151
|
Liu X, Bao X, Hu M, Chang H, Jiao M, Cheng J, Xie L, Huang Q, Li F, Li CY. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 2020; 588:693-698. [PMID: 33177715 PMCID: PMC7770056 DOI: 10.1038/s41586-020-2911-7] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Despite its success in achieving the long-term survival of 10-30% of treated individuals, immune therapy is still ineffective for most patients with cancer1,2. Many efforts are therefore underway to identify new approaches that enhance such immune 'checkpoint' therapy3-5 (so called because its aim is to block proteins that inhibit checkpoint signalling pathways in T cells, thereby freeing those immune cells to target cancer cells). Here we show that inhibiting PCSK9-a key protein in the regulation of cholesterol metabolism6-8-can boost the response of tumours to immune checkpoint therapy, through a mechanism that is independent of PCSK9's cholesterol-regulating functions. Deleting the PCSK9 gene in mouse cancer cells substantially attenuates or prevents their growth in mice in a manner that depends on cytotoxic T cells. It also enhances the efficacy of immune therapy that is targeted at the checkpoint protein PD1. Furthermore, clinically approved PCSK9-neutralizing antibodies synergize with anti-PD1 therapy in suppressing tumour growth in mouse models of cancer. Inhibiting PCSK9-either through genetic deletion or using PCSK9 antibodies-increases the expression of major histocompatibility protein class I (MHC I) proteins on the tumour cell surface, promoting robust intratumoral infiltration of cytotoxic T cells. Mechanistically, we find that PCSK9 can disrupt the recycling of MHC I to the cell surface by associating with it physically and promoting its relocation and degradation in the lysosome. Together, these results suggest that inhibiting PCSK9 is a promising way to enhance immune checkpoint therapy for cancer.
Collapse
Affiliation(s)
- Xinjian Liu
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xuhui Bao
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Mengjie Hu
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Hanman Chang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Meng Jiao
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Jin Cheng
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qian Huang
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA. .,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA. .,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
152
|
Kambe Y, Koyashiki K, Hirano Y, Harada-Shiba M, Yamaoka T. Artificial switching of the metabolic processing pathway of an etiologic factor, β2-microglobulin, by a “navigator” molecule. J Control Release 2020; 327:8-18. [DOI: 10.1016/j.jconrel.2020.07.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
|
153
|
Kiouptsi K, Pontarollo G, Todorov H, Braun J, Jäckel S, Koeck T, Bayer F, Karwot C, Karpi A, Gerber S, Jansen Y, Wild P, Ruf W, Daiber A, Van Der Vorst E, Weber C, Döring Y, Reinhardt C. Germ-free housing conditions do not affect aortic root and aortic arch lesion size of late atherosclerotic low-density lipoprotein receptor-deficient mice. Gut Microbes 2020; 11:1809-1823. [PMID: 32579470 PMCID: PMC7524356 DOI: 10.1080/19490976.2020.1767463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The microbiota has been linked to the development of atherosclerosis, but the functional impact of these resident bacteria on the lesion size and cellular composition of atherosclerotic plaques in the aorta has never been experimentally addressed with the germ-free low-density lipoprotein receptor-deficient (Ldlr-/- ) mouse atherosclerosis model. Here, we report that 16 weeks of high-fat diet (HFD) feeding of hypercholesterolemic Ldlr-/- mice at germ-free (GF) housing conditions did not impact relative aortic root plaque size, macrophage content, and necrotic core area. Likewise, we did not find changes in the relative aortic arch lesion size. However, late atherosclerotic GF Ldlr-/- mice had altered inflammatory plasma protein markers and reduced smooth muscle cell content in their atherosclerotic root plaques relative to CONV-R Ldlr-/- mice. Neither absolute nor relative aortic root or aortic arch plaque size correlated with age. Our analyses on GF Ldlr-/- mice did not reveal a significant contribution of the microbiota in late aortic atherosclerosis.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Hristo Todorov
- Institute of Developmental Biology and Neurobiology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Johannes Braun
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Sven Jäckel
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
| | - Thomas Koeck
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany,Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franziska Bayer
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Cornelia Karwot
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Angelica Karpi
- Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute of Developmental Biology and Neurobiology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Yvonne Jansen
- Institute of Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Philipp Wild
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany,Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, USA
| | - Andreas Daiber
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany,Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Emiel Van Der Vorst
- Institute of Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands,Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Christian Weber
- Institute of Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Yvonne Döring
- Institute of Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany,Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany,CONTACT Christoph Reinhardt University Medical Center Mainz, Mainz55131, Germany
| |
Collapse
|
154
|
Nuthikattu S, Milenkovic D, Rutledge JC, Villablanca AC. Sex-Dependent Molecular Mechanisms of Lipotoxic Injury in Brain Microvasculature: Implications for Dementia. Int J Mol Sci 2020; 21:E8146. [PMID: 33142695 PMCID: PMC7663125 DOI: 10.3390/ijms21218146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular risk factors and biologic sex play a role in vascular dementia which is characterized by progressive reduction in cognitive function and memory. Yet, we lack understanding about the role sex plays in the molecular mechanisms whereby lipid stress contributes to cognitive decline. Five-week-old low-density lipoprotein deficient (LDL-R -/-) male and female mice and C57BL/6J wild types (WT) were fed a control or Western Diet for 8 weeks. Differential expression of protein coding and non-protein coding genes (DEG) were determined in laser captured hippocampal microvessels using genome-wide microarray, followed by bioinformatic analysis of gene networks, pathways, transcription factors and sex/gender-based analysis (SGBA). Cognitive function was assessed by Y-maze. Bioinformatic analysis revealed more DEGs in females (2412) compared to males (1972). Hierarchical clusters revealed distinctly different sex-specific gene expression profiles irrespective of diet and genotype. There were also fewer and different biologic responses in males compared to females, as well as different cellular pathways and gene networks (favoring greater neuroprotection in females), together with sex-specific transcription factors and non-protein coding RNAs. Hyperlipidemic stress also resulted in less severe cognitive dysfunction in females. This sex-specific pattern of differential hippocampal microvascular RNA expression might provide therapeutic targets for dementia in males and females.
Collapse
Affiliation(s)
- Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| | - Dragan Milenkovic
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - John C. Rutledge
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| | - Amparo C. Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| |
Collapse
|
155
|
Abstract
Atherosclerosis, the pathology underlying heart attacks, strokes and peripheral artery disease, is a chronic inflammatory disease of the artery wall initiated by elevated low-density lipoprotein (LDL) cholesterol levels. LDL accumulates in the artery wall, where it can become oxidized to oxLDL. T cell responses to ApoB, a core protein found in LDL and other lipoproteins, are detectable in healthy mice and people. Most of the ApoB-specific CD4T cells are FoxP3+ regulatory T cells (Treg). In the course of atherosclerosis development, the number of ApoB-reactive T cells expands. At the same time, their phenotype changes, showing cell surface markers, transcription factors and transcriptomes resembling other T-helper lineages like Th17, Th1 and follicular helper (TFH) cells. TFH cells enter germinal centers and provide T cell help to B cells, enabling antibody isotype switch from IgM to IgG and supporting affinity maturation. In people and mice with atherosclerosis, IgG and IgM antibodies to oxLDL are detectable. Higher IgM antibody titers to oxLDL are associated with less, IgG antibodies with more atherosclerosis. Thus, both T and B cells play critical roles in atherosclerosis. Modifying the adaptive immune response to ApoB holds promise for preventing atherosclerosis and reducing disease burden.
Collapse
Affiliation(s)
- Klaus Ley
- Center for Autoimmunity and Inflammation, Inflammation Biology Laboratory, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, U.S.A
| |
Collapse
|
156
|
Trimethylamine N-oxide and the reverse cholesterol transport in cardiovascular disease: a cross-sectional study. Sci Rep 2020; 10:18675. [PMID: 33122777 PMCID: PMC7596051 DOI: 10.1038/s41598-020-75633-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The early atherosclerotic lesions develop by the accumulation of arterial foam cells derived mainly from cholesterol-loaded macrophages. Therefore, cholesterol and cholesteryl ester transfer protein (CETP) have been considered as causative in atherosclerosis. Moreover, recent studies indicate the role of trimethylamine N-oxide (TMAO) in development of cardiovascular disease (CVD). The current study aimed to investigate the association between TMAO and CETP polymorphisms (rs12720922 and rs247616), previously identified as a genetic determinant of circulating CETP, in a population of coronary artery disease (CAD) patients (n = 394) and control subjects (n = 153). We also considered age, sex, trimethylamine (TMA) levels and glomerular filtration rate (GFR) as other factors that can potentially play a role in this complex picture. We found no association of TMAO with genetically determined CETP in a population of CAD patients and control subjects. Moreover, we noticed no differences between CAD patients and control subjects in plasma TMAO levels. On the contrary, lower levels of TMA in CAD patients respect to controls were observed. Our results indicated a significant correlation between GFR and TMAO, but not TMA. The debate whether TMAO can be a harmful, diagnostic or protective marker in CVD needs to be continued.
Collapse
|
157
|
Zhang T, Lu R, Chen Y, Yuan Y, Song S, Yan K, Zha Y, Zhuang W, Cheng Y, Liang J. Hyperhomocysteinemia and dyslipidemia in point mutation G307S of cystathionine β-synthase-deficient rabbit generated using CRISPR/Cas9. Lipids Health Dis 2020; 19:224. [PMID: 33054837 PMCID: PMC7560309 DOI: 10.1186/s12944-020-01394-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background Congenital hyper-homocysteinemia (HHcy) is caused by a defective cystathionine β-synthase (CBS) gene, and is frequently associated with dyslipdemia. The aim of this study was to further elucidate the effect of mutated CBS gene on circulating lipids using a rabbit model harboring a homozygous G307S point mutation in CBS. Methods CRISPR/Cas9 system was used to edit the CBS gene in rabbit embryos. The founder rabbits were sequenced, and their plasma homocysteine (Hcy) and lipid profile were analyzed. Results Six CBS-knockout (CBS-KO) founder lines with biallelic modifications were obtained. Mutation in CBS caused significant growth retardation and high mortality rates within 6 weeks after birth. In addition, the 6-week old CBS-KO rabbits showed higher plasma levels of Hcy, triglycerides (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) compared to the age-matched wild-type (WT) controls. Histological analysis of the mutants showed accumulation of micro-vesicular cytoplasmic lipid droplets in the hepatocytes. However, gastric infusion of vitamin B and betaine complex significantly decreased the plasma levels of TG, TC and LDL-C in the CBS-KO rabbits, and alleviated hepatic steatosis compared to the untreated animals. Conclusion A CBSG307S rabbit model was generated that exhibited severe dyslipidemia when fed on a normal diet, indicating that G307S mutation in the CBS gene is a causative factor for dyslipidemia.
