151
|
Aguilar-López BA, Moreno-Altamirano MMB, Dockrell HM, Duchen MR, Sánchez-García FJ. Mitochondria: An Integrative Hub Coordinating Circadian Rhythms, Metabolism, the Microbiome, and Immunity. Front Cell Dev Biol 2020; 8:51. [PMID: 32117978 PMCID: PMC7025554 DOI: 10.3389/fcell.2020.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
There is currently some understanding of the mechanisms that underpin the interactions between circadian rhythmicity and immunity, metabolism and immune response, and circadian rhythmicity and metabolism. In addition, a wealth of studies have led to the conclusion that the commensal microbiota (mainly bacteria) within the intestine contributes to host homeostasis by regulating circadian rhythmicity, metabolism, and the immune system. Experimental studies on how these four biological domains interact with each other have mainly focused on any two of those domains at a time and only occasionally on three. However, a systematic analysis of how these four domains concurrently interact with each other seems to be missing. We have analyzed current evidence that signposts a role for mitochondria as a key hub that supports and integrates activity across all four domains, circadian clocks, metabolic pathways, the intestinal microbiota, and the immune system, coordinating their integration and crosstalk. This work will hopefully provide a new perspective for both hypothesis-building and more systematic experimental approaches.
Collapse
Affiliation(s)
- Bruno A Aguilar-López
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Hazel M Dockrell
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
152
|
Abstract
Essentially all biological processes fluctuate over the course of the day, observed at cellular (eg, transcription, translation, and signaling), organ (eg, contractility and metabolism), and whole-body (eg, physical activity and appetite) levels. It is, therefore, not surprising that both cardiovascular physiology (eg, heart rate and blood pressure) and pathophysiology (eg, onset of adverse cardiovascular events) oscillate during the 24-hour day. Chronobiological influence over biological processes involves a complex interaction of factors that are extrinsic (eg, neurohumoral factors) and intrinsic (eg, circadian clocks) to cells. Here, we focus on circadian governance of 6 fundamentally important processes: metabolism, signaling, electrophysiology, extracellular matrix, clotting, and inflammation. In each case, we discuss (1) the physiological significance for circadian regulation of these processes (ie, the good); (2) the pathological consequence of circadian governance impairment (ie, the bad); and (3) whether persistence/augmentation of circadian influences contribute to pathogenesis during distinct disease states (ie, the ugly). Finally, the translational impact of chronobiology on cardiovascular disease is highlighted.
Collapse
Affiliation(s)
- Samir Rana
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| | - Sumanth D Prabhu
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| | - Martin E Young
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| |
Collapse
|
153
|
Al-Waeli H, Nicolau B, Stone L, Abu Nada L, Gao Q, Abdallah MN, Abdulkader E, Suzuki M, Mansour A, Al Subaie A, Tamimi F. Chronotherapy of Non-Steroidal Anti-Inflammatory Drugs May Enhance Postoperative Recovery. Sci Rep 2020; 10:468. [PMID: 31949183 PMCID: PMC6965200 DOI: 10.1038/s41598-019-57215-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Postoperative pain relief is crucial for full recovery. With the ongoing opioid epidemic and the insufficient effect of acetaminophen on severe pain; non-steroidal anti-inflammatory drugs (NSAIDs) are heavily used to alleviate this pain. However, NSAIDs are known to inhibit postoperative healing of connective tissues by inhibiting prostaglandin signaling. Pain intensity, inflammatory mediators associated with wound healing and the pharmacological action of NSAIDs vary throughout the day due to the circadian rhythm regulated by the clock genes. According to this rhythm, most of wound healing mediators and connective tissue formation occurs during the resting phase, while pain, inflammation and tissue resorption occur during the active period of the day. Here we show, in a murine tibia fracture surgical model, that NSAIDs are most effective in managing postoperative pain, healing and recovery when drug administration is limited to the active phase of the circadian rhythm. Limiting NSAID treatment to the active phase of the circadian rhythm resulted in overexpression of circadian clock genes, such as Period 2 (Per2) at the healing callus, and increased serum levels of anti-inflammatory cytokines interleukin-13 (IL-13), interleukin-4 (IL-4) and vascular endothelial growth factor. By contrast, NSAID administration during the resting phase resulted in severe bone healing impairment.
Collapse
Affiliation(s)
- H Al-Waeli
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - B Nicolau
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - L Stone
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - L Abu Nada
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - Q Gao
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - M N Abdallah
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G, Canada
| | - E Abdulkader
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - M Suzuki
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Mansour
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Al Subaie
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - F Tamimi
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
154
|
Zhou J, Li X, Zhang M, Gong J, Li Q, Shan B, Wang T, Zhang L, Zheng T, Li X. The aberrant expression of rhythm genes affects the genome instability and regulates the cancer immunity in pan-cancer. Cancer Med 2020; 9:1818-1829. [PMID: 31927791 PMCID: PMC7050078 DOI: 10.1002/cam4.2834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Although emerging studies showed that certain rhythm genes regulate cancer progression, the expression and roles of the vast majority of rhythm genes in human cancer are largely unknown, and the hallmarks of cancer regulated by rhythm genes have not been detected. In this study, we detected the expression changes of rhythm genes in pan-cancer and found that almost all rhythm genes mutated in all cancer types, and their expression level was significantly altered partially due to abnormal methylation, and several rhythm genes regulate the expression of other rhythm genes in various cancer types. Furthermore, we revealed that rhythm genes are significantly enriched in genome instability and the expression of certain rhythm genes is correlated with the tumor mutation burden, microsatellite instability, and the expression of DNA damage repair genes in most of the detected cancer types. Moreover, rhythm genes are associated with the infiltration of immune cells and the efficiency of immune blockade therapy. This study provides a comprehensive understanding of the roles of rhythm genes in cancer immunity, which may provide a novel method for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xinhui Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Ji'nan Gong
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Baocong Shan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lei Zhang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
155
|
Welz PS, Benitah SA. Molecular Connections Between Circadian Clocks and Aging. J Mol Biol 2019; 432:3661-3679. [PMID: 31887285 DOI: 10.1016/j.jmb.2019.12.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022]
Abstract
The mammalian circadian clockwork has evolved as a timing system that allows the daily environmental changes to be anticipated so that behavior and tissue physiology can be adjusted accordingly. The circadian clock synchronizes the function of all cells within tissues in order to temporally separate preclusive and potentially harmful physiologic processes and to establish a coherent temporal organismal physiology. Thus, the proper functioning of the circadian clockwork is essential for maintaining cellular and tissue homeostasis. Importantly, aging reduces the robustness of the circadian clock, resulting in disturbed sleep-wake cycles, a lowered capacity to synchronize circadian rhythms in peripheral tissues, and reprogramming of the circadian clock output at the molecular function levels. These circadian clock-dependent behavioral and molecular changes in turn further accelerate the process of aging. Here we review the current knowledge about how aging affects the circadian clock, how the functional decline of the circadian clock affects aging, and how the circadian clock machinery and the molecular processes that underlie aging are intertwined.
