151
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
152
|
Intelectin contributes to allergen-induced IL-25, IL-33, and TSLP expression and type 2 response in asthma and atopic dermatitis. Mucosal Immunol 2017; 10:1491-1503. [PMID: 28224996 PMCID: PMC5568519 DOI: 10.1038/mi.2017.10] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 01/18/2017] [Indexed: 02/04/2023]
Abstract
The epithelial and epidermal innate cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) have pivotal roles in the initiation of allergic inflammation in asthma and atopic dermatitis (AD). However, the mechanism by which the expression of these innate cytokines is regulated remains unclear. Intelectin (ITLN) is expressed in airway epithelial cells and promotes allergic airway inflammation. We hypothesized that ITLN is required for allergen-induced IL-25, IL-33, and TSLP expression. In two asthma models, Itln knockdown reduced allergen-induced increases in Il-25, Il-33, and Tslp and development of type 2 response, eosinophilic inflammation, mucus overproduction, and airway hyperresponsiveness. Itln knockdown also inhibited house dust mite (HDM)-induced early upregulation of Il-25, Il-33, and Tslp in a model solely inducing airway sensitization. Using human airway epithelial cells, we demonstrated that HDM-induced increases in ITLN led to phosphorylation of epidermal growth factor receptor and extracellular-signal regulated kinase, which were required for induction of IL-25, IL-33, and TSLP expression. In two AD models, Itln knockdown suppressed expression of Il-33, Tslp, and Th2 cytokines and eosinophilic inflammation. In humans, ITLN1 expression was significantly increased in asthmatic airways and in lesional skin of AD. We conclude that ITLN contributes to allergen-induced Il-25, Il-33, and Tslp expression in asthma and AD.
Collapse
|
153
|
Optical coherence tomography for identification and quantification of human airway wall layers. PLoS One 2017; 12:e0184145. [PMID: 28981500 PMCID: PMC5628810 DOI: 10.1371/journal.pone.0184145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022] Open
Abstract
Background High-resolution computed tomography has limitations in the assessment of airway wall layers and related remodeling in obstructive lung diseases. Near infrared-based optical coherence tomography (OCT) is a novel imaging technique that combined with bronchoscopy generates highly detailed images of the airway wall. The aim of this study is to identify and quantify human airway wall layers both ex-vivo and in-vivo by OCT and correlate these to histology. Methods Patients with lung cancer, prior to lobectomy, underwent bronchoscopy including in-vivo OCT imaging. Ex-vivo OCT imaging was performed in the resected lung lobe after needle insertion for matching with histology. Airway wall layer perimeters and their corresponding areas were assessed by two independent observers. Airway wall layer areas (total wall area, mucosal layer area and submucosal muscular layer area) were calculated. Results 13 airways of 5 patients were imaged by OCT. Histology was matched with 51 ex-vivo OCT images and 39 in-vivo OCT images. A significant correlation was found between ex-vivo OCT imaging and histology, in-vivo OCT imaging and histology and ex-vivo OCT imaging and in-vivo OCT imaging for all measurements (p < 0.0001 all comparisons). A minimal bias was seen in Bland-Altman analysis. High inter-observer reproducibility with intra-class correlation coefficients all above 0.90 were detected. Conclusions OCT is an accurate and reproducible imaging technique for identification and quantification of airway wall layers and can be considered as a promising minimal-invasive imaging technique to identify and quantify airway remodeling in obstructive lung diseases.
Collapse
|
154
|
Abstract
Asthma and COPD remain two diseases of the respiratory tract with unmet medical needs. This review considers the current state of play with respect to what is known about the underlying pathogenesis of these two chronic inflammatory diseases of the lung. The review highlights why they are different conditions requiring different approaches to treatment and provides a backdrop for the subsequent chapters in this volume discussing recent advances in the pharmacology and treatment of asthma and COPD.
Collapse
Affiliation(s)
- Clive Page
- Sackler Institute of Pulmonary Pharmacology, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Blaze O'Shaughnessy
- Sackler Institute of Pulmonary Pharmacology, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Peter Barnes
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| |
Collapse
|
155
|
Husta BC, Raoof S, Erzurum S, Mehta AC. Tracheobronchopathy From Inhaled Corticosteroids. Chest 2017; 152:1296-1305. [PMID: 28864055 DOI: 10.1016/j.chest.2017.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/06/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Inhaled corticosteroids (ICSs) have become the mainstay of asthma control. They are also recommended as an add-on therapy to long-acting beta agonists and anticholinergics in moderate to severe COPD with recurrent exacerbations. Ultimately this clinical practice has led to the widespread use of ICSs, which are supported by a more favorable side effect profile than that of systemic steroids.
Collapse
Affiliation(s)
- Bryan C Husta
- Lenox Hill Hospital, Hofstra Northwell School of Medicine, New York, NY
| | - Suhail Raoof
- Lenox Hill Hospital, Hofstra Northwell School of Medicine, New York, NY
| | - Serpil Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Atul C Mehta
- Respiratory Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
156
|
Salter B, Pray C, Radford K, Martin JG, Nair P. Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir Res 2017; 18:156. [PMID: 28814293 PMCID: PMC5559796 DOI: 10.1186/s12931-017-0640-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/10/2017] [Indexed: 01/15/2023] Open
Abstract
Airway remodelling is an important feature of asthma pathogenesis. A key structural change inherent in airway remodelling is increased airway smooth muscle mass. There is emerging evidence to suggest that the migration of airway smooth muscle cells may contribute to cellular hyperplasia, and thus increased airway smooth muscle mass. The precise source of these cells remains unknown. Increased airway smooth muscle mass may be collectively due to airway infiltration of myofibroblasts, neighbouring airway smooth muscle cells in the bundle, or circulating hemopoietic progenitor cells. However, the relative contribution of each cell type is not well understood. In addition, although many studies have identified pro and anti-migratory agents of airway smooth muscle cells, whether these agents can impact airway remodelling in the context of human asthma, remains to be elucidated. As such, further research is required to determine the exact mechanism behind airway smooth muscle cell migration within the airways, how much this contributes to airway smooth muscle mass in asthma, and whether attenuating this migration may provide a therapeutic avenue for asthma. In this review article, we will discuss the current evidence with respect to the regulation of airway smooth muscle cell migration in asthma.
Collapse
Affiliation(s)
- Brittany Salter
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - Cara Pray
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - Katherine Radford
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - James G. Martin
- Meakins Christie Laboratories, McGill University, Montreal, QC Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
157
|
Shariff S, Shelfoon C, Holden NS, Traves SL, Wiehler S, Kooi C, Proud D, Leigh R. Human Rhinovirus Infection of Epithelial Cells Modulates Airway Smooth Muscle Migration. Am J Respir Cell Mol Biol 2017; 56:796-803. [PMID: 28257236 DOI: 10.1165/rcmb.2016-0252oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Airway remodeling, a characteristic feature of asthma, begins in early life. Recurrent human rhinovirus (HRV) infections are a potential inciting stimulus for remodeling. One component of airway remodeling is an increase in airway smooth muscle cell (ASMC) mass with a greater proximity of the ASMCs to the airway epithelium. We asked whether human bronchial epithelial cells infected with HRV produced mediators that are chemotactic for ASMCs. ASMC migration was investigated using the modified Boyden Chamber and the xCELLigence Real-Time Cell Analyzer (ACEA Biosciences Inc., San Diego, CA). Multiplex bead analysis was used to measure HRV-induced epithelial chemokine release. The chemotactic effects of CCL5, CXCL8, and CXCL10 were also examined. Supernatants from HRV-infected epithelial cells caused ASMC chemotaxis. Pretreatment of ASMCs with pertussis toxin abrogated chemotaxis, as did treatment with formoterol, forskolin, or 8-bromo-cAMP. CCL5, CXCL8, and CXCL10 were the most up-regulated chemokines produced by HRV-infected airway epithelial cells. When recombinant CCL5, CXCL8, and CXCL10 were used at levels found in epithelial supernatants, they induced ASMC chemotaxis similar to that seen with epithelial cell supernatants. When examined individually, CCL5 was the most effective chemokine in causing ASMC migration, and treatment of supernatant from HRV-infected epithelial cells with anti-CCL5 antibodies significantly attenuated ASMC migration. These findings suggest that HRV-induced CCL5 can induce ASMC chemotaxis and thus may contribute to the pathogenesis of airway remodeling in patients with asthma.
Collapse
Affiliation(s)
- Sami Shariff
- 1 Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Shelfoon
- 1 Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neil S Holden
- 2 School of Life Sciences, University of Lincoln, Lincoln, United Kingdom; and
| | - Suzanne L Traves
- 1 Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shahina Wiehler
- 1 Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- 1 Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David Proud
- 1 Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- 1 Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,3 Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
158
|
d'Hooghe JNS, Ten Hacken NHT, Weersink EJM, Sterk PJ, Annema JT, Bonta PI. Emerging understanding of the mechanism of action of Bronchial Thermoplasty in asthma. Pharmacol Ther 2017; 181:101-107. [PMID: 28757156 DOI: 10.1016/j.pharmthera.2017.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bronchial Thermoplasty (BT) is an endoscopic treatment for moderate-to-severe asthma patients who are uncontrolled despite optimal medical therapy. Effectiveness of BT has been demonstrated in several randomized clinical trials. However, the asthma phenotype that benefits most of this treatment is unclear, partly because the mechanism of action is incompletely understood. BT was designed to reduce the amount of airway smooth muscle (ASM), but additional direct and indirect effects on airway pathophysiology are expected. This review will provide an overview of the different components of airway pathophysiology including remodeling, with the ASM as the key player. Current concepts in the understanding of BT clinical effectiveness with a focus on its impact on airway remodeling will be reviewed.
Collapse
Affiliation(s)
- J N S d'Hooghe
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - N H T Ten Hacken
- Department of Respiratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - E J M Weersink
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - P J Sterk
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J T Annema
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - P I Bonta
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
159
|
McBrien CN, Menzies-Gow A. The Biology of Eosinophils and Their Role in Asthma. Front Med (Lausanne) 2017; 4:93. [PMID: 28713812 PMCID: PMC5491677 DOI: 10.3389/fmed.2017.00093] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
This review will describe the structure and function of the eosinophil. The roles of several relevant cell surface molecules and receptors will be discussed. We will also explore the systemic and local processes triggering eosinophil differentiation, maturation, and migration to the lungs in asthma, as well as the cytokine-mediated pathways that result in eosinophil activation and degranulation, i.e., the release of multiple pro-inflammatory substances from eosinophil-specific granules, including cationic proteins, cytokines, chemokines growth factors, and enzymes. We will discuss the current understanding of the roles that eosinophils play in key asthma processes such as airway hyperresponsiveness, mucus hypersecretion, and airway remodeling, in addition to the evidence relating to eosinophil–pathogen interactions within the lungs.