Collapse
Affiliation(s)
- Ting Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Rui Lu
- School of Pharmacy, Jiangsu Food & Pharmaceutical Science College, Huaian, 223003, Jiangsu, China
| | - Yibing Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Yuguo Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Shaozheng Song
- School of Nursing, Taihu University of Wuxi, Wuxi, 214000, Jiangsu, China
| | - Kunning Yan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yiwen Zha
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
158
|
Progeria, atherosclerosis and clonal hematopoiesis: links and future perspectives. Mech Ageing Dev 2020; 192:111365. [PMID: 33007346 DOI: 10.1016/j.mad.2020.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022]
Abstract
The main actors of this review are Hutchinson-Gilford progeria syndrome (HGPS) and atherosclerosis. HGPS is a very rare disease with no definitively approved specific drugs. Atherosclerosis is a very common disease with a more consolidated treatment strategy. Nevertheless, common mechanisms are shared by both these diseases, particularly related to inflammation, oxidative and endoplasmic reticulum (ER) stress. Pathways regulated by Nuclear factor E2 related factor (Nrf2), Nuclear factor kappa B (NF-kB) and related to the Unfolded Protein Response (UPR) and ER stress are receiving increasing attention. In HGPS "not omnia" happen(s) "cum tempore", that means that HGPS patients have atherosclerotic complications before their time. The third actor is clonal hematopoiesis: it constitutes a link between ageing and atherosclerosis. This review aims to analyse the current knowledge of atherosclerosis and clonal hematopoiesis in order to suggest therapeutic strategies to correct the timing of the atherosclerosis progression in HGPS. The goal for HGPS is a shift from "not omnia cum tempore" to "omnia cum tempore" in terms of significant lifespan extension by postponing atherosclerosis-related complications.
Collapse
|
159
|
Zhou F, Wu X, Pinos I, Abraham BM, Barrett TJ, von Lintig J, Fisher EA, Amengual J. β-Carotene conversion to vitamin A delays atherosclerosis progression by decreasing hepatic lipid secretion in mice. J Lipid Res 2020; 61:1491-1503. [PMID: 32963037 DOI: 10.1194/jlr.ra120001066] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is characterized by the pathological accumulation of cholesterol-laden macrophages in the arterial wall. Atherosclerosis is also the main underlying cause of CVDs, and its development is largely driven by elevated plasma cholesterol. Strong epidemiological data find an inverse association between plasma β-carotene with atherosclerosis, and we recently showed that β-carotene oxygenase 1 (BCO1) activity, responsible for β-carotene cleavage to vitamin A, is associated with reduced plasma cholesterol in humans and mice. In this study, we explore whether intact β-carotene or vitamin A affects atherosclerosis progression in the atheroprone LDLR-deficient mice. Compared with control-fed Ldlr-/- mice, β-carotene-supplemented mice showed reduced atherosclerotic lesion size at the level of the aortic root and reduced plasma cholesterol levels. These changes were absent in Ldlr-/- /Bco1-/- mice despite accumulating β-carotene in plasma and atherosclerotic lesions. We discarded the implication of myeloid BCO1 in the development of atherosclerosis by performing bone marrow transplant experiments. Lipid production assays found that retinoic acid, the active form of vitamin A, reduced the secretion of newly synthetized triglyceride and cholesteryl ester in cell culture and mice. Overall, our findings provide insights into the role of BCO1 activity and vitamin A in atherosclerosis progression through the regulation of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Felix Zhou
- Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiaoyun Wu
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Ivan Pinos
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Benjamin M Abraham
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Tessa J Barrett
- Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Edward A Fisher
- Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA .,Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA
| |
Collapse
|
160
|
Hofheinz K, Seibert F, Ackermann JA, Dietel B, Tauchi M, Oszvar-Kozma M, Kühn H, Schett G, Binder CJ, Krönke G. Formation of atherosclerotic lesions is independent of eosinophils in male mice. Atherosclerosis 2020; 311:67-72. [PMID: 32947200 DOI: 10.1016/j.atherosclerosis.2020.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS Oxidation of low-density lipoprotein (LDL) and oxidized LDL-mediated activation of the innate immune system have been recognized as early key events during the pathogenesis of atherosclerosis. Recent evidence identified eosinophils as a major source of enzymatic lipid oxidation and suggested a potential role of type 2 immunity in atherogenesis. However, the involvement of individual type 2 immune cell subsets involved in this process has been incompletely defined. We therefore sought to determine the role of eosinophils during LDL oxidation and the pathogenesis of this disease. METHODS Using eosinophil-deficient dblGATA1 mice, we studied the role of eosinophils in two established mouse models of atherosclerosis. RESULTS These experiments revealed that the presence of eosinophils did neither affect biomarkers of LDL oxidation nor atherosclerotic lesion development. CONCLUSIONS The obtained results show that LDL oxidation and development of atherosclerosis are largely independent of eosinophils or eosinophil-mediated LDL oxidation.
Collapse
Affiliation(s)
- Katharina Hofheinz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fabian Seibert
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jochen A Ackermann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Barbara Dietel
- Department of Internal Medicine 2 - Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miyuki Tauchi
- Department of Internal Medicine 2 - Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria Oszvar-Kozma
- Department of Laboratory Medicine, Medical University of Vienna, CeMM Research Center for Molecular Medicine of Austrian Academy of Sciences, Vienna, Austria; CeMM Research Center for Molecular Medicine of Austrian Academy of Sciences, Vienna, Austria
| | - Hartmut Kühn
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, CeMM Research Center for Molecular Medicine of Austrian Academy of Sciences, Vienna, Austria; CeMM Research Center for Molecular Medicine of Austrian Academy of Sciences, Vienna, Austria
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
161
|
Pirri D, Fragiadaki M, Evans PC. Diabetic atherosclerosis: is there a role for the hypoxia-inducible factors? Biosci Rep 2020; 40:BSR20200026. [PMID: 32816039 PMCID: PMC7441368 DOI: 10.1042/bsr20200026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a major cause of mortality worldwide and is driven by multiple risk factors, including diabetes. Diabetes is associated with either an insulin deficiency in its juvenile form or with insulin resistance and obesity in Type 2 diabetes mellitus, and the latter is clustered with other comorbidities to define the metabolic syndrome. Diabetes and metabolic syndrome are complex pathologies and are associated with cardiovascular risk via vascular inflammation and other mechanisms. Several transcription factors are activated upon diabetes-driven endothelial dysfunction and drive the progression of atherosclerosis. In particular, the hypoxia-inducible factor (HIF) transcription factor family is a master regulator of endothelial biology and is raising interest in the field of atherosclerosis. In this review, we will present an overview of studies contributing to the understanding of diabetes-driven atherosclerosis, integrating the role of HIF in this disease with the knowledge of its functions in metabolic syndrome and diabetic scenario.
Collapse
Affiliation(s)
- Daniela Pirri
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
| | - Paul C. Evans
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
| |
Collapse
|
162
|
Pitts MG, Nardo D, Isom CM, Venditto VJ. Autoantibody Responses to Apolipoprotein A-I Are Not Diet- or Sex-Linked in C57BL/6 Mice. Immunohorizons 2020; 4:455-463. [PMID: 32759326 PMCID: PMC7646948 DOI: 10.4049/immunohorizons.2000027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/14/2020] [Indexed: 01/16/2023] Open
Abstract
Atherosclerosis is responsible for a large percentage of all-cause mortality worldwide, but it is only now beginning to be understood as a complex disease process involving metabolic insult, chronic inflammation, and multiple immune mechanisms. Abs targeting apolipoprotein A-I (ApoA-I) have been found in patients with cardiovascular disease, autoimmune conditions, as well as those with no documented history of either. However, relatively little is known about how these Abs are generated and their relationship to diet and sex. In the current study, we modeled this aspect of autoimmunity using anti–ApoA-I immunization of male and female C57BL/6 mice. Unexpectedly, we found that autoantibodies directed against a single, previously unknown, epitope within the ApoA-I protein developed irrespective of immunization status or dyslipidemia in mice. When total IgG subclasses were analyzed over the course of time, we observed that rather than driving an increase in inflammatory IgG subclasses, consumption of Western diet suppressed age-dependent increases in IgG2b and IgG2c in male mice only. The lack of change observed in female mice suggested that diet and sex might play a combined role in Th1/Th2 balance and, ultimately, in immunity to pathogen challenge. This report demonstrates the need for inclusion of both sexes in studies pertaining to diet and aging and suggests that further study of immunogenic epitopes present in ApoA-I is warranted.
Collapse
Affiliation(s)
- Michelle G Pitts
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and.,Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536
| | - David Nardo
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and
| | - Cierra M Isom
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and
| | - Vincent J Venditto
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and
| |
Collapse
|
163
|
Abstract
Cardiovascular disease remains the top cause of morbidity and mortality in the United States. Atherosclerotic plaques are known to start in adolescence, and, therefore, young adults can be affected by coronary artery disease. Children with known risk factors, such as genetic predisposition, including familial hyperlipidemias, diabetes, and renal diseases, are at higher risk. With childhood obesity becoming an epidemic in certain parts of the United States, this problem is further highlighted as an important issue affecting children's health. There are unclear recommendations for pediatricians regarding cholesterol screening of pediatric populations, when to initiate hyperlipidemia treatment with statin therapy, and when to refer to a specialist for further management. This article reviews the epidemiology and pathophysiology of hyperlipidemia, recommendations for screening and types of screening, management (including pharmacology), prognosis, and prevention.
Collapse
Affiliation(s)
- Jeremy Stewart
- Section of Emergency Medicine, Department of Pediatrics, Baylor College of Medicine, The Children's Hospital of San Antonio, San Antonio, TX
| | - Tracy McCallin
- Section of Emergency Medicine, Department of Pediatrics, Baylor College of Medicine, The Children's Hospital of San Antonio, San Antonio, TX
| | - Julian Martinez
- Office of Student Affairs, Baylor College of Medicine, Houston, TX
| | - Sheebu Chacko
- Section of Emergency Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Shabana Yusuf
- Section of Emergency Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| |
Collapse
|
164
|
Chen Q, Chao Y, Zhang W, Zhang Y, Bi Y, Fu Y, Cai D, Meng Q, Li Y, Bian H. Activation of estrogen receptor α (ERα) is required for Alisol B23-acetate to prevent post-menopausal atherosclerosis and reduced lipid accumulation. Life Sci 2020; 258:118030. [PMID: 32739470 DOI: 10.1016/j.lfs.2020.118030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
The risk of atherosclerosis (AS) ascends among post-menopausal women, while current hormone replacement therapy exerts several adverse effects. Alisol B 23-acetate (AB23A), a tetracyclic triterpenoid isolated from the rhizome of Alisma orientale, was reported to show multiple physiological activities, including regulating lipid metabolism. According to molecular docking analysis, it was predicted to bind with estrogen receptor α (ERα). In this study, we aimed to observe the effect of AB23A on preventing post-menopausal AS and explore whether the mechanism was mediated by ERα. In vitro, free fatty acid (FFA) was applied to induce the abnormal lipid metabolism of L02 cells. In vivo, the ApoE-/- mice were ovariectomized to mimic the cessation of estrogen. The high-fat diet was also given to induce post-menopausal AS. We demonstrated AB23A attenuated the accumulation of total cholesterol and triglyceride induced by free fatty acids in hepatocytes. In high-fat diet-ovariectomy-treated ApoE-/- mice, AB23A eliminated lipids in blood and liver. AB23A not only reduced the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) through sterol-regulatory element binding proteins (SREBPs) but also suppressed the secretion of PCSK9 through silent information regulator 1 (SIRT1). Notably, AB23A promoted the expression of ERα in vivo and in vitro. The both ERα inhibitor and ERα siRNA were also applied in confirming whether the hepatic protective effect of AB23A was mediated by ERα. We found that AB23A significantly promoted the expression of ERα. AB23A could inhibit the synthesis and secretion of PCSK9 through ERα, lower the accumulation of triglyceride and cholesterol, and prevent post-menopausal AS.
