151
|
Zhang L, Xu X, Su X. Noncoding RNAs in cancer immunity: functions, regulatory mechanisms, and clinical application. Mol Cancer 2020; 19:48. [PMID: 32122338 PMCID: PMC7050126 DOI: 10.1186/s12943-020-01154-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
It is well acknowledged that immune system is deeply involved in cancer initiation and progression, and can exert both pro-tumorigenic and anti-tumorigenic effects, depending on specific microenvironment. With the better understanding of cancer-associated immune cells, especially T cells, immunotherapy was developed and applied in multiple cancers and exhibits remarkable efficacy. However, currently only a subset of patients have responses to immunotherapy, suggesting that a boarder view of cancer immunity is required. Non-coding RNAs (ncRNAs), mainly including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are identified as critical regulators in both cancer cells and immune cells, thus show great potential to serve as new therapeutic targets to improve the response of immunotherapy. In this review, we summarize the functions and regulatory mechanisms of ncRNAs in cancer immunity, and highlight the potential of ncRNAs as novel targets for immunotherapy.
Collapse
Affiliation(s)
- Le Zhang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, FL, 33612-9497, USA
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
152
|
Abstract
Cardiovascular disease, with atherosclerosis as the major underlying factor, remains the leading cause of death worldwide. It is well established that cholesterol ester-enriched foam cells are the hallmark of atherosclerotic plaques. Multiple lines of evidence support that enhancing foam cell cholesterol efflux by HDL (high-density lipoprotein) particles, the first step of reverse cholesterol transport (RCT), is a promising antiatherogenic strategy. Yet, excitement towards the therapeutic potential of manipulating RCT for the treatment of cardiovascular disease has faded because of the lack of the association between cardiovascular disease risk and what was typically measured in intervention trials, namely HDL cholesterol, which has an inconsistent relationship to HDL function and RCT. In this review, we will summarize some of the potential reasons for this inconsistency, update the mechanisms of RCT, and highlight conditions in which impaired HDL function or RCT contributes to vascular disease. On balance, the evidence still argues for further research to better understand how HDL functionality contributes to RCT to develop prevention and treatment strategies to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa, Canada (M.O.)
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| |
Collapse
|
153
|
Zhao F, Fessler MB. Running interference on miR-33: a new amplification loop for type I interferon in the host antiviral response. Cell Mol Immunol 2020; 17:1109-1110. [PMID: 32055004 PMCID: PMC7608119 DOI: 10.1038/s41423-020-0373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Fei Zhao
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
154
|
Liu J, Liu J, Xiao L, Wang Y, Liu G, Li J, Liang F. Identification of Differentially Expressed miRNAs in the Response of Spleen CD4 + T Cells to Electroacupuncture in Senescence-Accelerated Mice. Cell Biochem Biophys 2020; 78:89-100. [PMID: 32026263 DOI: 10.1007/s12013-020-00900-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Immunological aging impairs immune system protection in the body and is associated with high morbidity and mortality in aged people. Electroacupuncture (EA) has been proven to boost immunity. The purpose of this study was to identify the effect of EA on miRNA expression in the immune system of senescence-accelerated mouse P8 (SAMP8) mice. We utilized SAMP8 mice as an aging model and detected the altered expression of miRNAs in CD4+ T cells after EA stimulation by deep sequencing. Differentially expressed miRNAs in different groups were identified using Venn diagrams and functional analysis was performed. The effect of EA on the expression of the identified miRNAs was investigated in natural-aged C57BL/6J mice and the biological functions of miR-301a-3p and miR-181a-1-3p in CD4+ T cells were identified. Four upregulated and two downregulated miRNAs were identified in group I (EA-SAMP8 vs. shEA-SAMP8); 41 upregulated and nine downregulated miRNAs were identified in group II (EA-SAMP8 vs. SAMP8); 42 upregulated and eight downregulated miRNAs were identified in group III (shEA-SAMP8 vs. SAMP8). The three groups shared four overlapping differentially expressed miRNAs, and 10 miRNAs were only found in group II. Gene Ontology enrichment analysis of these 14 miRNAs revealed that their target genes were enriched in 229 "biological process" categories. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the targets were significantly mapped in 76 pathways. Furthermore, five significant pathways were involved in T cell differentiation. MiRNA-gene-net showed that miR-582-5p, miR-17-5p, miR-144-3p, miR-451a, and miR-301a-3p regulated the most important target genes in these pathways. The expression of these miRNAs was also regulated by EA in aged C57BL/6J mice. In addition, miR-301a-3p was involved in regulating the expression of inflammatory factors by mediating the differentiation of CD4+ T cells in C57BL/6J mice. Analysis of miRNAs indicated that EA contributes to maintaining the balance of CD4+ T cell differentiation in the aging immune system. These results provide novel insights into the effect of EA in immunological aging.
Collapse
Affiliation(s)
- Jianmin Liu
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China. .,Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture & Moxibustion, Wuhan, China.
| | - Jing Liu
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Ling Xiao
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture & Moxibustion, Wuhan, China.,School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yawen Wang
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Guangya Liu
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Jia Li
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China.,Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture & Moxibustion, Wuhan, China
| | - Fengxia Liang
- College of Acu-moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China.,Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture & Moxibustion, Wuhan, China
| |
Collapse
|
155
|
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 2020; 18:527-551. [PMID: 30867601 DOI: 10.1038/s41573-019-0019-2] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - David Carling
- Cellular Stress Group, Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
156
|
Miller AP, Coronel J, Amengual J. The role of β-carotene and vitamin A in atherogenesis: Evidences from preclinical and clinical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158635. [PMID: 31978554 DOI: 10.1016/j.bbalip.2020.158635] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the principal contributor to myocardial infarction, the leading cause of death worldwide. Epidemiological and mechanistic studies indicate that β-carotene and its vitamin A derivatives stimulate lipid catabolism in several tissues to reduce the incidence of obesity, but their roles within ASCVD are elusive. Herein, we review the mechanisms by which β-carotene and vitamin A modulate ASCVD. First, we summarize the current knowledge linking these nutrients with epidemiological studies and lipoprotein metabolism as one of the initiating factors of ASCVD. Next, we focus on different aspects of vitamin A metabolism in immune cells such as the mechanisms of carotenoid uptake and conversion to the vitamin A metabolite, retinoic acid. Lastly, we review the effects of retinoic acid on immuno-metabolism, differentiation, and function of macrophages and T cells, the two pillars of the innate and adaptive immune response in ASCVD, respectively. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Anthony P Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America; Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
157
|
Abstract
Macrophages play an essential role not only in mediating the first line of defense but also in maintaining tissue homeostasis. In response to extrinsic factors derived from a given tissue, macrophages activate different functional programs to produce polarized macrophage populations responsible for inducing inflammation against microbes, removing cellular debris, and tissue repair. However, accumulating evidence has revealed that macrophage polarization is pivotal in the pathophysiology of metabolic syndromes and cancer, as well as in infectious and autoimmune diseases. Recent advances in transcriptomic and metabolomic studies have highlighted the link between metabolic rewiring of macrophages and their functional plasticity. These findings imply that metabolic adaption to their surrounding microenvironment instructs activation of macrophages with functionally distinct phenotypes, which in turn probably leads to the pathogenesis of a wide spectrum of diseases. In this review, we have introduced emerging concepts in immunometabolism with focus on the impact on functional activation of macrophages. Furthermore, we have discussed the implication of macrophage plasticity on the pathogenesis of metabolic syndromes and cancer, and how the disease microenvironment manipulates macrophage metabolism with regard to the pathophysiology. [BMB Reports 2019; 52(6): 360-372].
Collapse
Affiliation(s)
- Bikash Thapa
- Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Keunwook Lee
- Institute of Bioscience and Biotechnology, and Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
158
|
Stamatikos A, Knight E, Vojtech L, Bi L, Wacker BK, Tang C, Dichek DA. Exosome-Mediated Transfer of Anti-miR-33a-5p from Transduced Endothelial Cells Enhances Macrophage and Vascular Smooth Muscle Cell Cholesterol Efflux. Hum Gene Ther 2020; 31:219-232. [PMID: 31842627 DOI: 10.1089/hum.2019.245] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is a disease of large- and medium-sized arteries that is caused by cholesterol accumulation in arterial intimal cells, including macrophages and smooth muscle cells (SMC). Cholesterol accumulation in these cells can be prevented or reversed in preclinical models-and atherosclerosis reduced-by transgenesis that increases expression of molecules that control cholesterol efflux, including apolipoprotein AI (apoAI) and ATP-binding cassette subfamily A, member 1 (ABCA1). In a previous work, we showed that transduction of arterial endothelial cells (EC)-with a helper-dependent adenovirus (HDAd) expressing apoAI-enhanced EC cholesterol efflux in vitro and decreased atherosclerosis in vivo. Similarly, overexpression of ABCA1 in cultured EC increased cholesterol efflux and decreased inflammatory gene expression. These EC-targeted gene-therapy strategies might be improved by concurrent upregulation of cholesterol-efflux pathways in other intimal cell types. Here, we report modification of this strategy to enable delivery of therapeutic nucleic acids to cells of the sub-endothelium. We constructed an HDAd (HDAdXMoAntimiR33a5p) that expresses an antagomiR directed at miR-33a-5p (a microRNA that suppresses cholesterol efflux by silencing ABCA1). HDAdXMoAntimiR33a5p contains a sequence motif that enhances uptake of anti-miR-33a-5p into exosomes. Cultured EC release exosomes containing small RNA, including miR-33a-5p. After transduction with HDAdXMoAntimiR33a5p, EC-derived exosomes containing anti-miR-33a-5p accumulate in conditioned medium (CM). When this CM is added to macrophages or SMC, anti-miR-33a-5p is detected in these target cells. Exosome-mediated transfer of anti-miR-33a-5p reduces miR-33a-5p by ∼65-80%, increases ABCA1 protein by 1.6-2.2-fold, and increases apoAI-mediated cholesterol efflux by 1.4-1.6-fold (all p ≤ 0.01). These effects were absent in macrophages and SMC incubated in exosome-depleted CM. EC transduced with HDAdXMoAntimiR33a5p release exosomes that can transfer anti-miR-33a-5p to other intimal cell types, upregulating cholesterol efflux from these cells. This strategy provides a platform for genetic modification of intimal and medial cells, using a vector that transduces only EC.