Collapse
Affiliation(s)
- Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - S A Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
156
|
Longitudinal transcriptome-wide gene expression analysis of sleep deprivation treatment shows involvement of circadian genes and immune pathways. Transl Psychiatry 2019; 9:343. [PMID: 31852885 PMCID: PMC6920477 DOI: 10.1038/s41398-019-0671-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
Therapeutic sleep deprivation (SD) rapidly induces robust, transient antidepressant effects in a large proportion of major mood disorder patients suffering from a depressive episode, but underlying biological factors remain poorly understood. Research suggests that these patients may have altered circadian molecular genetic 'clocks' and that SD functions through 'resetting' dysregulated genes; additional factors may be involved, warranting further investigation. Leveraging advances in microarray technology enabling the transcriptome-wide assessment of gene expression, this study aimed to examine gene expression changes accompanying SD and recovery sleep in patients suffering from an episode of depression. Patients (N = 78) and controls (N = 15) underwent SD, with blood taken at the same time of day before SD, after one night of SD and after recovery sleep. A transcriptome-wide gene-by-gene approach was used, with a targeted look also taken at circadian genes. Furthermore, gene set enrichment, and longitudinal gene set analyses including the time point after recovery sleep, were conducted. Circadian genes were significantly affected by SD, with patterns suggesting that molecular clocks of responders and non-responders, as well as patients and controls respond differently to chronobiologic stimuli. Notably, gene set analyses revealed a strong widespread effect of SD on pathways involved in immune function and inflammatory response, such as those involved in cytokine and especially in interleukin signalling. Longitudinal gene set analyses showed that in responders these pathways were upregulated after SD; in non-responders, little response was observed. Our findings emphasize the close relationship between circadian, immune and sleep systems and their link to etiology of depression at the transcriptomic level.
Collapse
|
157
|
Carvalho Cabral P, Olivier M, Cermakian N. The Complex Interplay of Parasites, Their Hosts, and Circadian Clocks. Front Cell Infect Microbiol 2019; 9:425. [PMID: 31921702 PMCID: PMC6920103 DOI: 10.3389/fcimb.2019.00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022] Open
Abstract
Parasites have evolved various mechanisms to favor infection of their hosts and enhance the success of the infection. In this respect, time-of-day effects were found during the course of parasitic infections, which can be caused or controlled by circadian rhythms in the physiology of their vertebrate hosts. These include circadian clock-controlled rhythms in metabolism and in immune responses. Conversely, parasites can also modulate their hosts' behavioral and cellular rhythms. Lastly, parasites themselves were in some cases shown to possess their own circadian clock mechanisms, which can influence their capacity to infect their hosts. A better knowledge of the circadian regulation of host-parasite interactions will help in designing new preventive and therapeutic strategies for parasitic diseases.
Collapse
Affiliation(s)
- Priscilla Carvalho Cabral
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Laboratory of Infectious Diseases and Immunity, Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Martin Olivier
- Laboratory of Infectious Diseases and Immunity, Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
158
|
Abstract
The immune system potentially plays an important mechanistic role in the relation between shift work and adverse health effects. To better understand the immunological effects of shift work, we compared numbers and functionality of immune cells between night-shift and non-shift workers. Blood samples were collected from 254 night-shift and 57 non-shift workers employed in hospitals. Absolute numbers of monocytes, granulocytes, lymphocytes, and T cell subsets were assessed. As read out of immune function, monocyte cytokine production and proliferative capacity of CD4 and CD8 T cells in response to various stimuli were analysed. The mean number of monocytes was 1.15 (95%-CI = 1.05–1.26) times higher in night-shift than in non-shift workers. Furthermore, night-shift workers who worked night shifts in the past three days had a higher mean number of lymphocytes (B = 1.12 (95%-CI = 1.01–1.26)), T cells (B = 1.16 (95%-CI = 1.03–1.31)), and CD8 T cells (B = 1.23 (95%-CI = 1.05–1.45)) compared to non-shift workers. No differences in functional parameters of monocytes and lymphocytes were observed. The differences in numbers of monocytes and T cells suggest that chronic exposure to night-shift work as well as recent night-shift work may influence the immune status of healthcare workers. This knowledge could be relevant for preventive initiatives in night-shift workers, such as timing of vaccination.
Collapse
|
159
|
Ren SS, Xu LL, Wang P, Li L, Hu YT, Xu MQ, Zhang M, Yan LN, Wen TF, Li B, Wang WT, Yang JY. Circadian Rhythms Have Effects on Surgical Outcomes of Liver Transplantation for Patients With Hepatocellular Carcinoma: A Retrospective Analysis of 147 Cases in a Single Center. Transplant Proc 2019; 51:1913-1919. [PMID: 31399175 DOI: 10.1016/j.transproceed.2019.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/27/2019] [Accepted: 03/13/2019] [Indexed: 02/05/2023]
Abstract
AIM To investigate the impact of circadian rhythms on the outcomes of liver transplantation on patients suffering from hepatocellular carcinoma (HCC). METHODS We retrospectively reviewed data of patients who underwent liver transplantation from 2012 to 2017 in our center. Based on the begin time of transplantation, these patients were separated into 2 groups: day group and night group. The intraoperative and postoperative clinical variables were analyzed to find out the impact of the circadian rhythms. Multivariate analysis was performed to examine strength associations between the begin time of operation and surgical outcomes. RESULTS A total of 147 patients were included in this study: 102 patients in the day group and 45 patients in the night group. Compared with the day group, patients in the night group had higher incidence of intraoperative massive hemorrhage (11.1% vs 2.0%, P = .048), more intraoperative blood loss (2168.00 ± 2324.20 mL vs 1405.88 ± 1037.69 mL, P = .040), and more requirement of red blood cells (RBC) suspension (8.59 ± 7.11 u vs 6.37 ± 5.78 u, P = .048). In addition, total operation time in the night group was longer than that in the day group (8.90 ± 1.65 hours vs 8.26 ± 1.69 hours, P = .034), as well as the cold ischemia time (9.35 ± 5.03 hours vs 7.21 ± 3.93 hours, P = .014). Furthermore, the night group had higher incidence of other intraoperative complications (13.3% vs 2.9%, P = .038), postoperative abdominal infection (20.0% vs 6.9%, P = .038), and more hospital cost (37,357.96 ± 6779.96 dollars vs 33,551.75 ± 11,683.38 dollars, P = .045). Moreover, patients in the night group needed longer time to restore hepatic function to normal (21.77 ± 10.91 days vs 17.54 ± 10.80 days, P = .033). Multivariate analysis showed that begin time of operation was the independent risk factor of longer operation time, more blood loss during operation, higher incidence of massive hemorrhage and other intraoperative complications, longer time for restoration of hepatic function to normal, higher incidence of abdominal infection at the early stage after transplantation, and more hospital cost (all P value ≤ .05). CONCLUSION Liver transplantation performed at night was associated with higher incidence of intraoperative and early postoperative complications, as well as higher hospital cost. And these worsened outcomes all could be explained by the influence that circadian rhythms had on patients or medical workers.
