardiomyopathy (CCC) is responsible for the disease's greater morbidity and poor prognosis. Although understanding the pathophysiology of CCC and the fundamentals of its clinical management derives from research related to other cardiomyopathies, there are peculiarities that distinguish CCC from the others. CCC is the most fibrous heart disease, and its myocardial involvement is important as it disorganizes or disrupts the extracellular matrix, creating an environment conducive to the formation of arrhythmogenic foci. It is also considered the most arrhythmogenic of the known heart diseases, giving rise to complex arrhythmias, usually associated with varying degrees of stimulus conduction disorders. The central proposal of this review is to describe a possible association between the distribution and degree of myocardial fibrosis and cardiac arrhythmogenicity in patients with Chagas cardiomyopathy, drawing attention to the importance of noninvasive biomarkers for the quantification of myocardial fibrosis.
Collapse
Affiliation(s)
- Ana T Chaves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Cristiane A S Menezes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Henrique S Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Maria C P Nunes
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Manoel O C Rocha
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| |
Collapse
|
164
|
Quijia Quezada C, Azevedo CS, Charneau S, Santana JM, Chorilli M, Carneiro MB, Bastos IMD. Advances in nanocarriers as drug delivery systems in Chagas disease. Int J Nanomedicine 2019; 14:6407-6424. [PMID: 31496694 PMCID: PMC6691952 DOI: 10.2147/ijn.s206109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Chagas disease is one of the most important public health problems in Latin America due to its high mortality and morbidity levels. There is no effective treatment for this disease since drugs are usually toxic with low bioavailability. Serious efforts to achieve disease control and eventual eradication have been unsuccessful to date, emphasizing the need for rapid diagnosis, drug development, and a reliable vaccine. Novel systems for drug and vaccine administration based on nanocarriers represent a promising avenue for Chagas disease treatment. Nanoparticulate systems can reduce toxicity, and increase the efficacy and bioavailability of active compounds by prolonging release, and therefore improve the therapeutic index. Moreover, nanoparticles are able to interact with the host's immune system, modulating the immune response to favour the elimination of pathogenic microorganisms. In addition, new advances in diagnostic assays, such as nanobiosensors, are beneficial in that they enable precise identification of the pathogen. In this review, we provide an overview of the strategies and nanocarrier-based delivery systems for antichagasic agents, such as liposomes, micelles, nanoemulsions, polymeric and non-polymeric nanoparticles. We address recent progress, with a particular focus on the advances of nanovaccines and nanodiagnostics, exploring new perspectives on Chagas disease treatment.
Collapse
Affiliation(s)
- Christian Quijia Quezada
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
- Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Clênia S Azevedo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Jaime M Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcella B Carneiro
- Electron Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| |
Collapse
|
165
|
T-Cell Immunophenotyping and Cytokine Production Analysis in Patients with Chagas Disease 4 Years after Benznidazole Treatment. Infect Immun 2019; 87:IAI.00103-19. [PMID: 31085707 DOI: 10.1128/iai.00103-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023] Open
Abstract
The major problem with Chagas disease is evolution of the chronic indeterminate form to a progressive cardiac disease. Treatment diminishes parasitemia but not clinical progression, and the immunological features involved are unclear. Here, we studied the clinical course and the immune response in patients with chronic-phase Chagas disease at 48 months after benznidazole treatment. Progression to the cardiac form of Chagas disease or its aggravation was associated with higher in vitro antigen-specific production of interferon gamma (IFN-γ) in patients with cardiac Chagas disease than in patients with the indeterminate form. Predominance of IFN-γ production over interleukin-10 (IL-10) production in antigen-specific cultures was associated with cardiac involvement. Significantly higher numbers of antigen-specific T helper 1 cells (T-Bet+ IFN-γ+) and a significantly higher IFN-γ+/IL-10+ ratio were observed in patients with cardiac Chagas disease than in patients with the indeterminate form. Cardiac damage was associated with higher numbers of T helper cells than cytotoxic T lymphocytes producing IFN-γ. Patients with cardiac Chagas disease had predominant CD25- and CD25low T regulatory (Treg) subpopulations, whereas patients with the indeterminate form manifested a higher relative mean percentage of CD25high Treg subpopulations. These findings suggest that at 48 months after benznidazole treatment, the disease can worsen or progress to the cardiac form. The progression may be related to increased IFN-γ production (mostly from CD4+ T cells) relative to IL-10 production and increased Treg percentages. Patients with the indeterminate form of Chagas disease show a more balanced ratio of proinflammatory and anti-inflammatory cytokines.
Collapse
|
166
|
Martinez F, Perna E, Perrone SV, Liprandi AS. Chagas Disease and Heart Failure: An Expanding Issue Worldwide. Eur Cardiol 2019; 14:82-88. [PMID: 31360228 PMCID: PMC6659042 DOI: 10.15420/ecr.2018.30.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/01/2019] [Indexed: 01/28/2023] Open
Abstract
Chagas disease, originally a South American endemic health problem, is expanding worldwide because of people migration. Its main impact is on the cardiovascular system, producing myocardial damage that frequently results in heart failure. Pathogenic pathways are mainly related to inmunoinflamatory reactions in the myocardium and, less frequently, in the gastrointestinal tract. The heart usually shows fibrosis, producing dilatation and damage of the electrogenic cardiac system. These changes result in cardiomyopathy with heart failure and frequent cardiac arrhythmias and heart blocks. Diagnosis of the disease must include a lab test to detect the parasite or its immune reactions and the usual techniques to evaluate cardiac function. Therapeutic management of Chagas heart failure does not differ significantly from the most common treatment for dilated cardiomyopathy, with special focus on arrhythmias and several degrees of heart block. Heart transplantation is reserved for end-stage cases. Major international scientific organisations are delivering recommendations for prevention and early diagnosis. This article provides an analysis of epidemiology, prevention, treatment and the relationship between Chagas disease and heart failure.
Collapse
Affiliation(s)
- Felipe Martinez
- Cordoba National University, Instituto DAMIC Córdoba, Argentina.,Docencia, Asistencia Médica e Investigación Clínica (DAMIC) Medical Institute, Rusculleda Foundation for Research Córdoba Argentina
| | - Eduardo Perna
- Coronary Care Unit and Heart Failure Division, Juana Cabral Cardiovascular Institute Corrientes, Argentina
| | - Sergio V Perrone
- El Cruce Hospital Buenos Aires, Argentina.,Argentine Catholic University Buenos Aires, Argentina
| | - Alvaro Sosa Liprandi
- Cardiovascular Division, Sanatorio Güemes Hospital Buenos Aires, Argentina.,Postgraduate Medical School in Cardiology Universidad de Buenos Aires, Argentina
| |
Collapse
|
167
|
Alves RL, Cardoso BRL, Ramos IPR, Oliveira BDS, Dos Santos ML, de Miranda AS, de Almeida TCS, Vieira MAR, Machado FS, Ferreira AJ, de Avelar GF. Physical training improves exercise tolerance, cardiac function and promotes changes in neurotrophins levels in chagasic mice. Life Sci 2019; 232:116629. [PMID: 31276687 DOI: 10.1016/j.lfs.2019.116629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023]
Abstract
AIMS To investigate the effects of moderate aerobic physical training on cardiac function and morphology as well as on the levels of glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) of animals infected with the Y strain of Trypanosoma cruzi. MAIN METHODS Twenty-eight male C57BL/6 mice were distributed into 4 groups: sedentary control (SC), trained control (TC), sedentary infected (CHC) and trained infected (CHT). The infection was performed by intraperitoneal injection of trypomastigote forms and the animals were adapted to treadmill in the week before the beginning of the training protocol, initiated 45 days post infection. Maximal exercise test (TEM) was performed at the baseline as well as at the end of the 4th, 8th and 12th weeks of training. At the end of the 12th week, all animals were evaluated for cardiac morphology and function by echocardiography. KEY FINDINGS CHC group showed a larger area of right ventricle (RVA), increased end-systolic volume and reduction in ejection fraction (EF), stroke volume (SV), cardiac output (CO) and fractional area change (FAC). The training reduced the RVA and improved the FAC of chagasic animals. GDNF level was higher in TC and CHC groups compared to SC in heart and BDNF levels were higher in CHC compared to SC in heart and serum. SIGNIFICANCE Physical training ameliorated the cardiac function of infected animals and promoted adjusts in BDNF and GDNF levels. These findings evidenced these neurotrophins as possible biomarkers of cardiac function responsive to exercise stimulus.