Collapse
Affiliation(s)
- Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunhui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Danfeng Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
165
|
Wu D, Pan Y, Yang S, Li C, Zhou Y, Wang Y, Chen X, Zhou Z, Liao Y, Qiu Z. PCSK9Qβ-003 Vaccine Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice. Cardiovasc Drugs Ther 2020; 35:141-151. [PMID: 32725442 DOI: 10.1007/s10557-020-07041-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE Our group has developed a therapeutic vaccine targeting proprotein convertase subtilisin/kexin type 9 (PCSK9), named PCSK9Qβ-003. In this study, we investigated the potential effectiveness of the PCSK9Qβ-003 vaccine on atherosclerosis. METHODS Male ApoE-/- mice were randomly assigned to three groups: a phosphate-buffered saline (PBS) group, Qβ virus-like particles (VLP) group, and PCSK9Qβ-003 vaccine group. Mice in the PCSK9Qβ-003 group were injected with the PCSK9Qβ-003 vaccine four times (100 μg/time) over a period of 18 weeks. The effects of the vaccine on atherosclerotic plaque, cholesterol transport, inflammation and apoptosis were investigated. RESULTS The PCSK9Qβ-003 vaccine obviously decreased total cholesterol and low-density lipoprotein cholesterol in ApoE-/- mice. Compared with the other groups, the PCSK9Qβ-003 vaccine significantly reduced the lesion area and promoted the stability of atherosclerotic plaque. The vaccine regulated cholesterol transport in the aorta of ApoE-/- mice by up-regulating the expression level of liver X receptor α and ATP binding cassette transporter A1. Additionally, macrophage infiltration and expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α were significantly decreased in the mice administered the PCSK9Qβ-003 vaccine. The vaccine also markedly reduced apoptosis in the lesion area of the aorta in ApoE-/- mice. CONCLUSIONS The results demonstrated that the PCSK9Qβ-003 vaccine attenuated the progression of atherosclerosis by modulating reverse cholesterol transport and inhibiting inflammation infiltration and apoptosis, which may provide a novel therapeutic approach for atherosclerosis and greatly improve treatment compliance among patients.
Collapse
Affiliation(s)
- Danyu Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yajie Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shijun Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yanzhao Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yingxuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiao Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China. .,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China. .,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China. .,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China. .,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
166
|
Chen LW, Tsai MC, Chern CY, Tsao TP, Lin FY, Chen SJ, Tsui PF, Liu YW, Lu HJ, Wu WL, Lin WS, Tsai CS, Lin CS. A chalcone derivative, 1m-6, exhibits atheroprotective effects by increasing cholesterol efflux and reducing inflammation-induced endothelial dysfunction. Br J Pharmacol 2020; 177:5375-5392. [PMID: 32579243 DOI: 10.1111/bph.15175] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis, resulting from lipid dysregulation and vascular inflammation, causes atherosclerotic cardiovascular disease (ASCVD), which contributes to morbidity and mortality worldwide. Chalcone and its derivatives possess beneficial properties, including anti-inflammatory, antioxidant and antitumour activity with unknown cardioprotective effects. We aimed to develop an effective chalcone derivative with antiatherogenic potential. EXPERIMENTAL APPROACH Human THP-1 cells and HUVECs were used as in vitro models. Western blots and real-time PCRs were performed to quantify protein, mRNA and miRNA expressions. The cholesterol efflux capacity was assayed by 3 H labelling of cholesterol. LDL receptor knockout (Ldlr-/- ) mice fed a high-fat diet were used as an in vivo atherogenesis model. Haematoxylin and eosin and oil red O staining were used to analyse plaque formation. KEY RESULTS Using ATP-binding cassette transporter A1 (ABCA1) expression we identified the chalcone derivative, 1m-6, which enhances ABCA1 expression and promotes cholesterol efflux in THP-1 macrophages. Moreover, 1m-6 stabilizes ABCA1 mRNA and suppresses the expression of potential ABCA1-regulating miRNAs through nuclear factor erythroid 2-related factor 2 (Nrf2)/haem oxygenase-1 (HO-1) signalling. Additionally, 1m-6 significantly inhibits TNF-α-induced expression of adhesion molecules, vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), plus production of proinflammatory cytokines via inhibition of JAK/STAT3 activation and the modulation of Nrf2/HO-1 signalling in HUVECs. In atherosclerosis-prone mice, 1m-6 significantly reduces lipid accumulation and atherosclerotic plaque formation. CONCLUSION AND IMPLICATIONS Our study demonstrates that 1m-6 produces promising atheroprotective effects by enhancing cholesterol efflux and suppressing inflammation-induced endothelial dysfunction, which opens a new avenue for treating ASCVD. LINKED ARTICLES This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Liv Weichien Chen
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Yuh Chern
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| | - Tien-Ping Tsao
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Cardiology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Research Institute and Department of Internal Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pi-Fen Tsui
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Wen Liu
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsien-Jui Lu
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| | - Wan-Lin Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wei-Shiang Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.,Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
167
|
Koppinger MP, Lopez-Pier MA, Skaria R, Harris PR, Konhilas JP. Lactobacillus reuteri attenuates cardiac injury without lowering cholesterol in low-density lipoprotein receptor-deficient mice fed standard chow. Am J Physiol Heart Circ Physiol 2020; 319:H32-H41. [PMID: 32412785 DOI: 10.1152/ajpheart.00569.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disruption of the normal gut microbiome (dysbiosis) is implicated in the progression and severity of myriad disorders, including hypercholesterolemia and cardiovascular disease. Probiotics attenuate and reverse gut dysbiosis to improve cardiovascular risk factors like hypertension and hypercholesterolemia. Lactobacillus reuteri is a well-studied lactic acid-producing probiotic with known cholesterol-lowering properties and anti-inflammatory effects. In the present study, we hypothesized that L. reuteri delivered to hypercholesterolemic low-density lipoprotein receptor knockout (LDLr KO) mice will reduce cholesterol levels and minimize cardiac injury from an ischemic insult. L. reuteri [1 × 109 or 50 × 106 colony-forming units (CFU)/day] was administered by oral gavage to wild-type mice and LDLr KO for up to 6 wk followed by an ischemia-reperfusion (I/R) protocol. After 4 wk of gavage, total serum cholesterol in wild-type mice receiving saline was 113.5 ± 5.6 mg/dL compared with 113.3 ± 6.8 and 101.9 ± 7.5 mg/dL in mice receiving 1 × 109 or 50 × 106 CFU/day, respectively. Over the same time frame, administration of L. reuteri at 1 × 109 or 50 × 106 CFU/day did not lower total serum cholesterol (283.0 ± 11.1, 263.3 ± 5.0, and 253.1 ± 7.0 mg/dL; saline, 1 × 109 or 50 × 106 CFU/day, respectively) in LDLr KO mice. Despite no impact on total serum cholesterol, L. reuteri administration significantly attenuated cardiac injury following I/R, as evidenced by smaller infarct sizes compared with controls in both wild-type and LDLr KO groups. In conclusion, daily L. reuteri significantly protected against cardiac injury without lowering cholesterol levels, suggesting anti-inflammatory properties of L. reuteri uncoupled from improvements in serum cholesterol.NEW & NOTEWORTHY We demonstrated that daily delivery of Lactobacillus reuteri to wild-type and hypercholesterolemic lipoprotein receptor knockout mice attenuated cardiac injury following ischemia-reperfusion without lowering total serum cholesterol in the short term. In addition, we validated protection against cardiac injury using histology and immunohistochemistry techniques. L. reuteri offers promise as a probiotic to mitigate ischemic cardiac injury.
Collapse
Affiliation(s)
| | - Marissa Anne Lopez-Pier
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Rinku Skaria
- Department of Physiology, University of Arizona, Tucson, Arizona
| | | | - John P Konhilas
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,Department of Biomedical Engineering, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona.,Department of Physiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
168
|
Vedder VL, Aherrahrou Z, Erdmann J. Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Front Cardiovasc Med 2020; 7:109. [PMID: 32714944 PMCID: PMC7344238 DOI: 10.3389/fcvm.2020.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases, such as atherosclerosis, are the leading cause of death worldwide. Although mice are currently the most commonly used model for atherosclerosis, zebrafish are emerging as an alternative, especially for inflammatory and lipid metabolism studies. Here, we review the history of in vivo atherosclerosis models and highlight the potential for future studies on inflammatory responses in lipid deposits in zebrafish, based on known immune reactions in humans and mice, in anticipation of new zebrafish models with more advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Viviana L Vedder
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| |
Collapse
|
169
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
170
|
Behrmann A, Zhong D, Li L, Cheng SL, Mead M, Ramachandran B, Sabaeifard P, Goodarzi M, Lemoff A, Kronenberg HM, Towler DA. PTH/PTHrP Receptor Signaling Restricts Arterial Fibrosis in Diabetic LDLR -/- Mice by Inhibiting Myocardin-Related Transcription Factor Relays. Circ Res 2020; 126:1363-1378. [PMID: 32160132 PMCID: PMC7524585 DOI: 10.1161/circresaha.119.316141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
RATIONALE The PTH1R (PTH [parathyroid hormone]/PTHrP [PTH-related protein] receptor) is expressed in vascular smooth muscle (VSM) and increased VSM PTH1R signaling mitigates diet-induced arteriosclerosis in LDLR-/- mice. OBJECTIVE To study the impact of VSM PTH1R deficiency, we generated mice SM22-Cre:PTH1R(fl/fl);LDLR-/- mice (PTH1R-VKO) and Cre-negative controls. METHODS AND RESULTS Immunofluorescence and Western blot confirmed PTH1R expression in arterial VSM that was reduced by Cre-mediated knockout. PTH1R-VKO cohorts exhibited increased aortic collagen accumulation in vivo, and VSM cultures from PTH1R-VKO mice elaborated more collagen (2.5-fold; P=0.01) with elevated Col3a1 and Col1a1 expression. To better understand these profibrotic responses, we performed mass spectrometry on nuclear proteins extracted from Cre-negative controls and PTH1R-VKO VSM. PTH1R deficiency reduced Gata6 but upregulated the MADS (MCM1, Agamous, Deficiens, and Srf DNA-binding domain)-box transcriptional co-regulator, Mkl-1 (megakaryoblastic leukemia [translocation] 1). Co-transfection assays (Col3a1 promoter-luciferase reporter) confirmed PTH1R-mediated inhibition and Mkl-1-mediated activation of Col3a1 transcription. Regulation mapped to a conserved hybrid CT(A/T)6GG MADS-box cognate in the Col3a1 promoter. Mutations of C/G in this motif markedly reduced Col3a1 transcriptional regulation by PTH1R and Mkl-1. Upregulation of Col3a1 and Col1a1 in PTH1R-VKO VSM was inhibited by small interfering RNA targeting Mkl1 and by treatment with the Mkl-1 antagonist CCG1423 or the Rock (Rho-associated coiled-coil containing protein kinase)-2 inhibitor KD025. Chromatin precipitation demonstrated that VSM PTH1R deficiency increased Mkl-1 binding to Col3a1 and Col1a1, but not TNF, promoters. Proteomic studies of plasma extracellular vesicles and VSM from PTH1R-VKO mice identified C1r (complement component 1, r) and C1s (complement component 1, s), complement proteins involved in vascular collagen metabolism, as potential biomarkers. VSM C1r protein and C1r message were increased with PTH1R deficiency, mediated by Mkl-1-dependent transcription and inhibited by CCG1423 or KD025. CONCLUSIONS PTH1R signaling restricts collagen production in the VSM lineage, in part, via Mkl-1 regulatory circuits that control collagen gene transcription. Strategies that maintain homeostatic VSM PTH1R signaling, as reflected in extracellular vesicle biomarkers of VSM PTH1R/Mkl-1 action, may help mitigate arteriosclerosis and vascular fibrosis.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/pathology
- Diet, High-Fat
- Disease Models, Animal
- Fibrosis
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Parathyroid Hormone/metabolism
- Rats
- Receptor, Parathyroid Hormone, Type 1/deficiency
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Vascular Remodeling
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Dalian Zhong
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Li Li
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Su-Li Cheng
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Megan Mead
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Bindu Ramachandran
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Parastoo Sabaeifard
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114
| | - Dwight A. Towler
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
171
|
Sugahara G, Ishida Y, Sun J, Tateno C, Saito T. Art of Making Artificial Liver: Depicting Human Liver Biology and Diseases in Mice. Semin Liver Dis 2020; 40:189-212. [PMID: 32074631 PMCID: PMC8629128 DOI: 10.1055/s-0040-1701444] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Advancement in both bioengineering and cell biology of the liver led to the establishment of the first-generation humanized liver chimeric mouse (HLCM) model in 2001. The HLCM system was initially developed to satisfy the necessity for a convenient and physiologically representative small animal model for studies of hepatitis B virus and hepatitis C virus infection. Over the last two decades, the HLCM system has substantially evolved in quality, production capacity, and utility, thereby growing its versatility beyond the study of viral hepatitis. Hence, it has been increasingly employed for a variety of applications including, but not limited to, the investigation of drug metabolism and pharmacokinetics and stem cell biology. To date, more than a dozen distinctive HLCM systems have been established, and each model system has similarities as well as unique characteristics, which are often perplexing for end-users. Thus, this review aims to summarize the history, evolution, advantages, and pitfalls of each model system with the goal of providing comprehensive information that is necessary for researchers to implement the ideal HLCM system for their purposes. Furthermore, this review article summarizes the contribution of HLCM and its derivatives to our mechanistic understanding of various human liver diseases, its potential for novel applications, and its current limitations.