Collapse
Affiliation(s)
- Sheng-Sheng Ren
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Liang-Liang Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Wang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi-Tao Hu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming-Qing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lu-Nan Yan
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tian-Fu Wen
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wen-Tao Wang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jia-Yin Yang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
160
|
Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2019; 21:67-84. [PMID: 31768006 DOI: 10.1038/s41580-019-0179-2] [Citation(s) in RCA: 604] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
To accommodate daily recurring environmental changes, animals show cyclic variations in behaviour and physiology, which include prominent behavioural states such as sleep-wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously by genetically encoded molecular clocks, whose components cooperate to generate cyclic changes in their own abundance and activity, with a periodicity of about a day. Throughout the body, such molecular clocks convey temporal control to the function of organs and tissues by regulating pertinent downstream programmes. Synchrony between the different circadian oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which is directly responsive to certain environmental cues and able to transmit internal time-of-day representations to the entire body. In this Review, we discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.
Collapse
|
161
|
Barik S. Molecular Interactions between Pathogens and the Circadian Clock. Int J Mol Sci 2019; 20:ijms20235824. [PMID: 31756974 PMCID: PMC6928883 DOI: 10.3390/ijms20235824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/17/2019] [Accepted: 11/17/2019] [Indexed: 12/12/2022] Open
Abstract
The daily periodicity of the Earth's rotation around the Sun, referred to as circadian (Latin "circa" = about, and "diem" = day), is also mirrored in the behavior and metabolism of living beings. The discovery that dedicated cellular genes control various aspects of this periodicity has led to studies of the molecular mechanism of the circadian response at the cellular level. It is now established that the circadian genes impact on a large network of hormonal, metabolic, and immunological pathways, affecting multiple aspects of biology. Recent studies have extended the role of the circadian system to the regulation of infection, host-pathogen interaction, and the resultant disease outcome. This critical review summarizes our current knowledge of circadian-pathogen interaction at both systemic and cellular levels, but with emphasis on the molecular aspects of the regulation. Wherever applicable, the potential of a direct interaction between circadian factors and pathogenic macromolecules is also explored. Finally, this review offers new directions and guidelines for future research in this area, which should facilitate progress.
Collapse
|
162
|
Cantos-Barreda A, Escribano D, Egui A, López MC, Cerón JJ, Bernal LJ, Martínez-Subiela S. Evaluation of the circadian rhythm of anti-Leishmania IgG2 and IgA antibodies in serum and saliva of dogs with clinical leishmaniosis. Comp Immunol Microbiol Infect Dis 2019; 68:101389. [PMID: 31760362 DOI: 10.1016/j.cimid.2019.101389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
In this study, the circadian rhythm of IgG2 and IgA specific antibodies in serum and saliva samples of 6 dogs experimentally infected with Leishmania infantum was assessed. Sampling was performed at 8.00, 12.00, 16.00, 20.00, and 00.00 h on two consecutive days. Anti-Leishmania antibody levels in serum were expressed without any correction, whereas in saliva were shown in different ways: without any correction, adjusted by protein concentration and corrected by the salivary flow rate. No significant differences in anti-Leishmania IgG2 antibody levels in serum and saliva samples with or without correction were found. Significant differences were found when anti-Leishmania IgA levels were corrected by the salivary flow rate. In addition, a greater intra-individual variation of antibody levels was observed in saliva than in serum. However, this variation did not modify the serological status of the dogs. Therefore, it could be concluded that there is no circadian rhythm in serum and saliva samples and sampling can be performed at any time of the day.
Collapse
Affiliation(s)
- Ana Cantos-Barreda
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain.
| | - Adriana Egui
- Instituto de Parasitología y Biomedicina "López Neyra", Molecular Biology Department, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Manuel C López
- Instituto de Parasitología y Biomedicina "López Neyra", Molecular Biology Department, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - Luis J Bernal
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| |
Collapse
|
163
|
Chang ML, Moussette S, Gamero-Estevez E, Gálvez JH, Chiwara V, Gupta IR, Ryan AK, Naumova AK. Regulatory interaction between the ZPBP2-ORMDL3/Zpbp2-Ormdl3 region and the circadian clock. PLoS One 2019; 14:e0223212. [PMID: 31560728 PMCID: PMC6764692 DOI: 10.1371/journal.pone.0223212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/15/2019] [Indexed: 11/18/2022] Open
Abstract
Genome-wide association study (GWAS) loci for several immunity-mediated diseases (early onset asthma, inflammatory bowel disease (IBD), primary biliary cholangitis, and rheumatoid arthritis) map to chromosomal region 17q12-q21. The predominant view is that association between 17q12-q21 alleles and increased risk of developing asthma or IBD is due to regulatory variants. ORM sphingolipid biosynthesis regulator (ORMDL3) residing in this region is the most promising gene candidate for explaining association with disease. However, the relationship between 17q12-q21 alleles and disease is complex suggesting contributions from other factors, such as trans-acting genetic and environmental modifiers or circadian rhythms. Circadian rhythms regulate expression levels of thousands of genes and their dysregulation is implicated in the etiology of several common chronic inflammatory diseases. However, their role in the regulation of the 17q12-q21 genes has not been investigated. Moreover, the core clock gene nuclear receptor subfamily 1, group D, member 1 (NR1D1) resides about 200 kb distal to the GWAS region. We hypothesized that circadian rhythms influenced gene expression levels in 17q12-q21 region and conversely, regulatory elements in this region influenced transcription of the core clock gene NR1D1 in cis. To test these hypotheses, we examined the diurnal expression profiles of zona pellucida binding protein 2 (ZPBP2/Zpbp2), gasdermin B (GSDMB), and ORMDL3/Ormdl3 in human and mouse tissues and analyzed the impact of genetic variation in the ZPBP2/Zpbp2 region on NR1D1/Nr1d1 expression. We found that Ormdl3 and Zpbp2 were controlled by the circadian clock in a tissue-specific fashion. We also report that deletion of the Zpbp2 region altered the expression profile of Nr1d1 in lungs and ileum in a time-dependent manner. In liver, the deletion was associated with enhanced expression of Ormdl3. We provide the first evidence that disease-associated genes Zpbp2 and Ormdl3 are regulated by circadian rhythms and the Zpbp2 region influences expression of the core clock gene Nr1d1.