Collapse
Affiliation(s)
- Rafael Leite Alves
- Federal University of Minas Gerais, Department of Morphology, Av. Pres. Antônio Carlos, 6627 Campus Pampulha, Belo Horizonte, Brazil
| | - Bárbara Ramalho Ladeira Cardoso
- Federal University of Minas Gerais, Department of Morphology, Av. Pres. Antônio Carlos, 6627 Campus Pampulha, Belo Horizonte, Brazil
| | - Isalira Peroba Rezende Ramos
- Federal University of Rio de Janeiro, Center of Health Science, Av. Carlos Chagas Filho, 373 Rio de Janeiro, Brazil
| | - Bruna da Silva Oliveira
- Federal University of Minas Gerais, Department of Morphology, Av. Pres. Antônio Carlos, 6627 Campus Pampulha, Belo Horizonte, Brazil
| | - Mara Lívia Dos Santos
- Federal University of Minas Gerais, Department of Morphology, Av. Pres. Antônio Carlos, 6627 Campus Pampulha, Belo Horizonte, Brazil
| | - Aline Silva de Miranda
- Federal University of Minas Gerais, Department of Morphology, Av. Pres. Antônio Carlos, 6627 Campus Pampulha, Belo Horizonte, Brazil
| | - Tatiane Cristine Silva de Almeida
- Federal University of Minas Gerais, Department of Morphology, Av. Pres. Antônio Carlos, 6627 Campus Pampulha, Belo Horizonte, Brazil
| | - Maria Aparecida Ribeiro Vieira
- Federal University of Minas Gerais, Department of Physiology and Biophysics, Av. Pres. Antônio Carlos, 6627 Campus Pampulha, Belo Horizonte, Brazil
| | - Fabiana Simão Machado
- Federal University of Minas Gerais, Department of Biochemistry and Immunology, Av. Pres. Antônio Carlos, 6627 Campus Pampulha, Belo Horizonte, Brazil
| | - Anderson José Ferreira
- Federal University of Minas Gerais, Department of Morphology, Av. Pres. Antônio Carlos, 6627 Campus Pampulha, Belo Horizonte, Brazil.
| | - Gleide Fernandes de Avelar
- Federal University of Minas Gerais, Department of Morphology, Av. Pres. Antônio Carlos, 6627 Campus Pampulha, Belo Horizonte, Brazil
| |
Collapse
|
168
|
Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ, Sandri TL. Chagas Disease: From Discovery to a Worldwide Health Problem. Front Public Health 2019; 7:166. [PMID: 31312626 PMCID: PMC6614205 DOI: 10.3389/fpubh.2019.00166] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022] Open
Abstract
Carlos Chagas discovered American trypanosomiasis, also named Chagas disease (CD) in his honor, just over a century ago. He described the clinical aspects of the disease, characterized by its etiological agent (Trypanosoma cruzi) and identified its insect vector. Initially, CD occurred only in Latin America and was considered a silent and poorly visible disease. More recently, CD became a neglected worldwide disease with a high morbimortality rate and substantial social impact, emerging as a significant public health threat. In this context, it is crucial to better understand better the epidemiological scenarios of CD and its transmission dynamics, involving people infected and at risk of infection, diversity of the parasite, vector species, and T. cruzi reservoirs. Although efforts have been made by endemic and non-endemic countries to control, treat, and interrupt disease transmission, the cure or complete eradication of CD are still topics of great concern and require global attention. Considering the current scenario of CD, also affecting non-endemic places such as Canada, USA, Europe, Australia, and Japan, in this review we aim to describe the spread of CD cases worldwide since its discovery until it has become a global public health concern.
Collapse
Affiliation(s)
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Flávia Silva Damasceno
- Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia Holsbach Beltrame
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Iara J. Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Thaisa Lucas Sandri
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
169
|
De Fuentes-Vicente JA, Vidal-López DG, Flores-Villegas AL, Moreno-Rodríguez A, De Alba-Alvarado MC, Salazar-Schettino PM, Rodríguez-López MH, Gutiérrez-Cabrera AE. Trypanosoma cruzi: A review of biological and methodological factors in Mexican strains. Acta Trop 2019; 195:51-57. [PMID: 31022383 DOI: 10.1016/j.actatropica.2019.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 01/09/2023]
Abstract
Trypanosoma cruzi, responsible for Chagas disease, is a serious public health problem in Latin America with eight million people infected in the world. Clinical manifestations observed in humans due to T. cruzi infection are largely associated with the wide biological and genetic heterogeneity of the parasite. This review presents an overview of the parasitological aspects of various strains of T. cruzi isolated mainly in Mexico, as well as an analysis of the methodological processes used to determine their virulence that could be influencing their biological characterization. We emphasize the importance of using uniform protocols to study T. cruzi virulence, taking into account factors related to: strain (i.e. developmental stage, lineage, biological origin, genetic variability), animal model used (i.e. role of hormones, host immune response, age) and methodology (i.e. inoculum size, inoculation route, and laboratory conditions used during strain maintenance). These uniform protocols will then allow proposing elements for understanding clinical evolution and management of the disease, for providing adequate treatment, and for developing tools for future vaccines against Chagas disease.
Collapse
|
170
|
Barry MA, Versteeg L, Wang Q, Pollet J, Zhan B, Gusovsky F, Bottazzi ME, Hotez PJ, Jones KM. A therapeutic vaccine prototype induces protective immunity and reduces cardiac fibrosis in a mouse model of chronic Trypanosoma cruzi infection. PLoS Negl Trop Dis 2019; 13:e0007413. [PMID: 31145733 PMCID: PMC6542517 DOI: 10.1371/journal.pntd.0007413] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, develops into chronic Chagas’ cardiomyopathy in ~30% of infected individuals, characterized by conduction disorders, arrhythmias, heart failure, and even sudden cardiac death. Current anti-parasitic treatments are plagued by significant side effects and poor efficacy in the chronic phase of disease; thus, there is a pressing need for new treatment options. A therapeutic vaccine could bolster the protective TH1-mediated immune response, thereby slowing or halting the progression of chronic Chagas’ cardiomyopathy. Prior work in mice has demonstrated therapeutic efficacy of a Tc24 recombinant protein vaccine in the acute phase of Chagas disease. However, it is anticipated that humans will be vaccinated therapeutically when in the chronic phase of disease. This study investigates the therapeutic efficacy of a vaccine prototype containing recombinant protein Tc24, formulated with an emulsion containing the Toll-like receptor 4 agonist E6020 as an immunomodulatory adjuvant in a mouse model of chronic T. cruzi infection. Among outbred ICR mice vaccinated during chronic T. cruzi infection, there is a significant increase in the number of animals with undetectable systemic parasitemia (60% of vaccinated mice compared to 0% in the sham vaccine control group), and a two-fold reduction in cardiac fibrosis over the control group. The vaccinated mice produce a robust protective TH1-biased immune response to the vaccine, as demonstrated by a significant increase in antigen-specific IFNγ-production, the number of antigen-specific IFNγ-producing cells, and IgG2a antibody titers. Importantly, therapeutic vaccination significantly reduced cardiac fibrosis in chronically infected mice. This is a first study demonstrating therapeutic efficacy of the prototype Tc24 recombinant protein and E6020 stable emulsion vaccine against cardiac fibrosis in a mouse model of chronic T. cruzi infection. Chagas disease is a parasitic infection that can cause severe heart disease. Current treatments do not work well and have significant side effects. Because of this, the authors created a new vaccine prototype with the goal that it could be given to infected people to prevent Chagas-associated heart disease. The vaccine contains a manufactured protein identical to a protein in the parasite (called Tc24) as well as a component to help the body produce a protective immune response (a vaccine adjuvant called E6020). The vaccine would boost the body’s natural immune response to the parasite infection, reducing the number of parasites in the body, and protecting the heart. Frequently, people are not diagnosed until later in the infection, because the early (or acute) stage of disease can be mistaken for a common cold. Because of this, it is important to test the vaccine when given in the later (or chronic) stage of infection. The authors tested the vaccine in a mouse model of chronic T. cruzi infection and found that the vaccinated mice had lower levels of parasites in their body and less damage to their hearts. This research shows promising value of a therapeutic vaccine to prevent Chagas-associated heart disease in a mouse model, with the hope that the same effect could be found in humans one day.
Collapse
Affiliation(s)
- Meagan A. Barry
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (MB); (KJ)
| | - Leroy Versteeg
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Qian Wang
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeroen Pollet
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bin Zhan
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fabian Gusovsky
- Eisai, Inc., Eisai Inc, Andover, Massachusetts, United States of America
| | - Maria Elena Bottazzi
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J. Hotez
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Kathryn M. Jones
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (MB); (KJ)
| |
Collapse
|
171
|
Espinosa-Pereiro J, Sánchez-Montalvá A, Salvador F, Sao-Avilés A, Sulleiro E, Molina I. A retrospective study on the influence of siblings' relatedness in Bolivian patients with chronic Chagas disease. Parasit Vectors 2019; 12:260. [PMID: 31126327 PMCID: PMC6533702 DOI: 10.1186/s13071-019-3518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chagas disease is a protozoan infection caused by Trypanosoma cruzi. The disease has a chronic course in which 20-30% of the patients would develop progressive damage to the cardiovascular system and the gastrointestinal tube. We are still unable to predict who will develop end-organ damage but there are some acquired and genetic risk factors already known. RESULTS We reviewed data from 833 patients with serologically confirmed Chagas disease in this retrospective study. Patients were classified as siblings or non-siblings (controls) and the results of pre-treatment blood PCR assay, end-organ damage (cardiac and/or gastrointestinal), and the presence of delayed type hypersensitivity (DTH) skin involvement in patients treated with benznidazole were analyzed. Siblings were grouped by family and we randomly generated groups of 2 or 3 persons with the remaining controls. We classified the results of each variable as concordant or discordant and compared the concordance in these results among the sibling groups with that among control groups. We identified 71 groups of siblings and randomly generated 299 groups of non-related patients. Pre-treatment blood PCR concordance was significantly higher (19%) among siblings compared to controls (P = 0.02), probably due to a higher frequency in pre-treatment positive results. No other statistically significant differences were found. CONCLUSIONS A significant difference was found in the concordance of pre-treatment blood PCR for T. cruzi among siblings compared to non-related controls.