Collapse
Affiliation(s)
| | - Andrew Menzies-Gow
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
160
|
Ojiaku CA, Yoo EJ, Panettieri RA. Transforming Growth Factor β1 Function in Airway Remodeling and Hyperresponsiveness. The Missing Link? Am J Respir Cell Mol Biol 2017; 56:432-442. [PMID: 27854509 DOI: 10.1165/rcmb.2016-0307tr] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of asthma includes a complex interplay among airway inflammation, hyperresponsiveness, and remodeling. Current evidence suggests that airway structural cells, including bronchial smooth muscle cells, myofibroblasts, fibroblasts, and epithelial cells, mediate all three aspects of asthma pathogenesis. Although studies show a connection between airway remodeling and changes in bronchomotor tone, the relationship between the two remains unclear. Transforming growth factor β1 (TGF-β1), a growth factor elevated in the airway of patients with asthma, plays a role in airway remodeling and in the shortening of various airway structural cells. However, the role of TGF-β1 in mediating airway hyperresponsiveness remains unclear. In this review, we summarize the literature addressing the role of TGF-β1 in airway remodeling and shortening. Through our review, we aim to further elucidate the role of TGF-β1 in asthma pathogenesis and the link between airway remodeling and airway hyperresponsiveness in asthma and to define TGF-β1 as a potential therapeutic target for reducing asthma morbidity and mortality.
Collapse
Affiliation(s)
- Christie A Ojiaku
- 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and.,2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Edwin J Yoo
- 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and.,2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Reynold A Panettieri
- 2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
161
|
Sun M, Lu Q. MicroRNA regulation of airway smooth muscle function. Biol Chem 2017; 397:507-11. [PMID: 26812790 DOI: 10.1515/hsz-2015-0298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023]
Abstract
Airway smooth muscle (ASM) controls airway narrowing and plays a pivotal role in the pathogenesis of asthma. MicroRNAs are small yet powerful gene tuners that regulate diverse cellular processes. Recent studies have demonstrated the versatile role of microRNAs in regulating multiple ASM phenotypes that are critically involved in asthma pathogenesis. These ASM phenotypes include proliferation, cell size, chemokine secretion, and contractility. Here we review microRNA-mediated regulation of ASM functions and discuss the potential of microRNAs as a novel class of therapeutic targets to improve ASM function for asthma therapy.
Collapse
|
162
|
Minor DM, Proud D. Role of human rhinovirus in triggering human airway epithelial-mesenchymal transition. Respir Res 2017; 18:110. [PMID: 28558698 PMCID: PMC5450126 DOI: 10.1186/s12931-017-0595-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
Background Structural changes in the airways, collectively referred to as airway remodeling, are a characteristic feature of asthma, and are now known to begin in early life. Human rhinovirus (HRV)-induced wheezing illnesses during early life are a potential inciting stimulus for remodeling. Increased deposition of matrix proteins causes thickening of the lamina reticularis, which is a well-recognized component of airway remodeling. Increased matrix protein deposition is believed to be due to the presence of increased numbers of activated mesenchymal cells (fibroblasts/myofibroblasts) in the subepithelial region of asthmatic airways. The origin of these increased mesenchymal cells is not clear, but one potential contributor is the process of epithelial-mesenchymal transition (EMT). We hypothesized that HRV infection may help to induce EMT. Methods We used the BEAS-2B human bronchial epithelial cells line, which uniformly expresses the major group HRV receptor, to examine the effects of stimulation with HRV alone, transforming growth factor-β1 (TGF-β1), alone, and the combination, on induction of changes consistent with EMT. Western blotting was used to examine expression of epithelial and mesenchymal phenotypic marker proteins and selected signaling molecules. Cell morphology was also examined. Results In this study, we show that two different strains of HRV, which use two different cellular receptors, are each capable of triggering phenotypic changes consistent with EMT. Moreover, both HRV serotypes synergistically induced changes consistent with EMT when used in the presence of TGF-β1. Morphological changes were also most pronounced with the combination of HRV and TGF-β1. Viral replication was not essential for phenotypic changes. The synergistic interactions between HRV and TGF-β1 were mediated, at least in part, via activation of mitogen activated protein kinase pathways, and via induction of the transcription factor SLUG. Conclusions These data support a role for HRV in the induction of EMT, which may contribute to matrix protein deposition and thickening of the lamina reticularis in airways of patients with asthma.
Collapse
Affiliation(s)
- Danielle M Minor
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,University of Calgary, Faculty of Medicine, HRIC 4C50-54, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - David Proud
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. .,Department of Physiology & Pharmacology, HRIC 4AC60, University of Calgary Cumming School of Medicine, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
163
|
Han RT, Kim S, Choi K, Jwa H, Lee J, Kim HY, Kim HJ, Kim HR, Back SK, Na HS. Asthma-like airway inflammation and responses in a rat model of atopic dermatitis induced by neonatal capsaicin treatment. J Asthma Allergy 2017; 10:181-189. [PMID: 28572736 PMCID: PMC5441677 DOI: 10.2147/jaa.s124902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recent studies have shown that approximately 70% of patients with severe atopic dermatitis (AD) develop asthma. Development of AD in infancy and subsequent other atopic diseases such as asthma in childhood is referred to as atopic march. However, a causal link between the diseases of atopic march has remained largely unaddressed, possibly due to lack of a proper animal model. Recently, we developed an AD rat model showing chronically relapsing dermatitis and scratching behaviors induced by neonatal capsaicin treatment. Here, we investigated whether our model also showed asthmatic changes, with the aim of expanding our AD model into an atopic march model. First, we confirmed that capsaicin treatment (50 mg/kg within 24 h after birth) induced dermatitis and scratching behaviors until 6 weeks of age. After that, the mRNA expression of Th1 and Th2 cytokines, such as IFN-γ and TNF-α, and IL-4, IL-5, and IL-13, respectively, was quantified with quantitative real-time polymerase chain reaction in the skin and the lungs. The number of total cells and eosinophils was counted in bronchoalveolar lavage (BAL) fluid. The levels of IgE in the serum and BAL fluid were determined with enzyme-linked immunosorbent assay. Paraffin-embedded sections (4 μm) were stained with hematoxylin/eosin to analyze the morphology of the lung and the airway. Airway responsiveness was measured in terms of airway resistance and compliance using the flexiVent system. In the capsaicin-treated rats, persistent dermatitis developed, and scratching behaviors increased over several weeks. The levels of IgE in the serum and BAL fluid as well as the mRNA expression of Th2 cytokines, including IL-4, IL-5, and IL-13, in both the skin and the lungs were elevated, and the number of eosinophils in the BAL fluid was also increased in the capsaicin-treated rats compared to control rats. Morphological analysis of the airway revealed smooth muscle hypertrophy and extensive mucus plug in the capsaicin-treated rats. Functional studies demonstrated an increment of the airway resistance and a decrement of lung compliance in the capsaicin-treated rats compared to control rats. Taken together, our findings suggested that neonatal capsaicin treatment induced asthma-like airway inflammation and responses in juvenile rats.
Collapse
Affiliation(s)
| | - Sewon Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul
| | - Kyungmin Choi
- Neuroscience Research Institute.,Department of Physiology
| | - Hyeonseok Jwa
- Neuroscience Research Institute.,Department of Physiology
| | - JaeHee Lee
- Neuroscience Research Institute.,Department of Physiology
| | - Hye Young Kim
- Neuroscience Research Institute.,Department of Physiology
| | - Hee Jin Kim
- Division of Biological Science and Technology, Science and Technology College, Yonsei University Wonju Campus, Wonju
| | - Hang-Rae Kim
- Department of Anatomy, College of Medicine, Seoul National University, Seoul
| | - Seung Keun Back
- Department of Pharmaceutics and Biotechnology, College of Medical Engineering, Konyang University, Chungnam, South Korea
| | - Heung Sik Na
- Neuroscience Research Institute.,Department of Physiology
| |
Collapse
|
164
|
Naveed SUN, Clements D, Jackson DJ, Philp C, Billington CK, Soomro I, Reynolds C, Harrison TW, Johnston SL, Shaw DE, Johnson SR. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity. Am J Respir Crit Care Med 2017; 195:1000-1009. [PMID: 27967204 DOI: 10.1164/rccm.201604-0822oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. OBJECTIVES To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. METHODS Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. MEASUREMENTS AND MAIN RESULTS Airway smooth muscle cells generated pro-MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro-MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. CONCLUSIONS MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness.
Collapse
Affiliation(s)
- Shams-Un-Nisa Naveed
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Debbie Clements
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - David J Jackson
- 2 National Heart and Lung Institute, Imperial College London and MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.,3 Respiratory Medicine, Guy's and St Thomas' NHS Trust, London, United Kingdom; and
| | - Christopher Philp
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte K Billington
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Irshad Soomro
- 4 Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Catherine Reynolds
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Timothy W Harrison
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Sebastian L Johnston
- 2 National Heart and Lung Institute, Imperial College London and MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Dominick E Shaw
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Simon R Johnson
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
165
|
Berair R, Hartley R, Mistry V, Sheshadri A, Gupta S, Singapuri A, Gonem S, Marshall RP, Sousa AR, Shikotra A, Kay R, Wardlaw A, Bradding P, Siddiqui S, Castro M, Brightling CE. Associations in asthma between quantitative computed tomography and bronchial biopsy-derived airway remodelling. Eur Respir J 2017; 49:49/5/1601507. [PMID: 28461289 DOI: 10.1183/13993003.01507-2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Abstract
Airway remodelling in asthma remains poorly understood. This study aimed to determine the association of airway remodelling measured on bronchial biopsies with 1) lung function impairment and 2) thoracic quantitative computed tomography (QCT)-derived morphometry and densitometry measures of proximal airway remodelling and air trapping.Subjects were recruited from a single centre. Bronchial biopsy remodelling features that were the strongest predictors of lung function impairment and QCT-derived proximal airway morphometry and air trapping markers were determined by stepwise multiple regression. The best predictor of air trapping was validated in an independent replication group.Airway smooth muscle % was the only predictor of post-bronchodilator forced expiratory volume in 1 s (FEV1) % pred, while both airway smooth muscle % and vascularity were predictors of FEV1/forced vital capacity. Epithelial thickness and airway smooth muscle % were predictors of mean segmental bronchial luminal area (R2=0.12; p=0.02 and R2=0.12; p=0.015), whereas epithelial thickness was the only predictor of wall area % (R2=0.13; p=0.018). Vascularity was the only significant predictor of air trapping (R2=0.24; p=0.001), which was validated in the replication group (R2=0.19; p=0.031).In asthma, airway smooth muscle content and vascularity were both associated with airflow obstruction. QCT-derived proximal airway morphometry was most strongly associated with epithelial thickness and airway smooth muscle content, whereas air trapping was related to vascularity.