Collapse
Affiliation(s)
- Go Sugahara
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Jeffrey Sun
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chise Tateno
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,USC Research Center for Liver Diseases, Los Angeles, California
| |
Collapse
|
172
|
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and the predominant cause of heart attack and ischemic stroke. Despite the well-known sexual dimorphism in the incidence and complications of atherosclerosis, there are relatively limited data in the clinical and preclinical literature to rigorously address mechanisms underlying sex as a biological variable in atherosclerosis. In multiple histological and imaging studies, overall plaque burden and markers of inflammation appear to be greater in men than women and are predictive of cardiovascular events. However, while younger women are relatively protected from cardiovascular disease, by the seventh decade, the incidence of myocardial infarction in women ultimately surpasses that of men, suggesting an interaction between sex and age. Most preclinical studies in animal atherosclerosis models do not examine both sexes, and even in those that do, well-powered direct statistical comparisons for sex as an independent variable remain rare. This article reviews the available data. Overall, male animals appear to have more inflamed yet smaller plaques compared to female animals. Plaque inflammation is often used as a surrogate end point for plaque vulnerability in animals. The available data support the notion that rather than plaque size, plaque inflammation may be more relevant in assessing sex-specific mechanisms since the findings correlate with the sex difference in ischemic events and mortality and thus may be more reflective of the human condition. Overall, the number of preclinical studies directly comparing plaque inflammation between the sexes is extremely limited relative to the vast literature exploring atherosclerosis mechanisms. Failure to include both sexes and to address age in mechanistic atherosclerosis studies are missed opportunities to uncover underlying sex-specific mechanisms. Understanding the mechanisms driving sex as a biological variable in atherosclerotic disease is critical to future precision medicine strategies to mitigate what is still the leading cause of death of men and women worldwide.
Collapse
Affiliation(s)
- Joshua J. Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Joshua A. Beckman
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
173
|
van der Sluis RJ, Hoekstra M. Glucocorticoids are active players and therapeutic targets in atherosclerotic cardiovascular disease. Mol Cell Endocrinol 2020; 504:110728. [PMID: 31968221 DOI: 10.1016/j.mce.2020.110728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Adrenal-derived glucocorticoids mediate the physiological response to stress. Chronic disturbances in glucocorticoid homeostasis, i.e. in Addison's and Cushing's disease patients, predispose to the development of atherosclerotic cardiovascular disease. Here we review preclinical and clinical findings regarding the relation between changes in plasma glucocorticoid levels and the atherosclerosis extent. It appears that, although the altered glucocorticoid function can in most cases be restored in the different patient groups, current therapies do not necessarily reverse the associated risk for atherosclerotic cardiovascular disease. In our opinion much attention should therefore be given to the development of a Cushing's disease mouse model that can (1) effectively replicate the effect of hypercortisolemia on atherosclerosis outcome observed in humans and (2) be used to investigate, in a preclinical setting, the relative impact on atherosclerosis susceptibility of already available (e.g. metyrapone) and potentially novel (i.e. SR-BI activity modulators) therapeutic agents that target the adrenal glucocorticoid output.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
174
|
Roberts ME, Barvalia M, Silva JAFD, Cederberg RA, Chu W, Wong A, Tai DC, Chen S, Matos I, Priatel JJ, Cullis PR, Harder KW. Deep Phenotyping by Mass Cytometry and Single-Cell RNA-Sequencing Reveals LYN-Regulated Signaling Profiles Underlying Monocyte Subset Heterogeneity and Lifespan. Circ Res 2020; 126:e61-e79. [PMID: 32151196 DOI: 10.1161/circresaha.119.315708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE Monocytes are key effectors of the mononuclear phagocyte system, playing critical roles in regulating tissue homeostasis and coordinating inflammatory reactions, including those involved in chronic inflammatory diseases such as atherosclerosis. Monocytes have traditionally been divided into 2 major subsets termed conventional monocytes and patrolling monocytes (pMo) but recent systems immunology approaches have identified marked heterogeneity within these cells, and much of what regulates monocyte population homeostasis remains unknown. We and others have previously identified LYN tyrosine kinase as a key negative regulator of myeloid cell biology; however, LYN's role in regulating specific monocyte subset homeostasis has not been investigated. OBJECTIVE We sought to comprehensively profile monocytes to elucidate the underlying heterogeneity within monocytes and dissect how Lyn deficiency affects monocyte subset composition, signaling, and gene expression. We further tested the biological significance of these findings in a model of atherosclerosis. METHODS AND RESULTS Mass cytometric analysis of monocyte subsets and signaling pathway activation patterns in conventional monocytes and pMos revealed distinct baseline signaling profiles and far greater heterogeneity than previously described. Lyn deficiency led to a selective expansion of pMos and alterations in specific signaling pathways within these cells, revealing a critical role for LYN in pMo physiology. LYN's role in regulating pMos was cell-intrinsic and correlated with an increased circulating half-life of Lyn-deficient pMos. Furthermore, single-cell RNA sequencing revealed marked perturbations in the gene expression profiles of Lyn-/- monocytes with upregulation of genes involved in pMo development, survival, and function. Lyn deficiency also led to a significant increase in aorta-associated pMos and protected Ldlr-/- mice from high-fat diet-induced atherosclerosis. CONCLUSIONS Together our data identify LYN as a key regulator of pMo development and a potential therapeutic target in inflammatory diseases regulated by pMos.
Collapse
Affiliation(s)
- Morgan E Roberts
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Maunish Barvalia
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Jessica A F D Silva
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Rachel A Cederberg
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - William Chu
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Amanda Wong
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Daven C Tai
- Department of Pediatrics (D.C.T.), University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.)
| | - Sam Chen
- Department of Biochemistry and Molecular Biology (S.C., P.R.C.), University of British Columbia, Vancouver, Canada
| | - Israel Matos
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - John J Priatel
- Department of Pathology and Laboratory Medicine (J.J.P.), University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.)
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology (S.C., P.R.C.), University of British Columbia, Vancouver, Canada
| | - Kenneth W Harder
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| |
Collapse
|
175
|
Berlin‐Broner Y, Alexiou M, Levin L, Febbraio M. Characterization of a mouse model to study the relationship between apical periodontitis and atherosclerosis. Int Endod J 2020; 53:812-823. [DOI: 10.1111/iej.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Y. Berlin‐Broner
- Faculty of Medicine and Dentistry University of Alberta Edmonton AB Canada
| | - M. Alexiou
- Faculty of Medicine and Dentistry University of Alberta Edmonton AB Canada
| | - L. Levin
- Faculty of Medicine and Dentistry University of Alberta Edmonton AB Canada
| | - M. Febbraio
- Faculty of Medicine and Dentistry University of Alberta Edmonton AB Canada
| |
Collapse
|
176
|
Oppi S, Nusser-Stein S, Blyszczuk P, Wang X, Jomard A, Marzolla V, Yang K, Velagapudi S, Ward LJ, Yuan XM, Geiger MA, Guillaumon AT, Othman A, Hornemann T, Rancic Z, Ryu D, Oosterveer MH, Osto E, Lüscher TF, Stein S. Macrophage NCOR1 protects from atherosclerosis by repressing a pro-atherogenic PPARγ signature. Eur Heart J 2020; 41:995-1005. [PMID: 31529020 DOI: 10.1093/eurheartj/ehz667] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/28/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Nuclear receptors and their cofactors regulate key pathophysiological processes in atherosclerosis development. The transcriptional activity of these nuclear receptors is controlled by the nuclear receptor corepressors (NCOR), scaffolding proteins that form the basis of large corepressor complexes. Studies with primary macrophages demonstrated that the deletion of Ncor1 increases the expression of atherosclerotic molecules. However, the role of nuclear receptor corepressors in atherogenesis is unknown. METHODS AND RESULTS We generated myeloid cell-specific Ncor1 knockout mice and crossbred them with low-density lipoprotein receptor (Ldlr) knockouts to study the role of macrophage NCOR1 in atherosclerosis. We demonstrate that myeloid cell-specific deletion of nuclear receptor corepressor 1 (NCOR1) aggravates atherosclerosis development in mice. Macrophage Ncor1-deficiency leads to increased foam cell formation, enhanced expression of pro-inflammatory cytokines, and atherosclerotic lesions characterized by larger necrotic cores and thinner fibrous caps. The immunometabolic effects of NCOR1 are mediated via suppression of peroxisome proliferator-activated receptor gamma (PPARγ) target genes in mouse and human macrophages, which lead to an enhanced expression of the CD36 scavenger receptor and subsequent increase in oxidized low-density lipoprotein uptake in the absence of NCOR1. Interestingly, in human atherosclerotic plaques, the expression of NCOR1 is reduced whereas the PPARγ signature is increased, and this signature is more pronounced in ruptured compared with non-ruptured carotid plaques. CONCLUSIONS Our findings show that macrophage NCOR1 blocks the pro-atherogenic functions of PPARγ in atherosclerosis and suggest that stabilizing the NCOR1-PPARγ binding could be a promising strategy to block the pro-atherogenic functions of plaque macrophages and lesion progression in atherosclerotic patients.