Collapse
Affiliation(s)
- Juan Espinosa-Pereiro
- Infectious Diseases Department, Vall d’Hebron University Hospital, Programa de Salut Internacional de l’Institut Català de la Salut (PROSICS), Barcelona, Spain
| | - Adrián Sánchez-Montalvá
- Infectious Diseases Department, Vall d’Hebron University Hospital, Programa de Salut Internacional de l’Institut Català de la Salut (PROSICS), Barcelona, Spain
- Vall d’Hebron Resarch Institute, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Fernando Salvador
- Infectious Diseases Department, Vall d’Hebron University Hospital, Programa de Salut Internacional de l’Institut Català de la Salut (PROSICS), Barcelona, Spain
- Vall d’Hebron Resarch Institute, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Augusto Sao-Avilés
- Infectious Diseases Department, Vall d’Hebron University Hospital, Programa de Salut Internacional de l’Institut Català de la Salut (PROSICS), Barcelona, Spain
- Cardiac Imaging Unit, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Elena Sulleiro
- Microbiology Department, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Israel Molina
- Infectious Diseases Department, Vall d’Hebron University Hospital, Programa de Salut Internacional de l’Institut Català de la Salut (PROSICS), Barcelona, Spain
- Vall d’Hebron Resarch Institute, University Hospital Vall d’Hebron, Barcelona, Spain
| |
Collapse
|
172
|
Meyers AC, Hamer SA, Matthews D, Gordon SG, Saunders AB. Risk factors and select cardiac characteristics in dogs naturally infected with Trypanosoma cruzi presenting to a teaching hospital in Texas. J Vet Intern Med 2019; 33:1695-1706. [PMID: 31119786 PMCID: PMC6639495 DOI: 10.1111/jvim.15516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Background Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, causes sudden death and chronic heart disease with no currently approved treatment. Objective To report epidemiologic and select cardiac characteristics associated with T. cruzi infection in dogs presenting to a teaching hospital in Texas. Animals Three hundred seventy‐five client‐owned dogs. Methods A retrospective search of medical records identified dogs tested for T. cruzi antibodies or with histologic T. cruzi parasites. Data retrieved included signalment, location of residence, reported reason for testing, cardiac troponin I (cTnI) concentration, and ECG abnormalities. Results Trypanosoma cruzi‐infected dogs (N = 63, 16.8%) were significantly younger than negative dogs (N = 312) (mean, 5.9 ± 3.8 versus 7.4 ± 4.0 years; P = .007) with no difference by sex or breed. Ninety‐one breeds were tested; the highest percent infected were non‐sporting (10/35; 29%) and toy breed (10/42; 24%) groups. The odds of infection were 13 times greater among dogs with an infected housemate or littermate (95% confidence interval [CI], 3.94‐50.45; P < .001). Infected dogs were more likely to have ventricular arrhythmias (odds ratio [OR], 2.19; 95% CI, 1.15‐4.33, P = .02), combinations of ECG abnormalities (OR, 2.91; 95% CI, 1.37‐5.99; P = .004), and cTnI >0.129 ng/mL (ADVIA; OR, 10.71; 95% CI, 1.60‐212.21; P = .035). Conclusions and Clinical Importance Dogs infected with T. cruzi were identified in Texas in many breed groups including breeds affected by well‐described heart diseases that mimic Chagas disease suggesting a need for increased awareness, including knowledge of when to consider testing.
Collapse
Affiliation(s)
- Alyssa C Meyers
- Department of Veterinary Integrative Bioscience, Texas A&M University, College Station, Texas
| | - Sarah A Hamer
- Department of Veterinary Integrative Bioscience, Texas A&M University, College Station, Texas
| | - Derek Matthews
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Sonya G Gordon
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Ashley B Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
173
|
Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, Kaur K, Alcaide P. Heart Inflammation: Immune Cell Roles and Roads to the Heart. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1482-1494. [PMID: 31108102 DOI: 10.1016/j.ajpath.2019.04.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
Heart failure (HF) has been traditionally viewed as a disease of the cardiac muscle associated with systemic inflammation. Burgeoning evidence implicates immune effector mechanisms that include immune cell activation and trafficking to the heart. Immune cell infiltration in the myocardium can have adverse effects in the heart and contribute to the pathogenesis of HF. Both innate and adaptive immunity operate sequentially, and the specificity of these responses depends on the initial trigger sensed by the heart. Although the role of the immune system in the initial inflammatory response to infection and injury is well studied, what sets the trajectory to HF from different etiologies and the role of immunity once HF has been established is less understood. Herein, we review experimental and clinical knowledge of cardiac inflammation induced by different triggers that often result in HF from different etiologies. We focus on the mechanisms of immune cell activation systemically and on the pathways immune cells use to traffic to the heart.
Collapse
Affiliation(s)
| | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; Sackler School for Graduate Studies Immunology Program, Tufts University School of Medicine, Boston, Massachusetts
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Kuljeet Kaur
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; Sackler School for Graduate Studies Immunology Program, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
174
|
Sandri TL, Andrade FA, Lidani KCF, Einig E, Boldt ABW, Mordmüller B, Esen M, Messias-Reason IJ. Human collectin-11 (COLEC11) and its synergic genetic interaction with MASP2 are associated with the pathophysiology of Chagas Disease. PLoS Negl Trop Dis 2019; 13:e0007324. [PMID: 30995222 PMCID: PMC6488100 DOI: 10.1371/journal.pntd.0007324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/29/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Chagas Disease (CD) is an anthropozoonosis caused by Trypanosoma cruzi. With complex pathophysiology and variable clinical presentation, CD outcome can be influenced by parasite persistence and the host immune response. Complement activation is one of the primary defense mechanisms against pathogens, which can be initiated via pathogen recognition by pattern recognition molecules (PRMs). Collectin-11 is a multifunctional soluble PRM lectin, widely distributed throughout the body, with important participation in host defense, homeostasis, and embryogenesis. In complex with mannose-binding lectin-associated serine proteases (MASPs), collectin-11 may initiate the activation of complement, playing a role against pathogens, including T. cruzi. In this study, collectin-11 plasma levels and COLEC11 variants in exon 7 were assessed in a Brazilian cohort of 251 patients with chronic CD and 108 healthy controls. Gene-gene interactions between COLEC11 and MASP2 variants were analyzed. Collectin-11 levels were significantly decreased in CD patients compared to controls (p<0.0001). The allele rs7567833G, the genotypes rs7567833AG and rs7567833GG, and the COLEC11*GGC haplotype were related to T. cruzi infection and clinical progression towards symptomatic CD. COLEC11 and MASP2*CD risk genotypes were associated with cardiomyopathy (p = 0.014; OR 9.3, 95% CI 1.2–74) and with the cardiodigestive form of CD (p = 0.005; OR 15.2, 95% CI 1.7–137), suggesting that both loci act synergistically in immune modulation of the disease. The decreased levels of collectin-11 in CD patients may be associated with the disease process. The COLEC11 variant rs7567833G and also the COLEC11 and MASP2*CD risk genotype interaction were associated with the pathophysiology of CD. The heterogeneity of clinical progression during chronic Trypanosoma cruzi infection and the mechanisms determining why some individuals develop symptoms whereas others remain asymptomatic are still poorly understood. The pathogenesis of chronic Chagas Disease (CD) has been attributed mainly to the persistence of the causing parasite and the character of individual host immune responses. Collectin-11 is a host immune response molecule with affinity for sugars found on the T. cruzi’s surface. Together with mannose-binding lectin-associated serine proteases (MASPs), it triggers the host defense response against pathogens. Genetic variants and protein levels of MASP-2 and the mannose-binding lectin (MBL), a molecule structurally similar to collectin-11, have been found to be associated with susceptibility to T. cruzi infection and clinical progression to cardiomyopathy. This prompted us to investigate collectin-11 genetic variants and protein levels in 251 patients with chronic CD and 108 healthy individuals, and to examine the effect of gene interaction between COLEC11 and MASP2 risk mutations. We found an association to CD infection with COLEC11 gene variants and reduced collectin-11 levels. The concomitant presence of these genetic variants and MASP2 risk mutations greatly increased the odds for cardiomyopathy. This is the first study to reveal a role for collectin-11 and COLEC11-MASP2 gene interaction in the pathogenesis of CD.
Collapse
Affiliation(s)
- Thaisa Lucas Sandri
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
- * E-mail:
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Elias Einig
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Angelica Beate Winter Boldt
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | | | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Iara J. Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
175
|
Infection by Trypanosoma cruzi in the central nervous system in non-human mammals: a systematic review. Parasitology 2019; 146:983-1005. [PMID: 30873928 DOI: 10.1017/s0031182019000210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Currently, the types and distribution of the lesions induced in the central nervous system (CNS) by Trypanosoma cruzi remain unclear as the available evidence is based on fragmented data. Therefore, we developed a systematic review to analyse the main characteristics of the CNS lesions in non-human hosts infected. From a structured search on the PubMed/Medline and Scopus platforms, 32 studies were retrieved, subjected to data extraction and methodological bias analysis. Our results show that the most frequent alterations in the CNS are the presence of different forms of T. cruzi and intense lymphocytes infiltrates. The encephalon is the main target of T. cruzi, and inflammatory changes in the CNS are more frequent and severe in the acute phase of infection. The parasite's genotype and phenotype are associated with the tropism and severity of the CNS lesions. The methodological limitations found in the studies were divergences in inoculation pathways, under-reporting of animal age and weight, sample calculation strategies and histopathological characterization. Since the changes were dependent on the pathogenicity and virulence of the T. cruzi strains, the genotype and phenotype characterization of the parasite are extremely relevant to predict changes in the CNS and the neurological manifestations associated with Chagas' disease.