Collapse
Affiliation(s)
- Rachid Berair
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.,These authors contributed equally to this work
| | - Ruth Hartley
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.,These authors contributed equally to this work
| | - Vijay Mistry
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Ajay Sheshadri
- Dept of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Sumit Gupta
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Amisha Singapuri
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Sherif Gonem
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | | | - Aarti Shikotra
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Richard Kay
- Novartis Pharmaceuticals, Basel, Switzerland.,Medpace (UK) Ltd, Stirling, UK
| | - Andrew Wardlaw
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Peter Bradding
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Salman Siddiqui
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Mario Castro
- Dept of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher E Brightling
- Institute for Lung Health, NIHR Respiratory Biomedical Research Unit, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
166
|
|
167
|
Pan S, Sharma P, Shah SD, Deshpande DA. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2017; 313:L154-L165. [PMID: 28450286 DOI: 10.1152/ajplung.00106.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022] Open
Abstract
Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases.
Collapse
Affiliation(s)
- Shi Pan
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Pawan Sharma
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sushrut D Shah
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
168
|
Carsin A, Mazenq J, Ilstad A, Dubus JC, Chanez P, Gras D. Bronchial epithelium in children: a key player in asthma. Eur Respir Rev 2017; 25:158-69. [PMID: 27246593 PMCID: PMC9487245 DOI: 10.1183/16000617.0101-2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/24/2016] [Indexed: 11/29/2022] Open
Abstract
Bronchial epithelium is a key element of the respiratory airways. It constitutes the interface between the environment and the host. It is a physical barrier with many chemical and immunological properties. The bronchial epithelium is abnormal in asthma, even in children. It represents a key component promoting airway inflammation and remodelling that can lead to chronic symptoms. In this review, we present an overview of bronchial epithelium and how to study it, with a specific focus on children. We report physical, chemical and immunological properties from ex vivo and in vitro studies. The responses to various deleterious agents, such as viruses or allergens, may lead to persistent abnormalities orchestrated by bronchial epithelial cells. As epithelium dysfunctions occur early in asthma, reprogramming the epithelium may represent an ambitious goal to induce asthma remission in children. Bronchial epithelium is a morphological and functional dysregulated gatekeeper in asthmatic childrenhttp://ow.ly/Y4MaM
Collapse
Affiliation(s)
- Ania Carsin
- Unité de Pneumologie Pédiatrique, hôpital Timone-Enfants, Assistance Publique Hopitaux de Marseille, Marseille, France UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| | - Julie Mazenq
- Unité de Pneumologie Pédiatrique, hôpital Timone-Enfants, Assistance Publique Hopitaux de Marseille, Marseille, France UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| | - Alexandra Ilstad
- UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| | - Jean-Christophe Dubus
- CNRS, URMITE 6236, CHU Timone-Enfants, Aix-Marseille Université, Unité de pneumologie et médecine infantile, Marseille, France
| | - Pascal Chanez
- UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France Clinique des bronches, Allergie et Sommeil, Hôpital Nord, Assistance Publique Hopitaux de Marseille, Marseille, France
| | - Delphine Gras
- UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| |
Collapse
|
169
|
Maltby S, Tay HL, Yang M, Foster PS. Mouse models of severe asthma: Understanding the mechanisms of steroid resistance, tissue remodelling and disease exacerbation. Respirology 2017; 22:874-885. [PMID: 28401621 DOI: 10.1111/resp.13052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
Severe asthma has significant disease burden and results in high healthcare costs. While existing therapies are effective for the majority of asthma patients, treatments for individuals with severe asthma are often ineffective. Mouse models are useful to identify mechanisms underlying disease pathogenesis and for the preclinical assessment of new therapies. In fact, existing mouse models have contributed significantly to our understanding of allergic/eosinophilic phenotypes of asthma and facilitated the development of novel targeted therapies (e.g. anti-IL-5 and anti-IgE). These therapies are effective in relevant subsets of severe asthma patients. Unfortunately, non-allergic/non-eosinophilic asthma, steroid resistance and disease exacerbation remain areas of unmet clinical need. No mouse model encompasses all features of severe asthma. However, mouse models can provide insight into pathogenic pathways that are relevant to severe asthma. In this review, as examples, we highlight models relevant to understanding steroid resistance, chronic tissue remodelling and disease exacerbation. Although these models highlight the complexity of the immune pathways that may underlie severe asthma, they also provide insight into new potential therapeutic approaches.
Collapse
Affiliation(s)
- Steven Maltby
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Hock L Tay
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Ming Yang
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S Foster
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
170
|
Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice. Sci Rep 2017; 7:46166. [PMID: 28397820 PMCID: PMC5387415 DOI: 10.1038/srep46166] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/09/2017] [Indexed: 01/25/2023] Open
Abstract
Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma.
Collapse
|
171
|
Ijpma G, Panariti A, Lauzon AM, Martin JG. Directional preference of airway smooth muscle mass increase in human asthmatic airways. Am J Physiol Lung Cell Mol Physiol 2017; 312:L845-L854. [PMID: 28360113 DOI: 10.1152/ajplung.00353.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022] Open
Abstract
Airway smooth muscle (ASM) orientation and morphology determine the ability of the muscle to constrict the airway. In asthma, ASM mass is increased, but it is unknown whether ASM orientation and morphology are altered as well or whether the remodeling at the source of the mass increase is ongoing. We dissected human airway trees from asthmatic and control lungs. Stained, intact airway sections were imaged in axial projection to show ASM bundle orientation, whereas cross-sectional histological slides were used to assess ASM area, bundle thickness, and ASM bundle-to-basement membrane distance. We also used these slides to assess cell size, proliferation, and apoptosis. We showed that ASM mass increase in cartilaginous airways is primarily the result of an increase of ASM bundle thickness (as measured radially in an airway cross section) and coincides with an increased distance of the ASM bundles to the airway perimeter. ASM orientation was unchanged in all airways. Apoptosis markers and cell size did not show differences between asthmatics and controls. Our findings show that ASM mass increase likely contributes to the airway-constricting capacity of the muscle. Both the increased bundle thickness and increased thickness of the airway wall inwards of the ASM bundles could further enhance this capacity. Turnover of ASM appears to be the same in airways and biopsies, but the lack of correlation between different markers of proliferation casts doubt on the specificity of markers generally used to assess proliferation.
Collapse
Affiliation(s)
- Gijs Ijpma
- Department of Medicine, McGill University, Montreal, Quebec, Canada; and.,Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - Alice Panariti
- Department of Medicine, McGill University, Montreal, Quebec, Canada; and.,Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - Anne-Marie Lauzon
- Department of Medicine, McGill University, Montreal, Quebec, Canada; and.,Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - James G Martin
- Department of Medicine, McGill University, Montreal, Quebec, Canada; and .,Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| |
Collapse
|
172
|
Airway remodeling in asthma: what really matters. Cell Tissue Res 2017; 367:551-569. [PMID: 28190087 PMCID: PMC5320023 DOI: 10.1007/s00441-016-2566-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and “endotyped” human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.
Collapse
|
173
|
Huang ZJ, Shen QH, Wu YS, Huang YL. A Gibbs sampling method to determine biomarkers for asthma. Comput Biol Chem 2017; 67:255-259. [PMID: 28193551 DOI: 10.1016/j.compbiolchem.2017.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE To identify potential biomarkers and to uncover the mechanisms underlying asthma based on Gibbs sampling. METHODS The molecular functions (MFs) with genes greater than 5 were determined using AnnotationMFGO of BAGS package, and the obtained MFs were then transformed to Markov chain (MC). Gibbs sampling was conducted to obtain a new MC. Meanwhile, the average probabilities of MFs were computed via MC Monte Carlo (MCMC) algorithm, followed by identification of differentially expressed MFs based on the probabilities of MF more than 0.6. Moreover, the differentially expressed genes (DEGs) and their correlated genes were screened and merged, called as co-expressed genes. Pathways enrichment analysis was implemented for the co-expressed genes. RESULTS Based on the gene set more than 5, overall 396 MFs were determined. After Gibbs sampling, 5 differentially expressed MF were acquired according to alfa.pi>0.6. Moreover, the genes in these 5 differentially expressed MF were merged, and 110 DEGs were identified. Subsequently, 338 co-expressed genes were gained. Based on the P value<0.01, the co-expressed genes were significantly enriched in 6 pathways. Among these, ubiquitin mediated proteolysis contained the maximum numbers of 35 co-expressed genes, and cell cycle were enriched by the second largest number of 11 co-expressed genes, respectively. CONCLUSIONS The identified pathways such as ubiquitin mediated proteolysis and cell cycle might play important roles in the development of asthma and may be useful for developing the credible therapeutic approaches for diagnosis and treatment of asthma in future.