Collapse
Affiliation(s)
- Matthew L. Chang
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sanny Moussette
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | - Victoria Chiwara
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Indra R. Gupta
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Paediatrics, McGill University, Montreal, Quebec, Canada
| | - Aimee K. Ryan
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Paediatrics, McGill University, Montreal, Quebec, Canada
| | - Anna K. Naumova
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
164
|
The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways. Proc Natl Acad Sci U S A 2019; 116:20077-20086. [PMID: 31527231 DOI: 10.1073/pnas.1905080116] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Circadian variations of various aspects of the immune system have been described. However, the circadian control of T cells has been relatively unexplored. Here, we investigated the role of circadian clocks in regulating CD8 T cell response to antigen presentation by dendritic cells (DCs). The in vivo CD8 T cell response following vaccination with DCs loaded with the OVA257-264 peptide antigen (DC-OVA) leads to a higher expansion of OVA-specific T cells in response to vaccination done in the middle of the day, compared to other time points. This rhythm was dampened when DCs deficient for the essential clock gene Bmal1 were used and abolished in mice with a CD8 T cell-specific Bmal1 deletion. Thus, we assessed the circadian transcriptome of CD8 T cells and found an enrichment in the daytime of genes and pathways involved in T cell activation. Based on this, we investigated early T cell activation events. Three days postvaccination, we found higher T cell activation markers and related signaling pathways (including IRF4, mTOR, and AKT) after a vaccination done during the middle of the day compared to the middle of the night. Finally, the functional impact of the stronger daytime response was shown by a more efficient response to a bacterial challenge at this time of day. Altogether, these results suggest that the clock of CD8 T cells modulates the response to vaccination by shaping the transcriptional program of these cells and making them more prone to strong and efficient activation and proliferation according to the time of day.
Collapse
|
165
|
Mosser EA, Chiu CN, Tamai TK, Hirota T, Li S, Hui M, Wang A, Singh C, Giovanni A, Kay SA, Prober DA. Identification of pathways that regulate circadian rhythms using a larval zebrafish small molecule screen. Sci Rep 2019; 9:12405. [PMID: 31455847 PMCID: PMC6712016 DOI: 10.1038/s41598-019-48914-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
The circadian clock ensures that behavioral and physiological processes occur at appropriate times during the 24-hour day/night cycle, and is regulated at both the cellular and organismal levels. To identify pathways acting on intact animals, we performed a small molecule screen using a luminescent reporter of molecular circadian rhythms in zebrafish larvae. We identified both known and novel pathways that affect circadian period, amplitude and phase. Several drugs identified in the screen did not affect circadian rhythms in cultured cells derived from luminescent reporter embryos or in established zebrafish and mammalian cell lines, suggesting they act via mechanisms absent in cell culture. Strikingly, using drugs that promote or inhibit inflammation, as well as a mutant that lacks microglia, we found that inflammatory state affects circadian amplitude. These results demonstrate a benefit of performing drug screens using intact animals and provide novel targets for treating circadian rhythm disorders.
Collapse
Affiliation(s)
- Eric A Mosser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Program in Biological Sciences, Northwestern University, Evanston, IL, 60201, USA
| | - Cindy N Chiu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Department of Neurobiology, Northwestern University, Evanston, IL, 60201, USA
| | - T Katherine Tamai
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Tsuyoshi Hirota
- PRESTO, JST, Nagoya, 464-8601, Japan.,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Suna Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - May Hui
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Amy Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Chanpreet Singh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
166
|
Papantoniou K, Massa J, Devore E, Munger KL, Chitnis T, Ascherio A, Schernhammer ES. Rotating night shift work and risk of multiple sclerosis in the Nurses' Health Studies. Occup Environ Med 2019; 76:733-738. [PMID: 31405910 DOI: 10.1136/oemed-2019-106016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Night shift work has been suggested as a possible risk factor for multiple sclerosis (MS). The objective of the present analysis was to prospectively evaluate the association of rotating night shift work history and MS risk in two female cohorts, the Nurses' Health Study (NHS) and NHSII. METHODS A total of 83 992 (NHS) and 114 427 (NHSII) women were included in this analysis. We documented 579 (109 in NHS and 470 in NHSII) incident physician-confirmed MS cases (moderate and definite diagnosis), including 407 definite MS cases. The history (cumulative years) of rotating night shifts (≥3 nights/month) was assessed at baseline and updated throughout follow-up. Cox proportional hazards models were used to estimate HRs and 95% CIs for the association between rotating night shift work and MS risk adjusting for potential confounders. RESULTS We observed no association between history of rotating night shift work and MS risk in NHS (1-9 years: HR 1.03, 95% CI 0.69 to 1.54; 10+ years: 1.15, 0.62 to 2.15) and NHSII (1-9 years: HR 0.90, 95% CI 0.74 to 1.09; 10+ years: 1.03, 0.72 to 1.49). In NHSII, rotating night shift work history of 20+ years was significantly associated with MS risk, when restricting to definite MS cases (1-9 years: HR 0.88, 95% CI 0.70 to 1.11; 10-19 years: 0.98, 0.62 to 1.55; 20+ years: 2.62, 1.06 to 6.46). CONCLUSIONS Overall, we found no association between rotating night shift work history and MS risk in these two large cohorts of nurses. In NHSII, shift work history of 20 or more years was associated with an increased risk of definite MS diagnosis.
Collapse
Affiliation(s)
- Kyriaki Papantoniou
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Jennifer Massa
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Elizabeth Devore
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kassandra L Munger
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alberto Ascherio
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eva S Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
167
|
Effect of Time of Day of Infection on Chlamydia Infectivity and Pathogenesis. Sci Rep 2019; 9:11405. [PMID: 31388084 PMCID: PMC6684580 DOI: 10.1038/s41598-019-47878-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/09/2019] [Indexed: 01/11/2023] Open
Abstract
Genital chlamydia infection in women causes complications such as pelvic inflammatory disease and tubal factor infertility, but it is unclear why some women are more susceptible than others. Possible factors, such as time of day of chlamydia infection on chlamydial pathogenesis has not been determined. We hypothesised that infections during the day, will cause increased complications compared to infections at night. Mice placed under normal 12:12 light: dark (LD) cycle were infected intravaginally with Chlamydia muridarum either at zeitgeber time 3, ZT3 and ZT15. Infectivity was monitored by periodic vaginal swabs and chlamydiae isolation. Blood and vaginal washes were collected for host immunologic response assessments. The reproductive tracts of the mice were examined histopathologically, and fertility was determined by embryo enumeration after mating. Mice infected at ZT3 shed significantly more C. muridarum than mice infected at ZT15. This correlated with the increased genital tract pathology observed in mice infected at ZT3. Mice infected at ZT3 were less fertile than mice infected at ZT15. The results suggest that the time of day of infection influences chlamydial pathogenesis, it indicates a possible association between complications from chlamydia infection and host circadian clock, which may lead to a better understanding of chlamydial pathogenesis.