Collapse
|
176
|
Atié J, Steinberg JS. A cohort study of cardiac resynchronization therapy in patients with chronic Chagas cardiomyopathy. Europace 2019; 20:1717-1718. [PMID: 29509893 DOI: 10.1093/europace/euy027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jacob Atié
- Federal University of Rio de Janeiro, Serviço de Arritmias, Clínica São Vicente - IDOR, Rua João Borges, Rio de Janeiro, Brazil
| | - Jonathan S Steinberg
- Heart Research Follow-up Program, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY, USA
| |
Collapse
|
177
|
Abstract
Infectious myocarditis is the result of an immune response to a microbial infection of the heart. The blood vessels of the heart, both the intramyocardial microvasculature and the large epicardial coronary arteries, play an important role in the pathogenesis of infectious myocarditis. First of all, in addition to cardiomyocytes, endothelial cells of the cardiac (micro)vasculature are direct targets for infection. Moreover, through the expression of adhesion molecules and antigen presenting Major Histocompatibility Complex molecules, the blood vessels assist in shaping the cellular immune response in infectious myocarditis. In addition, damage and dysfunction of the cardiac (micro)vasculature are associated with thrombus formation as well as aberrant regulation of vascular tone including coronary vasospasm. These in turn can cause cardiac perfusion abnormalities and even myocardial infarction. In this review, we will discuss the role of the cardiac (micro)vasculature in the pathogenesis of infectious myocarditis.
Collapse
|
178
|
Retana Moreira L, Rodríguez Serrano F, Osuna A. Extracellular vesicles of Trypanosoma cruzi tissue-culture cell-derived trypomastigotes: Induction of physiological changes in non-parasitized culture cells. PLoS Negl Trop Dis 2019; 13:e0007163. [PMID: 30789912 PMCID: PMC6383987 DOI: 10.1371/journal.pntd.0007163] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is the obligate intracellular parasite that causes Chagas disease. The pathogenesis of this disease is a multifactorial complex process that involves a large number of molecules and particles, including the extracellular vesicles. The presence of EVs of T. cruzi was first described in 1979 and, since then, research regarding these particles has been increasing. Some of the functions described for these EVs include the increase in heart parasitism and the immunomodulation and evasion of the host immune response. Also, EVs may be involved in parasite adhesion to host cells and host cell invasion. METHODOLOGY/PRINCIPAL FINDINGS EVs (exosomes) of the Pan4 strain of T. cruzi were isolated by differential centrifugation, and measured and quantified by TEM, NTA and DLS. The effect of EVs in increasing the parasitization of Vero cells was evaluated and the ED50 was calculated. Changes in cell permeability induced by EVs were evaluated in Vero and HL-1 cardiomyocyte cells using cell viability techniques such as trypan blue and MTT assays, and by confocal microscopy. The intracellular mobilization of Ca2+ and the disruption of the actin cytoskeleton induced by EVs over Vero cells were followed-up in time using confocal microscopy. To evaluate the effect of EVs over the cell cycle, cell cycle analyses using flow cytometry and Western blotting of the phosphorylated and non-phosphorylated protein of Retinoblastoma were performed. CONCLUSION/SIGNIFICANCE The incubation of cells with EVs of trypomastigotes of the Pan4 strain of T. cruzi induce a number of changes in the host cells that include a change in cell permeability and higher intracellular levels of Ca2+ that can alter the dynamics of the actin cytoskeleton and arrest the cell cycle at G0/G1 prior to the DNA synthesis necessary to complete mitosis. These changes aid the invasion of host cells and augment the percentage of cell parasitization.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Universidad de Granada, Granada, Spain
| | | | - Antonio Osuna
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
179
|
Radionuclide Imaging in Chagas Cardiomyopathy. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
180
|
Olivera MJ, Fory JA, Porras JF, Buitrago G. Prevalence of Chagas disease in Colombia: A systematic review and meta-analysis. PLoS One 2019; 14:e0210156. [PMID: 30615644 PMCID: PMC6322748 DOI: 10.1371/journal.pone.0210156] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
Background Despite the adoption of campaigns to interrupt the main vector and to detect Trypanosoma cruzi in blood banks, millions of people are still chronically infected; however, the prevalence data are limited, and the epidemiology of Chagas disease has not been systematically evaluated. This study aimed to estimate the prevalence of Chagas disease in Colombia. Methods A systematic literature review and meta-analysis was conducted to select all observational studies reporting the prevalence of Chagas disease in Colombia, based on serological diagnosis in participants of any age and published between January 2007 and November 2017. Pooled estimates and 95% confidence intervals (95% CIs) were calculated using random-effects models. In addition, the I2 statistic was calculated. Results The literature search yielded a total of 1,510 studies; sixteen articles with relevant prevalence data were included in the systematic review. Of these, only 12 articles were included for entry in the meta-analysis. The pooled prevalence of Chagas disease across studies was 2.0% (95% CI: 1.0–4.0). A high degree of heterogeneity was found among studies (I2 > 75%; p < 0.001). The publication bias was not statistically significant (Egger’s test, p = 0.078). The highest pooled prevalences were found in the adult population (3.0%, 95% CI: 1.0–4.0), pregnant women (3.0%, 95% CI: 3.0–4.0) and the Orinoco region (7.0%, 95% CI: 2.2–12.6). Conclusions The results indicate that the T. cruzi-infected population is aging, the adult population, pregnant women and that the Orinoco region (department of Casanare) have the highest prevalences. These results highlight the need to maintain screening and surveillance programs to identify people with chronic T. cruzi infections.
Collapse
Affiliation(s)
- Mario J Olivera
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, D.C., Colombia.,Programme in Health Economics, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Johana A Fory
- Facultad de Medicina, Universidad Militar Nueva Granada, Bogotá, D.C., Colombia
| | - Julián F Porras
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Giancarlo Buitrago
- Departamento de Epidemiología y Bioestadística, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| |
Collapse
|
181
|
Caldas IS, Menezes APDJ, Diniz LDF, Nascimento ÁFDSD, Novaes RD, Caldas S, Bahia MT. Parasitaemia and parasitic load are limited targets of the aetiological treatment to control the progression of cardiac fibrosis and chronic cardiomyopathy in Trypanosoma cruzi-infected dogs. Acta Trop 2019; 189:30-38. [PMID: 30290285 DOI: 10.1016/j.actatropica.2018.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/26/2018] [Accepted: 09/20/2018] [Indexed: 01/31/2023]
Abstract
It is still unclear whether the progression of acute to chronic Chagas cardiomyopathy is predominantly associated with the limited efficacy of aetiological chemotherapy, or with the pharmacological resistance profiles and pathogenicity of specific Trypanosoma cruzi strains. Thus, we tested the hypothesis that parasitic load could be a limited target of aetiological chemotherapy to prevent chronic cardiomyopathy in dogs infected by different T. cruzi strains. Animals were infected with benznidazole-susceptible (Berenice-78) and -resistant (VL-10 and AAS) strains of T. cruzi. A quantitative real-time PCR strategy was developed to comparatively quantify the parasite load of the three different strains using a single standard curve. For dogs infected with the VL-10 strain, benznidazole treatment reduced cardiac parasitism during the acute phase of infection. However, similar parasite load and collagen deposition were detected in the myocardium of treated and untreated animals in the chronic phase of the infection. In animals infected with the AAS strain, benznidazole reduced parasite load, myocarditis and type III collagen deposition in the acute phase. However, increased type III collagen deposition was verified in the chronic phase. Dogs infected with the Berenice-78 strain showed a parasitological cure and no evidence of myocardial fibrosis. Parasitic load and cardiac fibrosis presented no correlation in acute or chronic phases of T. cruzi infection. Our findings in a canine model of Chagas disease suggest that parasite burden is a limited predictor for disease progression after treatment and show that benznidazole, although not inducing parasitological cure, is able to prevent total fibrosis in the early stages of infection, as well as complete prevention of cardiac damage when it eliminates parasites at the onset of infection.
Collapse
Affiliation(s)
- Ivo Santana Caldas
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, MG, Brazil.
| | - Ana Paula de Jesus Menezes
- Laboratory of Parasitic Diseases, School of Medicine, Department of Biological Sciences and NUPEB, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Lívia de Figueiredo Diniz
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Álvaro Fernando da Silva do Nascimento
- Laboratory of Parasitic Diseases, School of Medicine, Department of Biological Sciences and NUPEB, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Sérgio Caldas
- Laboratory of Biotechnology and Health, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Maria Terezinha Bahia
- Laboratory of Parasitic Diseases, School of Medicine, Department of Biological Sciences and NUPEB, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
182
|
Isolation and Phenotypic Characterization of Inflammatory Cells from Clinical Samples: Purification of Macrophages from Trypanosoma cruzi-Infected Hearts. Methods Mol Biol 2019; 1955:381-395. [PMID: 30868542 DOI: 10.1007/978-1-4939-9148-8_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trypanosoma cruzi, the causal agent of chronic Chagas cardiomyopathy, exhibits an important tropism for cardiac tissue. In consequence, T. cruzi experimental infection represents a unique model to study cardiac macrophage behavior and effector functions during either acute or chronic immune response. In this chapter we describe a protocol to isolate immune cells from T. cruzi-infected murine cardiac tissue and to determine the percentage, absolute number, phenotype, and functionality of monocytes and macrophages by using flow cytometry. Moreover, we describe the parameters to discriminate between resident and infiltrating mononuclear phagocytic cells within infected hearts. The investigations in this field will provide mechanistic insights about the roles of these innate immune cells in the context of a clinically relevant target tissue.