Collapse
Affiliation(s)
- Zhi-Jian Huang
- Department of Emergency, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian, PR China
| | - Qin-Hai Shen
- Department of Medicine, Shandong Medical College, Jinan, 250002, Shandong, PR China
| | - Yan-Sheng Wu
- Department of Spine (Second), Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, Xinjiang, PR China
| | - Ya-Li Huang
- Nuclear Medicine Department, Qilu Hospital of Shandong University, NO. 107 Wenhua West Road, Jinan, 250012, Shandong PR China.
| |
Collapse
|
174
|
Gombedza F, Kondeti V, Al-Azzam N, Koppes S, Duah E, Patil P, Hexter M, Phillips D, Thodeti CK, Paruchuri S. Mechanosensitive transient receptor potential vanilloid 4 regulates Dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation. FASEB J 2017; 31:1556-1570. [PMID: 28073835 DOI: 10.1096/fj.201601045r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
Abstract
Contributions of mechanical signals to airway remodeling during asthma are poorly understood. Transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, has been implicated in cardiac and pulmonary fibrosis; however, its role in asthma remains elusive. Employing a Dermatophagoides farinae-induced asthma model, we report here that TRPV4-knockout mice were protected from D. farinae-induced airway remodeling. Furthermore, lung fibroblasts that were isolated from TRPV4-knockout mice showed diminished differentiation potential compared with wild-type mice. Fibroblasts from asthmatic lung exhibited increased TRPV4 activity and enhanced differentiation potential compared with normal human lung fibroblasts. Of interest, TGF-β1 treatment enhanced TRPV4 activation in a PI3K-dependent manner in normal human lung fibroblasts in vitro Mechanistically, TRPV4 modulated matrix remodeling in the lung via 2 distinct but dependent pathways: one enhances matrix deposition by fibrotic gene activation, whereas the other slows down matrix degradation by increased plasminogen activator inhibitor 1. Of importance, both pathways are regulated by Rho/myocardin-related transcription factor-A and contribute to fibroblast differentiation and matrix remodeling in the lung. Thus, our results support a unique role for TRPV4 in D. farinae-induced airway remodeling and warrant further studies in humans for it to be used as a novel therapeutic target in the treatment of asthma.-Gombedza, F., Kondeti, V., Al-Azzam, N., Koppes, S., Duah, E., Patil, P., Hexter, M., Phillips, D., Thodeti, C. K., Paruchuri, S. Mechanosensitive transient receptor potential vanilloid 4 regulates Dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation.
Collapse
Affiliation(s)
- Farai Gombedza
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Vinay Kondeti
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Nosayba Al-Azzam
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Stephanie Koppes
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Ernest Duah
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Prachi Patil
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Madison Hexter
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Daniel Phillips
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | |
Collapse
|
175
|
Chen M, Shi J, Zhang W, Huang L, Lin X, Lv Z, Zhang W, Liang R, Jiang S. MiR-23b controls TGF-β1 induced airway smooth muscle cell proliferation via direct targeting of Smad3. Pulm Pharmacol Ther 2017; 42:33-42. [PMID: 28062322 DOI: 10.1016/j.pupt.2017.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 08/02/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNAs are small yet versatile gene tuners that regulate a variety of cellular processes, including cell growth and proliferation. Here we report that miR-23b inhibited airway smooth muscle cells (ASMCs) proliferation through directly targeting of Smad3. METHODS We obtained ASMCs by laser capture microdissection of normal and asthmatic mice lung tissues. Mice ASMCs were cultured and induced by TGF-β1. The implication between TGF-β1 and miR-23b in ASMCs were detected by RT-PCR. The effects of miR-23b on ASMCs proliferation and apoptosis were assessed by transient transfection of miR-23b mimics and inhibitor. The expression of Smad3 in ASMCs were detected by RT-PCR and Western blotting analysis. Dual-Luciferase Reporter Assay System will be applied to identify whether Smad3 is a target gene of miR-23b. RESULTS TGF-β1 and miR-23b mRNA expression of in-situ bronchial ASMCs collected by laser capture microdissection were increased in asthmatic mice compared to non-asthma controls. This is accompanied by an increase in miR-23b mRNA expression in TGF-β1 induced ASMCs. miR-23b up-regulation significantly inhibited TGF-β1-induced ASMCs proliferation and promoted apoptosis. MiR-23b negatively regulates the expression of Smad3 in ASMCs. Dual-Luciferase Reporter Assay System demonstrated that Smad3 was a direct target of miR-23b. CONCLUSIONS MiR-23b may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via direct targeting of Smad3.
Collapse
Affiliation(s)
- Ming Chen
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Jianting Shi
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Wei Zhang
- Department of Geratology, The Second People's Hospital of Shenzhen, Shenzhen 518000, China
| | - Linjie Huang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Xiaoling Lin
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Zhiqiang Lv
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Wei Zhang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Ruiyun Liang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Shanping Jiang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
176
|
IgE-Related Chronic Diseases and Anti-IgE-Based Treatments. J Immunol Res 2016; 2016:8163803. [PMID: 28097159 PMCID: PMC5209625 DOI: 10.1155/2016/8163803] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/02/2016] [Indexed: 12/23/2022] Open
Abstract
IgE is an immunoglobulin that plays a central role in acute allergic reactions and chronic inflammatory allergic diseases. The development of a drug able to neutralize this antibody represents a breakthrough in the treatment of inflammatory pathologies with a probable allergic basis. This review focuses on IgE-related chronic diseases, such as allergic asthma and chronic urticaria (CU), and on the role of the anti-IgE monoclonal antibody, omalizumab, in their treatment. We also assess the off-label use of omalizumab for other pathologies associated with IgE and report the latest findings concerning this drug and other new related drugs. To date, omalizumab has only been approved for severe allergic asthma and unresponsive chronic urticaria treatments. In allergic asthma, omalizumab has demonstrated its efficacy in reducing the dose of inhaled corticosteroids required by patients, decreasing the number of asthma exacerbations, and limiting the effect on airway remodeling. In CU, omalizumab treatment rapidly improves symptoms and in some cases achieves complete disease remission. In systemic mastocytosis, omalizumab also improves symptoms and its prophylactic use to prevent anaphylactic reactions has also been discussed. In other pathologies such as atopic dermatitis, food allergy, allergic rhinitis, nasal polyposis, and keratoconjunctivitis, omalizumab significantly improves clinical manifestations. Omalizumab acts in two ways: by sequestering free IgE and by accelerating the dissociation of the IgE-Fcε receptor I complex.
Collapse
|
177
|
Functional Effects of WNT1-Inducible Signaling Pathway Protein-1 on Bronchial Smooth Muscle Cell Migration and Proliferation in OVA-Induced Airway Remodeling. Inflammation 2016; 39:16-29. [PMID: 26242865 DOI: 10.1007/s10753-015-0218-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Upregulation of WISP1 has been demonstrated in lung remodeling. Moreover, it has been recently found that some signaling components of WNT pathway can activate GSK3β signaling to mediate remodeling of airway smooth muscle (ASM) in asthma. Therefore, we hypothesized that WISP1, a signaling molecule downstream of the WNT signaling pathway, is involved in PI3K/GSK3β signaling to mediate ASM remodeling in asthma. Our results showed that WISP1 depletion partly suppressed OVA-induced ASM hypertrophy in vivo. In vitro, WISP1 could induce hBSMC hypertrophy and proliferation, accompanied by upregulation of levels of PI3K, p-Akt, p-GSK3β, and its own expression. TGF-β treatment could increase expression of PI3K, p-Akt, p-GSK3β, and WISP1. SH-5 treatment could partly suppress TGF-β-induced hypertrophy and proliferation of hBSMC, and depress expression of p-GSK3β and WISP1. In conclusion, WISP1 may be a potential inducer of ASM proliferation and hypertrophy in asthma. The pro-remodeling effect of WISP1 is likely due to be involved in PI3K-GSK3β-dependent noncanonical TGF-β signaling.
Collapse
|
178
|
Schleich F, Demarche S, Louis R. Biomarkers in the Management of Difficult Asthma. Curr Top Med Chem 2016; 16:1561-73. [PMID: 26467509 PMCID: PMC4997932 DOI: 10.2174/1568026616666151015093406] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/16/2015] [Accepted: 08/21/2015] [Indexed: 01/06/2023]
Abstract
Difficult asthma is a heterogeneous disease of the airways including various types of bronchial inflammation and various degrees of airway remodeling. Therapeutic response of severe asthmatics can be predicted by the use of biomarkers of Type2-high or Type2-low inflammation. Based on sputum cell analysis, four inflammatory phenotypes have been described. As induced sputum is time-consuming and expensive technique, surrogate biomarkers are useful in clinical practice. Eosinophilic phenotype is likely to reflect ongoing adaptive immunity in response to allergen. Several biomarkers of eosinophilic asthma are easily available in clinical practice (blood eosinophils, serum IgE, exhaled nitric oxyde, serum periostin). Neutrophilic asthma is thought to reflect innate immune system activation in response to pollutants or infectious agents while paucigranulocytic asthma is thought to be not inflammatory and characterized by smooth muscle dysfunction. We currently lack of user-friendly biomarkers of neutrophilic asthma and airway remodeling. In this review, we summarize the biomarkers available for the management of difficult asthma.