Collapse
Affiliation(s)
- Alexis Stamatikos
- Department of Medicine, University of Washington, Seattle, Washington
| | - Ethan Knight
- Department of Medicine, University of Washington, Seattle, Washington
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - Lianxiang Bi
- Department of Medicine, University of Washington, Seattle, Washington
| | - Bradley K Wacker
- Department of Medicine, University of Washington, Seattle, Washington
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington
| | - David A Dichek
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
159
|
Davis FM, Gallagher KA. Epigenetic Mechanisms in Monocytes/Macrophages Regulate Inflammation in Cardiometabolic and Vascular Disease. Arterioscler Thromb Vasc Biol 2020; 39:623-634. [PMID: 30760015 DOI: 10.1161/atvbaha.118.312135] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiometabolic and vascular disease, with their associated secondary complications, are the leading cause of morbidity and mortality in Western society. Chronic inflammation is a common theme that underlies initiation and progression of cardiovascular disease. In this regard, monocytes/macrophages are key players in the development of a chronic inflammatory state. Over the past decade, epigenetic modifications, such as DNA methylation and posttranslational histone processing, have emerged as important regulators of immune cell phenotypes. Accumulating studies reveal the importance of epigenetic enzymes in the dynamic regulation of key signaling pathways that alter monocyte/macrophage phenotypes in response to environmental stimuli. In this review, we highlight the current paradigms of monocyte/macrophage polarization and the emerging role of epigenetic modification in the regulation of monocyte/macrophage phenotype in obesity, diabetes mellitus, atherosclerosis, and abdominal aortic aneurysms.
Collapse
Affiliation(s)
- Frank M Davis
- From the Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor
| | - Katherine A Gallagher
- From the Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor
| |
Collapse
|
160
|
Price NL, Rotllan N, Zhang X, Canfrán-Duque A, Nottoli T, Suarez Y, Fernández-Hernando C. Specific Disruption of Abca1 Targeting Largely Mimics the Effects of miR-33 Knockout on Macrophage Cholesterol Efflux and Atherosclerotic Plaque Development. Circ Res 2019; 124:874-880. [PMID: 30707082 DOI: 10.1161/circresaha.118.314415] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Inhibition of miR-33 reduces atherosclerotic plaque burden, but miR-33 deficient mice are predisposed to the development of obesity and metabolic dysfunction. The proatherogenic effects of miR-33 are thought to be in large part because of its repression of macrophage cholesterol efflux, through targeting of Abca1 (ATP-binding cassette subfamily A member 1). However, targeting of other factors may also be required for the beneficial effects of miR-33, and currently available approaches have not allowed researchers to determine the specific impact of individual miRNA target interactions in vivo. OBJECTIVE In this work, we sought to determine how specific disruption of Abca1 targeting by miR-33 impacts macrophage cholesterol efflux and atherosclerotic plaque formation in vivo. METHODS AND RESULTS We have generated a novel mouse model with specific point mutations in the miR-33 binding sites of the Abca1 3'untranslated region, which prevents targeting by miR-33. Abca1 binding site mutant ( Abca1BSM) mice had increased hepatic ABCA1 expression but did not show any differences in body weight or metabolic function after high fat diet feeding. Macrophages from Abca1BSM mice also had increased ABCA1 expression, as well as enhanced cholesterol efflux and reduced foam cell formation. Moreover, LDLR (low-density lipoprotein receptor) deficient animals transplanted with bone marrow from Abca1BSM mice had reduced atherosclerotic plaque formation, similar to mice transplanted with bone marrow from miR-33 knockout mice. CONCLUSION Although the more pronounced phenotype of miR-33 deficient animals suggests that other targets may also play an important role, our data clearly demonstrate that repression of ABCA1 is primarily responsible for the proatherogenic effects of miR-33. This work shows for the first time that disruption of a single miRNA/target interaction can be sufficient to mimic the effects of miRNA deficiency on complex physiological phenotypes in vivo and provides an approach by which to assess the impact of individual miRNA targets.
Collapse
Affiliation(s)
- Nathan L Price
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Noemi Rotllan
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Xinbo Zhang
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Alberto Canfrán-Duque
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Timothy Nottoli
- Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Yajaira Suarez
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Department of Pathology (Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| | - Carlos Fernández-Hernando
- From the Vascular Biology and Therapeutics Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program (N.L.P., N.R., X.Z., A.C.-D., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Comparative Medicine (N.L.P., N.R., X.Z., A.C.-D., T.N., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT.,Department of Pathology (Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
161
|
Solly EL, Dimasi CG, Bursill CA, Psaltis PJ, Tan JTM. MicroRNAs as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis. J Clin Med 2019; 8:E2199. [PMID: 31847094 PMCID: PMC6947565 DOI: 10.3390/jcm8122199] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between endothelial cells, smooth muscle cells and macrophages that promote plaque development and progression. While there has been significant therapeutic advancement, there remains a gap where novel therapeutic approaches can complement current therapies to provide a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers to better inform clinical diagnosis and provide new avenues for personalised therapies. This review focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and diagnostic) properties of miRNAs in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Emma L. Solly
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Catherine G. Dimasi
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
| | - Christina A. Bursill
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Peter J. Psaltis
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Joanne T. M. Tan
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
162
|
MiR-33a Controls hMSCS Osteoblast Commitment Modulating the Yap/Taz Expression Through EGFR Signaling Regulation. Cells 2019; 8:cells8121495. [PMID: 31771093 PMCID: PMC6953103 DOI: 10.3390/cells8121495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 01/17/2023] Open
Abstract
Mesenchymal stromal cells (hMSCs) display a pleiotropic function in bone regeneration. The signaling involved in osteoblast commitment is still not completely understood, and that determines the failure of current therapies being used. In our recent studies, we identified two miRNAs as regulators of hMSCs osteoblast differentiation driving hypoxia signaling and cytoskeletal reorganization. Other signalings involved in this process are epithelial to mesenchymal transition (EMT) and epidermal growth factor receptor (EGFR) signalings through the regulation of Yes-associated protein (YAP)/PDZ-binding motif (TAZ) expression. In the current study, we investigated the role of miR-33a family as a (i) modulator of YAP/TAZ expression and (ii) a regulator of EGFR signaling during osteoblast commitments. Starting from the observation on hMSCs and primary osteoblast cell lines (Nh-Ost) in which EMT genes and miR-33a displayed a specific expression, we performed a gain and loss of function study with miR-33a-5p and 3p on hMSCs cells and Nh-Ost. After 24 h of transfections, we evaluated the modulation of EMT and osteoblast genes expression by qRT-PCR, Western blot, and Osteoimage assays. Through bioinformatic analysis, we identified YAP as the putative target of miR-33a-3p. Its role was investigated by gain and loss of function studies with miR-33a-3p on hMSCs; qRT-PCR and Western blot analyses were also carried out. Finally, the possible role of EGFR signaling in YAP/TAZ modulation by miR-33a-3p expression was evaluated. Human MSCs were treated with EGF-2 and EGFR inhibitor for different time points, and qRT-PCR and Western blot analyses were performed. The above-mentioned methods revealed a balance between miR-33a-5p and miR-33a-3p expression during hMSCs osteoblast differentiation. The human MSCs phenotype was maintained by miR-33a-5p, while the maintenance of the osteoblast phenotype in the Nh-Ost cell model was permitted by miR-33a-3p expression, which regulated YAP/TAZ through the modulation of EGFR signaling. The inhibition of EGFR blocked the effects of miR-33a-3p on YAP/TAZ modulation, favoring the maintenance of hMSCs in a committed phenotype. A new possible personalized therapeutic approach to bone regeneration was discussed, which might be mediated by customizing delivery of miR-33a in simultaneously targeting EGFR and YAP signaling with combined use of drugs.