Collapse
|
183
|
Larocca TF, Souza BSDF, Macêdo CT, Azevedo CM, Vasconcelos JF, Silva DN, Portella DCN, dos Santos WLC, Tavora FRF, Souza Neto JDD, dos Santos RR, Soares MBP. Assessment of syndecan-4 expression in the hearts of Trypanosoma cruzi-infected mice and human subjects with chronic Chagas disease cardiomyopathy. SURGICAL AND EXPERIMENTAL PATHOLOGY 2018. [DOI: 10.1186/s42047-018-0012-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Abstract
Background
Chronic Chagas cardiomyopathy (CCC) is characterized by the presence of a multifocal inflammatory response and myocardial damage, leading to fibrosis, arrhythmias and ventricular dysfunction. The expression of syndecan-4, a transmembrane proteoglycan, was previously found to be increased in the hearts of mice chronically infected with Trypanosoma cruzi. The possible involvement of syndecan-4 in the disease pathogenesis, however, remains unknown. Here we evaluated the pattern of expression of syndecan-4 in the heart tissue of T. cruzi infected mice and subjects with Chagas cardiomyopathy, correlating with the degree of inflammation and fibrosis.
Methods
The expression of syndecan-4 was evaluated by immunofluorescence and RT-qPCR in the hearts of C57Bl/6 mice at different time points after infection with the Colombian strain of T. cruzi. Immunostainings for syndecan-4 were performed in heart samples obtained from CCC patients and other etiologies of heart failure. The number of infiltrating inflammatory cells and area of fibrosis were also evaluated and quantified.
Results
In the experimental model, the number of infiltrating inflammatory cells and fibrosis area in the hearts progressively increased after the acute phase of infection, while syndecan-4 expression remained elevated in similar levels in both the acute and chronic phases. Confocal microscopy analysis demonstrated the localization of syndecan-4 expression in blood vessels, co-localized with α-SMA, a marker for vascular smooth muscle cells (VSMCs). Confocal microscopy analysis of human hearts samples showed a similar pattern of syndecan-4 expression in blood vessels. No correlation between syndecan-4 expression and inflammation or fibrosis was found in the hearts from subjects with CCC. We also compared the expression of syndecan-4 evaluated in subjects with CCC, idiopathic dilated cardiomyopathy and ischemic cardiomyopathy. No differences in the number of syndecan-4 positive vessels/mm2 were found comparing the three groups (P = 0.466), whereas CCC patients presented a higher number of infiltrating inflammatory cells, compared to the other etiologies of heart failure. Additionally, no correlation between syndecan-4 and fibrosis or numbers of inflammatory cells was found.
Conclusions
Syndecan-4 is expressed in the heart during the acute and chronic phases of Chagas disease, in association with VSMCs, independently of the degree of myocardial fibrosis or the number of infiltrating inflammatory cells.
Collapse
|
184
|
Higuchi MDL, Kawakami JT, Ikegami RN, Reis MM, Pereira JDJ, Ianni BM, Buck P, Oliveira LMDS, Santos MHH, Hajjar LA, Bocchi EA. Archaea Symbiont of T. cruzi Infection May Explain Heart Failure in Chagas Disease. Front Cell Infect Microbiol 2018; 8:412. [PMID: 30519544 PMCID: PMC6259288 DOI: 10.3389/fcimb.2018.00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Archaeal genes present in Trypanosoma cruzi may represent symbionts that would explain development of heart failure in 30% of Chagas disease patients. Extracellular vesicles in peripheral blood, called exosomes (< 0.1 μm) or microvesicles (>0.1 μm), present in larger numbers in heart failure, were analyzed to determine whether they are derived from archaea in heart failure Chagas disease. Methods: Exosomes and microvesicles in serum supernatant from 3 groups were analyzed: heart failure Chagas disease (N = 26), asymptomatic indeterminate form (N = 21) and healthy non-chagasic control (N = 16). Samples were quantified with transmission electron microscopy, flow cytometer immunolabeled with anti-archaemetzincin-1 antibody (AMZ 1, archaea collagenase) and probe anti-archaeal DNA and zymography to determine AMZ1 (Archaeal metalloproteinase) activity. Results: Indeterminate form patients had higher median numbers of exosomes/case vs. heart failure patients (58.5 vs. 25.5, P < 0.001), higher exosome content of AMZ1 antigens (2.0 vs. 0.0; P < 0.001), and lower archaeal DNA content (0.2 vs. 1.5, P = 0.02). A positive correlation between exosomes and AMZ1 content was seen in indeterminate form (r = 0.5, P < 0.001), but not in heart failure patients (r = 0.002, P = 0.98). Higher free archaeal DNA (63.0 vs. 11.1, P < 0.001) in correlation with exosome numbers (r = 0.66, P = 0.01) was seen in heart failure but not in indeterminate form (r = 0.29, P = 0.10). Flow cytometer showed higher numbers of AMZ1 microvesicles in indeterminate form (64 vs. 36, P = 0.02) and higher archaeal DNA microvesicles in heart failure (8.1 vs. 0.9, P < 0.001). Zymography showed strong% collagenase activity in HF group, mild activity in IF compared to non-chagasic healthy group (121 ± 14, 106 ± 13 and 100; P < 0.001). Conclusions: Numerous exosomes, possibly removing and degrading abnormal AMZ1 collagenase, are associated with indeterminate form. Archaeal microvesicles and their exosomes, possibly associated with release of archaeal AMZ1 in heart failure, are future candidates of heart failure biomarkers if confirmed in larger series, and the therapeutic focus in the treatment of Chagas disease.
Collapse
Affiliation(s)
- Maria de Lourdes Higuchi
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Joyce T Kawakami
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Ikegami
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcia M Reis
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jaqueline de Jesus Pereira
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Barbara M Ianni
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paula Buck
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luanda Mara da Silva Oliveira
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marilia H H Santos
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ludhmila A Hajjar
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Edimar A Bocchi
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
185
|
Machado GA, Anjos DAD, Rodrigues FDF, Anjos RFD, Luckemeyer MBM, Vasconcelos DF, Castro CND. Echocardiographic Study of the Coronary Sinus in the Indeterminate Form of Chagas Disease. Rev Soc Bras Med Trop 2018; 51:827-830. [PMID: 30517538 DOI: 10.1590/0037-8682-0462-2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/05/2018] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION We investigated the occurrence of coronary sinus abnormalities in the indeterminate form of Chagas disease (CD). METHODS Differences between the maximum and minimum diameters of the coronary sinus (∆%) on echocardiography were evaluated in individuals with the indeterminate form of CD (n=14) and those without (n=16) CD. The association of the difference with abnormalities detected by echocardiography and myocardial scintigraphy was assessed. RESULTS The mean Δ% values did not differ significantly between the groups. There was no correlation of the measurements with echocardiographic and myocardial scintigraphy findings. CONCLUSIONS The coronary sinus evaluation revealed no differences between the groups.
Collapse
|
186
|
Upregulation of Cardiac IL-10 and Downregulation of IFN- γ in Balb/c IL-4 -/- in Acute Chagasic Myocarditis due to Colombian Strain of Trypanosoma cruzi. Mediators Inflamm 2018; 2018:3421897. [PMID: 30622430 PMCID: PMC6304210 DOI: 10.1155/2018/3421897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Inflammatory response in Chagas disease is related to parasite and host factors. However, immune system regulation has not been fully elucidated. Thus, this study is aimed at evaluating IL-4 influence on acute phase of Trypanosoma cruzi experimental infection through dosage of cytokine levels in cardiac homogenate of infected Balb/c WT and Balb/c IL-4−/− as well as its histopathological repercussions. For such purpose, mice were divided into two groups: an infected group with 100 forms of the Colombian strain and an uninfected group. After 21 days of infection, animals were euthanized and the blood, spleen, and heart were collected. The spleen was used to culture splenic cells in 48 h. Subsequently, cytokines TNF-α, IL-12p70, IL-10, IFN-γ, and IL-17 were measured in the blood, culture supernatant, and heart apex by ELISA. The base of the heart was used for histopathological analysis. From these analysis, infected Balb/c IL-4−/− mice showed milder inflammatory infiltrate compared to Balb/c WT, but without changes in nest density and collagen deposition. IL-4 absence culminated in lower cardiac tissue IFN-γ production, although it did not affect TNF-α expression in situ. It also decreased TNF-α systemic production and increased IL-10, both systemically and in situ. In addition, IL-4 absence did not influence IL-17 expression. Splenocytes of IL-4-deficient mice produced higher amounts of IFN-γ, TNF-α, and IL-17 and lower amounts of IL-10. Thus, IL-4 absence in acute phase of experimental infection with T. cruzi Colombian strain reduces myocarditis due to lower IFN-γ production and greater IL-10 production in situ and this pattern is not influenced by splenocyte general repertoire.
Collapse
|
187
|
Mendonça AAS, Coelho CM, Veloso MP, Caldas IS, Gonçalves RV, Teixeira AL, de Miranda AS, Novaes RD. Relevance of Trypanothione Reductase Inhibitors on Trypanosoma cruzi Infection: A Systematic Review, Meta-Analysis, and In Silico Integrated Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8676578. [PMID: 30473742 PMCID: PMC6220389 DOI: 10.1155/2018/8676578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/14/2018] [Indexed: 02/08/2023]
Abstract
Due to the rudimentary antioxidant defenses in Trypanosoma cruzi, disruptors of redox balance are promising candidates for new antitrypanosomal drugs. We developed an integrated model based on systematic review, meta-analyses, and molecular modeling to evaluate the effect of trypanothione reductase (TR) inhibitors in T. cruzi infections. Our findings indicated that the TR inhibitors analyzed were effective in reducing parasitemia and mortality due to Trypanosoma cruzi infection in animal models. The most investigated drugs (clomipramine and thioridazine) showed no beneficial effects on the occurrence of infection-related electrocardiographic abnormalities or the affinity and density of cardiac β-adrenergic receptors. The affinity between the tested ligands and the active site of TR was confirmed by molecular docking. However, the molecular affinity score was unable to explain TR inhibition and T. cruzi death in vitro or the antiparasitic potential of these drugs when tested in preclinical models of T. cruzi infection. The divergence of in silico, in vitro, and in vivo findings indicated that the anti-T. cruzi effects of the analyzed drugs were not restricted to TR inhibition. As in vivo studies on TR inhibitors are still scarce and exhibit methodological limitations, mechanistic and highly controlled studies are required to improve the quality of evidence.