Collapse
|
179
|
Koopmans T, Crutzen S, Menzen MH, Halayko AJ, Hackett T, Knight DA, Gosens R. Selective targeting of CREB-binding protein/β-catenin inhibits growth of and extracellular matrix remodelling by airway smooth muscle. Br J Pharmacol 2016; 173:3327-3341. [PMID: 27629364 PMCID: PMC5738668 DOI: 10.1111/bph.13620] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/17/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a heterogeneous chronic inflammatory disease, characterized by the development of structural changes (airway remodelling). β-catenin, a transcriptional co-activator, is fundamentally involved in airway smooth muscle growth and may be a potential target in the treatment of airway smooth muscle remodelling. EXPERIMENTAL APPROACH We assessed the ability of small-molecule compounds that selectively target β-catenin breakdown or its interactions with transcriptional co-activators to inhibit airway smooth muscle remodelling in vitro and in vivo. KEY RESULTS ICG-001, a small-molecule compound that inhibits the β-catenin/CREB-binding protein (CBP) interaction, strongly and dose-dependently inhibited serum-induced smooth muscle growth and TGFβ1-induced production of extracellular matrix components in vitro. Inhibition of β-catenin/p300 interactions using IQ-1 or inhibition of tankyrase 1/2 using XAV-939 had considerably less effect. In a mouse model of allergic asthma, β-catenin expression in the smooth muscle layer was found to be unaltered in control versus ovalbumin-treated animals, a pattern that was found to be similar in smooth muscle within biopsies taken from asthmatic and non-asthmatic donors. However, β-catenin target gene expression was highly increased in response to ovalbumin; this effect was prevented by topical treatment with ICG-001. Interestingly, ICG-001 dose-dependently reduced airway smooth thickness after repeated ovalbumin challenge, but had no effect on the deposition of collagen around the airways, mucus secretion or eosinophil infiltration. CONCLUSIONS AND IMPLICATIONS Together, our findings highlight the importance of β-catenin/CBP signalling in the airways and suggest ICG-001 may be a new therapeutic approach to treat airway smooth muscle remodelling in asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| | - Stijn Crutzen
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| | - Mark H Menzen
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| | - Andrew J Halayko
- Department of Physiology and PathophysiologyUniversity of ManitobaWinnipegMBCanada
| | - Tillie‐Louise Hackett
- Department of Anesthesiology, Pharmacology & TherapeuticsUniversity of British ColumbiaVancouverBCCanada
| | - Darryl A Knight
- Department of Anesthesiology, Pharmacology & TherapeuticsUniversity of British ColumbiaVancouverBCCanada
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNSWAustralia
- Asthma, Allergy and Infection Research ClusterHunter Medical Research InstituteNew Lambton HeightsNSWAustralia
| | - Reinoud Gosens
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| |
Collapse
|
180
|
Elkady MA, Abd-Allah GM, Doghish AS, Yousef AA, Mohammad OI. Matrix metalloproteinase (MMP)-2 -1306 C > T gene polymorphism affects circulating levels of MMP-2 in Egyptian asthmatic patients. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
181
|
Ni G, Chen Y, Wu F, Zhu P, Song L. NOD2 promotes cell proliferation and inflammatory response by mediating expression of TSLP in human airway smooth muscle cells. Cell Immunol 2016; 312:35-41. [PMID: 27889082 DOI: 10.1016/j.cellimm.2016.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/08/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Abstract
The newly discovered intracytosolic pattern recognition receptor nucleotide-binding oligomerization domain 2 (NOD2) has been studied as an important indicator of T helper 2 (Th2) inflammation, and its effect on regulatory T (Treg) cells is likely to modulate the immune response. In this study, we attempted to study the expression of NOD2 and its impact in human airway smooth muscle cells (HASMC). Quantitative real-time PCR (qRT-PCR) was used to measure the expression level of NOD2 in HASMC and comparisons were made between those from asthmatic and non-asthmatic donors; we found that NOD2 was significantly upregulated in asthma patient tissues and cell lines. In addition, overexpression of NOD2 apparently promotes cell proliferation and migration in HASMC. Gain-of-function in vitro experiments further showed that NOD2 overexpression significantly promotes pro-inflammatory cytokine release in HASMC. Subsequent experimental analysis indicated that thymic stromal lymphopoietin (TSLP) is involved in NOD2-mediated cellular effects in HASMC. Therefore, our results indicate that NOD2 is an asthma-related factor that can promote cell proliferation and inflammatory response by mediated expression of TSLP in HASMC. Taken together, our results indicate that NOD2 could serve as a potential diagnostic biomarker and therapeutic option for human asthma in the near future.
Collapse
Affiliation(s)
- Gaoshun Ni
- Department of Respiration Medicine, Shangluo Center Hospital, Shangzhou District, Shangluo City 726000, China
| | - Yang Chen
- Department of Respiration Medicine, Shangluo Center Hospital, Shangzhou District, Shangluo City 726000, China
| | - Fengqin Wu
- Nursing Department, Shangluo Vocational and Technical College, Shangzhou District, Shangluo City 726000, China
| | - Pengxian Zhu
- Department of Respiration Medicine, Shangluo Center Hospital, Shangzhou District, Shangluo City 726000, China
| | - Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an City 710032, China.
| |
Collapse
|
182
|
Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix - the under-recognized element in lung disease? J Pathol 2016; 240:397-409. [PMID: 27623753 PMCID: PMC5129494 DOI: 10.1002/path.4808] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022]
Abstract
The lung is composed of airways and lung parenchyma, and the extracellular matrix (ECM) contains the main building blocks of both components. The ECM provides physical support and stability to the lung, and as such it has in the past been regarded as an inert structure. More recent research has provided novel insights revealing that the ECM is also a bioactive environment that orchestrates the cellular responses in its environs. Changes in the ECM in the airway or parenchymal tissues are now recognized in the pathological profiles of many respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Only recently have we begun to investigate whether these ECM changes result from the disease process, or whether they constitute a driving factor that orchestrates the pathological outcomes. This review summarizes our current knowledge of the alterations in the ECM in asthma, COPD, and IPF, and the contributions of these alterations to the pathologies. Emerging data suggest that alterations in the composition, folding or rigidity of ECM proteins may alter the functional responses of cells within their environs, and in so doing change the pathological outcomes. These characteristics highlight potential avenues for targeting lung pathologies in the future. This may ultimately contribute to a better understanding of chronic lung diseases, and novel approaches for finding therapeutic solutions. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Centre Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands.,Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Discipline of Pharmacology, The University of Sydney, NSW, Australia.,Central Clinical School, The University of Sydney, NSW, Australia
| | - Thais Mauad
- Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Gavin Tjin
- Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Central Clinical School, The University of Sydney, NSW, Australia
| | - Jenny C Karlsson
- Lung Biology, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Lund, Sweden
| | | |
Collapse
|
183
|
Gu W, Cui R, Ding T, Li X, Peng J, Xu W, Han F, Guo X. Simvastatin alleviates airway inflammation and remodelling through up-regulation of autophagy in mouse models of asthma. Respirology 2016; 22:533-541. [PMID: 27782356 DOI: 10.1111/resp.12926] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 05/22/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Statins have been widely used in inflammatory diseases including asthma, because of their anti-inflammatory and immunomodulatory properties. It has been shown that simvastatin induces autophagy and cell death in some circumstances. However, the possible cross-talk between simvastatin and autophagic processes in lung disease is largely unknown. Thus, we investigated the impact of simvastatin on airway inflammation and airway remodelling and the possible relationship of these processes to a simvastatin-induced autophagic pathway in mouse models of asthma. METHODS Ovalbumin (OVA)-sensitized and challenged mice were treated with simvastatin and sacrificed. The autophagy-related proteins Atg5, LC3B and Beclin1 were quantified, as well as the autophagy flux in bronchial smooth muscle cells (BSMCs). The relationship between airway inflammation and the autophagic process was investigated. RESULTS We show that simvastatin treatment mediates activation of autophagy in BSMCs, which is correlated with airway inflammation and airway remodelling in mouse models of asthma. Simvastatin increases autophagy-related protein Atg5, LC3B and Beclin1 expression and autophagosome formation in lung tissue. Simvastatin-induced autophagy is associated with increased interferon-gamma (IFN-γ) and decreased IL-4, IL-5 and IL-13 cytokines production in BSMCs, as well as reversed extracellular matrix (ECM) deposition. In contrast, autophagy inhibitor 3-methyladenine (3-MA) eliminates the therapeutic effect of simvastatin. CONCLUSION These findings demonstrate that simvastatin inhibits airway inflammation and airway remodelling through an activated autophagic process in BSMCs. We propose a crucial function of autophagy in statin-based therapeutic approaches in asthma.
Collapse
Affiliation(s)
- Wen Gu
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Cui
- Department of Gastrointestinal Surgery, Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Tao Ding
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, China
| | - Xiaoming Li
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Peng
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguo Xu
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengfeng Han
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejun Guo
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
184
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
185
|
Rao SS, Mu Q, Zeng Y, Cai PC, Liu F, Yang J, Xia Y, Zhang Q, Song LJ, Zhou LL, Li FZ, Lin YX, Fang J, Greer PA, Shi HZ, Ma WL, Su Y, Ye H. Calpain-activated mTORC2/Akt pathway mediates airway smooth muscle remodelling in asthma. Clin Exp Allergy 2016; 47:176-189. [PMID: 27649066 DOI: 10.1111/cea.12805] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Allergic asthma is characterized by inflammation and airway remodelling. Airway remodelling with excessive deposition of extracellular matrix (ECM) and larger smooth muscle mass are correlated with increased airway responsiveness and asthma severity. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodelling. However, the role of calpain in airway smooth muscle remodelling remains unknown. OBJECTIVE To investigate the role of calpain in asthmatic airway remodelling as well as the underlying mechanism. METHODS The mouse asthma model was made by ovalbumin sensitization and challenge. Calpain conditional knockout mice were studied in the model. Airway smooth muscle cells (ASMCs) were isolated from smooth muscle bundles in airway of rats. Cytokines IL-4, IL-5, TNF-α, and TGF-β1, and serum from patients with asthma were selected to treated ASMCs. Collagen-I synthesis, cell proliferation, and phosphorylation of Akt in ASMCs were analysed. RESULTS Inhibition of calpain using calpain knockout mice attenuated airway smooth muscle remodelling in mouse asthma models. Cytokines IL-4, IL-5, TNF-α, and TGF-β1, and serum from patients with asthma increased collagen-I synthesis, cell proliferation, and phosphorylation of Akt in ASMCs, which were blocked by the calpain inhibitor MDL28170. Moreover, MDL28170 reduced cytokine-induced increases in Rictor protein, which is the most important component of mammalian target of rapamycin complex 2 (mTORC2). Blockage of the mTORC2 signal pathway prevented cytokine-induced phosphorylation of Akt, collagen-I synthesis, and cell proliferation of ASMCs and attenuated airway smooth muscle remodelling in mouse asthma models. CONCLUSIONS AND CLINICAL RELEVANCE Our results indicate that calpain mediates cytokine-induced collagen-I synthesis and proliferation of ASMCs via the mTORC2/Akt signalling pathway, thereby regulating airway smooth muscle remodelling in asthma.
Collapse
Affiliation(s)
- S-S Rao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Q Mu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Zeng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - P-C Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - F Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - J Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Xia
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Q Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L-J Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L-L Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - F-Z Li
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y-X Lin
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - J Fang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - P A Greer
- Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - H-Z Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - W-L Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China
| | - Y Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - H Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei, China
| |
Collapse
|
186
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
187
|
Wilson SJ, Ward JA, Sousa AR, Corfield J, Bansal AT, De Meulder B, Lefaudeux D, Auffray C, Loza MJ, Baribaud F, Fitch N, Sterk PJ, Chung KF, Gibeon D, Sun K, Guo YK, Adcock I, Djukanovic R, Dahlen B, Chanez P, Shaw D, Krug N, Hohlfeld J, Sandström T, Howarth PH. Severe asthma exists despite suppressed tissue inflammation: findings of the U-BIOPRED study. Eur Respir J 2016; 48:1307-1319. [PMID: 27799384 DOI: 10.1183/13993003.01129-2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
The U-BIOPRED study is a multicentre European study aimed at a better understanding of severe asthma. It included three steroid-treated adult asthma groups (severe nonsmokers (SAn group), severe current/ex-smokers (SAs/ex group) and those with mild-moderate disease (MMA group)) and healthy controls (HC group). The aim of this cross-sectional, bronchoscopy substudy was to compare bronchial immunopathology between these groups.In 158 participants, bronchial biopsies and bronchial epithelial brushings were collected for immunopathologic and transcriptomic analysis. Immunohistochemical analysis of glycol methacrylate resin-embedded biopsies showed there were more mast cells in submucosa of the HC group (33.6 mm-2) compared with both severe asthma groups (SAn: 17.4 mm-2, p<0.001; SAs/ex: 22.2 mm-2, p=0.01) and with the MMA group (21.2 mm-2, p=0.01). The number of CD4+ lymphocytes was decreased in the SAs/ex group (4.7 mm-2) compared with the SAn (11.6 mm-2, p=0.002), MMA (10.1 mm-2, p=0.008) and HC (10.6 mm-2, p<0.001) groups. No other differences were observed.Affymetrix microarray analysis identified seven probe sets in the bronchial brushing samples that had a positive relationship with submucosal eosinophils. These mapped to COX-2 (cyclo-oxygenase-2), ADAM-7 (disintegrin and metalloproteinase domain-containing protein 7), SLCO1A2 (solute carrier organic anion transporter family member 1A2), TMEFF2 (transmembrane protein with epidermal growth factor like and two follistatin like domains 2) and TRPM-1 (transient receptor potential cation channel subfamily M member 1); the remaining two are unnamed.We conclude that in nonsmoking and smoking patients on currently recommended therapy, severe asthma exists despite suppressed tissue inflammation within the proximal airway wall.