Collapse
|
163
|
Price NL, Miguel V, Ding W, Singh AK, Malik S, Rotllan N, Moshnikova A, Toczek J, Zeiss C, Sadeghi MM, Arias N, Baldán Á, Andreev OA, Rodríguez-Puyol D, Bahal R, Reshetnyak YK, Suárez Y, Fernández-Hernando C, Lamas S. Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis. JCI Insight 2019; 4:131102. [PMID: 31613798 DOI: 10.1172/jci.insight.131102] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Previous work has reported the important links between cellular bioenergetics and the development of chronic kidney disease, highlighting the potential for targeting metabolic functions to regulate disease progression. More recently, it has been shown that alterations in fatty acid oxidation (FAO) can have an important impact on the progression of kidney disease. In this work, we demonstrate that loss of miR-33, an important regulator of lipid metabolism, can partially prevent the repression of FAO in fibrotic kidneys and reduce lipid accumulation. These changes were associated with a dramatic reduction in the extent of fibrosis induced in 2 mouse models of kidney disease. These effects were not related to changes in circulating leukocytes because bone marrow transplants from miR-33-deficient animals did not have a similar impact on disease progression. Most important, targeted delivery of miR-33 peptide nucleic acid inhibitors to the kidney and other acidic microenvironments was accomplished using pH low insertion peptides as a carrier. This was effective at both increasing the expression of factors involved in FAO and reducing the development of fibrosis. Together, these findings suggest that miR-33 may be an attractive therapeutic target for the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Nathan L Price
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Madrid, Spain
| | - Wen Ding
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Abhishek K Singh
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anna Moshnikova
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jakub Toczek
- Vascular Biology and Therapeutics Program and.,Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine, and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Cardiology, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Caroline Zeiss
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mehran M Sadeghi
- Vascular Biology and Therapeutics Program and.,Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine, and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Cardiology, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Noemi Arias
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Oleg A Andreev
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Diego Rodríguez-Puyol
- Department of Medicine and Medical Specialties, Research Foundation of the University Hospital "Príncipe de Asturias," IRYCIS, Alcalá University, Alcalá de Henares, Madrid, Spain
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Yana K Reshetnyak
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program and.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Madrid, Spain
| |
Collapse
|
164
|
Abstract
Macrophages play a central role in the development of atherosclerotic cardiovascular disease (ASCVD), which encompasses coronary artery disease, peripheral artery disease, cerebrovascular disease, and aortic atherosclerosis. In each vascular bed, macrophages contribute to the maintenance of the local inflammatory response, propagate plaque development, and promote thrombosis. These central roles, coupled with their plasticity, makes macrophages attractive therapeutic targets in stemming the development of and stabilizing existing atherosclerosis. In the context of ASCVD, classically activated M1 macrophages initiate and sustain inflammation, and alternatively activated M2 macrophages resolve inflammation. However, this classification is now considered an oversimplification, and a greater understanding of plaque macrophage physiology in ASCVD is required to aid in the development of therapeutics to promote ASCVD regression. Reviewed herein are the macrophage phenotypes and molecular regulators characteristic of ASCVD regression, and the current murine models of ASCVD regression.
Collapse
Affiliation(s)
- Tessa J. Barrett
- From the Division of Cardiology, Department of Medicine, New York University
| |
Collapse
|
165
|
Guo Y, Huang S, Ma Y, Zhang J, Wen Y, Zhou L, Yuan G, Cheng J. MiR-377 mediates the expression of Syk to attenuate atherosclerosis lesion development in ApoE−/− mice. Biomed Pharmacother 2019; 118:109332. [DOI: 10.1016/j.biopha.2019.109332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 01/31/2023] Open
|
166
|
Xu SJ, Hu HT, Li HL, Chang S. The Role of miRNAs in Immune Cell Development, Immune Cell Activation, and Tumor Immunity: With a Focus on Macrophages and Natural Killer Cells. Cells 2019; 8:cells8101140. [PMID: 31554344 PMCID: PMC6829453 DOI: 10.3390/cells8101140] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) is the primary arena where tumor cells and the host immune system interact. Bidirectional communication between tumor cells and the associated stromal cell types within the TME influences disease initiation and progression, as well as tumor immunity. Macrophages and natural killer (NK) cells are crucial components of the stromal compartment and display either pro- or anti-tumor properties, depending on the expression of key regulators. MicroRNAs (miRNAs) are emerging as such regulators. They affect several immune cell functions closely related to tumor evasion of the immune system. This review discusses the role of miRNAs in the differentiation, maturation, and activation of immune cells as well as tumor immunity, focusing particularly on macrophages and NK cells.
Collapse
Affiliation(s)
- Shi Jun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hong Tao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hai Liang Li
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
167
|
Niu X, Schulert GS. Functional Regulation of Macrophage Phenotypes by MicroRNAs in Inflammatory Arthritis. Front Immunol 2019; 10:2217. [PMID: 31572403 PMCID: PMC6753331 DOI: 10.3389/fimmu.2019.02217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Inflammatory arthritis including rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) exhibit the shared feature of changes in activation and polarization of circulating monocytes and tissue macrophages. Numerous microRNAs (miRs) have been found to have key functions in regulating inflammation and macrophage polarization. Although there is increasing interest in the roles of miRs in both RA and JIA, less is known regarding how miRs relate to functional properties of immune cells, including monocytes and macrophages. Interestingly, miRs can function both to promote inflammatory phenotypes and pro-inflammatory polarization, as well as through negative-feedback loops to limit inflammation. Here, we review the functional roles of several miRs in macrophages in inflammatory arthritis, with a particular focus on vivo effects of miR alteration in experimental arthritis. We also consider how current efforts to target miRs clinically could modify functional monocyte and macrophage polarization in vivo, and serve as novel therapies for diseases such as RA and JIA.
Collapse
Affiliation(s)
- Xiaoling Niu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, The Children's Hospital of Shanghai Jiaotong University, Pudong, China.,Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
168
|
Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol 2019; 30:511-528. [PMID: 30165385 DOI: 10.1093/intimm/dxy054] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Tissue injury triggers a complex series of cellular responses, starting from inflammation activated by tissue and cell damage and proceeding to healing. By clearing cell debris, activating and resolving inflammation and promoting fibrosis, macrophages play key roles in most, if not all, phases of the response to injury. Recent studies of the mechanisms underlying the initial inflammation and later tissue regeneration and repair revealed that macrophages bridge these processes in part by supporting and activating stem/progenitor cells, clearing damaged tissue, remodeling extracellular matrix to prepare scaffolding for regeneration and promoting angiogenesis. However, macrophages also have a central role in the development of pathology induced by failed resolution (e.g. chronic inflammation) and excessive scarring. In this review, we summarize the activities of macrophages in inflammation and healing in response to acute injury in tissues with differing regenerative capacities. While macrophages lead similar processes in response to tissue injury in these tissues, their priorities and the consequences of their activities differ among tissues. Moreover, the magnitude, nature and duration of injury also greatly affect cellular responses and healing processes. In particular, continuous injury and/or failed resolution of inflammation leads to chronic ailments in which macrophage activities may become detrimental.
Collapse
Affiliation(s)
- Yumiko Oishi
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| |
Collapse
|
169
|
Rizzacasa B, Amati F, Romeo F, Novelli G, Mehta JL. Epigenetic Modification in Coronary Atherosclerosis. J Am Coll Cardiol 2019; 74:1352-1365. [DOI: 10.1016/j.jacc.2019.07.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
|
170
|
Colamatteo A, Micillo T, Bruzzaniti S, Fusco C, Garavelli S, De Rosa V, Galgani M, Spagnuolo MI, Di Rella F, Puca AA, de Candia P, Matarese G. Metabolism and Autoimmune Responses: The microRNA Connection. Front Immunol 2019; 10:1969. [PMID: 31555261 PMCID: PMC6722206 DOI: 10.3389/fimmu.2019.01969] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Distinct metabolic pathways are known to regulate growth, differentiation, survival, and activation of immune cells by providing energy and specific biosynthetic precursors. Compelling experimental evidence demonstrates that effector T cell functions are coupled with profound changes in cellular metabolism. Importantly, the effector T cell-dependent “anti-self” response characterizing the autoimmune diseases is accompanied by significant metabolic alterations. MicroRNAs (miRNAs), evolutionary conserved small non-coding RNA molecules that affect gene expression by binding to target messenger RNAs, are now known to regulate multiple functions of effector T cells, including the strength of their activation, thus contributing to immune homeostasis. In this review, we will examine the most recent studies that describe miRNA direct involvement in the metabolic reprogramming that marks effector T cell functions. In particular, we will focus on the work showing a connection between miRNA regulatory function and the molecular network dysregulation that leads to metabolic pathway derangement in autoimmunity. Finally, we will also speculate on the possibility that the interplay between miRNAs and metabolism in T cells may help identify novel miRNA-based therapeutic strategies to treat effector T cell immunometabolic alterations in pathological conditions such as autoimmunity and chronic inflammation.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federi II", Naples, Italy
| | - Teresa Micillo
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federi II", Naples, Italy
| | - Silvia Garavelli
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Maria Immacolata Spagnuolo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Francesca Di Rella
- Dipartimento di Senologia, Oncologia Medica, IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Annibale A Puca
- Department of Cardiovascular Diseases, IRCCS MultiMedica, Milan, Italy.,Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Paola de Candia
- Department of Cardiovascular Diseases, IRCCS MultiMedica, Milan, Italy
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federi II", Naples, Italy.,Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| |
Collapse
|
171
|
Reduced miR-181d level in obesity and its role in lipid metabolism via regulation of ANGPTL3. Sci Rep 2019; 9:11866. [PMID: 31413305 PMCID: PMC6694160 DOI: 10.1038/s41598-019-48371-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity impacts the endocrine and metabolic functions of the adipose tissue. There is increasing interest in the role of epigenetic factors in obesity and its impact on diabetes and dyslipidemia. One such substance, miR-181, reduces plasma triglyceride levels in mice by targeting isocitrate dehydrogenase 1. In the other hand, the adipocyte differentiation and lipid regulating hormone angiopoietin-like 3 (ANGPTL3) is a known regulator of circulating apolipoproteins through its inhibition of the lipoprotein lipase activity. We aimed to study the miR-181d expression in the blood and adipose tissue in a cohort of obese and non-obese people, assessing its possible role in obesity. We also aimed to confirm whether miR-181d can bind and regulate ANGPTL3. miR-181d expression levels were investigated in 144 participants, 82 who were non-obese (body mass index [BMI] < 30) and 62 who were obese (BMI > 30). miR-181d levels in plasma and adipose tissue were measured by RT-PCR. Hepatocyte cell cultures were assessed by overexpression and 3′-UTR-luciferase assays for miR-181d binding to its target protein and its effect on the protein. The plasma levels of ANGPTL3 were also measured by ELISA. The miR-181d levels were significantly lower in obese than in non-obese individuals. In vitro analysis confirmed miR-181 binding to and repression of the ANGPTL3 transcript. Obesity leads to alterations in miR-181d expression. Its downregulation in obese humans was inversely correlated with ANGPTL3, a protein involved in adipocyte differentiation and lipid metabolism. miR-181d can be used as an inhibitor of ANGPTL3 to reduce the TG plasma level.