Collapse
Affiliation(s)
- Sara Oppi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Stefanie Nusser-Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Przemyslaw Blyszczuk
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Clinical Immunology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Xu Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Anne Jomard
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Vincenzo Marzolla
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Kangmin Yang
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Srividya Velagapudi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Liam J Ward
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Xi-Ming Yuan
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Martin A Geiger
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, 13083-970 Campinas, Brazil
| | - Ana T Guillaumon
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, 13083-970 Campinas, Brazil
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zoran Rancic
- Clinic for Vascular Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 16419 Suwon, Republic of Korea
| | - Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Elena Osto
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, Royal Brompton & Harefield Hospital Trust, London, SW3 6NP, UK
- Imperial College London, London, SW7 2AZ, UK
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
177
|
Tong X, Dai C, Walker JT, Nair GG, Kennedy A, Carr RM, Hebrok M, Powers AC, Stein R. Lipid Droplet Accumulation in Human Pancreatic Islets Is Dependent On Both Donor Age and Health. Diabetes 2020; 69:342-354. [PMID: 31836690 PMCID: PMC7034188 DOI: 10.2337/db19-0281] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
Abstract
Human but not mouse islets transplanted into immunodeficient NSG mice effectively accumulate lipid droplets (LDs). Because chronic lipid exposure is associated with islet β-cell dysfunction, we investigated LD accumulation in the intact human and mouse pancreas over a range of ages and states of diabetes. Very few LDs were found in normal human juvenile pancreatic acinar and islet cells, with numbers subsequently increasing throughout adulthood. While accumulation appeared evenly distributed in postjuvenile acinar and islet cells in donors without diabetes, LDs were enriched in islet α- and β-cells from donors with type 2 diabetes (T2D). LDs were also found in the islet β-like cells produced from human embryonic cell-derived β-cell clusters. In contrast, LD accumulation was nearly undetectable in the adult rodent pancreas, even in hyperglycemic and hyperlipidemic models or 1.5-year-old mice. Taken together, there appear to be significant differences in pancreas islet cell lipid handling between species, and the human juvenile and adult cell populations. Moreover, our results suggest that LD enrichment could be impactful to T2D islet cell function.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt, University Medical Center, Nashville, TN
| | - John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Gopika G Nair
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC
| | - Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt, University Medical Center, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
178
|
Millar CL, Jiang C, Norris GH, Garcia C, Seibel S, Anto L, Lee JY, Blesso CN. Cow's milk polar lipids reduce atherogenic lipoprotein cholesterol, modulate gut microbiota and attenuate atherosclerosis development in LDL-receptor knockout mice fed a Western-type diet. J Nutr Biochem 2020; 79:108351. [PMID: 32007663 DOI: 10.1016/j.jnutbio.2020.108351] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/18/2022]
Abstract
Milk sphingomyelin (SM), a polar lipid (PL) component of milk fat globule membranes, is protective against dyslipidemia. However, it is unclear whether ingestion of milk PLs protect against atherosclerosis. To determine this, male LDLr-/- mice (age 6 weeks) were fed ad libitum either a high-fat, added-cholesterol diet (CTL; 45% kcal from fat, 0.2% cholesterol by weight; n=15) or the same diet supplemented with 1% milk PL (1% MPL; n=15) or 2% milk PL (2% MPL; n=15) added by weight from butter serum. After 14 weeks on diets, mice fed 2% MPL had significantly lower serum cholesterol (-51%) compared to CTL (P<.01), with dose-dependent effects in lowering VLDL- and LDL-cholesterol. Mice fed 2% MPL displayed lower inflammatory markers in the serum, liver, adipose and aorta. Notably, milk PLs reduced atherosclerosis development in both the thoracic aorta and the aortic root, with 2% MPL-fed mice having significantly lower neutral lipid plaque size by 59% (P<.01) and 71% (P<.02) compared to CTL, respectively. Additionally, the 2% MPL-fed mice had greater relative abundance of Bacteroidetes, Actinobacteria and Bifidobacterium, and lower Firmicutes in cecal feces compared to CTL. Milk PL feeding resulted in significantly different microbial communities as demonstrated by altered beta diversity indices. In summary, 2% MPL strongly reduced atherogenic lipoprotein cholesterol, modulated gut microbiota, lowered inflammation and attenuated atherosclerosis development. Thus, milk PL content may be important to consider when choosing dairy products as foods for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Courtney L Millar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Christina Jiang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Gregory H Norris
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Samantha Seibel
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Liya Anto
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269.
| |
Collapse
|
179
|
Reply to Soulillou et al.: Difficulties in extrapolating from animal models exemplify unusual human atherosclerosis susceptibility and mechanisms via CMAH loss. Proc Natl Acad Sci U S A 2020; 117:1847-1848. [PMID: 31964837 DOI: 10.1073/pnas.1917278117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
180
|
De Paula GC, de Oliveira J, Engel DF, Lopes SC, Moreira ELG, Figueiredo CP, Prediger RD, Fabro de Bem A. Red wine consumption mitigates the cognitive impairments in low-density lipoprotein receptor knockout (LDLr -/-) mice. Nutr Neurosci 2020; 24:978-988. [PMID: 31910791 DOI: 10.1080/1028415x.2019.1704472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although the benefits of moderate intake of red wine in decreasing incidence of cardiovascular diseases associated to hypercholesterolemia are well recognized, there are still widespread misconceptions about its effects on the hypercholesterolemia-related cognitive impairments. Herein we investigated the putative benefits of regular red wine consumption on cognitive performance of low-density lipoprotein receptor knockout (LDLr-/-) mice, an animal model of familial hypercholesterolemia, which display cognitive impairments since early ages. The red wine was diluted into the drinking water to a final concentration of 6% ethanol and was available for 60 days for LDLr-/- mice fed a normal or high-cholesterol diet. The results indicated that moderate red wine consumption did not alter locomotor parameters and liver toxicity. Across multiple cognitive tasks evaluating spatial learning/reference memory and recognition/identification memory, hypercholesterolemic mice drinking red wine performed significantly better than water group, regardless of diet. Additionally, immunofluorescence assays indicated a reduction of astrocyte activation and lectin stain in the hippocampus of LDLr-/- mice under consumption of red wine. These findings demonstrate that the moderate consumption of red wine attenuates short- and long-term memory decline associated with hypercholesterolemia in mice and suggest that it could be through a neurovascular action.
Collapse
Affiliation(s)
| | - Jade de Oliveira
- Laboratory of Experimental Neurology, Extremo Sul Catarinense University, Criciúma, Brazil
| | - Daiane Fátima Engel
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | | | - Rui Daniel Prediger
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Andreza Fabro de Bem
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.,Department of Physiological Science, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
181
|
Martins Cardoso R, Creemers E, Absalah S, Hoekstra M, Gooris GS, Bouwstra JA, Van Eck M. Hyperalphalipoproteinemic scavenger receptor BI knockout mice exhibit a disrupted epidermal lipid barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158592. [PMID: 31863970 DOI: 10.1016/j.bbalip.2019.158592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 12/16/2019] [Indexed: 01/28/2023]
Abstract
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of cholesteryl esters (CE) from high-density lipoproteins (HDL). An impaired SR-BI function leads to hyperalphalipoproteinemia with elevated levels of cholesterol transported in the HDL fraction. Accumulation of cholesterol in apolipoprotein B (apoB)-containing lipoproteins has been shown to alter skin lipid composition and barrier function in mice. To investigate whether these hypercholesterolemic effects on the skin also occur in hyperalphalipoproteinemia, we compared skins of wild-type and SR-BI knockout (SR-BI-/-) mice. SR-BI deficiency did not affect the epidermal cholesterol content and induced only minor changes in the ceramide subclasses. The epidermal free fatty acid (FFA) pool was, however, enriched in short and unsaturated chains. Plasma CE levels strongly correlated with epidermal FFA C18:1 content. The increase in epidermal FFA coincided with downregulation of cholesterol and FFA synthesis genes, suggesting a compensatory response to increased flux of plasma cholesterol and FFAs into the skin. Importantly, the SR-BI-/- epidermal lipid barrier showed increased permeability to ethyl-paraminobenzoic acid, indicating an impairment of the barrier function. In conclusion, increased HDL-cholesterol levels in SR-BI-/- mice can alter the epidermal lipid composition and lipid barrier function similarly as observed in hypercholesterolemia due to elevated levels of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Renata Martins Cardoso
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Eline Creemers
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands
| | - Samira Absalah
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Menno Hoekstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Gert S Gooris
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Joke A Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| | - Miranda Van Eck
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, the Netherlands.
| |
Collapse
|
182
|
Cao W, Abdelgawwad MS, Li J, Zheng XL. Apolipoprotein B100/Low-Density Lipoprotein Regulates Proteolysis and Functions of von Willebrand Factor under Arterial Shear. Thromb Haemost 2019; 119:1933-1946. [PMID: 31493779 PMCID: PMC7814363 DOI: 10.1055/s-0039-1696713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Proteolytic cleavage of von Willebrand factor (VWF) by a plasma a disintegrin and metalloproteinase with a thrombospondin type 1 motifs, member 13 (ADAMTS13) is regulated by shear stress and binding of coagulation factor VIII, platelets or platelet glycoprotein 1b, and ristocetin to VWF. OBJECTIVE Current study aims to identify novel VWF binding partners that may modulate VWF functions under physiological conditions. METHODS A deoxyribonucleic acid aptamer-based affinity purification of VWF, followed by tandem mass spectrometry, functional, and binding assays was employed. RESULTS Apolipoprotein B100/low-density lipoprotein (apoB100/LDL) was identified as a novel VWF-binding partner. Purified apoB100/LDL was able to accelerate the proteolytic cleavage of VWF by ADAMTS13 under shear in a concentration-dependent manner. This rate-enhancing activity was dramatically reduced when apoB100/LDL was oxidized. More interestingly, the oxidized apoB100/LDL appeared to compete with native apoB100/LDL for its enhancing activity on VWF proteolysis under shear. As a control, a purified apoA1/high-density lipoprotein (apoA1/HDL) or apoB48 exhibited a minimal or no activity enhancing VWF proteolysis by ADAMTS13 under the same conditions. Both VWF and ADAMTS13 were able to bind native or oxidized apoB100/LDL with high affinities. No binding interaction was detected between VWF (or ADAMTS13) and apoA1/HDL (or apoB48). Moreover, apoB100/LDL but not its oxidized products inhibited the adhesion of platelets to ultra large VWF released from endothelial cells under flow. Finally, significantly reduced ratios of high to low molecular weight of VWF multimers with increased levels of plasma VWF antigen were detected in LDLR-/- mice fed with high cholesterol diet. CONCLUSION These results indicate that apoB100/LDL may be a novel physiological regulator for ADAMTS13-VWF functions.
Collapse
Affiliation(s)
- Wenjing Cao
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mohammad S. Abdelgawwad
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jingzhi Li
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - X. Long Zheng
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
183
|
Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 2019; 16:727-744. [PMID: 31243391 DOI: 10.1038/s41569-019-0227-9] [Citation(s) in RCA: 699] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are a major cell type present at all stages of an atherosclerotic plaque. According to the 'response to injury' and 'vulnerable plaque' hypotheses, contractile VSMCs recruited from the media undergo phenotypic conversion to proliferative synthetic cells that generate extracellular matrix to form the fibrous cap and hence stabilize plaques. However, lineage-tracing studies have highlighted flaws in the interpretation of former studies, revealing that these studies had underestimated both the content and functions of VSMCs in plaques and have thus challenged our view on the role of VSMCs in atherosclerosis. VSMCs are more plastic than previously recognized and can adopt alternative phenotypes, including phenotypes resembling foam cells, macrophages, mesenchymal stem cells and osteochondrogenic cells, which could contribute both positively and negatively to disease progression. In this Review, we present the evidence for VSMC plasticity and summarize the roles of VSMCs and VSMC-derived cells in atherosclerotic plaque development and progression. Correct attribution and spatiotemporal resolution of clinically beneficial and detrimental processes will underpin the success of any therapeutic intervention aimed at VSMCs and their derivatives.