Collapse
Affiliation(s)
- Andréa Aparecida Santos Mendonça
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
- Department of Structural Biology, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
| | - Camila Morais Coelho
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
| | - Marcia Paranho Veloso
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
| | - Ivo Santana Caldas
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
- Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
| | | | - Antônio Lucio Teixeira
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Aline Silva de Miranda
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
- Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 30130-100 Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
- Department of Structural Biology, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
| |
Collapse
|
188
|
Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM. Pathology and Pathogenesis of Chagas Heart Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:421-447. [PMID: 30355152 DOI: 10.1146/annurev-pathol-020117-043711] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chagas heart disease is an inflammatory cardiomyopathy that develops in approximately one-third of people infected with the protozoan parasite Trypanosoma cruzi. One way T. cruzi is transmitted to people is through contact with infected kissing bugs, which are found in much of the Western Hemisphere, including in vast areas of the United States. The epidemiology of T. cruzi and Chagas heart disease and the varied mechanisms leading to myocyte destruction, mononuclear cell infiltration, fibrosis, and edema in the heart have been extensively studied by hundreds of scientists for more than 100 years. Despite this wealth of knowledge, it is still impossible to predict what will happen in an individual infected with T. cruzi because of the tremendous variability in clonal parasite virulence and human susceptibility to infection and the lack of definitive molecular predictors of outcome from either side of the host-parasite equation. Further, while several distinct mechanisms of pathogenesis have been studied in isolation, it is certain that multiple coincident mechanisms combine to determine the ultimate outcome. For these reasons, Chagas disease is best considered a collection of related but distinct illnesses. This review highlights the pathology and pathogenesis of the most common adverse sequela of T. cruzi infection-Chagas heart disease-and concludes with a discussion of key unanswered questions and a view to the future.
Collapse
Affiliation(s)
- Kevin M Bonney
- Liberal Studies, Faculty of Arts and Sciences, New York University, New York, NY 10003, USA;
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| | - Stacey A Kim
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA;
| | - David M Engman
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| |
Collapse
|
189
|
Ledoux T, Aridgides D, Salvador R, Ngwenyama N, Panagiotidou S, Alcaide P, Blanton RM, Perrin MA. Trypanosoma cruzi Neurotrophic Factor Facilitates Cardiac Repair in a Mouse Model of Chronic Chagas Disease. J Pharmacol Exp Ther 2018; 368:11-20. [PMID: 30348750 DOI: 10.1124/jpet.118.251900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Most patients acutely infected with Trypanosoma cruzi undergo short-term structural and functional cardiac alterations that heal without sequelae. By contrast, in patients whose disease progresses to chronic infection, irreversible degenerative chronic Chagas cardiomyopathy (CCC) may develop. To account for the contrast between cardiac regeneration in high-parasitism acute infection and progressive cardiomyopathy in low-parasitism CCC, we hypothesized that T. cruzi expresses repair factors that directly facilitate cardiac regeneration. We investigated, as one such repair factor, the T. cruzi parasite-derived neurotrophic factor (PDNF), known to trigger survival of cardiac myocytes and fibroblasts and upregulate chemokine chemokine C-C motif ligand 2, which promotes migration of regenerative cardiac progenitor cells (CPCs). Using in vivo and in vitro models of Chagas disease, we tested whether T. cruzi PDNF promotes cardiac repair. Quantitative PCR and flow cytometry of heart tissue revealed that stem-cell antigen-1 (Sca-1+) CPCs expand in acute infection in parallel to parasitism. Recombinant PDNF induced survival and expansion of ex vivo CPCs, and intravenous administration of PDNF into naïve mice upregulated mRNA of cardiac stem-cell marker Sca-1. Furthermore, in CCC mice, a 3-week intravenous administration of PDNF protocol induced CPC expansion and reversed left ventricular T-cell accumulation and cardiac remodeling including fibrosis. Compared with CCC vehicle-treated mice, which developed severe atrioventricular block, PDNF-treated mice exhibited reduced frequency and severity of conduction abnormalities. Our findings are in support of the novel concept that T. cruzi uses PDNF to promote mutually beneficial cardiac repair in Chagas disease. This could indicate a possible path to prevention or treatment of CCC.
Collapse
Affiliation(s)
- Tamar Ledoux
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Daniel Aridgides
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Ryan Salvador
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Njabulo Ngwenyama
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Smaro Panagiotidou
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Pilar Alcaide
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Robert M Blanton
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| | - Mercio A Perrin
- Program in Pharmacology and Experimental Therapeutics (T.L., S.P., M.P.) and Program in Immunology (D.A., R.S., N.N., P.A.), Sackler School of Graduate Biomedical Sciences and Departments of Developmental, Molecular and Chemical Biology (T.L., D.A., R.S., S.P., M.P.) and Immunology (N.N., P.A.), Tufts University, Boston, Massachusetts; and Molecular Cardiology Research Institute and Division of Cardiology (R.B.), Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
190
|
Nunes MCP, Beaton A, Acquatella H, Bern C, Bolger AF, Echeverría LE, Dutra WO, Gascon J, Morillo CA, Oliveira-Filho J, Ribeiro ALP, Marin-Neto JA. Chagas Cardiomyopathy: An Update of Current Clinical Knowledge and Management: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e169-e209. [DOI: 10.1161/cir.0000000000000599] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background:
Chagas disease, resulting from the protozoan
Trypanosoma cruzi
, is an important cause of heart failure, stroke, arrhythmia, and sudden death. Traditionally regarded as a tropical disease found only in Central America and South America, Chagas disease now affects at least 300 000 residents of the United States and is growing in prevalence in other traditionally nonendemic areas. Healthcare providers and health systems outside of Latin America need to be equipped to recognize, diagnose, and treat Chagas disease and to prevent further disease transmission.
Methods and Results:
The American Heart Association and the Inter-American Society of Cardiology commissioned this statement to increase global awareness among providers who may encounter patients with Chagas disease outside of traditionally endemic environments. In this document, we summarize the most updated information on diagnosis, screening, and treatment of
T cruzi
infection, focusing primarily on its cardiovascular aspects. This document also provides quick reference tables, highlighting salient considerations for a patient with suspected or confirmed Chagas disease.
Conclusions:
This statement provides a broad summary of current knowledge and practice in the diagnosis and management of Chagas cardiomyopathy. It is our intent that this document will serve to increase the recognition of Chagas cardiomyopathy in low-prevalence areas and to improve care for patients with Chagas heart disease around the world.
Collapse
|
191
|
Magarakis M, Macias AE, Tompkins BA, Reis V, Loebe M, Batista R, Salerno TA. Cardiac surgery for Chagas disease. J Card Surg 2018; 33:597-602. [DOI: 10.1111/jocs.13795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Magarakis
- Jackson Memorial Hospital-University of Miami Miller School of Medicine; Department of Surgery, Division of Cardiothoracic Surgery, Cardiac Surgery section; Miami Florida
| | - Alejandro E. Macias
- Department of Surgery; University of Medicine and Health Sciences; Miami Florida
| | - Bryon A. Tompkins
- Department of Surgery; Jackson Memorial Hospital-University of Miami Miller School of Medicine; Miami Florida
| | - Victor Reis
- Jackson Memorial Hospital-University of Miami Miller School of Medicine; Department of Surgery, Division of Cardiothoracic Surgery, Cardiac Surgery section; Miami Florida
| | - Matthias Loebe
- Jackson Memorial Hospital-University of Miami Miller School of Medicine; Department of Surgery, Division of Transplant Surgery; Miami Florida
| | | | - Tomas A. Salerno
- Jackson Memorial Hospital-University of Miami Miller School of Medicine; Department of Surgery, Division of Cardiothoracic Surgery; Miami Florida
| |
Collapse
|
192
|
Roggero E, Del Rey A, Wildmann J, Besedovsky H. Glucocorticoids and sympathetic neurotransmitters modulate the acute immune response to Trypanosoma cruzi. Ann N Y Acad Sci 2018; 1437:83-93. [PMID: 30088661 DOI: 10.1111/nyas.13946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 01/11/2023]
Abstract
Evidence suggests that natural and adaptive immune responses can trigger neuroendocrine responses. Here, we discuss changes in the activity of the hypothalamus-pituitary-adrenal axis and in autonomic nerves, predominantly of the sympathetic nervous system, in a mouse model of acute infection with Trypanosoma cruzi. The endocrine response includes a marked increased release of glucocorticoid and a decrease of immune-stimulatory hormones, such as dehydroepiandrosterone sulfate, prolactin, and growth hormone during infection. These endocrine changes result in reduced proinflammatory cytokine production, increased regulatory/effector T cell ratio, and thymus atrophy. The sympathetic activity in the spleen of infected mice is also markedly reduced. However, the residual sympathetic activity can modulate the immune response to the parasite, as shown by increased mortality and production of proinflammatory cytokines in sympathetically denervated, infected mice. The outcome of the neuroendocrine response is the moderation of the intensity of the immune response to the parasite, an effect that results in delayed mortality in susceptible mice, and favors the course toward chronicity in more resistant animals.