Collapse
|
172
|
Nishino T, Horie T, Baba O, Sowa N, Hanada R, Kuwabara Y, Nakao T, Nishiga M, Nishi H, Nakashima Y, Nakazeki F, Ide Y, Koyama S, Kimura M, Nagata M, Yoshida K, Takagi Y, Nakamura T, Hasegawa K, Miyamoto S, Kimura T, Ono K. SREBF1/MicroRNA-33b Axis Exhibits Potent Effect on Unstable Atherosclerotic Plaque Formation In Vivo. Arterioscler Thromb Vasc Biol 2019; 38:2460-2473. [PMID: 30354203 DOI: 10.1161/atvbaha.118.311409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective- Atherosclerosis is a common disease caused by a variety of metabolic and inflammatory disturbances. MicroRNA (miR)-33a within SREBF2 (sterol regulatory element-binding factor 2) is a potent target for treatment of atherosclerosis through regulating both aspects; however, the involvement of miR-33b within SREBF1 remains largely unknown. Although their host genes difference could lead to functional divergence of miR-33a/b, we cannot dissect the roles of miR-33a/b in vivo because of lack of miR-33b sequences in mice, unlike human. Approach and Results- Here, we analyzed the development of atherosclerosis using miR-33b knock-in humanized mice under apolipoprotein E-deficient background. MiR-33b is prominent both in human and mice on atheroprone condition. MiR-33b reduced serum high-density lipoprotein cholesterol levels and systemic reverse cholesterol transport. MiR-33b knock-in macrophages showed less cholesterol efflux capacity and higher inflammatory state via regulating lipid rafts. Thus, miR-33b promotes vulnerable atherosclerotic plaque formation. Furthermore, bone marrow transplantation experiments strengthen proatherogenic roles of macrophage miR-33b. Conclusions- Our data demonstrated critical roles of SREBF1-miR-33b axis on both lipid profiles and macrophage phenotype remodeling and indicate that miR-33b is a promising target for treating atherosclerosis.
Collapse
Affiliation(s)
- Tomohiro Nishino
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Takahiro Horie
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Osamu Baba
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Naoya Sowa
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Ritsuko Hanada
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Yasuhide Kuwabara
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Tetsushi Nakao
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Masataka Nishiga
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Hitoo Nishi
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Yasuhiro Nakashima
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Fumiko Nakazeki
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Yuya Ide
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Satoshi Koyama
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Masahiro Kimura
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Manabu Nagata
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Kazumichi Yoshida
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Yasushi Takagi
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Tomoyuki Nakamura
- Department of Pharmacology, Kansai Medical University, Moriguchi, Japan (T.N.)
| | - Koji Hasegawa
- Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Japan (K.H.)
| | - Susumu Miyamoto
- Neurosurgery (M.N., K.Y., Y.T., S.M.), Graduate School of Medicine, Kyoto University, Japan
| | - Takeshi Kimura
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| | - Koh Ono
- From the Departments of Cardiovascular Medicine (T.N., T.H., O.B., N.S., R.H., Y.K., T.N., M.N., H.N., Y.N., F.N., Y.I., S.K., M.K., T.K., K.O.), Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
173
|
Koyama S, Horie T, Nishino T, Baba O, Sowa N, Miyasaka Y, Kuwabara Y, Nakao T, Nishiga M, Nishi H, Nakashima Y, Nakazeki F, Ide Y, Kimura M, Tsuji S, Ruiz Rodriguez R, Xu S, Yamasaki T, Otani C, Watanabe T, Nakamura T, Hasegawa K, Kimura T, Ono K. Identification of Differential Roles of MicroRNA-33a and -33b During Atherosclerosis Progression With Genetically Modified Mice. J Am Heart Assoc 2019; 8:e012609. [PMID: 31242815 PMCID: PMC6662357 DOI: 10.1161/jaha.119.012609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background MicroRNA (miR)‐33 targets cholesterol transporter ATP‐binding cassette protein A1 and other antiatherogenic targets and contributes to atherogenic progression. Its inhibition or deletion is known to result in the amelioration of atherosclerosis in mice. However, mice lack the other member of the miR‐33 family, miR‐33b, which exists in humans and other large mammals. Thus, precise evaluation and comparison of the responsibilities of these 2 miRs during the progression of atherosclerosis has not been reported, although they are essential. Methods and Results In this study, we performed a comprehensive analysis of the difference between the function of miR‐33a and miR‐33b using genetically modified mice. We generated 4 strains with or without miR‐33a and miR‐33b. Comparison between mice with only miR‐33a (wild‐type mice) and mice with only miR‐33b (miR‐33a−/−/miR‐33b+/+) revealed the dominant expression of miR‐33b in the liver. To evaluate the whole body atherogenic potency of miR‐33a and miR‐33b, we developed apolipoprotein E–deficient/miR‐33a+/+/miR‐33b−/− mice and apolipoprotein E–deficient/miR‐33a−/−/miR‐33b+/+ mice. With a high‐fat and high‐cholesterol diet, the apolipoprotein E–deficient/miR‐33a−/−/miR‐33b+/+ mice developed increased atherosclerotic plaque versus apolipoprotein E–deficient/miR‐33a+/+/miR‐33b−/− mice, in line with the predominant expression of miR‐33b in the liver and worsened serum cholesterol profile. By contrast, a bone marrow transplantation study showed no significant difference, which was consistent with the relevant expression levels of miR‐33a and miR‐33b in bone marrow cells. Conclusions The miR‐33 family exhibits differences in distribution and regulation and particularly in the progression of atherosclerosis; miR‐33b would be more potent than miR‐33a.
Collapse
Affiliation(s)
- Satoshi Koyama
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Takahiro Horie
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tomohiro Nishino
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Osamu Baba
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Naoya Sowa
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yui Miyasaka
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yasuhide Kuwabara
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tetsushi Nakao
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Masataka Nishiga
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Hitoo Nishi
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yasuhiro Nakashima
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Fumiko Nakazeki
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yuya Ide
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Masahiro Kimura
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Shuhei Tsuji
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Randolph Ruiz Rodriguez
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Sijia Xu
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tomohiro Yamasaki
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Chiharu Otani
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Toshimitsu Watanabe
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tomoyuki Nakamura
- 2 Department of Pharmacology Kansai Medical University Hirakata Japan
| | - Koji Hasegawa
- 3 Division of Translational Research Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Takeshi Kimura
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| | - Koh Ono
- 1 Department of Cardiovascular Medicine Graduate School of Medicine Kyoto University Kyoto Japan
| |
Collapse
|
174
|
Myeloid-Specific Deletion of the AMPKα2 Subunit Alters Monocyte Protein Expression and Atherogenesis. Int J Mol Sci 2019; 20:ijms20123005. [PMID: 31248224 PMCID: PMC6627871 DOI: 10.3390/ijms20123005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is an energy sensing kinase that is activated by a drop in cellular ATP levels. Although several studies have addressed the role of the AMPKα1 subunit in monocytes and macrophages, little is known about the α2 subunit. The aim of this study was to assess the consequences of AMPKα2 deletion on protein expression in monocytes/macrophages, as well as on atherogenesis. A proteomics approach was applied to bone marrow derived monocytes from wild-type mice versus mice specifically lacking AMPKα2 in myeloid cells (AMPKα2∆MC mice). This revealed differentially expressed proteins, including methyltransferases. Indeed, AMPKα2 deletion in macrophages increased the ratio of S-adenosyl methionine to S-adenosyl homocysteine and increased global DNA cytosine methylation. Also, methylation of the vascular endothelial growth factor and matrix metalloproteinase-9 (MMP9) genes was increased in macrophages from AMPKα2∆MC mice, and correlated with their decreased expression. To link these findings with an in vivo phenotype, AMPKα2∆MC mice were crossed onto the ApoE-/- background and fed a western diet. ApoExAMPKα2∆MC mice developed smaller atherosclerotic plaques than their ApoExα2fl/fl littermates, that contained fewer macrophages and less MMP9 than plaques from ApoExα2fl/fl littermates. These results indicate that the AMPKα2 subunit in myeloid cells influences DNA methylation and thus protein expression and contributes to the development of atherosclerotic plaques.
Collapse
|
175
|
Recalcati S, Gammella E, Cairo G. Ironing out Macrophage Immunometabolism. Pharmaceuticals (Basel) 2019; 12:ph12020094. [PMID: 31248155 PMCID: PMC6631308 DOI: 10.3390/ph12020094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
Over the last decade, increasing evidence has reinforced the key role of metabolic reprogramming in macrophage activation. In addition to supporting the specific immune response of different subsets of macrophages, intracellular metabolic pathways also directly control the specialized effector functions of immune cells. In this context, iron metabolism has been recognized as an important component of macrophage plasticity. Since macrophages control the availability of this essential metal, changes in the expression of genes coding for the major proteins of iron metabolism may result in different iron availability for the macrophage itself and for other cells in the microenvironment. In this review, we discuss how macrophage iron can also play a role in immunometabolism.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
176
|
Wei X, Sun Y, Han T, Zhu J, Xie Y, Wang S, Wu Y, Fan Y, Sun X, Zhou J, Zhao Z, Jing Z. Upregulation of miR-330-5p is associated with carotid plaque's stability by targeting Talin-1 in symptomatic carotid stenosis patients. BMC Cardiovasc Disord 2019; 19:149. [PMID: 31215474 PMCID: PMC6582585 DOI: 10.1186/s12872-019-1120-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/27/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the relationship between Talin-1 and stability of carotid atherosclerosis plaque and also find out the role of miRNA, as an upstream regulator, in regulating the expression level of Talin-1. METHODS Human carotid plaques were obtained from 20 symptomatic carotid stenosis patients who underwent carotid endarterectomy (CEA) in our hospital between October 2014 and August 2017. Western blot analysis and immunohistochemistry was carried out to detect the distribution and expression level of Talin-1 in each plaque sample. The content of miRNAs in carotid plaque was decected by quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the relative expression levels were calculated by 2-△△Ct method after the (cycle threshold) Ct value (power amplification knee point) was obtained. Dual-luciferase reporter assays were applied to verify the successful transfections. Finally, we compared all the groups with independent-samples t-test and one-way analysis of variance (ANOVA). RESULTS Talin-1 was significantly downregulated in human unstable carotid plaque samples compared with stable carotid plaques (P < 0.05), and the distribution of Talin-1 was mainly found in the fibrous cap of carotid plaque. The overexpression of miRNA-330-5p was found in unstable carotid plaque, which significantly induced the inhibition of expression level of Talin-1. CONCLUSION Upregulated miR-330-5p may lead to unstable carotid plaques by targeting Talin-1 in symptomatic carotid stenosis patients. This might be a new target for the treatment of atherosclerotic diseases through future studies.