Collapse
|
168
|
Hanprathet N, Lertmaharit S, Lohsoonthorn V, Rattananupong T, Ammaranond P, Jiamjarasrangsi W. Shift Work and Leukocyte Count Changes among Workers in Bangkok. Ann Work Expo Health 2019; 63:689-700. [PMID: 31211837 DOI: 10.1093/annweh/wxz039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/13/2019] [Accepted: 05/03/2019] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES Previous epidemiological evidence for the association of shift work exposure and increased leukocyte count is cross-sectional in nature, thus limiting cause-effect inference. We therefore used a longitudinal design to: (i) compare leukocyte counts at baseline between shift and day workers and (ii) examine the time trend of leukocyte counts over the follow-up period for these workers. METHODS A retrospective cohort study was conducted among 6737 workers aged <60 years at two large organizations (a humanitarian organization and a university) in Bangkok, Thailand who had participated in at least two annual health check-ups during the period 2005-2016. Shift work exposure history was assessed by a self-administered questionnaire and categorized into day, former, and current shift workers. Data on leukocyte count were collected annually as part of worksite health screening during the observation period. Association of shift work exposure and increased leukocyte count was then examined cross-sectionally and longitudinally by using multiple linear regression and multilevel analysis of repeated measures data, respectively. In addition, trends for leukocyte count over the follow-up period and work years were examined using LOWESS smooth curves. RESULTS Compared to day work, the current shift work was associated with increased leukocyte counts. The magnitude of percentage increase was the highest for basophil counts, followed by eosinophil and lymphocyte counts. Both cross-sectional and longitudinal evidence revealed this association, although it was less pronounced longitudinally. For total leukocyte count, the magnitude of difference was constant across the 11-year follow-up period. However, for lymphocyte and basophil counts, these discrepancies tapered over the work years until they no longer differed (for lymphocyte count) or even differed in the opposite direction (for basophil count) in later work years. CONCLUSION This study confirmed previous cross-sectional evidence that shift work exposure-increased leukocyte counts and that this was reversible. Whether this increase in immune cell count also results in an increased immune cell activity and serves as the intermediary in the association between shift work exposure and subsequent chronic disease development needs further investigation.
Collapse
Affiliation(s)
- Nitt Hanprathet
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Somrat Lertmaharit
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Vitool Lohsoonthorn
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand.,Department of Preventive and Social Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross, Bangkok, Thailand
| | - Thanapoom Rattananupong
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Palanee Ammaranond
- Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Wiroj Jiamjarasrangsi
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand.,Department of Preventive and Social Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross, Bangkok, Thailand
| |
Collapse
|
169
|
Helvaci N, Oguz SH, Kabacam S, Karabulut E, Akbiyik F, Alikasifoglu M, Gurlek A. Clock gene PERIOD3 polymorphism is associated with susceptibility to Graves’ disease but not to Hashimoto’s thyroiditis. Chronobiol Int 2019; 36:1343-1350. [DOI: 10.1080/07420528.2019.1642909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nafiye Helvaci
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Seda Hanife Oguz
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Serkan Kabacam
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Filiz Akbiyik
- Department of Medical Biochemistry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Alper Gurlek
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
170
|
Carroll RG, Timmons GA, Cervantes-Silva MP, Kennedy OD, Curtis AM. Immunometabolism around the Clock. Trends Mol Med 2019; 25:612-625. [DOI: 10.1016/j.molmed.2019.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
|
171
|
Voigt RM, Forsyth CB, Keshavarzian A. Circadian rhythms: a regulator of gastrointestinal health and dysfunction. Expert Rev Gastroenterol Hepatol 2019; 13:411-424. [PMID: 30874451 PMCID: PMC6533073 DOI: 10.1080/17474124.2019.1595588] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circadian rhythms regulate much of gastrointestinal physiology including cell proliferation, motility, digestion, absorption, and electrolyte balance. Disruption of circadian rhythms can have adverse consequences including the promotion of and/or exacerbation of a wide variety of gastrointestinal disorders and diseases. Areas covered: In this review, we evaluate some of the many gastrointestinal functions that are regulated by circadian rhythms and how dysregulation of these functions may contribute to disease. This review also discusses some common gastrointestinal disorders that are known to be influenced by circadian rhythms as well as speculation about the mechanisms by which circadian rhythm disruption promotes dysfunction and disease pathogenesis. We discuss how knowledge of circadian rhythms and the advent of chrono-nutrition, chrono-pharmacology, and chrono-therapeutics might influence clinical practice. Expert opinion: As our knowledge of circadian biology increases, it may be possible to incorporate strategies that take advantage of circadian rhythms and chronotherapy to prevent and/or treat disease.
Collapse
Affiliation(s)
- Robin M Voigt
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
172
|
Onoue T, Nishi G, Hikima JI, Sakai M, Kono T. Circadian oscillation of TNF-α gene expression regulated by clock gene, BMAL1 and CLOCK1, in the Japanese medaka (Oryzias latipes). Int Immunopharmacol 2019; 70:362-371. [DOI: 10.1016/j.intimp.2019.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
|
173
|
Is it Time to Change Radiotherapy: The Dawning of Chronoradiotherapy? Clin Oncol (R Coll Radiol) 2019; 31:326-335. [DOI: 10.1016/j.clon.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
|
174
|
Westwood ML, O'Donnell AJ, de Bekker C, Lively CM, Zuk M, Reece SE. The evolutionary ecology of circadian rhythms in infection. Nat Ecol Evol 2019; 3:552-560. [PMID: 30886375 PMCID: PMC7614806 DOI: 10.1038/s41559-019-0831-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/30/2019] [Indexed: 01/05/2023]
Abstract
Biological rhythms coordinate organisms' activities with daily rhythms in the environment. For parasites, this includes rhythms in both the external abiotic environment and the within-host biotic environment. Hosts exhibit rhythms in behaviours and physiologies, including immune responses, and parasites exhibit rhythms in traits underpinning virulence and transmission. Yet, the evolutionary and ecological drivers of rhythms in traits underpinning host defence and parasite offence are largely unknown. Here, we explore how hosts use rhythms to defend against infection, why parasites have rhythms and whether parasites can manipulate host clocks to their own ends. Harnessing host rhythms or disrupting parasite rhythms could be exploited for clinical benefit; we propose an interdisciplinary effort to drive this emerging field forward.