Collapse
Affiliation(s)
- Gemma L Basatemur
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Helle F Jørgensen
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Murray C H Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK.
- INSERM U970, Paris Cardiovascular Research Center, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
184
|
Zhao H, Li Y, He L, Pu W, Yu W, Li Y, Wu YT, Xu C, Wei Y, Ding Q, Song BL, Huang H, Zhou B. In Vivo AAV-CRISPR/Cas9-Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation 2019; 141:67-79. [PMID: 31779484 DOI: 10.1161/circulationaha.119.042476] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mutations in low-density lipoprotein (LDL) receptor (LDLR) are one of the main causes of familial hypercholesterolemia, which induces atherosclerosis and has a high lifetime risk of cardiovascular disease. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is an effective tool for gene editing to correct gene mutations and thus to ameliorate disease. METHODS The goal of this work was to determine whether in vivo somatic cell gene editing through the CRISPR/Cas9 system delivered by adeno-associated virus (AAV) could treat familial hypercholesterolemia caused by the Ldlr mutant in a mouse model. We generated a nonsense point mutation mouse line, LdlrE208X, based on a relevant familial hypercholesterolemia-related gene mutation. The AAV-CRISPR/Cas9 was designed to correct the point mutation in the Ldlr gene in hepatocytes and was delivered subcutaneously into LdlrE208X mice. RESULTS We found that homogeneous LdlrE208X mice (n=6) exhibited severe atherosclerotic phenotypes after a high-fat diet regimen and that the Ldlr mutation was corrected in a subset of hepatocytes after AAV-CRISPR/Cas9 treatment, with LDLR protein expression partially restored (n=6). Compared with the control groups (n=6 each group), the AAV-CRISPR/Cas9 with targeted single guide RNA group (n=6) had significant reductions in total cholesterol, total triglycerides, and LDL cholesterol in the serum, whereas the aorta had smaller atherosclerotic plaques and a lower degree of macrophage infiltration. CONCLUSIONS Our work shows that in vivo AAV-CRISPR/Cas9-mediated Ldlr gene correction can partially rescue LDLR expression and effectively ameliorate atherosclerosis phenotypes in Ldlr mutants, providing a potential therapeutic approach for the treatment of patients with familial hypercholesterolemia.
Collapse
Affiliation(s)
- Huan Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (H.Z., Y.L., L.H., W.P., W.Y., Y.L., B.Z.)
| | - Yan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (H.Z., Y.L., L.H., W.P., W.Y., Y.L., B.Z.)
| | - Lingjuan He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (H.Z., Y.L., L.H., W.P., W.Y., Y.L., B.Z.)
| | - Wenjuan Pu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (H.Z., Y.L., L.H., W.P., W.Y., Y.L., B.Z.)
| | - Wei Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (H.Z., Y.L., L.H., W.P., W.Y., Y.L., B.Z.)
| | - Yi Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (H.Z., Y.L., L.H., W.P., W.Y., Y.L., B.Z.)
| | - Yan-Ting Wu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, China (Y.-T.W., C.X., H.H.).,Shanghai Key Laboratory of Embryo Original Diseases, China (Y.-T.W., C.X., H.H.)
| | - Chenming Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, China (Y.-T.W., C.X., H.H.).,Shanghai Key Laboratory of Embryo Original Diseases, China (Y.-T.W., C.X., H.H.)
| | - Yuda Wei
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (Y.W., Q.D., B.Z.)
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (Y.W., Q.D., B.Z.)
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, China (B.-L.S.)
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, China (Y.-T.W., C.X., H.H.).,Shanghai Key Laboratory of Embryo Original Diseases, China (Y.-T.W., C.X., H.H.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (H.Z., Y.L., L.H., W.P., W.Y., Y.L., B.Z.).,CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences (Y.W., Q.D., B.Z.).,School of Life Science and Technology, ShanghaiTech University, China (B.Z.).,Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).,Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (B.Z.).,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing (B.Z.)
| |
Collapse
|
185
|
Shiomi M. The History of the WHHL Rabbit, an Animal Model of Familial Hypercholesterolemia (II) - Contribution to the Development and Validation of the Therapeutics for Hypercholesterolemia and Atherosclerosis. J Atheroscler Thromb 2019; 27:119-131. [PMID: 31748470 PMCID: PMC7049474 DOI: 10.5551/jat.rv17038-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A number of effective drugs have been developed through animal experiments, contributing to the health of many patients. In particular, the WHHL rabbit family (WHHL rabbits and its advanced strains (coronary atherosclerosis-prone WHHL-CA rabbits and myocardial infarction-prone WHHLMI rabbits) developed at Kobe University (Kobe, Japan) contributed greatly in the development of cholesterol-lowering agents. The WHHL rabbit family is animal models for human familial hypercholesterolemia, coronary atherosclerosis, and coronary heart disease. At the end of breeding of the WHHL rabbit family, this review summarizes the contribution of the WHHL rabbit family to the development of lipid-lowering agents and anti-atherosclerosis agents. Studies using the WHHL rabbit family demonstrated, for the first time in the world, that lowering serum cholesterol levels or preventing LDL oxidation can suppress the progression and destabilization of coronary lesions. In addition, the WHHL rabbit family contributed to the development of various compounds that exhibit lipid-lowering and anti-atherosclerotic effects and has also been used in studies of gene therapeutics. Furthermore, this review also discusses the causes of the increased discrepancy in drug development between the results of animal experiments and clinical studies, which became a problem in recent years, and addresses the importance of the selection of appropriate animal models used in studies in addition to an appropriate study design.
Collapse
Affiliation(s)
- Masashi Shiomi
- Institute for Experimental Animals, Kobe University Graduate School of Medicine
| |
Collapse
|
186
|
Abstract
There is now overwhelming experimental and clinical evidence that atherosclerosis is a chronic inflammatory disease. Lessons from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice, and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb atherosclerosis. Here, we summarize and discuss the pathogenesis of atherosclerosis with a focus on adaptive immunity. We discuss some limitations of animal models and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment.
Collapse
Affiliation(s)
- Dennis Wolf
- From the Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (D.W.).,Faculty of Medicine, University of Freiburg, Germany (D.W.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (K.L.).,Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| |
Collapse
|
187
|
Alves-Bezerra M, Furey N, Johnson CG, Bissig KD. Using CRISPR/Cas9 to model human liver disease. JHEP Rep 2019; 1:392-402. [PMID: 32039390 PMCID: PMC7005665 DOI: 10.1016/j.jhepr.2019.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
CRISPR/Cas9 gene editing has revolutionised biomedical research. The ease of design has allowed many groups to apply this technology for disease modelling in animals. While the mouse remains the most commonly used organism for embryonic editing, CRISPR is now increasingly performed with high efficiency in other species. The liver is also amenable to somatic genome editing, and some delivery methods already allow for efficient editing in the whole liver. In this review, we describe CRISPR-edited animals developed for modelling a broad range of human liver disorders, such as acquired and inherited hepatic metabolic diseases and liver cancers. CRISPR has greatly expanded the repertoire of animal models available for the study of human liver disease, advancing our understanding of their pathophysiology and providing new opportunities to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA
| | - Nika Furey
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Collin G Johnson
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center (STAR), Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| |
Collapse
|
188
|
Abstract
Atherosclerotic plaque development depends on chronic inflammation of the arterial wall. A dysbiotic gut microbiota can cause low-grade inflammation, and microbiota composition was linked to cardiovascular disease risk. However, the role of this environmental factor in atherothrombosis remains undefined. To analyze the impact of gut microbiota on atherothrombosis, we rederived low-density lipoprotein receptor-deficient (Ldlr-/- ) mice as germfree (GF) and kept these mice for 16 weeks on an atherogenic high-fat Western diet (HFD) under GF isolator conditions and under conventionally raised specific-pathogen-free conditions (CONV-R). In spite of reduced diversity of the cecal gut microbiome, caused by atherogenic HFD, GF Ldlr-/- mice and CONV-R Ldlr-/- mice exhibited atherosclerotic lesions of comparable sizes in the common carotid artery. In contrast to HFD-fed mice, showing no difference in total cholesterol levels, CONV-R Ldlr-/- mice fed control diet (CD) had significantly reduced total plasma cholesterol, very-low-density lipoprotein (VLDL), and LDL levels compared with GF Ldlr-/- mice. Myeloid cell counts in blood as well as leukocyte adhesion to the vessel wall at the common carotid artery of GF Ldlr-/- mice on HFD were diminished compared to CONV-R Ldlr-/- controls. Plasma cytokine profiling revealed reduced levels of the proinflammatory chemokines CCL7 and CXCL1 in GF Ldlr-/- mice, whereas the T-cell-related interleukin 9 (IL-9) and IL-27 were elevated. In the atherothrombosis model of ultrasound-induced rupture of the common carotid artery plaque, thrombus area was significantly reduced in GF Ldlr-/- mice relative to CONV-R Ldlr-/- mice. Ex vivo, this atherothrombotic phenotype was explained by decreased adhesion-dependent platelet activation and thrombus growth of HFD-fed GF Ldlr-/- mice on type III collagen.IMPORTANCE Our results demonstrate a functional role for the commensal microbiota in atherothrombosis. In a ferric chloride injury model of the carotid artery, GF C57BL/6J mice had increased occlusion times compared to colonized controls. Interestingly, in late atherosclerosis, HFD-fed GF Ldlr-/- mice had reduced plaque rupture-induced thrombus growth in the carotid artery and diminished ex vivo thrombus formation under arterial flow conditions.
Collapse
|
189
|
Houben T, Penders J, Oligschlaeger Y, Dos Reis IAM, Bonder MJ, Koonen DP, Fu J, Hofker MH, Shiri-Sverdlov R. Hematopoietic Npc1 mutation shifts gut microbiota composition in Ldlr -/- mice on a high-fat, high-cholesterol diet. Sci Rep 2019; 9:14956. [PMID: 31628414 PMCID: PMC6802207 DOI: 10.1038/s41598-019-51525-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
While the link between diet-induced changes in gut microbiota and lipid metabolism in metabolic syndrome (MetS) has been established, the contribution of host genetics is rather unexplored. As several findings suggested a role for the lysosomal lipid transporter Niemann-Pick type C1 (NPC1) in macrophages during MetS, we here explored whether a hematopoietic Npc1 mutation, induced via bone marrow transplantation, influences gut microbiota composition in low-density lipoprotein receptor knockout (Ldlr-/-) mice fed a high-fat, high-cholesterol (HFC) diet for 12 weeks. Ldlr-/- mice fed a HFC diet mimic a human plasma lipoprotein profile and show features of MetS, providing a model to explore the role of host genetics on gut microbiota under MetS conditions. Fecal samples were used to profile the microbial composition by 16 s ribosomal RNA gene sequencing. The hematopoietic Npc1 mutation shifted the gut microbiota composition and increased microbial richness and diversity. Variations in plasma lipid levels correlated with microbial diversity and richness as well as with several bacterial genera. This study suggests that host genetic influences on lipid metabolism affect the gut microbiome under MetS conditions. Future research investigating the role of host genetics on gut microbiota might therefore lead to identification of diagnostic and therapeutic targets for MetS.