Collapse
Affiliation(s)
- Xiaolong Wei
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yudong Sun
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.,Depaertment of general surgery, Nanjing General Hospital of Eastern Theater Command, Nanjing, China
| | - Tonglei Han
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jiang Zhu
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yongfu Xie
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Shiying Wang
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yani Wu
- Department of Breast and Thyroid Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yinxing Fan
- Zhenjiang Medical District, General Hospital of Eastern Theater Command, Zhenjiang, China
| | - Xiuli Sun
- Department of ophthalmology, Jinan aier eye hospital, Jinan, China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zhiqing Zhao
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zaiping Jing
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
177
|
Affiliation(s)
- Ziad Mallat
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, United Kingdom; and Institut National de la Santé et de la Recherche Médicale, Paris, France.
| |
Collapse
|
178
|
Racioppi L, Nelson ER, Huang W, Mukherjee D, Lawrence SA, Lento W, Masci AM, Jiao Y, Park S, York B, Liu Y, Baek AE, Drewry DH, Zuercher WJ, Bertani FR, Businaro L, Geradts J, Hall A, Means AR, Chao N, Chang CY, McDonnell DP. CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nat Commun 2019; 10:2450. [PMID: 31164648 PMCID: PMC6547743 DOI: 10.1038/s41467-019-10424-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 05/09/2019] [Indexed: 01/21/2023] Open
Abstract
Tumor-associated myeloid cells regulate tumor growth and metastasis, and their accumulation is a negative prognostic factor for breast cancer. Here we find calcium/calmodulin-dependent kinase kinase (CaMKK2) to be highly expressed within intratumoral myeloid cells in mouse models of breast cancer, and demonstrate that its inhibition within myeloid cells suppresses tumor growth by increasing intratumoral accumulation of effector CD8+ T cells and immune-stimulatory myeloid subsets. Tumor-associated macrophages (TAMs) isolated from Camkk2-/- mice expressed higher levels of chemokines involved in the recruitment of effector T cells compared to WT. Similarly, in vitro generated Camkk2-/- macrophages recruit more T cells, and have a reduced capability to suppress T cell proliferation, compared to WT. Treatment with CaMKK2 inhibitors blocks tumor growth in a CD8+ T cell-dependent manner, and facilitates a favorable reprogramming of the immune cell microenvironment. These data, credential CaMKK2 as a myeloid-selective checkpoint, the inhibition of which may have utility in the immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Luigi Racioppi
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy.
| | - Erik R Nelson
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- University of Illinois Cancer Center, Chicago, IL, 60612, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wei Huang
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Debarati Mukherjee
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Scott A Lawrence
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - William Lento
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Anna Maria Masci
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27710, USA
| | - Yiquin Jiao
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yaping Liu
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Amy E Baek
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - David H Drewry
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, NC, 27709, USA
- UNC Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - William J Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, NC, 27709, USA
- UNC Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | | | - Luca Businaro
- CNR IFN Institute for Photonics and Nanotechnologies, Rome, 00156, Italy
| | - Joseph Geradts
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Allison Hall
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Anthony R Means
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nelson Chao
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
179
|
Gao S, Wang Y, Li D, Guo Y, Zhu M, Xu S, Mao J, Fan G. TanshinoneIIA Alleviates Inflammatory Response and Directs Macrophage Polarization in Lipopolysaccharide-Stimulated RAW264.7 Cells. Inflammation 2019; 42:264-275. [PMID: 30218320 DOI: 10.1007/s10753-018-0891-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
TanshinoneIIA (TanIIA) has been demonstrated to possess numerous biological effects. However, the specific effect of TanIIA on macrophage polarization has not been reported. In this study, it was revealed that TanIIA might play a pivotal role in macrophage polarization. As our results indicated, cell morphology was changed in RAW264.7 cells which were treated with LPS or LPS/TanIIA (0.1 μM, 1 μM, 10 μM). Subsequently, pro-inflammatory cytokine TNF-α and anti-inflammatory cytokine IL-10 were measured by ELISA kits. Furthermore, TanIIA enhanced the expression of M2 macrophage markers (Arg1 and FIZZ1) and decreased the expression of markers associated with M1 macrophage polarization (iNOS and IL-1β). Increased expression of CD206 was also detected by flow cytometry in TanIIA-treated groups. Mechanistically, it was revealed that TanIIA modulated macrophage polarization by ameliorating mitochondrial function and regulating TLR4-HMGB1/CEBP-β pathway. In addition, increased expression of miR-155 was observed in RAW264.7 cells incubated with LPS and were effectively inhibited by TanIIA. Taken together, it was suggested that TanIIA inhibits inflammatory response and promotes macrophage polarization toward an M2 phenotype, which provides new evidence for the anti-inflammation activity of TanIIA.
Collapse
Affiliation(s)
- Shan Gao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Yili Wang
- Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Dan Li
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Meifeng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Jingyuan Mao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China.
| |
Collapse
|
180
|
Andreadou I, Cabrera-Fuentes HA, Devaux Y, Frangogiannis NG, Frantz S, Guzik T, Liehn EA, Gomes CPC, Schulz R, Hausenloy DJ. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res 2019; 115:1117-1130. [PMID: 30825305 PMCID: PMC6529904 DOI: 10.1093/cvr/cvz050] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/18/2018] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
New therapies are required to reduce myocardial infarct (MI) size and prevent the onset of heart failure in patients presenting with acute myocardial infarction (AMI), one of the leading causes of death and disability globally. In this regard, the immune cell response to AMI, which comprises an initial pro-inflammatory reaction followed by an anti-inflammatory phase, contributes to final MI size and post-AMI remodelling [changes in left ventricular (LV) size and function]. The transition between these two phases is critical in this regard, with a persistent and severe pro-inflammatory reaction leading to adverse LV remodelling and increased propensity for developing heart failure. In this review article, we provide an overview of the immune cells involved in orchestrating the complex and dynamic inflammatory response to AMI-these include neutrophils, monocytes/macrophages, and emerging players such as dendritic cells, lymphocytes, pericardial lymphoid cells, endothelial cells, and cardiac fibroblasts. We discuss potential reasons for past failures of anti-inflammatory cardioprotective therapies, and highlight new treatment targets for modulating the immune cell response to AMI, as a potential therapeutic strategy to improve clinical outcomes in AMI patients. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Hector A Cabrera-Fuentes
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Institute of Biochemistry, Medical School, Justus-Liebig University, Ludwigstrasse 23, Giessen, Germany
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Nuevo Leon, Mexico
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, Russia
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Thomas Edison, Strassen, Luxembourg
| | - Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology) Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B Bronx NY USA
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Str. 6, Würzburg, Germany
| | - Tomasz Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Świętej Anny 12, Kraków, Poland
- Institute of Cardiovascular and Medical Sciences, University ofGlasgow, University Avenue, Glasgow, UK
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research, Rheinisch Westfälische Technische Hochschule Aachen University,Templergraben 55, Aachen, Germany
- Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Strada Petru Rareș 2, Craiova, Romania
- Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, Rheinisch Westfälische Technische Hochschule,Templergraben 55, Aachen, Germany
| | - Clarissa P C Gomes
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Thomas Edison, Strassen, Luxembourg
| | - Rainer Schulz
- Physiologisches Institut Fachbereich Medizin der Justus-Liebig-Universität, Aulweg 129, Giessen, Germany
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Nuevo Leon, Mexico
- Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, Singapore
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, Maple House 1st floor, 149 Tottenham Court Road, London, UK
| |
Collapse
|
181
|
Vallée A, Vallée JN, Lecarpentier Y. Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. J Mol Cell Cardiol 2019; 133:36-46. [PMID: 31153873 DOI: 10.1016/j.yjmcc.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Atherosclerosis, a chronic inflammatory and age-related disease, is a complex mechanism presenting a dysregulation of vessel structures. During this process, the canonical WNT/β-catenin pathway is increased whereas PPARγ is downregulated. The two systems act in an opposite manner. This paper reviews the opposing interplay of these systems and their metabolic-reprogramming pathway in atherosclerosis. Activation of the WNT/β-catenin pathway enhances the transcription of targets involved in inflammation, endothelial dysfunction, the proliferation of vascular smooth muscle cells, and vascular calcification. This complex mechanism, which is partly controlled by the WNT/β-catenin pathway, presents several metabolic dysfunctions. This phenomenon, called aerobic glycolysis (or the Warburg effect), consists of a shift in ATP production from mitochondrial oxidative phosphorylation to aerobic glycolysis, leading to the overproduction of intracellular lactate. This mechanism is partially due to the injury of mitochondrial respiration and an increase in the glycolytic pathway. In contrast, PPARγ agonists downregulate the WNT/β-catenin pathway. Therefore, the development of therapeutic targets, such as PPARγ agonists, for the treatment of atherosclerosis could be an interesting and innovative way of counteracting the canonical WNT pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, Paris, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| |
Collapse
|
182
|
Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance. Cell Rep 2019; 22:2133-2145. [PMID: 29466739 PMCID: PMC5860817 DOI: 10.1016/j.celrep.2018.01.074] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
While therapeutic modulation of miRNAs provides a promising approach for numerous diseases, the promiscuous nature of miRNAs raises concern over detrimental off-target effects. miR-33 has emerged as a likely target for treatment of cardiovascular diseases. However, the deleterious effects of long-term anti-miR-33 therapies and predisposition of miR-33−/− mice to obesity and metabolic dysfunction exemplify the possible pitfalls of miRNA-based therapies. Our work provides an in-depth characterization of miR-33−/− mice and explores the mechanisms by which loss of miR-33 promotes insulin resistance in key metabolic tissues. Contrary to previous reports, our data do not support a direct role for SREBP-1-mediated lipid synthesis in promoting these effects. Alternatively, in adipose tissue of miR-33−/− mice, we observe increased pre-adipocyte proliferation, enhanced lipid uptake, and impaired lipolysis. Moreover, we demonstrate that the driving force behind these abnormalities is increased food intake, which can be prevented by pair feeding with wild-type animals.