Collapse
Affiliation(s)
- Eduardo Roggero
- Institute of Clinical and Experimental Immunology of Rosario, Faculty of Medical Sciences, National University of Rosario, Rosario, Argentina
| | - Adriana Del Rey
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - Johannes Wildmann
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - Hugo Besedovsky
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| |
Collapse
|
193
|
Marino VSP, Dumont SM, Mota LDG, Braga DDS, Freitas SSD, Moreira MDCV. Sympathetic Dysautonomia in Heart Failure by 123I-MIBG: comparison between Chagasic, non-Chagasic and heart transplant patients. Arq Bras Cardiol 2018; 111:182-190. [PMID: 30088556 PMCID: PMC6122917 DOI: 10.5935/abc.20180124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/23/2018] [Indexed: 01/23/2023] Open
Abstract
Background Heart failure (HF) is a severe public health problem because of its high
morbidity and mortality and elevated costs, thus requiring better
understanding of its course. In its complex and multifactorial pathogenesis,
sympathetic hyperactivity plays a relevant role. Considering that
sympathetic dysfunction is already present in the initial phases of chronic
Chagas cardiomyopathy (CCC) and frequently associated with a worse
prognosis, we assumed it could be more severe in CCC than in
cardiomyopathies of other etiologies (non-CCC). Objectives To assess the cardiac sympathetic dysfunction 123I-MIBG) of HF,
comparing individuals with CCC to those with non-CCC, using heart transplant
(HT) patients as denervated heart parameters. Methods We assessed 76 patients with functional class II-VI HF, being 25 CCC (17
men), 25 non-CCC (14 men) and 26 HT (20 men), by use of cardiac
123I-metaiodobenzylguanidine 123I-MIBG)
scintigraphy, estimating the early and late heart-to-mediastinum ratio (HMR)
of 123I-MIBG uptake and cardiac washout (WO%). The 5%
significance level was adopted in the statistical analysis. Results The early and late HMR values were 1.73 ± 0.24 and 1.58 ± 0.27,
respectively, in CCC, and 1.62 ± 0.21 and 1.44 ± 0.16 in
non-CCC (p = NS), being, however, higher in HT patients (p < 0.001). The
WO% values were 41.65 ± 21.4 (CCC), 47.37 ± 14.19% (non-CCC)
and 43.29 ± 23.02 (HT), p = 0.057. The late HMR values showed a
positive weak correlation with left ventricular ejection fraction (LVEF) in
CCC and non-CCC (r = 0.42 and p = 0.045; and r = 0.49 and p = 0.015,
respectively). Conclusion Sympathetic hyperactivity 123I-MIBG) was evidenced in patients
with class II-IV HF, LVEF < 45%, independently of the HF etiology, as
compared to HT patients.
Collapse
Affiliation(s)
| | - Sandra Monetti Dumont
- Departamento de Anatomia e Imagem da Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG - Brazil
| | - Luciene das Graças Mota
- Departamento de Anatomia e Imagem da Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG - Brazil
| | - Daniela de Souza Braga
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG - Brazil
| | | | | |
Collapse
|
194
|
Haematological alterations in non-human hosts infected with Trypanosoma cruzi: a systematic review. Parasitology 2018; 146:142-160. [PMID: 30070181 DOI: 10.1017/s0031182018001294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
American trypanosomiasis is a neglected tropical disease whose spectrum has not been quite understood, including the impact of Trypanosoma cruzi infection on the haematological parameters of different vertebrate hosts. Thus, this study was designed to compare the pattern of haematological changes induced by T. cruzi infection in order to identify possible species-specific differences among taxons. We also aimed at evaluating the use of this parameter as a tool for diagnosis during the acute phase, when symptoms are usually masked. For this purpose, we performed a systematic search on PubMed and Scopus databases to retrieve original studies published until August 2016. Thirty-one studies were selected using Prisma strategy, which were then submitted to data extraction and methodological bias analysis. Half of the studies showed that the number of erythrogram decreased in infected animals, indicating anaemia. In 68.2% of the studies, the total amount of leukogram values increased, suggesting infection. The main methodological limitations were insufficient information for T. cruzi strains identification, inoculation routes and parasitological characterization. Most of the mammalian species analysed showed the same pattern of haematological changes following T. cruzi infection, indicating that haematological parameters might direct the diagnosis of Chagas disease in the initial phase.
Collapse
|
195
|
Zingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 2018; 184:38-52. [PMID: 28941731 DOI: 10.1016/j.actatropica.2017.09.017] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 11/27/2022]
Abstract
The genetic diversity of Trypanosoma cruzi, the protozoan agent of Chagas disease, is widely recognized. At present, T. cruzi is partitioned into seven discrete typing units (DTUs), TcI-TcVI and Tcbat. This article reviews the present knowledge on the parasite population structure, the evolutionary relationships among DTUs and their distinct, but not exclusive ecological and epidemiological associations. Different models for the origin of hybrid DTUs are examined, which agree that genetic exchange among T. cruzi populations is frequent and has contributed to the present parasite population structure. The geographic distribution of the prevalent DTUs in humans from the southern United States to Argentina is here presented and the circumstantial evidence of a possible association between T. cruzi genotype and Chagas disease manifestations is discussed. The available information suggests that parasite strains detected in patients, regardless of the clinical presentation, reflect the principal DTU circulating in the domestic transmission cycles of a particular region. In contrast, in several orally transmitted outbreaks, sylvatic strains are implicated. As a consequence of the genotypic and phenotypic differences of T. cruzi strains and the differential geographic distribution of DTUs in humans, regional variations in the sensitivity of the serological tests are verified. The natural resistance to benznidazole and nifurtimox, verified in vivo and in vitro for some parasite stocks, is not associated with any particular DTU, and does not explain the marked difference in the anti-parasitic efficacy of both drugs in the acute and chronic phases of Chagas disease. Throughout this review, it is emphasized that the interplay between parasite and host genetics should have an important role in the definition of Chagas disease pathogenesis, anti-T. cruzi immune response and chemotherapy outcome and should be considered in future investigations.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
196
|
Santana DY, Salgado RM, Fevereiro M, Silva do Nascimento R, Fonseca R, Saraiva Câmara NO, Epiphanio S, Marinho CRF, Barreto-Chaves ML, D’ Império-Lima MR, Álvarez JM. MyD88 activation in cardiomyocytes contributes to the heart immune response to acute Trypanosoma cruzi infection with no effect on local parasite control. PLoS Negl Trop Dis 2018; 12:e0006617. [PMID: 30067739 PMCID: PMC6089445 DOI: 10.1371/journal.pntd.0006617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/13/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathy is the most serious consequence of Chagas disease, a neglected human disorder caused by Trypanosoma cruzi infection. Because T. cruzi parasites invade cardiomyocytes, we sought to investigate whether these cells recognize the parasite in vivo by receptors signaling through the MyD88 adaptor, which mediates the activation pathway of most Toll-like receptors (TLRs) and IL-1/IL-18 receptors, and influence the development of acute cardiac pathology. First, we showed that HL-1 cardiac muscle cell line expresses MyD88 gene and protein at resting state and after T. cruzi infection. To evaluate the role in vivo of MyD88 expression in cardiomyocytes, we generated Mer+MyD88flox+/+ mice in which tamoxifen treatment is expected to eliminate the MyD88 gene exclusively in cardiomyocytes. This Cre-loxP model was validated by both PCR and western blot analysis; tamoxifen treatment of Mer+MyD88flox+/+ mice resulted in decreased MyD88 gene and protein expression in the heart, but not in the spleen, while had no effect on littermates. The elimination of MyD88 in cardiomyocytes determined a lower increase in CCL5, IFNγ and TNFα gene transcription during acute infection by T. cruzi parasites of the Y strain, but it did not significantly modify heart leukocyte infiltration and parasitism. Together, our results show that cardiomyocytes can sense T. cruzi infection through MyD88-mediated molecular pathways and contribute to the local immune response to the parasite. The strong pro-inflammatory response of heart-recruited leukocytes may overshadow the effects of MyD88 deficiency in cardiomyocytes on the local leukocyte recruitment and T. cruzi control during acute infection.
Collapse
Affiliation(s)
- Danni Yohani Santana
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Rafael Moysés Salgado
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Marina Fevereiro
- Department of Anatomy of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | | | - Raissa Fonseca
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Sabrina Epiphanio
- Department of Clinical and Toxicologic Analyses, Faculty of Pharmacy, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - José M. Álvarez
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
197
|
Lewis MD, Francisco AF, Jayawardhana S, Langston H, Taylor MC, Kelly JM. Imaging the development of chronic Chagas disease after oral transmission. Sci Rep 2018; 8:11292. [PMID: 30050153 PMCID: PMC6062536 DOI: 10.1038/s41598-018-29564-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Chagas disease is a zoonosis caused by the protozoan parasite Trypanosoma cruzi. Transmission cycles are maintained by haematophagous triatomine bug vectors that carry infective T. cruzi in their faeces. Most human infections are acquired by contamination of mucosal membranes with triatomine faeces after being bitten, however, T. cruzi can be transmitted by several other routes. Oral transmission is an increasingly important aspect of Chagas disease epidemiology, typically involving food or drink products contaminated with triatomines. This has recently caused numerous outbreaks and been linked to unusually severe acute infections. The long-term impact of oral transmission on infection dynamics and disease pathogenesis is unclear. We used highly sensitive bioluminescence imaging and quantitative histopathology to study orally transmitted T. cruzi infections in mice. Both metacyclic and bloodform trypomastigotes were infectious via the oral cavity, but only metacyclics led to established infections by intra-gastric gavage. Mice displayed only mild acute symptoms but later developed significantly increased myocardial collagen content (p = 0.017), indicative of fibrosis. Gastrointestinal tissues and skin were the principal chronic infection reservoirs. Chronic phase parasite load profiles, tissue distribution and myocardial fibrosis severity were comparable to needle-injected controls. Thus, the oral route neither exacerbates nor ameliorates experimental Chagas disease.