Collapse
Affiliation(s)
- Tom Houben
- Departments of Molecular Genetics and Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - John Penders
- Departments of Molecular Genetics and Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.
| | - Yvonne Oligschlaeger
- Departments of Molecular Genetics and Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Inês A Magro Dos Reis
- Departments of Molecular Genetics and Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Marc-Jan Bonder
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Debby P Koonen
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marten H Hofker
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronit Shiri-Sverdlov
- Departments of Molecular Genetics and Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
190
|
Huang Q, Liu Y, Yang Z, Xie Y, Mo Z. The Effects of Cholesterol Metabolism on Follicular Development and Ovarian Function. Curr Mol Med 2019; 19:719-730. [PMID: 31526349 DOI: 10.2174/1566524019666190916155004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Abstract
Cholesterol is an important substrate for the synthesis of ovarian sex hormones and has an important influence on follicular development. The cholesterol in follicular fluid is mainly derived from plasma. High-density lipoprotein (HDL) and lowdensity lipoprotein (LDL) play important roles in ovarian cholesterol transport. The knockout of related receptors in the mammalian HDL and LDL pathways results in the reduction or absence of fertility, leading us to support the importance of cholesterol homeostasis in the ovary. However, little is known about ovarian cholesterol metabolism and the complex regulation of its homeostasis. Here, we reviewed the cholesterol metabolism in the ovary and speculated that regardless of the functioning of cholesterol metabolism in the system or the ovarian microenvironment, an imbalance in cholesterol homeostasis is likely to have an adverse effect on ovarian structure and function.
Collapse
Affiliation(s)
- Qin Huang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Yannan Liu
- Nursing School, Hunan University of Medicine, Huaihua 418000, China
| | - Zhen Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Yuanjie Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| |
Collapse
|
191
|
Dimova LG, Battista S, Plösch T, Kampen RA, Liu F, Verkaik-Schakel RN, Pratico D, Verkade HJ, Tietge UJF. Gestational oxidative stress protects against adult obesity and insulin resistance. Redox Biol 2019; 28:101329. [PMID: 31550664 PMCID: PMC6812053 DOI: 10.1016/j.redox.2019.101329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 01/06/2023] Open
Abstract
Pregnancy complications such as preeclampsia cause increased fetal oxidative stress and fetal growth restriction, and associate with a higher incidence of adult metabolic syndrome. However, the pathophysiological contribution of oxidative stress per se is experimentally difficult to discern and has not been investigated. This study determined, if increased intrauterine oxidative stress (IUOx) affects adiposity, glucose and cholesterol metabolism in adult Ldlr−/−xSod2+/+ offspring from crossing male Ldlr−/−xSod2+/+ mice with Ldlr−/−xSod2 +/- dams (IUOx) or Ldlr−/−xSod2 +/- males with Ldlr−/−xSod2+/+ dams (control). At 12 weeks of age mice received Western diet for an additional 12 weeks. Adult male IUOx offspring displayed lower body weight and reduced adiposity associated with improved glucose tolerance compared to controls. Reduced weight gain in IUOx was conceivably due to increased energy dissipation in white adipose tissue conveyed by higher expression of Ucp1 and an accompanying decrease in DNA methylation in the Ucp1 enhancer region. Female offspring did not show comparable phenotypes. These results demonstrate that fetal oxidative stress protects against the obesogenic effects of Western diet in adulthood by programming energy dissipation in white adipose tissue at the level of Ucp1. Intrauterine oxidative stress (IUOx) in absence of growth restriction was induced. IUOx results in less obesity and improved glucose tolerance in adult male mice. Reduced adiposity in adult males is due to browning of white adipose tissue (WAT). Increased UCP-1 expression in WAT of IUOx mice is explained by lower methylation.
Collapse
Affiliation(s)
- Lidiya G Dimova
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Simone Battista
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Rosalie A Kampen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Fan Liu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Alle 8, Stockholm, Sweden
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA, USA
| | - Henkjan J Verkade
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Alle 8, Stockholm, Sweden; Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
192
|
Engel DF, Grzyb AN, de Oliveira J, Pötzsch A, Walker TL, Brocardo PS, Kempermann G, de Bem AF. Impaired adult hippocampal neurogenesis in a mouse model of familial hypercholesterolemia: A role for the LDL receptor and cholesterol metabolism in adult neural precursor cells. Mol Metab 2019; 30:1-15. [PMID: 31767163 PMCID: PMC6812372 DOI: 10.1016/j.molmet.2019.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Objective In familial hypercholesterolemia (FH), mutations in the low-density lipoprotein (LDL) receptor (LDLr) gene result in increased plasma LDL cholesterol. Clinical and preclinical studies have revealed an association between FH and hippocampus-related memory and mood impairment. We here asked whether hippocampal pathology in FH might be a consequence of compromised adult hippocampal neurogenesis. Methods We evaluated hippocampus-dependent behavior and neurogenesis in adult C57BL/6JRj and LDLr−/− mice. We investigated the effects of elevated cholesterol and the function of LDLr in neural precursor cells (NPC) isolated from adult C57BL/6JRj mice in vitro. Results Behavioral tests revealed that adult LDLr−/− mice showed reduced performance in a dentate gyrus (DG)-dependent metric change task. This phenotype was accompanied by a reduction in cell proliferation and adult neurogenesis in the DG of LDLr−/− mice, suggesting a potential direct impact of LDLr mutation on NPC. Exposure of NPC to LDL as well as LDLr gene knockdown reduced proliferation and disrupted transcriptional activity of genes involved in endogenous cholesterol synthesis and metabolism. The LDL treatment also induced an increase in intracellular lipid storage. Functional analysis of differentially expressed genes revealed parallel modulation of distinct regulatory networks upon LDL treatment and LDLr knockdown. Conclusions Together, these results suggest that high LDL levels and a loss of LDLr function, which are characteristic to individuals with FH, might contribute to a disease-related impairment in adult hippocampal neurogenesis and, consequently, cognitive functions. The LDLr −/− mice show impaired hippocampal related behaviour and adult neurogenesis. In vitro exposure of NPC to LDL and LDLr knock-down reduces cell proliferation. LDL exposure induces lipid storage in NPC. In vitro LDL and LDLr knock-down in NPC modulates distinct regulatory networks.
Collapse
Affiliation(s)
- Daiane F Engel
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil; German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| | - Anna N Grzyb
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jade de Oliveira
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Alexandra Pötzsch
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Tara L Walker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Patricia S Brocardo
- Department of Morphological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Andreza F de Bem
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil; Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
193
|
Muthuramu I, Mishra M, Aboumsallem JP, Postnov A, Gheysens O, De Geest B. Cholesterol lowering attenuates pressure overload-induced heart failure in mice with mild hypercholesterolemia. Aging (Albany NY) 2019; 11:6872-6891. [PMID: 31484164 PMCID: PMC6756886 DOI: 10.18632/aging.102218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/13/2019] [Indexed: 01/19/2023]
Abstract
Epidemiological studies support a strong association between non-high-density lipoprotein cholesterol levels and heart failure incidence. The objective of the current study was to evaluate the effect of selective cholesterol lowering adeno-associated viral serotype 8 (AAV8)-mediated low-density lipoprotein receptor (LDLr) gene transfer on cardiac remodelling and myocardial oxidative stress following transverse aortic constriction (TAC) in female C57BL/6 LDLr-/- mice with mild hypercholesterolemia. Cholesterol lowering gene transfer resulted in a 65.9% (p<0.0001) reduction of plasma cholesterol levels (51.2 ± 2.2 mg/dl) compared to controls (150 ± 7 mg/dl). Left ventricular wall area was 11.2% (p<0.05) lower in AAV8-LDLr TAC mice than in control TAC mice. In agreement, pro-hypertrophic myocardial proteins were potently decreased in AAV8-LDLr TAC mice. The degree of interstitial fibrosis and perivascular fibrosis was 31.0% (p<0.001) and 29.8% (p<0.001) lower, respectively, in AAV8-LDLr TAC mice compared to control TAC mice. These structural differences were associated with improved systolic and diastolic function and decreased lung congestion in AAV8-LDLr TAC mice compared to control TAC mice. Cholesterol lowering gene therapy counteracted myocardial oxidative stress and preserved the potential for myocardial fatty acid oxidation in TAC mice. In conclusion, cholesterol lowering gene therapy attenuates pressure overload-induced heart failure in mice with mild hypercholesterolemia.
Collapse
Affiliation(s)
- Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven 3000, Belgium
| | - Mudit Mishra
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven 3000, Belgium
| | - Joseph Pierre Aboumsallem
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven 3000, Belgium
| | - Andrey Postnov
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Catholic University of Leuven, Leuven 3000, Belgium
| | - Olivier Gheysens
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Catholic University of Leuven, Leuven 3000, Belgium
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
194
|
Daily date vinegar consumption improves hyperlipidemia, β-carotenoid and inflammatory biomarkers in mildly hypercholesterolemic adults. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
195
|
Osborn MF, Coles AH, Biscans A, Haraszti RA, Roux L, Davis S, Ly S, Echeverria D, Hassler MR, Godinho BMDC, Nikan M, Khvorova A. Hydrophobicity drives the systemic distribution of lipid-conjugated siRNAs via lipid transport pathways. Nucleic Acids Res 2019; 47:1070-1081. [PMID: 30535404 PMCID: PMC6379714 DOI: 10.1093/nar/gky1232] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Efficient delivery of therapeutic RNA beyond the liver is the fundamental obstacle preventing its clinical utility. Lipid conjugation increases plasma half-life and enhances tissue accumulation and cellular uptake of small interfering RNAs (siRNAs). However, the mechanism relating lipid hydrophobicity, structure, and siRNA pharmacokinetics is unclear. Here, using a diverse panel of biologically occurring lipids, we show that lipid conjugation directly modulates siRNA hydrophobicity. When administered in vivo, highly hydrophobic lipid-siRNAs preferentially and spontaneously associate with circulating low-density lipoprotein (LDL), while less lipophilic lipid-siRNAs bind to high-density lipoprotein (HDL). Lipid-siRNAs are targeted to lipoprotein receptor-enriched tissues, eliciting significant mRNA silencing in liver (65%), adrenal gland (37%), ovary (35%), and kidney (78%). Interestingly, siRNA internalization may not be completely driven by lipoprotein endocytosis, but the extent of siRNA phosphorothioate modifications may also be a factor. Although biomimetic lipoprotein nanoparticles have been explored for the enhancement of siRNA delivery, our findings suggest that hydrophobic modifications can be leveraged to incorporate therapeutic siRNA into endogenous lipid transport pathways without the requirement for synthetic formulation.