Collapse
|
183
|
Zamani P, Oskuee RK, Atkin SL, Navashenaq JG, Sahebkar A. MicroRNAs as important regulators of the NLRP3 inflammasome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:50-61. [PMID: 31100298 DOI: 10.1016/j.pbiomolbio.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
Inflammasomes are a group of cytosolic multi-protein signaling complexes that regulate maturation of the interleukin (IL)-1 family cytokines IL-1β and IL-18 through activation of inflammatory caspase-1. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is the best characterized and consists of several key components that are assembled and activated in response to different endogenous and exogenous signals. The NLRP3 inflammasome is common to a number of human inflammatory diseases and its targeting may lead to novel anti-inflammatory therapy. NLRP3 inflammasome activation is tightly regulated by different mechanisms especially post-transcriptional modulation via microRNAs (miRNA). MicroRNAs are small endogenous noncoding RNAs that are 21-23 nucleotides in length and control the expression of various genes through binding to the 3'-untranslated regions of the respective mRNA and subsequent post-transcriptional regulation. MicroRNAs have recently been recognized as crucial regulators of the NLRP3 inflammasome. In this review, we summarize the current understanding of the role of miRNAs in the regulation of NLRP3 inflammasome complexes and their impact on the pathogenesis of inflammatory disease processes.
Collapse
Affiliation(s)
- Parvin Zamani
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
184
|
Bruen R, Fitzsimons S, Belton O. miR-155 in the Resolution of Atherosclerosis. Front Pharmacol 2019; 10:463. [PMID: 31139076 PMCID: PMC6527595 DOI: 10.3389/fphar.2019.00463] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease where advanced lesions can eventually completely obstruct blood flow resulting in clinical events, such as a myocardial infarction or stroke. Monocytes and macrophages are the dominant biologically active immune cells involved in atherosclerosis disease and play a pivotal role during initiation, progression, and regression of disease. Altering macrophage inflammation is critical to induce regression of atherosclerosis and microRNAs (miRs) have emerged as key regulators of the macrophage phenotype. MiRs are small noncoding RNAs that regulate gene expression. They are dysregulated during atherosclerosis development and are key regulators of macrophage function and polarization. MiRs are short nucleotide transcripts that are very stable in circulation and thus have potential as therapeutics and/or biomarkers in the context of atherosclerosis. Of relevance to this review is that inhibition of macrophage-specific miR-155 may be a viable therapeutic strategy to decrease inflammation associated with atherosclerosis. However, further studies on these miRs and advancements in miR therapeutic delivery are required for these therapeutics to advance to the clinical setting. Conjugated linoleic acid (CLA), a pro-resolving lipid mediator, is an agonist of the peroxisome proliferator-activated receptor (PPAR)-γ. The biological activities of CLA have been documented to have anti-atherogenic effects in experimental models of atherosclerosis, inducing regression and impacting on monocyte and macrophage cells. Our work and that of others on PPAR-γ agonists and polyunsaturated fatty acids have shown that these mediators regulate candidate miRNAs and promote pro-resolving atherosclerotic plaque microenvironments.
Collapse
Affiliation(s)
- Robyn Bruen
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Fitzsimons
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Orina Belton
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
185
|
Song M, Xu S, Zhong A, Zhang J. Crosstalk between macrophage and T cell in atherosclerosis: Potential therapeutic targets for cardiovascular diseases. Clin Immunol 2019; 202:11-17. [DOI: 10.1016/j.clim.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/03/2018] [Accepted: 03/01/2019] [Indexed: 01/05/2023]
|
186
|
Tezcan G, Martynova EV, Gilazieva ZE, McIntyre A, Rizvanov AA, Khaiboullina SF. MicroRNA Post-transcriptional Regulation of the NLRP3 Inflammasome in Immunopathologies. Front Pharmacol 2019; 10:451. [PMID: 31118894 PMCID: PMC6504709 DOI: 10.3389/fphar.2019.00451] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammation has a crucial role in protection against various pathogens. The inflammasome is an intracellular multiprotein signaling complex that is linked to pathogen sensing and initiation of the inflammatory response in physiological and pathological conditions. The most characterized inflammasome is the NLRP3 inflammasome, which is a known sensor of cell stress and is tightly regulated in resting cells. However, altered regulation of the NLRP3 inflammasome is found in several pathological conditions, including autoimmune disease and cancer. NLRP3 expression was shown to be post-transcriptionally regulated and multiple miRNA have been implicated in post-transcriptional regulation of the inflammasome. Therefore, in recent years, miRNA based post-transcriptional control of NLRP3 has become a focus of much research, especially as a potential therapeutic approach. In this review, we provide a summary of the recent investigations on the role of miRNA in the post-transcriptional control of the NLRP3 inflammasome, a key regulator of pro-inflammatory IL-1β and IL-18 cytokine production. Current approaches to targeting the inflammasome product were shown to be an effective treatment for diseases linked to NLRP3 overexpression. Although utilizing NLRP3 targeting miRNAs was shown to be a successful therapeutic approach in several animal models, their therapeutic application in patients remains to be determined.
Collapse
Affiliation(s)
- Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alan McIntyre
- Centre for Cancer Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
187
|
Zhu Y, Fan S, Lu Y, Wei Y, Tang J, Yang Y, Li F, Chen Q, Zheng J, Liu X. Quercetin confers protection of murine sepsis by inducing macrophage M2 polarization via the TRPM2 dependent calcium influx and AMPK/ATF3 activation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
188
|
Huang L, Chambliss KL, Gao X, Yuhanna IS, Behling-Kelly E, Bergaya S, Ahmed M, Michaely P, Luby-Phelps K, Darehshouri A, Xu L, Fisher EA, Ge WP, Mineo C, Shaul PW. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 2019; 569:565-569. [PMID: 31019307 PMCID: PMC6631346 DOI: 10.1038/s41586-019-1140-4] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 03/25/2019] [Indexed: 01/15/2023]
Abstract
Atherosclerosis, which underlies life-threatening cardiovascular disorders including myocardial infarction and stroke1, is initiated by low density lipoprotein cholesterol (LDL) passage into the artery wall and engulfment by macrophages, leading to foam cell formation and lesion development2, 2, 3, 3. How circulating LDL enters the artery wall to instigate atherosclerosis is unknown. Here we show in mice that scavenger receptor, class B type 1 (SR-B1) in endothelial cells mediates LDL delivery into arteries and its accumulation by artery wall macrophages, thereby promoting atherosclerosis. LDL particles are colocalized with SR-B1 in endothelial cell intracellular vesicles in vivo, and LDL transcytosis across endothelial monolayers requires its direct binding to SR-B1 and an 8 amino acid cytoplasmic domain of the receptor that recruits the guanine nucleotide exchange factor dedicator of cytokinesis 4 (DOCK4)4. DOCK4 promotes SR-B1 internalization and LDL transport by coupling LDL binding to SR-B1 with Rac1 activation. SR-B1 and DOCK4 expression are increased in atherosclerosis-prone regions of the mouse aorta prior to lesion formation, and in human atherosclerotic versus normal arteries. These findings challenge the long-held concept that atherogenesis involves passive LDL movement across a compromised endothelial barrier. Interventions inhibiting endothelial delivery of LDL into the artery wall may represent a new therapeutic category in the battle against cardiovascular disease.