Collapse
Affiliation(s)
- Susan J Wilson
- Faculty of Medicine, University of Southampton and NIHR Respiratory Biomedical Research Unit, University of Southampton NHS Foundation Trust, Southampton, UK
| | - Jonathan A Ward
- Faculty of Medicine, University of Southampton and NIHR Respiratory Biomedical Research Unit, University of Southampton NHS Foundation Trust, Southampton, UK
| | | | | | | | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Lyon, France
| | | | | | | | - Peter J Sterk
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Kai Sun
- Imperial College London, London, UK
| | | | | | - Ratko Djukanovic
- Faculty of Medicine, University of Southampton and NIHR Respiratory Biomedical Research Unit, University of Southampton NHS Foundation Trust, Southampton, UK
| | - Barbro Dahlen
- Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | | | - Dominick Shaw
- Centre for Respiratory Research, University of Nottingham, Nottingham, UK
| | - Norbert Krug
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Jens Hohlfeld
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | - Peter H Howarth
- Faculty of Medicine, University of Southampton and NIHR Respiratory Biomedical Research Unit, University of Southampton NHS Foundation Trust, Southampton, UK
| | | |
Collapse
|
188
|
Chen XX, Zhang JH, Pan BH, Ren HL, Feng XL, Wang JL, Xiao JH. TRPC3-mediated Ca2+ entry contributes to mouse airway smooth muscle cell proliferation induced by lipopolysaccharide. Cell Calcium 2016; 60:273-81. [DOI: 10.1016/j.ceca.2016.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 01/03/2023]
|
189
|
Wang N, Yan D, Liu Y, Liu Y, Gu X, Sun J, Long F, Jiang S. A HuR/TGF-β1 feedback circuit regulates airway remodeling in airway smooth muscle cells. Respir Res 2016; 17:117. [PMID: 27658983 PMCID: PMC5034516 DOI: 10.1186/s12931-016-0437-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/17/2016] [Indexed: 01/20/2023] Open
Abstract
Background Asthma is a worldwide health burden with an alarming prevalence. For years, asthma-associated airway injury remains elusive. Transforming growth factor β1 (TGF-β1) is a pleiotropic cytokine that has been shown to be involved in the synthesis of the matrix molecules associated with airway remodeling. Human antigen R (HuR), the member of the Hu RNA-binding protein family, can bind to a subset of short-lived mRNAs in their 3′ untranslated regions (UTR). However, the functional roles and relevant signaling pathways of HuR in airway remodeling have not been well illustrated. Thus, we aim to explore the relationship between HuR and TGF-β1 in platelet derived growth factor(PDGF)-induced airway smooth muscle (ASM) cells and asthmatic animal. Methods Cultured human ASM cells were stimulated by PDGF for 0, 6, 12 and 24 h. Western blotting, RT-PCR and immunofluoresence were used to detect the expression of HuR, TGF-β1, α-smooth muscle actins (α-SMA) and collagen type I (Col-I). Then knockdown of HuR, flow cytomerty was used to detect the morphological change and western blotting for functionally change of ASM cells. Furthermore, the interference of TGF-β1 and exogenous TGF-β1 were implemented to testify the influence on HuR. A murine OVA-driven allergic model based on sensitization and challenge was developed. The inflammatory response was measured by bronchoalveolar lavage fluid (BALF), airway damage was analyzed by hematoxylin and eosin staining, airway remodeling was assessed by sirius red staining and periodic acid-schiff staining, the expression level of HuR, TGF-β1 and α-SMA were measured by RT-PCR, western blotting and immunohistochemistry. Results Here, we found that PDGF elevated HuR expression both at mRNA and protein level in cultured ASM cells at a time-dependent manner, which was simultaneously accompanied by the enhanced expression of TGF-β1, α-SMA and Col-I. Further study revealed that the knockdown of HuR significantly increased the apoptosis of ASM cells and dampened TGF-β1, Col-I and α-SMA expression. However, interfering TGF-β1 with siRNA or extra addition of TGF-β1, HuR could restore its production as well as Col-I. Compared with normal mice stimulating with PBS, OVA-induced mice owned high amount of inflammatory cells, such as eosinophils, lymphocytes and neutrophils except macrophages. HE staining showed accumulation of inflammatory cells surrounding bronchiole and sirius red staining distinguished collagen type I and III deposition around the bronchiole. Higher abundance of HuR, TGF-β1 and α-SMA were verified in OVA-induced mice than PBS-induced mice by RT-PCR, western blotting and immunohistochemistry. Conclusions A HuR/TGF-β1 feedback circuit was established to regulate airway remodeling in vivo and in vitro and targeting this feedback has considerable potential for the intervention of asthma.
Collapse
Affiliation(s)
- Na Wang
- Department of Pulmonary Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Di Yan
- Department of Pulmonary Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Yi Liu
- Department of Pulmonary Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Yao Liu
- Department of Pulmonary Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Xianmin Gu
- Department of Pulmonary Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Jian Sun
- Department of Pulmonary Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Fei Long
- Department of Pulmonary Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Shujuan Jiang
- Department of Pulmonary Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| |
Collapse
|
190
|
Pretolani M, Bergqvist A, Thabut G, Dombret MC, Knapp D, Hamidi F, Alavoine L, Taillé C, Chanez P, Erjefält JS, Aubier M. Effectiveness of bronchial thermoplasty in patients with severe refractory asthma: Clinical and histopathologic correlations. J Allergy Clin Immunol 2016; 139:1176-1185. [PMID: 27609656 DOI: 10.1016/j.jaci.2016.08.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND The effectiveness of bronchial thermoplasty (BT) has been reported in patients with severe asthma, yet its effect on different bronchial structures remains unknown. OBJECTIVE We sought to examine the effect of BT on bronchial structures and to explore the association with clinical outcome in patients with severe refractory asthma. METHODS Bronchial biopsy specimens (n = 300) were collected from 15 patients with severe uncontrolled asthma before and 3 months after BT. Immunostained sections were assessed for airway smooth muscle (ASM) area, subepithelial basement membrane thickness, nerve fibers, and epithelial neuroendocrine cells. Histopathologic findings were correlated with clinical parameters. RESULTS BT significantly improved asthma control and quality of life at both 3 and 12 months and decreased the numbers of severe exacerbations and the dose of oral corticosteroids. At 3 months, this clinical benefit was accompanied by a reduction in ASM area (median values before and after BT, respectively: 19.7% [25th-75th interquartile range (IQR), 15.9% to 22.4%] and 5.3% [25th-75th IQR], 3.5% to 10.1%, P < .001), subepithelial basement membrane thickening (4.4 μm [25th-75th IQR, 4.0-4.7 μm] and 3.9 μm [25th-75th IQR, 3.7-4.6 μm], P = 0.02), submucosal nerves (1.0 ‰ [25th-75th IQR, 0.7-1.3 ‰] immunoreactivity and 0.3 ‰ [25th-75th IQR, 0.1-0.5 ‰] immunoreactivity, P < .001), ASM-associated nerves (452.6 [25th-75th IQR, 196.0-811.2] immunoreactive pixels per mm2 and 62.7 [25th-75th IQR, 0.0-230.3] immunoreactive pixels per mm2, P = .02), and epithelial neuroendocrine cells (4.9/mm2 [25th-75th IQR, 0-16.4/mm2] and 0.0/mm2 [25th-75th IQR, 0-0/mm2], P = .02). Histopathologic parameters were associated based on Asthma Control Test scores, numbers of exacerbations, and visits to the emergency department (all P ≤ .02) 3 and 12 months after BT. CONCLUSION BT is a treatment option in patients with severe therapy-refractory asthma that downregulates selectively structural abnormalities involved in airway narrowing and bronchial reactivity, particularly ASM, neuroendocrine epithelial cells, and bronchial nerve endings.