Collapse
Affiliation(s)
- Michael D Lewis
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| | - Amanda F Francisco
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Shiromani Jayawardhana
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Harry Langston
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Martin C Taylor
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - John M Kelly
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| |
Collapse
|
198
|
IGF-1-Overexpressing Mesenchymal Stem/Stromal Cells Promote Immunomodulatory and Proregenerative Effects in Chronic Experimental Chagas Disease. Stem Cells Int 2018; 2018:9108681. [PMID: 30140292 PMCID: PMC6081563 DOI: 10.1155/2018/9108681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been investigated for the treatment of diseases that affect the cardiovascular system, including Chagas disease. MSCs are able to promote their beneficial actions through the secretion of proregenerative and immunomodulatory factors, including insulin-like growth factor-1 (IGF-1), which has proregenerative actions in the heart and skeletal muscle. Here, we evaluated the therapeutic potential of IGF-1-overexpressing MSCs (MSC_IGF-1) in a mouse model of chronic Chagas disease. C57BL/6 mice were infected with Colombian strain Trypanosoma cruzi and treated with MSCs, MSC_IGF-1, or vehicle (saline) six months after infection. RT-qPCR analysis confirmed the presence of transplanted cells in both the heart and skeletal muscle tissues. Transplantation of either MSCs or MSC_IGF-1 reduced the number of inflammatory cells in the heart when compared to saline controls. Moreover, treatment with MSCs or MSC_IGF-1 significantly reduced TNF-α, but only MSC treatment reduced IFN-γ production compared to the saline group. Skeletal muscle sections of both MSC- and MSC_IGF-1-treated mice showed a reduction in fibrosis compared to saline controls. Importantly, the myofiber area was reduced in T. cruzi-infected mice, and this was recovered after treatment with MSC_IGF-1. Gene expression analysis in the skeletal muscle showed a higher expression of pro- and anti-inflammatory molecules in MSC_IGF-1-treated mice compared to MSCs alone, which significantly reduced the expression of TNF-α and IL-1β. In conclusion, our results indicate the therapeutic potential of MSC_IGF-1, with combined immunomodulatory and proregenerative actions to the cardiac and skeletal muscles.
Collapse
|
199
|
Pereira NDS, Queiroga TBD, Nunes DF, Andrade CDM, Nascimento MSL, Do-Valle-Matta MA, da Câmara ACJ, Galvão LMDC, Guedes PMM, Chiari E. Innate immune receptors over expression correlate with chronic chagasic cardiomyopathy and digestive damage in patients. PLoS Negl Trop Dis 2018; 12:e0006589. [PMID: 30044791 PMCID: PMC6078325 DOI: 10.1371/journal.pntd.0006589] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/06/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022] Open
Abstract
Chronic chagasic cardiomyopathy (CCC) is observed in 30% to 50% of the individuals infected by Trypanosoma cruzi and heart failure is the important cause of death among patients in the chronic phase of Chagas disease. Although some studies have elucidated the role of adaptive immune responses involving T and B lymphocytes in cardiac pathogenesis, the role of innate immunity receptors such as Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in CCC pathophysiology has not yet been determined. In this study, we evaluated the association among innate immune receptors (TLR1-9 and nucleotide-binding domain-like receptor protein 3/NLRP3), its adapter molecules (Myd88, TRIF, ASC and caspase-1) and cytokines (IL-1β, IL-6, IL-12, IL-18, IL-23, TNF-α, and IFN-β) with clinical manifestation, digestive and cardiac function in patients with different clinical forms of chronic Chagas disease. The TLR8 mRNA expression levels were enhanced in the peripheral blood mononuclear cells (PBMC) from digestive and cardiodigestive patients compared to indeterminate and cardiac patients. Furthermore, mRNA expression of IFN-β (cytokine produced after TLR8 activation) was higher in digestive and cardiodigestive patients when compared to indeterminate. Moreover, there was a positive correlation between TLR8 and IFN-β mRNA expression with sigmoid and rectum size. Cardiac and cardiodigestive patients presented higher TLR2, IL-12 and TNF-α mRNA expression than indeterminate and digestive patients. Moreover, cardiac patients also expressed higher levels of NLRP3, ASC and IL-1β mRNAs than indeterminate patients. In addition, we showed a negative correlation among TLR2, IL-1β, IL-12 and TNF-α levels with left ventricular ejection fraction, and positive correlation between NLRP3 with cardiothoracic index, and TLR2, IL-1β and IL-12 with left ventricular mass index. Together, our data suggest that high expression of innate immune receptors in cardiac and digestive patients may induce an enhancement of cytokine expression and participate of cardiac and digestive dysfunction.
Collapse
Affiliation(s)
- Nathalie de Sena Pereira
- Department of Parasitology, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Natal, Brazil
- School of Health, Potiguar University, Natal, RN, Brazil
| | | | - Daniela Ferreira Nunes
- Department of Parasitology, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Cléber de Mesquita Andrade
- Department of Biomedical Sciences, University of Rio Grande do Norte State, Rio Grande do Norte, Mossoró, Brazil
| | | | | | | | | | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Natal, Brazil
| | - Egler Chiari
- Department of Parasitology, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
200
|
Rojas LZ, Glisic M, Pletsch-Borba L, Echeverría LE, Bramer WM, Bano A, Stringa N, Zaciragic A, Kraja B, Asllanaj E, Chowdhury R, Morillo CA, Rueda-Ochoa OL, Franco OH, Muka T. Electrocardiographic abnormalities in Chagas disease in the general population: A systematic review and meta-analysis. PLoS Negl Trop Dis 2018; 12:e0006567. [PMID: 29897909 PMCID: PMC5999094 DOI: 10.1371/journal.pntd.0006567] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/29/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Chagas disease (CD) is a major public health concern in Latin America and a potentially serious emerging threat in non-endemic countries. Although the association between CD and cardiac abnormalities is widely reported, study design diversity, sample size and quality challenge the information, calling for its update and synthesis, which would be very useful and relevant for physicians in non-endemic countries where health care implications of CD are real and neglected. We performed to systematically review and meta-analyze population-based studies that compared prevalence of overall and specific ECG abnormalities between CD and non-CD participants in the general population. METHODS Six databases (EMBASE, Ovid Medline, Web of Science, Cochrane Central, Google Scholar and Lilacs) were searched systematically. Observational studies were included. Odds ratios (OR) were computed using random-effects model. RESULTS Forty-nine studies were selected, including 34,023(12,276 CD and 21,747 non-CD). Prevalence of overall ECG abnormalities was higher in participants with CD (40.1%; 95%CIs=39.2-41.0) compared to non-CD (24.1%; 95%CIs=23.5-24.7) (OR=2.78; 95%CIs=2.37-3.26). Among specific ECG abnormalities, prevalence of complete right bundle branch block (RBBB) (OR=4.60; 95%CIs=2.97-7.11), left anterior fascicular block (LAFB) (OR=1.60; 95%CIs=1.21-2.13), combination of complete RBBB/LAFB (OR=3.34; 95%CIs=1.76-6.35), first-degree atrioventricular block (A-V B) (OR=1.71; 95%CIs=1.25-2.33), atrial fibrillation (AF) or flutter (OR=2.11; 95%CIs=1.40-3.19) and ventricular extrasystoles (VE) (OR=1.62; 95%CIs=1.14-2.30) was higher in CD compared to non-CD participants. CONCLUSIONS This systematic review and meta-analysis provides an update and synthesis in this field. This research of observational studies indicates a significant excess in prevalence of ECG abnormalities (40.1%) related to T. cruzi infection in the general population from Chagas endemic regions, being the most common ventricular (RBBB and LAFB), and A-V B (first-degree) node conduction abnormalities as well as arrhythmias (AF or flutter and VE). Also, prevalence of ECG alterations in children was similar to that in adults and suggests earlier onset of cardiac disease.
Collapse
Affiliation(s)
- Lyda Z. Rojas
- Department of Paediatrics, Obstetrics & Gynaecology and Preventative Medicine, Universidad Autónoma de Barcelona, Barcelona, Spain
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Grupo de Estudios Epidemiológicos y Salud Pública-FCV, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
- * E-mail: ,
| | - Marija Glisic
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Laura Pletsch-Borba
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Luis E. Echeverría
- Grupo de Estudios Epidemiológicos y Salud Pública-FCV, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
- Heart Failure and Heart Transplant Clinic, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Wichor M. Bramer
- Medical Library, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Arjola Bano
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Najada Stringa
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bledar Kraja
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Eralda Asllanaj
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rajiv Chowdhury
- Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Carlos A. Morillo
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cardiology Division, McMaster University, PHRI-HHSC, Hamilton, Ontario, Canada
| | - Oscar L. Rueda-Ochoa
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Electrocardiography Research Group, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Taulant Muka
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|