Collapse
Affiliation(s)
- Linzhang Huang
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofei Gao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan S Yuhanna
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Erica Behling-Kelly
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sonia Bergaya
- Department of Medicine, New York University School of Medicine, New York, NY, USA.,Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA.,Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Mohamed Ahmed
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kate Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anza Darehshouri
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward A Fisher
- Department of Medicine, New York University School of Medicine, New York, NY, USA.,Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA.,Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Woo-Ping Ge
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
189
|
De Santa F, Vitiello L, Torcinaro A, Ferraro E. The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxid Redox Signal 2019; 30:1553-1598. [PMID: 30070144 DOI: 10.1089/ars.2017.7420] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Macrophages are crucial for tissue homeostasis. Based on their activation, they might display classical/M1 or alternative/M2 phenotypes. M1 macrophages produce pro-inflammatory cytokines, reactive oxygen species (ROS), and nitric oxide (NO). M2 macrophages upregulate arginase-1 and reduce NO and ROS levels; they also release anti-inflammatory cytokines, growth factors, and polyamines, thus promoting angiogenesis and tissue healing. Moreover, M1 and M2 display key metabolic differences; M1 polarization is characterized by an enhancement in glycolysis and in the pentose phosphate pathway (PPP) along with a decreased oxidative phosphorylation (OxPhos), whereas M2 are characterized by an efficient OxPhos and reduced PPP. Recent Advances: The glutamine-related metabolism has been discovered as crucial for M2 polarization. Vice versa, flux discontinuities in the Krebs cycle are considered additional M1 features; they lead to increased levels of immunoresponsive gene 1 and itaconic acid, to isocitrate dehydrogenase 1-downregulation and to succinate, citrate, and isocitrate over-expression. Critical Issues: A macrophage classification problem, particularly in vivo, originating from a gap in the knowledge of the several intermediate polarization statuses between the M1 and M2 extremes, characterizes this field. Moreover, the detailed features of metabolic reprogramming crucial for macrophage polarization are largely unknown; in particular, the role of β-oxidation is highly controversial. Future Directions: Manipulating the metabolism to redirect macrophage polarization might be useful in various pathologies, including an efficient skeletal muscle regeneration. Unraveling the complexity pertaining to metabolic signatures that are specific for the different macrophage subsets is crucial for identifying new compounds that are able to trigger macrophage polarization and that might be used for therapeutical purposes.
Collapse
Affiliation(s)
- Francesca De Santa
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy
| | - Laura Vitiello
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessio Torcinaro
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin," Sapienza University, Rome, Italy
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
190
|
Frank AC, Ebersberger S, Fink AF, Lampe S, Weigert A, Schmid T, Ebersberger I, Syed SN, Brüne B. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun 2019; 10:1135. [PMID: 30850595 PMCID: PMC6408494 DOI: 10.1038/s41467-019-08989-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 02/09/2019] [Indexed: 01/01/2023] Open
Abstract
Tumor-immune cell interactions shape the immune cell phenotype, with microRNAs (miRs) being crucial components of this crosstalk. How they are transferred and how they affect their target landscape, especially in tumor-associated macrophages (TAMs), is largely unknown. Here we report that breast cancer cells have a high constitutive expression of miR-375, which is released as a non-exosome entity during apoptosis. Deep sequencing of the miRome pointed to enhanced accumulation of miR-375 in TAMs, facilitated by the uptake of tumor-derived miR-375 via CD36. In macrophages, miR-375 directly targets TNS3 and PXN to enhance macrophage migration and infiltration into tumor spheroids and in tumors of a xenograft mouse model. In tumor cells, miR-375 regulates CCL2 expression to increase recruitment of macrophages. Our study provides evidence for miR transfer from tumor cells to TAMs and identifies miR-375 as a crucial regulator of phagocyte infiltration and the subsequent development of a tumor-promoting microenvironment. The mode of miRNA transfer between tumour-immune cells is usually via exosomes. Here, the authors show that an alternative mode of transfer whereby miR-375 from apoptotic tumour cells can be transferred to tumour-associated macrophages via CD36 receptor, which induces macrophage migration and infiltration to the tumours.
Collapse
Affiliation(s)
- Ann-Christin Frank
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | | | - Annika F Fink
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Sebastian Lampe
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-University Frankfurt, Max-von-Laue Strasse 13, 60438, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre Frankfurt (BIK-F), Frankfurt, 60325, Germany
| | - Shahzad Nawaz Syed
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,German Cancer Research Consortium (DKTK), Partner Site, Frankfurt, 60590, Germany.
| |
Collapse
|
191
|
Tang RZ, Zhu JJ, Yang FF, Zhang YP, Xie SA, Liu YF, Yao WJ, Pang W, Han LL, Kong W, Wang YX, Zhang T, Zhou J. DNA methyltransferase 1 and Krüppel-like factor 4 axis regulates macrophage inflammation and atherosclerosis. J Mol Cell Cardiol 2019; 128:11-24. [DOI: 10.1016/j.yjmcc.2019.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022]
|
192
|
Chen T, Cao Q, Wang Y, Harris DCH. M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney Int 2019; 95:760-773. [PMID: 30827512 DOI: 10.1016/j.kint.2018.10.041] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Tissue macrophages are crucial players in homeostasis, inflammation, and immunity. They are characterized by heterogeneity and plasticity, due to which they display a continuum of phenotypes with M1/M2 presenting 2 extremes of this continuum. M2 macrophages are usually termed in the literature as anti-inflammatory and wound healing. Substantial progress has been made in elucidating the biology of M2 macrophages and their potential for clinical translation. In this review we discuss the current state of knowledge in M2 macrophage research with an emphasis on kidney disease. We explore their therapeutic potential and the challenges in using them as cellular therapies. Some new regulators that shape macrophage polarization and potential areas for future research are also examined.
Collapse
Affiliation(s)
- Titi Chen
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia.
| | - Qi Cao
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Yiping Wang
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - David C H Harris
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
193
|
Nie L, Cai SY, Sun J, Chen J. MicroRNA-155 promotes pro-inflammatory functions and augments apoptosis of monocytes/macrophages during Vibrio anguillarum infection in ayu, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:70-81. [PMID: 30447432 DOI: 10.1016/j.fsi.2018.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Upon recognition of pathogen-associated molecular patterns by pattern-recognition receptors, immune cells are recruited, and multiple antibacterial/viral signaling pathways are activated, leading to the production of immune-related cytokines, chemokines, and interferons along with further activation of the adaptive immune response. MicroRNAs (miRs) play essential roles in regulating such immune signaling pathways, as well as the biological activities of immune cells; however, knowledge regarding the roles of miRs in the immune-related function of monocytes/macrophages (MO/MΦ) remains limited in teleosts. In the present study, we addressed the effects of miR-155 on Vibrio anguillarum-infected MO/MΦ. Our results showed that miR-155 augmented MO/MΦ expression of proinflammatory cytokines and attenuated the expression of anti-inflammatory cytokines. Additionally, the phagocytosis and bacteria-killing abilities of these cells were boosted by miR-155 administration, which also promoted M1-type polarization but inhibited M2-type polarization. Furthermore, the V. anguillarum-infection-induced apoptosis was also enhanced by miR-155 mimic transfection, which might have been due to excessive inflammation or the accumulation of reactive oxygen species. These results represent the first report providing a detailed account of the regulatory roles of miR-155 on MO/MΦ functions in teleosts and offer insight into the evolutionary history of miR-155-mediated regulation of host immune responses.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiao Sun
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
194
|
M2 Macrophages as a Potential Target for Antiatherosclerosis Treatment. Neural Plast 2019; 2019:6724903. [PMID: 30923552 PMCID: PMC6409015 DOI: 10.1155/2019/6724903] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/06/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammation course, which could induce life-threatening diseases such as stroke and myocardial infarction. Optimal medical treatments for atherosclerotic risk factors with current antihypertensive and lipid-lowering drugs (for example, statins) are widely used in clinical practice. However, many patients with established disease still continue to have recurrent cardiovascular events in spite of treatment with a state-of-the-art therapy. Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality worldwide. Hence, current treatment of atherosclerosis is still far from being satisfactory. Recently, M2 macrophages have been found associated with atherosclerosis regression. The M2 phenotype can secrete anti-inflammatory factors such as IL-10 and TGF-β, promote tissue remodeling and repairing through collagen formation, and clear dying cells and debris by efferocytosis. Therefore, modulators targeting macrophages' polarization to the M2 phenotype could be another promising treatment strategy for atherosclerosis. Two main signaling pathways, the Akt/mTORC/LXR pathway and the JAK/STAT6 pathway, are found playing important roles in M2 polarization. In addition, researchers have reported several potential approaches to modulate M2 polarization. Inhibiting or activating some kinds of enzymes, affecting transcription factors, or acting on several membrane receptors could regulate the polarization of the M2 phenotype. Besides, biomolecules, for example vitamin D, were found to affect the process of M2 polarization. Pomegranate juice could promote M2 polarization via unclear mechanism. In this review, we will discuss how M2 macrophages affect atherosclerosis regression, signal transduction in M2 polarization, and outline potential targets and compounds that affect M2 polarization, thus controlling the progress of atherosclerosis.
Collapse
|
195
|
Freemerman AJ, Zhao L, Pingili AK, Teng B, Cozzo AJ, Fuller AM, Johnson AR, Milner JJ, Lim MF, Galanko JA, Beck MA, Bear JE, Rotty JD, Bezavada L, Smallwood HS, Puchowicz MA, Liu J, Locasale JW, Lee DP, Bennett BJ, Abel ED, Rathmell JC, Makowski L. Myeloid Slc2a1-Deficient Murine Model Revealed Macrophage Activation and Metabolic Phenotype Are Fueled by GLUT1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1265-1286. [PMID: 30659108 PMCID: PMC6360258 DOI: 10.4049/jimmunol.1800002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
Macrophages (MΦs) are heterogeneous and metabolically flexible, with metabolism strongly affecting immune activation. A classic response to proinflammatory activation is increased flux through glycolysis with a downregulation of oxidative metabolism, whereas alternative activation is primarily oxidative, which begs the question of whether targeting glucose metabolism is a viable approach to control MΦ activation. We created a murine model of myeloid-specific glucose transporter GLUT1 (Slc2a1) deletion. Bone marrow-derived MΦs (BMDM) from Slc2a1M-/- mice failed to uptake glucose and demonstrated reduced glycolysis and pentose phosphate pathway activity. Activated BMDMs displayed elevated metabolism of oleate and glutamine, yet maximal respiratory capacity was blunted in MΦ lacking GLUT1, demonstrating an incomplete metabolic reprogramming. Slc2a1M-/- BMDMs displayed a mixed inflammatory phenotype with reductions of the classically activated pro- and anti-inflammatory markers, yet less oxidative stress. Slc2a1M-/- BMDMs had reduced proinflammatory metabolites, whereas metabolites indicative of alternative activation-such as ornithine and polyamines-were greatly elevated in the absence of GLUT1. Adipose tissue MΦs of lean Slc2a1M-/- mice had increased alternative M2-like activation marker mannose receptor CD206, yet lack of GLUT1 was not a critical mediator in the development of obesity-associated metabolic dysregulation. However, Ldlr-/- mice lacking myeloid GLUT1 developed unstable atherosclerotic lesions. Defective phagocytic capacity in Slc2a1M-/- BMDMs may have contributed to unstable atheroma formation. Together, our findings suggest that although lack of GLUT1 blunted glycolysis and the pentose phosphate pathway, MΦ were metabolically flexible enough that inflammatory cytokine release was not dramatically regulated, yet phagocytic defects hindered MΦ function in chronic diseases.