Collapse
Affiliation(s)
- Marina Pretolani
- Inserm UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France; Paris Diderot University, Faculty of Medicine, Bichat campus, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité, and DHU FIRE, Paris, France
| | | | - Gabriel Thabut
- Inserm UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France; Paris Diderot University, Faculty of Medicine, Bichat campus, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité, and DHU FIRE, Paris, France; Unit of Airway Inflammation, Lund University, Lund, Sweden; Department of Pneumology B, Bichat-Claude Bernard University Hospital, Paris, France; Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Marie-Christine Dombret
- Inserm UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France; Paris Diderot University, Faculty of Medicine, Bichat campus, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité, and DHU FIRE, Paris, France; Department of Pneumology A, Bichat-Claude Bernard University Hospital, Paris, France; Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Dominique Knapp
- Inserm UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France; Paris Diderot University, Faculty of Medicine, Bichat campus, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité, and DHU FIRE, Paris, France; Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Fatima Hamidi
- Inserm UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France; Paris Diderot University, Faculty of Medicine, Bichat campus, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité, and DHU FIRE, Paris, France
| | - Loubna Alavoine
- Clinical Investigation Center, Bichat-Claude Bernard University Hospital, Paris, France
| | - Camille Taillé
- Inserm UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France; Paris Diderot University, Faculty of Medicine, Bichat campus, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité, and DHU FIRE, Paris, France; Department of Pneumology A, Bichat-Claude Bernard University Hospital, Paris, France; Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Pascal Chanez
- Inserm U1067 and CNRS UMR7733, Department of Respiratory Diseases, APHM Aix-Marseille University, Marseille, France
| | | | - Michel Aubier
- Inserm UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France; Paris Diderot University, Faculty of Medicine, Bichat campus, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité, and DHU FIRE, Paris, France; Department of Pneumology A, Bichat-Claude Bernard University Hospital, Paris, France; Assistance Publique des Hôpitaux de Paris, Paris, France.
| |
Collapse
|
191
|
Kobayashi K, Koyama K, Suzukawa M, Igarashi S, Hebisawa A, Nagase T, Ohta K. Epithelial-mesenchymal transition promotes reactivity of human lung adenocarcinoma A549 cells to CpG ODN. Allergol Int 2016; 65 Suppl:S45-52. [PMID: 27475623 DOI: 10.1016/j.alit.2016.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is reported to promote airway remodeling in asthmatics, which is the main histological change that causes complex and severe symptoms in asthmatics. However, little is known about whether EMT also plays a role in acute exacerbations of asthma evoked by respiratory tract infections. METHODS A human lung adenocarcinoma line, A549, was incubated with TGF-β1 at 10 ng/ml to induce EMT. Then the cells were stimulated with CpG ODN. Expression of surface and intracellular molecules was analyzed by flow cytometry. IL-6, IL-8 and MCP-1 in the culture supernatant were measured by Cytometric Bead Assay, and the expression of mRNA was quantitated by real-time PCR. CpG ODN uptake was analyzed by flow cytometry. RESULTS The culture supernatant levels of IL-6, IL-8 and MCP-1 and the expression of mRNA for these cytokines in CpG ODN-stimulated A549 cells that had undergone EMT was significantly higher compared to those that had not. Addition of ODN H154, a TLR9-inhibiting DNA, significantly suppressed the CpG ODN-induced production of those cytokines. However, flow cytometry found the level of TLR9 expression to be slightly lower in A549 cells that had undergone EMT compared to those that had not. On the other hand, CpG ODN uptake was increased in cells that had undergone EMT. CONCLUSIONS EMT induction of A549 cells enhanced CpG ODN uptake and CpG ODN-induced production of IL-6, IL-8 and MCP-1. These results suggest that EMT plays an important role in exacerbation in asthmatics with airway remodeling by enhancing sensitivity to extrinsic pathogens.
Collapse
Affiliation(s)
- Koichi Kobayashi
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Kazuya Koyama
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan.
| | - Sayaka Igarashi
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Akira Hebisawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
192
|
Kalbe B, Knobloch J, Schulz VM, Wecker C, Schlimm M, Scholz P, Jansen F, Stoelben E, Philippou S, Hecker E, Lübbert H, Koch A, Hatt H, Osterloh S. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells. Front Physiol 2016; 7:339. [PMID: 27540365 PMCID: PMC4972829 DOI: 10.3389/fphys.2016.00339] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/21/2016] [Indexed: 12/31/2022] Open
Abstract
Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Benjamin Kalbe
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Jürgen Knobloch
- Department of Internal Medicine III for Pneumology, Allergology, Sleep- and Respiratory Medicine, University Hospital Bergmannsheil Bochum, Germany
| | - Viola M Schulz
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Christine Wecker
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Marian Schlimm
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Paul Scholz
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Fabian Jansen
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Erich Stoelben
- Department of Thoracic Surgery, Lungenklinik Merheim, Kliniken der Stadt Köln Cologne, Germany
| | - Stathis Philippou
- Department of Pathology and Cytology, Augusta-Kranken-Anstalt Bochum, Germany
| | - Erich Hecker
- Thoraxzentrum Ruhrgebiet, Department of Thoracic Surgery, Evangelisches Krankenhaus Herne Herne, Germany
| | - Hermann Lübbert
- Department of Animal Physiology, Ruhr-University Bochum Bochum, Germany
| | - Andrea Koch
- Department of Internal Medicine III for Pneumology, Allergology, Sleep- and Respiratory Medicine, University Hospital Bergmannsheil Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Sabrina Osterloh
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
193
|
Koziol-White CJ, Yoo EJ, Cao G, Zhang J, Papanikolaou E, Pushkarsky I, Andrews A, Himes BE, Damoiseaux RD, Liggett SB, Di Carlo D, Kurten RC, Panettieri RA. Inhibition of PI3K promotes dilation of human small airways in a rho kinase-dependent manner. Br J Pharmacol 2016; 173:2726-38. [PMID: 27352269 PMCID: PMC4995285 DOI: 10.1111/bph.13542] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 12/03/2022] Open
Abstract
Background and Purpose Asthma manifests as a heterogeneous syndrome characterized by airway obstruction, inflammation and hyperresponsiveness (AHR). Although the molecular mechanisms remain unclear, activation of specific PI3K isoforms mediate inflammation and AHR. We aimed to determine whether inhibition of PI3Kδ evokes dilation of airways and to elucidate potential mechanisms. Experimental Approach Human precision cut lung slices from non‐asthma donors and primary human airway smooth muscle (HASM) cells from both non‐asthma and asthma donors were utilized. Phosphorylation of Akt, myosin phosphatase target subunit 1 (MYPT1) and myosin light chain (MLC) were assessed in HASM cells following either PI3K inhibitor or siRNA treatment. HASM relaxation was assessed by micro‐pattern deformation. Reversal of constriction of airways was assessed following stimulation with PI3K or ROCK inhibitors. Key Results Soluble inhibitors or PI3Kδ knockdown reversed carbachol‐induced constriction of human airways, relaxed agonist‐contracted HASM and inhibited pAkt, pMYPT1 and pMLC in HASM. Similarly, inhibition of Rho kinase also dilated human PCLS airways and suppressed pMYPT1 and pMLC. Baseline pMYPT1 was significantly elevated in HASM cells derived from asthma donors in comparison with non‐asthma donors. After desensitization of the β2‐adrenoceptors, a PI3Kδ inhibitor remained an effective dilator. In the presence of IL‐13, dilation by a β agonist, but not PI3K inhibitor, was attenuated. Conclusion and Implications PI3Kδ inhibitors act as dilators of human small airways. Taken together, these findings provide alternative approaches to the clinical management of airway obstruction in asthma.
Collapse
Affiliation(s)
- Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Edwin J Yoo
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Jie Zhang
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Eleni Papanikolaou
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Ivan Pushkarsky
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Adam Andrews
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Blanca E Himes
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert D Damoiseaux
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.,Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, CA, USA
| | | | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Richard C Kurten
- Arkansas Children's Hospital Research Institute and Department of Physiology & Biophysics, University of Arkansas Medical Sciences, Little Rock, AR, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
194
|
Tiron ameliorates oxidative stress and inflammation in a murine model of airway remodeling. Int Immunopharmacol 2016; 39:172-180. [PMID: 27485290 DOI: 10.1016/j.intimp.2016.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Airway remodeling includes lung structural changes that have a role in the irreversibility of pulmonary dysfunction shown in chronic bronchial asthmatics. The current experiment investigated the effect of the mitochondrial antioxidant, tiron in comparison with dexamethasone (DEXA) on airway remodeling in chronic asthma. Sensitized BALB/c mice were challenged with ovalbumin (OVA) aerosol for 8weeks, OVA sensitized-challenged mice were treated with either DEXA or tiron, respectively. After that, lung tissue and bronchoaveolar lavage fluid (BALF) were used for measurement of different biological markers. Lungs were examined for histopathological changes and immunohistochemistry. Upon comparing with vehicle treated animals, trion or DEXA treatment significantly reduced eosinophils, lymphocytes, neutrophils and macrophages count in the BALF. Both drugs significantly alleviated chronic OVA-induced oxidative stress as illustrated by decreased pulmonary malondialdenhyde (MDA) and increased glutathione (GSH) and superoxide dismutase (SOD) levels. Asthmatic mice exhibited elevated levels of NOx, IL-13 and TGF-β1 that were reduced by DEXA and tiron. Histopathological changes and increased immunoreactivity of nuclear factor-Kappa B (NF-κ B) in OVA-challenged mice were minimized by tiron and DEXA treatment. In conclusion, in this model of chronic asthma DEXA and tiron ameliorated airway remodeling and inflammation in experimental chronic asthma with no difference between the effect of tiron and DEXA. Tiron has a potential role as adjuvant treatment in chronic asthma.
Collapse
|
195
|
Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction. Sci Rep 2016; 6:30676. [PMID: 27468699 PMCID: PMC4965744 DOI: 10.1038/srep30676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/07/2016] [Indexed: 01/13/2023] Open
Abstract
A defining feature of asthma is airway hyperresponsiveness (AHR), which underlies the exaggerated bronchoconstriction response of asthmatics. The role of the airway smooth muscle (ASM) in AHR has garnered increasing interest over the years, but how asthmatic ASM differs from healthy ASM is still an active topic of debate. WNT-5A is increasingly expressed in asthmatic ASM and has been linked with Th2-high asthma. Due to its link with calcium and cytoskeletal remodelling, we propose that WNT-5A may modulate ASM contractility. We demonstrated that WNT-5A can increase maximum isometric tension in bovine tracheal smooth muscle strips. In addition, we show that WNT-5A is preferentially expressed in contractile human airway myocytes compared to proliferative cells, suggesting an active role in maintaining contractility. Furthermore, WNT-5A treatment drives actin polymerisation, but has no effect on intracellular calcium flux. Next, we demonstrated that WNT-5A directly regulates TGF-β1-induced expression of α-SMA via ROCK-mediated actin polymerization. These findings suggest that WNT-5A modulates fundamental mechanisms that affect ASM contraction and thus may be of relevance for AHR in asthma.