Collapse
Affiliation(s)
- Maire F Osborn
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew H Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Loic Roux
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sarah Davis
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bruno M D C Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mehran Nikan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
196
|
Wakabayashi T, Takahashi M, Yamamuro D, Karasawa T, Takei A, Takei S, Yamazaki H, Nagashima S, Ebihara K, Takahashi M, Ishibashi S. Inflammasome Activation Aggravates Cutaneous Xanthomatosis and Atherosclerosis in ACAT1 (Acyl-CoA Cholesterol Acyltransferase 1) Deficiency in Bone Marrow. Arterioscler Thromb Vasc Biol 2019; 38:2576-2589. [PMID: 30354239 DOI: 10.1161/atvbaha.118.311648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective- ACAT1 (Acyl-CoA cholesterol acyltransferase 1) esterifies cellular free cholesterol, thereby converting macrophages to cholesteryl ester-laden foam cells in atherosclerotic lesions and cutaneous xanthoma. Paradoxically, however, loss of ACAT1 in bone marrow causes the aggravation of atherosclerosis and the development of severe cutaneous xanthoma in hyperlipidemic mice. Recently, it has been reported that cholesterol crystals activate NLRP3 (NACHT, LRR [leucine-rich repeats], and PYD [pyrin domain] domain-containing protein 3) inflammasomes, thereby contributing to the development of atherosclerosis. The present study aimed to clarify the role of NLRP3 inflammasomes in the worsening of atherosclerosis and cutaneous xanthoma induced by ACAT1 deficiency. Approach and Results- Ldlr-null mice were transplanted with bone marrow from WT (wild type) mice and mice lacking ACAT1, NLRP3, or both. After the 4 types of mice were fed high-cholesterol diets, we compared their atherosclerosis and skin lesions. The mice transplanted with Acat1-null bone marrow developed severe cutaneous xanthoma, which was filled with numerous macrophages and cholesterol clefts and had markedly increased expression of inflammatory cytokines, and increased atherosclerosis. Loss of NLRP3 completely reversed the cutaneous xanthoma, whereas it improved the atherosclerosis only partially. Acat1-null peritoneal macrophages showed enhanced expression of CHOP (C/EBP [CCAAT/enhancer binding protein] homologous protein) and TNF-α (tumor necrosis factor-α) but no evidence of inflammasome activation, after treatment with acetylated LDL (low-density lipoprotein). Conclusions- Elimination of ACAT1 in bone marrow-derived cells aggravates cutaneous xanthoma and atherosclerosis. The development of cutaneous xanthoma is induced mainly via the NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tetsuji Wakabayashi
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Manabu Takahashi
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Daisuke Yamamuro
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine (T.K., M.T.), Jichi Medical University, Shimotsuke, Japan
| | - Akihito Takei
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Shoko Takei
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Hisataka Yamazaki
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Shuichi Nagashima
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Ken Ebihara
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine (T.K., M.T.), Jichi Medical University, Shimotsuke, Japan
| | - Shun Ishibashi
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine (T.W., M.T., D.Y., A.T., S.T., H.Y., S.N., K.E., S.I.), Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
197
|
Sakai K, Nagashima S, Wakabayashi T, Tumenbayar B, Hayakawa H, Hayakawa M, Karasawa T, Ohashi K, Yamazaki H, Takei A, Takei S, Yamamuro D, Takahashi M, Yagyu H, Osuga JI, Takahashi M, Tominaga SI, Ishibashi S. Myeloid HMG-CoA (3-Hydroxy-3-Methylglutaryl-Coenzyme A) Reductase Determines Atherosclerosis by Modulating Migration of Macrophages. Arterioscler Thromb Vasc Biol 2019; 38:2590-2600. [PMID: 30354246 DOI: 10.1161/atvbaha.118.311664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective- Inhibition of HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) is atheroprotective primarily by decreasing plasma LDL (low-density lipoprotein)-cholesterol. However, it is unknown whether inhibition of HMGCR in myeloid cells contributes to this atheroprotection. We sought to determine the role of myeloid HMGCR in the development of atherosclerosis. Approach and Results- We generated mice with genetically reduced Hmgcr in myeloid cells ( Hmgcr m- /m-) using LysM (Cre) and compared various functions of their macrophages to those of Hmgcr fl/fl control mice. We further compared the extent of atherosclerosis in Hmgcr m-/ m- and Hmgcr fl/fl mice in the absence of Ldlr (LDL receptor). Hmgcr m-/ m- macrophages and granulocytes had significantly lower Hmgcr mRNA expression and cholesterol biosynthesis than Hmgcr fl/fl cells. In vitro, Hmgcr m-/ m- monocytes/macrophages had reduced ability to migrate, proliferate, and survive compared with Hmgcr fl/fl monocytes/macrophages. However, there was no difference in ability to adhere, phagocytose, store lipids, or polarize to M1 macrophages between the 2 types of macrophages. The amounts of plasma membrane-associated small GTPase proteins, such as RhoA (RAS homolog family member A), were increased in Hmgcr m-/ m- macrophages. In the setting of Ldlr deficiency, Hmgcr m-/ m- mice developed significantly smaller atherosclerotic lesions than Hmgcr fl/fl mice. However, there were no differences between the 2 types of mice either in plasma lipoprotein profiles or in the numbers of proliferating or apoptotic cells in the lesions in vivo. The in vivo migration of Hmgcr m-/ m- macrophages to the lesions was reduced compared with Hmgcr fl/fl macrophages. Conclusions- Genetic reduction of HMGCR in myeloid cells may exert atheroprotective effects primarily by decreasing the migratory activity of monocytes/macrophages to the lesions.
Collapse
Affiliation(s)
- Kent Sakai
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shuichi Nagashima
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tetsuji Wakabayashi
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Bayasgalan Tumenbayar
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroko Hayakawa
- Department of Biochemistry (H.H., M.H., S.-i.T.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Morisada Hayakawa
- Department of Biochemistry (H.H., M.H., S.-i.T.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine (T.K., M.T.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Ken Ohashi
- Department of Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo ward, Japan (K.O.)
| | - Hisataka Yamazaki
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akihito Takei
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shoko Takei
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Daisuke Yamamuro
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Manabu Takahashi
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroaki Yagyu
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Jun-Ichi Osuga
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine (T.K., M.T.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shin-Ichi Tominaga
- Department of Biochemistry (H.H., M.H., S.-i.T.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shun Ishibashi
- From the Division of Endocrinology and Metabolism, Department of Medicine (K.S., S.N., T.W., B.T., H. Yamazaki, A.T., S.T., D.Y., M.T., H. Yagyu, J.-i.O., S.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
198
|
Human species-specific loss of CMP- N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proc Natl Acad Sci U S A 2019; 116:16036-16045. [PMID: 31332008 DOI: 10.1073/pnas.1902902116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) events due to atherosclerosis cause one-third of worldwide deaths and risk factors include physical inactivity, age, dyslipidemia, hypertension, diabetes, obesity, smoking, and red meat consumption. However, ∼15% of first-time events occur without such factors. In contrast, coronary events are extremely rare even in closely related chimpanzees in captivity, despite human-like CVD-risk-prone blood lipid profiles, hypertension, and mild atherosclerosis. Similarly, red meat-associated enhancement of CVD event risk does not seem to occur in other carnivorous mammals. Thus, heightened CVD risk may be intrinsic to humans, and genetic changes during our evolution need consideration. Humans exhibit a species-specific deficiency of the sialic acid N-glycolylneuraminic acid (Neu5Gc), due to pseudogenization of cytidine monophosphate-N-acetylneuraminic acid (Neu5Ac) hydroxylase (CMAH), which occurred in hominin ancestors ∼2 to 3 Mya. Ldlr -/- mice with human-like Cmah deficiency fed a sialic acids (Sias)-free high-fat diet (HFD) showed ∼1.9-fold increased atherogenesis over Cmah wild-type Ldlr -/- mice, associated with elevated macrophage cytokine expression and enhanced hyperglycemia. Human consumption of Neu5Gc (from red meat) acts as a "xeno-autoantigen" via metabolic incorporation into endogenous glycoconjugates, as interactions with circulating anti-Neu5Gc "xeno-autoantibodies" potentiate chronic inflammation ("xenosialitis"). Cmah -/- Ldlr -/- mice immunized with Neu5Gc-bearing antigens to generate human-like anti-Neu5Gc antibodies suffered a ∼2.4-fold increased atherosclerosis on a Neu5Gc-rich HFD, compared with Neu5Ac-rich or Sias-free HFD. Lesions in Neu5Gc-immunized and Neu5Gc-rich HFD-fed Cmah -/- Ldlr -/- mice were more advanced but unexplained by lipoprotein or glucose changes. Human evolutionary loss of CMAH likely contributes to atherosclerosis predisposition via multiple intrinsic and extrinsic mechanisms, and future studies could consider this more human-like model.
Collapse
|
199
|
Dietary Cholesterol Is Highly Associated with Severity of Hyperlipidemia and Atherosclerotic Lesions in Heterozygous LDLR-Deficient Hamsters. Int J Mol Sci 2019; 20:ijms20143515. [PMID: 31323736 PMCID: PMC6678973 DOI: 10.3390/ijms20143515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Familial hypercholesterolemia (FH) is a dominant inherited disease caused mainly by low-density lipoprotein receptor (LDLR) gene mutations. To different extents, both heterozygous and homozygous FH patients develop premature coronary heart disease (CHD). However, most of the experimental animal models with LDLR deficiency could not fully recapitulate FH because they develop hyperlipidemia and atherosclerosis only in homozygous, but not in heterozygous, form. In the current study, we investigated the responsiveness of the LDLR+/- hamster to dietary cholesterol and whether plasma cholesterol levels were positively associated with the severity of atherosclerosis. Approach and Methods: wild type WT and LDLR+/- hamsters were fed a high fat diet with different cholesterol contents (HCHF) for 12 or 16 weeks. Plasma lipids, (apo)lipoproteins, and atherosclerosis in both the aorta and coronary arteries were analyzed. After a HCHF diet challenge, the levels of total cholesterol (TC) in WT and LDLR+/- hamsters were significantly elevated, but the latter showed a more pronounced lipoprotein profile, with higher cholesterol levels that were positively correlated with dietary cholesterol contents. The LDLR+/- hamsters also showed accelerated atherosclerotic lesions in the aorta and coronary arteries, whereas only mild aortic lesions were observed in WT hamsters. CONCLUSIONS Our findings demonstrate that, unlike other rodent animals, the levels of plasma cholesterol in hamsters can be significantly modulated by the intervention of dietary cholesterol, which were closely associated with severity of atherosclerosis in LDLR+/- hamsters, suggesting that the LDLR+/- hamster is an ideal animal model for FH and has great potential in the study of FH and atherosclerosis-related CHD.
Collapse
|
200
|
Jiang Y, Du H, Liu X, Fu X, Li X, Cao Q. Artemisinin alleviates atherosclerotic lesion by reducing macrophage inflammation via regulation of AMPK/NF-κB/NLRP3 inflammasomes pathway. J Drug Target 2019; 28:70-79. [PMID: 31094238 DOI: 10.1080/1061186x.2019.1616296] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is increasing evidence that atherosclerosis is the significant risk factor for cardiovascular diseases, which are the leading causes of morbidity and mortality worldwide. Artemisinin is a natural endoperoxides quiterpene lactone compound in Artemisia annua L with vasculoprotective effects. The primary aim of this study was to investigate whether artemisinin could be conferred an anti-atherosclerotic effect in high-fat diet (HFD)-fed ApoE-/- mice and explore the possible mechanism. We found that treatment with artemisinin (50 and 100 mg/kg) effectively ameliorated atherosclerotic lesions, such as foam cell formation, hyperplasia and fibrosis in the aortic intima. Atherosclerotic mice treated with artemisinin showed reduced inflammation by up-regulating adenosine 5'-monophosphate (AMP) activated protein kinase (AMPK) activation and by down-regulating nuclear factor-κB (NF-κB) phosphorylation and nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome expression in the aortas. In addition, artemisinin was found to promote AMPK activity in macrophages and its anti-inflammatory effect was neutralised by AMPK silence using specific siRNA. In conclusion, we demonstrate that artemisinin may protect the aortas from atherosclerotic lesions by suppression of inflammatory reaction via AMPK/NF-κB/NLRP3 inflammasomes signalling in macrophages.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hongjiao Du
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xue Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xi Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qian Cao
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|