Collapse
Affiliation(s)
- Mary L Westwood
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Aidan J O'Donnell
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Curtis M Lively
- Department of Biology, Indiana University, Bloomington, IL, USA
| | - Marlene Zuk
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Sarah E Reece
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
175
|
Gombert M, Carrasco-Luna J, Pin-Arboledas G, Codoñer-Franch P. The connection of circadian rhythm to inflammatory bowel disease. Transl Res 2019; 206:107-118. [PMID: 30615844 DOI: 10.1016/j.trsl.2018.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/25/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) comprises a group of chronic, immune system-mediated inflammatory diseases that primarily affect the gastrointestinal tract. The pathogenesis of the intestinal lesions in IBD remains elusive, but the inflammation process could be the result of dysfunction of the innate and adaptive immune systems induced by genetic and environmental factors. In recent years, research has demonstrated a connection between environmental stressors that can influence day-night variations, also called circadian rhythms, and digestive health. In this review, we focus on alterations in the complex interactions between intestinal mucosa, microbial factors, and the immune response in the intestinal milieu. We introduce the mechanisms that establish circadian rhythms and their regulation by the circadian rhythm genes. Evidence of circadian variation in the defense mechanisms of the intestine and its implication in the maintenance of a healthy microbiota are presented. Disruption of the circadian system can increase the activity of the gut immune system and the release of inflammatory factors. The link between chronodisruption or circadian rhythm impairment and IBD demonstrated by experimental and clinical studies illustrates the potential impact of circadian rhythms on treatment of these diseases. Future studies that investigate aspects of this subject are warranted.
Collapse
Affiliation(s)
- Marie Gombert
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain; Department of Biotechnology, University of La Rochelle, La Rochelle, France
| | - Joaquín Carrasco-Luna
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain; Department Experimental Sciences, Catholic University of Valencia, Valencia, Spain
| | - Gonzalo Pin-Arboledas
- Department of Pediatrics, Pediatric Sleep Unit, Hospital Quironsalud, Valencia, Spain
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain; Department of Pediatrics, Dr. Peset University Hospital, Valencia, Spain.
| |
Collapse
|
176
|
Radaeva OA, Simbirtsev AS, Khovryakov AV. A correlation between the fluctuations of cytokine concentrations measured in the morning and evening and the circadian blood pressure rhythm in patients with stage II essential hypertension. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Today, increasing attention is being paid to the role of circadian rhythms in pathology. There are time-of-day-dependent immune markers that provide valuable information about disease progression. The aim of this study was to measure evening and morning concentrations of a few cytokines (interleukins, adhesion molecules, tumor necrosis/growth factors, etc.) in the peripheral blood of patients with stage II essential hypertension and to investigate how they correlate with a nocturnal blood pressure decline. Blood samples were collected from 90 patients with stage II EH at 7:00 a.m. and 8:00 p.m. Cytokine concentrations were measured using immunoassays. Based on 24-h blood pressure monitoring, the patients were distributed into 3 groups: dippers, non-dippers and night-peakers. The morning to evening ratios of cytokine concentrations in patients with EH differed from those in healthy controls due to an increase in the evening concentrations of somnogenic cytokines (IL1β, IL1α) and LIF, sLIFr, and M-CSF whose daily fluctuations patterns remain understudied. On the whole, the fluctuation patterns of the measured cytokines in patients with stage II EH who had had the condition for 10 to 14 years and were receiving no antihypertensive treatment at the time of our study differed from those displayed by healthy controls. A twenty percent rise in the evening concentrations of IL1α, LIF, sLIFr, M-CSF, and erythropoietin contributes significantly to pathological blood pressure rhythms (as demonstrated by the groups of non-dippers and night-peakers) in patients with stage II EH receiving no antihypertensive therapy. Understanding the pathophysiological role of cytokine levels and their fluctuations over a 24-h cycle could inspire new methods for EH prevention and reduce end-organ damage.
Collapse
Affiliation(s)
- OA Radaeva
- National Research Mordovia State University, Saransk, Russia
| | - AS Simbirtsev
- State Research Institute of Highly Pure Biopreparations, FMBA, St. Petersburg, Russia
| | - AV Khovryakov
- Mordovian Republican Clinical Hospital No.4, Saransk, Russia
| |
Collapse
|
177
|
Li J, Yu RY, Emran F, Chen BE, Hughes ME. Achilles-Mediated and Sex-Specific Regulation of Circadian mRNA Rhythms in Drosophila. J Biol Rhythms 2019; 34:131-143. [PMID: 30803307 DOI: 10.1177/0748730419830845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The circadian clock is an evolutionarily conserved mechanism that generates the rhythmic expression of downstream genes. The core circadian clock drives the expression of clock-controlled genes, which in turn play critical roles in carrying out many rhythmic physiological processes. Nevertheless, the molecular mechanisms by which clock output genes orchestrate rhythmic signals from the brain to peripheral tissues are largely unknown. Here we explored the role of one rhythmic gene, Achilles, in regulating the rhythmic transcriptome in the fly head. Achilles is a clock-controlled gene in Drosophila that encodes a putative RNA-binding protein. Achilles expression is found in neurons throughout the fly brain using fluorescence in situ hybridization (FISH), and legacy data suggest it is not expressed in core clock neurons. Together, these observations argue against a role for Achilles in regulating the core clock. To assess its impact on circadian mRNA rhythms, we performed RNA sequencing (RNAseq) to compare the rhythmic transcriptomes of control flies and those with diminished Achilles expression in all neurons. Consistent with previous studies, we observe dramatic upregulation of immune response genes upon knock-down of Achilles. Furthermore, many circadian mRNAs lose their rhythmicity in Achilles knock-down flies, suggesting that a subset of the rhythmic transcriptome is regulated either directly or indirectly by Achilles. These Achilles-mediated rhythms are observed in genes involved in immune function and in neuronal signaling, including Prosap, Nemy and Jhl-21. A comparison of RNAseq data from control flies reveals that only 42.7% of clock-controlled genes in the fly brain are rhythmic in both males and females. As mRNA rhythms of core clock genes are largely invariant between the sexes, this observation suggests that sex-specific mechanisms are an important, and heretofore under-appreciated, regulator of the rhythmic transcriptome.
Collapse
Affiliation(s)
- Jiajia Li
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Renee Yin Yu
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec, Canada
| | - Farida Emran
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec, Canada
| | - Brian E Chen
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec, Canada.,Departments of Medicine and Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Michael E Hughes
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
178
|
Cooper LN, Mishra I, Ashley NT. Short-Term Sleep Loss Alters Cytokine Gene Expression in Brain and Peripheral Tissues and Increases Plasma Corticosterone of Zebra Finch (Taeniopygia guttata). Physiol Biochem Zool 2019; 92:80-91. [DOI: 10.1086/701170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
179
|
Circadian Expression of Migratory Factors Establishes Lineage-Specific Signatures that Guide the Homing of Leukocyte Subsets to Tissues. Immunity 2018; 49:1175-1190.e7. [PMID: 30527911 PMCID: PMC6303219 DOI: 10.1016/j.immuni.2018.10.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 01/13/2023]
Abstract
The number of leukocytes present in circulation varies throughout the day, reflecting bone marrow output and emigration from blood into tissues. Using an organism-wide circadian screening approach, we detected oscillations in pro-migratory factors that were distinct for specific vascular beds and individual leukocyte subsets. This rhythmic molecular signature governed time-of-day-dependent homing behavior of leukocyte subsets to specific organs. Ablation of BMAL1, a transcription factor central to circadian clock function, in endothelial cells or leukocyte subsets demonstrated that rhythmic recruitment is dependent on both microenvironmental and cell-autonomous oscillations. These oscillatory patterns defined leukocyte trafficking in both homeostasis and inflammation and determined detectable tumor burden in blood cancer models. Rhythms in the expression of pro-migratory factors and migration capacities were preserved in human primary leukocytes. The definition of spatial and temporal expression profiles of pro-migratory factors guiding leukocyte migration patterns to organs provides a resource for the further study of the impact of circadian rhythms in immunity.