Collapse
|
196
|
Kumawat K, Koopmans T, Menzen MH, Prins A, Smit M, Halayko AJ, Gosens R. Cooperative signaling by TGF-β1 and WNT-11 drives sm-α-actin expression in smooth muscle via Rho kinase-actin-MRTF-A signaling. Am J Physiol Lung Cell Mol Physiol 2016; 311:L529-37. [PMID: 27422998 DOI: 10.1152/ajplung.00387.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/07/2016] [Indexed: 02/06/2023] Open
Abstract
Airway smooth muscle (ASM) remodeling is a key feature in asthma and includes changes in smooth muscle-specific gene and protein expression. Despite this being a major contributor to asthma pathobiology, our understanding of the mechanisms governing ASM remodeling remains poor. Here, we studied the functional interaction between WNT-11 and TGF-β1 in ASM cells. We demonstrate that WNT-11 is preferentially expressed in contractile myocytes and is strongly upregulated following TGF-β1-induced myocyte maturation. Knock-down of WNT-11 attenuated TGF-β1-induced smooth muscle (sm)-α-actin expression in ASM cells. We demonstrate that TGF-β1-induced sm-α-actin expression is mediated by WNT-11 via RhoA activation and subsequent actin cytoskeletal remodeling, as pharmacological inhibition of either Rho kinase by Y27632 or actin remodeling by latrunculin A attenuated sm-α-actin induction. Moreover, we show that TGF-β1 regulates the nuclear expression of myocardin-related transcription factor-A (MRTF-A) in a Rho kinase-dependent fashion, which in turn mediates sm-α-actin expression. Finally, we demonstrate that TGF-β1-induced MRTF-A nuclear translocation is dependent on endogenous WNT-11. The present study thus demonstrates a WNT-11-dependent Rho kinase-actin-MRTF-A signaling axis that regulates the expression of sm-α-actin in ASM cells.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, the Netherlands; and
| | - Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, the Netherlands; and
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, the Netherlands; and
| | - Alita Prins
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Marieke Smit
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, the Netherlands; and
| | - Andrew J Halayko
- Departments of Physiology and Pathophysiology & Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, the Netherlands; and
| |
Collapse
|
197
|
Teoh CM, Tan SSL, Tran T. Integrins as Therapeutic Targets for Respiratory Diseases. Curr Mol Med 2016; 15:714-34. [PMID: 26391549 PMCID: PMC5427774 DOI: 10.2174/1566524015666150921105339] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/09/2015] [Accepted: 09/19/2015] [Indexed: 01/14/2023]
Abstract
Integrins are a large family of transmembrane heterodimeric proteins that constitute the main receptors for extracellular matrix components. Integrins were initially thought to be primarily involved in the maintenance of cell adhesion and tissue integrity. However, it is now appreciated that integrins play important roles in many other biological processes such as cell survival, proliferation, differentiation, migration, cell shape and polarity. Lung cells express numerous combinations and permutations of integrin heterodimers. The complexity and diversity of different integrin heterodimers being implicated in different lung diseases present a major challenge for drug development. Here we provide a comprehensive overview of the current knowledge of integrins from studies in cell culture to integrin knockout mouse models and provide an update of results from clinical trials for which integrins are therapeutic targets with a focus on respiratory diseases (asthma, emphysema, pneumonia, lung cancer, pulmonary fibrosis and sarcoidosis).
Collapse
Affiliation(s)
| | | | - T Tran
- Department of Physiology, MD9, 2 Medical Drive, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
198
|
González-Avila G, Bazan-Perkins B, Sandoval C, Sommer B, Vadillo-Gonzalez S, Ramos C, Aquino-Galvez A. Interstitial collagen turnover during airway remodeling in acute and chronic experimental asthma. Exp Ther Med 2016; 12:1419-1427. [PMID: 27602069 PMCID: PMC4998200 DOI: 10.3892/etm.2016.3509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
Asthma airway remodeling is characterized by the thickening of the basement membrane (BM) due to an increase in extracellular matrix (ECM) deposition, which contributes to the irreversibility of airflow obstruction. Interstitial collagens are the primary ECM components to be increased during the fibrotic process. The aim of the present study was to examine the interstitial collagen turnover during the course of acute and chronic asthma, and 1 month after the last exposure to the allergen. Guinea pigs sensitized to ovalbumin (OVA) and exposed to 3 further OVA challenges (acute model) or 12 OVA challenges (chronic model) were used as asthma experimental models. A group of animals from either model was sacrificed 1 h or 1 month after the last OVA challenge. Collagen distribution, collagen content, interstitial collagenase activity and matrix metalloproteinase (MMP)-1, MMP-13 and tissue inhibitor of metalloproteinase (TIMP)-1 protein expression levels were measured in the lung tissue samples from both experimental models. The results revealed that collagen deposit in bronchiole BM, adventitial and airway smooth muscle layers was increased in both experimental models as well as lung tissue collagen concentration. These structural changes persisted 1 month after the last OVA challenge. In the acute model, a decrease in collagenase activity and in MMP-1 concentration was observed. Collagenase activity returned to basal levels, and an increase in MMP-1 and MMP-13 expression levels along with a decrease in TIMP-1 expression levels were observed in animals sacrificed 1 month after the last OVA challenge. In the chronic model, there were no changes in collagenase activity or in MMP-13 concentration, although MMP-1 expression levels increased. One month later, an increase in collagenase activity was observed, although MMP-1 and TIMP-1 levels were not altered. The results of the present study suggest that even when the allergen challenges were discontinued, and collagenase activity and MMP-1 expression increased, fibrosis remained, contributing to the irreversibility of bronchoconstriction.
Collapse
Affiliation(s)
- Georgina González-Avila
- Biomedical Oncology Laboratory, Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Blanca Bazan-Perkins
- Department of Bronchial Hiperreactivity, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Cuauhtémoc Sandoval
- Biomedical Oncology Laboratory, Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Bettina Sommer
- Department of Bronchial Hiperreactivity, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Sebastian Vadillo-Gonzalez
- Biomedical Oncology Laboratory, Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Carlos Ramos
- Department of Lung Fibrosis, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Arnoldo Aquino-Galvez
- Biomedical Oncology Laboratory, Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| |
Collapse
|
199
|
Soyer O, Ozen C, Cavkaytar O, Senyücel C, Dallar Y. Right middle lobe atelectasis in children with asthma and prognostic factors. Allergol Int 2016; 65:253-8. [PMID: 26806056 DOI: 10.1016/j.alit.2015.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Although right middle lobe (RML)-atelectasis of the lungs is a common complication of asthma, the relevant data is limited. The aim of this study is to define the characteristics of RML atelectasis in asthma during childhood. METHODS Children with asthma who had recently developed RML atelectasis were included; anti-inflammatory medications, clarithromycin, and inhaled salbutamol were prescribed, chest-physiotherapy (starting on the sixth day) was applied. Patients were reevaluated on the sixth, fourteenth, thirtieth, and ninetieth days, chest X-rays were taken if the atelectasis had not resolved at the time of the previous visit. RESULTS Twenty-seven patients (6.8 (4.8-8.3) years, 48.1% male) with RML atelectasis were included. Symptoms started 15 (7-30) days before admission. The thickness of the atelectasis was 11.8 ± 5.8 mm; FEV1% was 75.9 ± 14.2 and Childhood Asthma Control Test scores were 11.8 ± 5.6 at the time of admission. The atelectasis had been resolved by the sixth (n = 3), fourteenth (n = 9), thirtieth (n = 10), and ninetieth days (n = 3). The treatment response of the patients whose atelectasis resolved in fourteen days was better on the sixth-day (atelectasis thickness: 4.7 ± 1.7 vs. 11.9 ± 7.3 mm, p = 0.021) compared to those whose atelectasis resolved later. Nearly half (54.5%) of the patients whose atelectasis had resolved by fourteen days were using controller medications at the time of admission. However, only two patients (13.3%) were on controller treatment in the latter group (p = 0.032). Regression analysis didn't reveal any prognostic factors for the early resolution of atelectasis. CONCLUSIONS Early diagnosis and treatment of RML atelectasis prevents complications. Patients who had early resolution of atelectasis had already been on anti-inflammatory medications, and responded better to aggressive treatment within the first week.
Collapse
|
200
|
Faiz A, Donovan C, Nieuwenhuis MA, van den Berge M, Postma DS, Yao S, Park CY, Hirsch R, Fredberg JJ, Tjin G, Halayko AJ, Rempel KL, Ward JPT, Lee T, Bossé Y, Nickle DC, Obeidat M, Vonk JM, Black JL, Oliver BG, Krishnan R, McParland B, Bourke JE, Burgess JK. Latrophilin receptors: novel bronchodilator targets in asthma. Thorax 2016; 72:74-82. [PMID: 27325752 PMCID: PMC5329048 DOI: 10.1136/thoraxjnl-2015-207236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/30/2023]
Abstract
Background Asthma affects 300 million people worldwide. In asthma, the major cause of morbidity and mortality is acute airway narrowing, due to airway smooth muscle (ASM) hypercontraction, associated with airway remodelling. However, little is known about the transcriptional differences between healthy and asthmatic ASM cells. Objectives To investigate the transcriptional differences between asthmatic and healthy airway smooth muscle cells (ASMC) in culture and investigate the identified targets using in vitro and ex vivo techniques. Methods Human asthmatic and healthy ASMC grown in culture were run on Affymetrix_Hugene_1.0_ST microarrays. Identified candidates were confirmed by PCR, and immunohistochemistry. Functional analysis was conducted using in vitro ASMC proliferation, attachment and contraction assays and ex vivo contraction of mouse airways. Results We suggest a novel role for latrophilin (LPHN) receptors, finding increased expression on ASMC from asthmatics, compared with non-asthmatics in vivo and in vitro, suggesting a role in mediating airway function. A single nucleotide polymorphism in LPHN1 was associated with asthma and with increased LPHN1 expression in lung tissue. When activated, LPHNs regulated ASMC adhesion and proliferation in vitro, and promoted contraction of mouse airways and ASMC. Conclusions Given the need for novel inhibitors of airway remodelling and bronchodilators in asthma, the LPHN family may represent promising novel targets for future dual therapeutic intervention.
Collapse
Affiliation(s)
- A Faiz
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, New South Wales, Australia.,University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - C Donovan
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Pharmacology and Therapeutics, Lung Health Research Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - M Ae Nieuwenhuis
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - M van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - D S Postma
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - S Yao
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - C Y Park
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - R Hirsch
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - J J Fredberg
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - G Tjin
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, New South Wales, Australia
| | - A J Halayko
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - K L Rempel
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - T Lee
- Kings College London, London, UK
| | - Y Bossé
- Department of Molecular Medicine, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, Quebec, Canada
| | - D C Nickle
- Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, Massachusetts, USA
| | - M Obeidat
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - J L Black
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - B G Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, New South Wales, Australia.,School of Medical and Molecular Biosciences, University of Technology, Sydney, New South Wales, Australia
| | - R Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - B McParland
- Discipline of Pharmacology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - J E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Pharmacology and Therapeutics, Lung Health Research Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - J K Burgess
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales, Australia.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|