Collapse
Affiliation(s)
- Alex J Freemerman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Liyang Zhao
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Ajeeth K Pingili
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Bin Teng
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Alyssa J Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Ashley M Fuller
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Amy R Johnson
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - J Justin Milner
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Maili F Lim
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Joseph A Galanko
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Melinda A Beck
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jeremy D Rotty
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710
| | | | - Brian J Bennett
- U.S. Department of Agriculture Western Human Nutrition Research Center, Davis, CA 95616
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242; and
| | - Jeff C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN 37232
| | - Liza Makowski
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799;
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
196
|
Abstract
Abdominal aortic aneurysm (AAA) is a local dilatation of the abdominal aortic vessel wall and is among the most challenging cardiovascular diseases as without urgent surgical intervention, ruptured AAA has a mortality rate of >80%. Most patients present acutely after aneurysm rupture or dissection from a previously asymptomatic condition and are managed by either surgery or endovascular repair. Patients usually are old and have other concurrent diseases and conditions, such as diabetes mellitus, obesity, and hypercholesterolemia making surgical intervention more difficult. Collectively, these issues have driven the search for alternative methods of diagnosing, monitoring, and treating AAA using therapeutics and less invasive approaches. Noncoding RNAs-short noncoding RNAs (microRNAs) and long-noncoding RNAs-are emerging as new fundamental regulators of gene expression. Researchers and clinicians are aiming at targeting these microRNAs and long noncoding RNAs and exploit their potential as clinical biomarkers and new therapeutic targets for AAAs. While the role of miRNAs in AAA is established, studies on long-noncoding RNAs are only beginning to emerge, suggesting their important yet unexplored role in vascular physiology and disease. Here, we review the role of noncoding RNAs and their target genes focusing on their role in AAA. We also discuss the animal models used for mechanistic understanding of AAA. Furthermore, we discuss the potential role of microRNAs and long noncoding RNAs as clinical biomarkers and therapeutics.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering,
Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Reinier A. Boon
- Institute for Cardiovascular Regeneration, Center of
Molecular Medicine, Goethe University, Frankfurt, Germany
- Department of Physiology, Amsterdam Cardiovascular
Sciences, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The
Netherlands
- German Center of Cardiovascular Research DZHK, Frankfurt,
Germany
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm,
Sweden
- Department of Vascular and Endovascular Surgery, Technical
University Munich, Munich, Germany
- German Center for Cardiovascular Research DZHK, Munich,
Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of
Molecular Medicine, Goethe University, Frankfurt, Germany
- German Center of Cardiovascular Research DZHK, Frankfurt,
Germany
- Corresponding authors: Hanjoong Jo, PhD, John and Jan Portman
Professor, Wallace H. Coulter Department of Biomedical Engineering, Emory
University and Georgia Institute of Technology, 1760 Haygood Drive, Atlanta, GA
30322, , Stefanie Dimmeler, PhD, Institute for
Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt, Germany,
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering,
Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Division of Cardiology, Emory University, Atlanta, GA,
USA
- Corresponding authors: Hanjoong Jo, PhD, John and Jan Portman
Professor, Wallace H. Coulter Department of Biomedical Engineering, Emory
University and Georgia Institute of Technology, 1760 Haygood Drive, Atlanta, GA
30322, , Stefanie Dimmeler, PhD, Institute for
Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt, Germany,
| |
Collapse
|
197
|
Emerging Roles for Immune Cells and MicroRNAs in Modulating the Response to Cardiac Injury. J Cardiovasc Dev Dis 2019; 6:jcdd6010005. [PMID: 30650599 PMCID: PMC6462949 DOI: 10.3390/jcdd6010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
Stimulating cardiomyocyte regeneration after an acute injury remains the central goal in cardiovascular regenerative biology. While adult mammals respond to cardiac damage with deposition of rigid scar tissue, adult zebrafish and salamander unleash a regenerative program that culminates in new cardiomyocyte formation, resolution of scar tissue, and recovery of heart function. Recent studies have shown that immune cells are key to regulating pro-inflammatory and pro-regenerative signals that shift the injury microenvironment toward regeneration. Defining the genetic regulators that control the dynamic interplay between immune cells and injured cardiac tissue is crucial to decoding the endogenous mechanism of heart regeneration. In this review, we discuss our current understanding of the extent that macrophage and regulatory T cells influence cardiomyocyte proliferation and how microRNAs (miRNAs) regulate their activity in the injured heart.
Collapse
|
198
|
Wu L, Li Y, Zhang D, Huang Z, Du B, Wang Z, Yang L, Zhang Y. LncRNA NEXN-AS1 attenuates proliferation and migration of vascular smooth muscle cells through sponging miR-33a/b. RSC Adv 2019; 9:27856-27864. [PMID: 35530470 PMCID: PMC9070771 DOI: 10.1039/c9ra06282c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022] Open
Abstract
Non-protein-coding RNAs (lncRNAs) are emerging as important regulators in disease pathogenesis, including atherosclerosis (AS). Here, we investigated the role and underlying mechanisms of nexilin F-actin binding protein antisense RNA 1 (NEXN-AS1) on the proliferation and migration of vascular smooth muscle cells (VSMCs). Our data revealed that ox-LDL treatment resulted in decreased NEXN-AS1 expression and increased miR-33a/b levels in human aorta VSMCs (HA-VSMCs) in dose- and time-dependent manners. Overexpression of NEXN-AS1 mitigated the proliferation and migration of HA-VSMCs under ox-LDL stimulation using CCK-8 and wound-healing assays. Moreover, dual-luciferase reporter and RNA immunoprecipitation assays verified that NEXN-AS1 acted as molecular sponges of miR-33a and miR-33b in HA-VSMCs. MiR-33a or miR-33b silencing attenuated the proliferation and migration of ox-LDL-treated HA-VSMCs. Furthermore, miR-33a or miR-33b mediated the inhibitory effects of NEXN-AS1 overexpression on the proliferation and migration of ox-LDL-treated HA-VSMCs. Our study suggested that high level of NEXN-AS1 mitigated VSMC proliferation and migration under ox-LDL stimulation at least partly through sponging miR-33a and miR-33b, illuminating NEXN-AS1 as a novel therapeutic approach for AS treatment. Non-protein-coding RNAs (lncRNAs) are emerging as important regulators in disease pathogenesis, including atherosclerosis (AS).![]()
Collapse
Affiliation(s)
- Leiming Wu
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Yapeng Li
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Dianhong Zhang
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Zhen Huang
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Binbin Du
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Zheng Wang
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Lulu Yang
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Yanzhou Zhang
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| |
Collapse
|
199
|
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 2019; 20:247-260. [PMID: 30384259 PMCID: PMC6205410 DOI: 10.1016/j.redox.2018.09.025] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/12/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and inflammation interact in the development of diabetic atherosclerosis. Intracellular hyperglycemia promotes production of mitochondrial reactive oxygen species (ROS), increased formation of intracellular advanced glycation end-products, activation of protein kinase C, and increased polyol pathway flux. ROS directly increase the expression of inflammatory and adhesion factors, formation of oxidized-low density lipoprotein, and insulin resistance. They activate the ubiquitin pathway, inhibit the activation of AMP-protein kinase and adiponectin, decrease endothelial nitric oxide synthase activity, all of which accelerate atherosclerosis. Changes in the composition of the gut microbiota and changes in microRNA expression that influence the regulation of target genes that occur in diabetes interact with increased ROS and inflammation to promote atherosclerosis. This review highlights the consequences of the sustained increase of ROS production and inflammation that influence the acceleration of atherosclerosis by diabetes. The potential contributions of changes in the gut microbiota and microRNA expression are discussed.
Collapse
Affiliation(s)
- Ting Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Ting Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Danli Fu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yangyang Hu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Jing Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qing Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hong Yu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Wenfeng Xu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
200
|
A New Insight into the Roles of MiRNAs in Metabolic Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7372636. [PMID: 30648107 PMCID: PMC6311798 DOI: 10.1155/2018/7372636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS), which includes several clinical components such as abdominal obesity, insulin resistance (IR), dyslipidemia, microalbuminuria, hypertension, proinflammatory state, and oxidative stress (OS), has become a global epidemic health issue contributing to a high risk of type 2 diabetes mellitus (T2DM). In recent years, microRNAs (miRNAs), used as noninvasive biomarkers for diagnosis and therapy, have aroused global interest in complex processes in health and diseases, including MetS and its components. MiRNAs can exist stably in serum, liver, skeletal muscle (SM), heart muscle, adipose tissue (AT), and βcells, because of their ability to escape the digestion of RNase. Here we first present an overall review on recent findings of the relationship between miRNAs and several main components of MetS, such as IR, obesity, diabetes, lipid metabolism, hypertension, hyperuricemia, and stress, to illustrate the targeting proteins or relevant pathways that are involved in the progress of MetS and also help us find promising novel diagnostic and therapeutic strategies.
Collapse
|