Collapse
|
180
|
Kooman JP, Usvyat LA, Dekker MJE, Maddux DW, Raimann JG, van der Sande FM, Ye X, Wang Y, Kotanko P. Cycles, Arrows and Turbulence: Time Patterns in Renal Disease, a Path from Epidemiology to Personalized Medicine? Blood Purif 2018; 47:171-184. [PMID: 30448825 DOI: 10.1159/000494827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Patients with end-stage renal disease (ESRD) experience unique patterns in their lifetime, such as the start of dialysis and renal transplantation. In addition, there is also an intricate link between ESRD and biological time patterns. In terms of cyclic patterns, the circadian blood pressure (BP) rhythm can be flattened, contributing to allostatic load, whereas the circadian temperature rhythm is related to the decline in BP during hemodialysis (HD). Seasonal variations in BP and interdialytic-weight gain have been observed in ESRD patients in addition to a profound relative increase in mortality during the winter period. Moreover, nonphysiological treatment patters are imposed in HD patients, leading to an excess mortality at the end of the long interdialytic interval. Recently, new evidence has emerged on the prognostic impact of trajectories of common clinical and laboratory parameters such as BP, body temperature, and serum albumin, in addition to single point in time measurements. Backward analysis of changes in cardiovascular, nutritional, and inflammatory parameters before the occurrence as hospitalization or death has shown that changes may already occur within months to even 1-2 years before the event, possibly providing a window of opportunity for earlier interventions. Disturbances in physiological variability, such as in heart rate, characterized by a loss of fractal patterns, are associated with increased mortality. In addition, an increase in random variability in different parameters such as BP and sodium is also associated with adverse outcomes. Novel techniques, based on time-dependent analysis of variability and trends and interactions of multiple physiological and laboratory parameters, for which machine-learning -approaches may be necessary, are likely of help to the clinician in the future. However, upcoming research should also evaluate whether dynamic patterns observed in large epidemiological studies have relevance for the individual risk profile of the patient.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Maastricht University Medical Center, Maastricht, The Netherlands,
| | - Len A Usvyat
- Fresenius Medical Care North America, Waltham, Massachusetts, USA
| | | | - Dugan W Maddux
- Fresenius Medical Care North America, Waltham, Massachusetts, USA
| | | | | | - Xiaoling Ye
- Renal Research Institute, New York, New York, USA
| | - Yuedong Wang
- Department of Statistics and Applied Probability, University of California-Santa Barbara, Santa Barbara, California, USA
| | - Peter Kotanko
- Renal Research Institute, New York, New York, USA.,Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| |
Collapse
|
181
|
Stervbo U, Roch T, Kornprobst T, Sawitzki B, Grütz G, Wilhelm A, Lacombe F, Allou K, Kaymer M, Pacheco A, Vigne J, Westhoff TH, Seibert FS, Babel N. Gravitational stress during parabolic flights reduces the number of circulating innate and adaptive leukocyte subsets in human blood. PLoS One 2018; 13:e0206272. [PMID: 30427865 PMCID: PMC6235284 DOI: 10.1371/journal.pone.0206272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Gravitational stress occurs during space flights or certain physical activities including extreme sports, where the change in experienced gravitational acceleration can reach large magnitudes. These changes include reduction and increase in the physical forces experienced by the body and may potentially induce pathogenic alterations of physiological processes. The immune system is known to regulate most functions in the human organism and previous studies suggest an impairment of the immune function under gravitational stress. However, systematic studies aiming to investigate the effect of gravitational stress on cellular immune response in humans are lacking. Since parabolic flights are considered as feasible model to investigate a short-term impact of gravitational changes, we evaluated the influence of gravitational stress on the immune system by analyzing leukocyte numbers before and after parabolic flight maneuvers in human blood. To correct for circadian effects, samples were taken at the corresponding time points on ground the day before the flight. The parabolic flight maneuvers led to changes in numbers of different leukocyte subsets. Naïve and memory T and B cell subsets decreased under gravitational stress and lower numbers of basophils and eosinophils were observed. Only circulating neutrophils increased during the parabolic flight. The observed changes could not be attributed to stress-induced cortisol effects, since cortisol levels were not affected. Our data demonstrate that the gravitational stress by parabolic flights can affect all parts of the human immune system. Consequently, it is possible that gravitational stress can have clinically relevant impacts on the control of immune responses.
Collapse
Affiliation(s)
- Ulrik Stervbo
- Center for Translational Medicine - Medical Clinic I, Marien Hospital Herne - University Hospital of the Ruhr-University Bochum, Herne, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Toralf Roch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tina Kornprobst
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Birgit Sawitzki
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerald Grütz
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Wilhelm
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Francis Lacombe
- Laboratoire d’hématologie, CHU de Bordeaux, Hôpital Haut-Lévêque, Pessac, France
| | - Kaoutar Allou
- Laboratoire d’hématologie, CHU de Bordeaux, Hôpital Haut-Lévêque, Pessac, France
| | | | | | | | - Timm H. Westhoff
- Center for Translational Medicine - Medical Clinic I, Marien Hospital Herne - University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Felix S. Seibert
- Center for Translational Medicine - Medical Clinic I, Marien Hospital Herne - University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- Center for Translational Medicine - Medical Clinic I, Marien Hospital Herne - University Hospital of the Ruhr-University Bochum, Herne, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- * E-mail:
| |
Collapse
|
182
|
Ella K, Mócsai A, Káldi K. Circadian regulation of neutrophils: Control by a cell-autonomous clock or systemic factors? Eur J Clin Invest 2018; 48 Suppl 2:e12965. [PMID: 29877596 DOI: 10.1111/eci.12965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND The circadian time-measuring system enables the organism to anticipate and effectively respond to regular daily changes in the environment and is therefore a crucial factor of adaptation. A large body of epidemiological data underlines the circadian characteristics of human immune functions. Circadian control of neutrophil responsiveness contributes to daily changes in the pathology of both acute and chronic inflammation and may therefore time-dependently influence the outcome of therapeutic approaches. AIM This review summarizes recent data on the role of the circadian clock in the control of immune responses, particularly of those linked to neutrophil activity, and possible mechanisms of the regulation. DISCUSSION In the first section of this review we present the recent model of the mammalian molecular clock by introducing the main transcription-translation feedback loops and discussing the pace-setting role of post-translational modifications. The next sections summarize clinical, epidemiological and experimental data regarding the daily control of immune responses and studies analysing expression of clock components in various leukocytes and particularly, in human peripheral neutrophils. As the latter data indicate that expression of components of the cell-autonomous clock is relatively low in neutrophils, in the last section we review recent findings suggesting a role for systemic and local factors in the regulation of rhythmic neutrophil responses.
Collapse
Affiliation(s)
- Krisztina Ella
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Krisztina Káldi
- Department of Physiology, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
183
|
Inflammatory Markers in Anorexia Nervosa: An Exploratory Study. Nutrients 2018; 10:nu10111573. [PMID: 30355978 PMCID: PMC6266841 DOI: 10.3390/nu10111573] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammation has been suggested to play a pathophysiological role in anorexia nervosa (AN). In this exploratory cross-sectional study, we measured serum concentrations of 40 inflammatory markers (including cytokines, chemokines, and adhesion molecules) and brain-derived neurotrophic factor (BDNF) in people with AN (n = 27) and healthy controls (HCs) (n = 13). Many of these inflammatory markers had not been previously quantified in people with AN. Eating disorder (ED) and general psychopathology symptoms were assessed. Body mass index (BMI) and body composition data were obtained. Interleukin (IL)-6, IL-15, and vascular cell adhesion molecule (VCAM)-1 concentrations were significantly elevated and concentrations of BDNF, tumor necrosis factor (TNF)-β, and vascular endothelial growth factor (VEGF)-A were significantly lower in AN participants compared to HCs. Age, BMI, and percentage body fat mass were identified as potential confounding variables for several of these inflammatory markers. Of particular interest is that most of the quantified markers were unchanged in people with AN, despite them being severely underweight with evident body fat loss, and having clinically significant ED symptoms and severe depression and anxiety symptoms. Future research should examine the replicability of our findings and consider the effect of additional potential confounding variables, such as smoking and physical activity, on the relationship between AN and inflammation.
Collapse
|
184
|
|
185
|
Zhang Q, Berger FG, Love B, Banister CE, Murphy EA, Hofseth LJ. Maternal stress and early-onset colorectal cancer. Med Hypotheses 2018; 121:152-159. [PMID: 30396471 DOI: 10.1016/j.mehy.2018.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Early-onset colorectal cancer (EOCRC) is defined as colorectal cancer (CRC) diagnosed before the age of 50. Alarmingly, there has been a significant increase in EOCRC diagnoses' worldwide over the past several decades. Emerging data suggest EOCRCs have distinguishing clinical, pathological, biological and molecular features; and thus, are a fundamentally different subtype of CRCs. Unfortunately, there is no simple explanation for the causes of EOCRC. Scientifically rigorous studies are needed to determine what may be driving the challenging epidemiology of EOCRC. We contend here that a reasonable hypothesis is that prenatal risk factors such as maternal stress and associated sleeping disorders influence offspring epigenetic make-up, and shape immune system and gut health contributing to an increased risk for EOCRC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Drug Discovery and Biomedical Science, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Franklin G Berger
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Bryan Love
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Carolyn E Banister
- Department of Drug Discovery and Biomedical Science, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Elizabeth A Murphy
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Science, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
186
|
Magdevska L, Mraz M, Zimic N, Moškon M. Initial state perturbations as a validation method for data-driven fuzzy models of cellular networks. BMC Bioinformatics 2018; 19:333. [PMID: 30241464 PMCID: PMC6150993 DOI: 10.1186/s12859-018-2366-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023] Open
Abstract
Background Data-driven methods that automatically learn relations between attributes from given data are a popular tool for building mathematical models in computational biology. Since measurements are prone to errors, approaches dealing with uncertain data are especially suitable for this task. Fuzzy models are one such approach, but they contain a large amount of parameters and are thus susceptible to over-fitting. Validation methods that help detect over-fitting are therefore needed to eliminate inaccurate models. Results We propose a method to enlarge the validation datasets on which a fuzzy dynamic model of a cellular network can be tested. We apply our method to two data-driven dynamic models of the MAPK signalling pathway and two models of the mammalian circadian clock. We show that random initial state perturbations can drastically increase the mean error of predictions of an inaccurate computational model, while keeping errors of predictions of accurate models small. Conclusions With the improvement of validation methods, fuzzy models are becoming more accurate and are thus likely to gain new applications. This field of research is promising not only because fuzzy models can cope with uncertainty, but also because their run time is short compared to conventional modelling methods that are nowadays used in systems biology.
Collapse
Affiliation(s)
- Lidija Magdevska
- Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, Ljubljana, 1000, Slovenia. .,Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, Ljubljana, 1000, Slovenia.
| | - Miha Mraz
- Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, Ljubljana, 1000, Slovenia
| | - Nikolaj Zimic
- Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, Ljubljana, 1000, Slovenia
| | - Miha Moškon
- Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, Ljubljana, 1000, Slovenia
| |
Collapse
|
187
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Najafi M, Sahebkar A. Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. J Cell Physiol 2018; 234:5613-5627. [PMID: 30238978 DOI: 10.1002/jcp.27391] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Cancer remains among the most challenging human diseases. Several lines of evidence suggest that carcinogenesis is a complex process that is initiated by DNA damage. Exposure to clastogenic agents such as heavy metals, ionizing radiation (IR), and chemotherapy drugs may cause chronic mutations in the genomic material, leading to a phenomenon named genomic instability. Evidence suggests that genomic instability is responsible for cancer incidence after exposure to carcinogenic agents, and increases the risk of secondary cancers following treatment with radiotherapy or chemotherapy. Melatonin as the main product of the pineal gland is a promising hormone for preventing cancer and improving cancer treatment. Melatonin can directly neutralize toxic free radicals more efficiently compared with other classical antioxidants. In addition, melatonin is able to regulate the reduction/oxidation (redox) system in stress conditions. Through regulation of mitochondrial nction and inhibition of pro-oxidant enzymes, melatonin suppresses chronic oxidative stress. Moreover, melatonin potently stimulates DNA damage responses that increase the tolerance of normal tissues to toxic effect of IR and may reduce the risk of genomic instability in patients who undergo radiotherapy. Through these mechanisms, melatonin attenuates several side effects of radiotherapy and chemotherapy. Interestingly, melatonin has shown some synergistic properties with IR and chemotherapy, which is distinct from classical antioxidants that are mainly used for the alleviation of adverse events of radiotherapy and chemotherapy. In this review, we describe the anticarcinogenic effects of melatonin and also its possible application in clinical oncology.
Collapse
Affiliation(s)
- Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Departments of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
188
|
Zhuang X, Lai AG, McKeating JA, Rowe I, Balfe P. Daytime variation in hepatitis C virus replication kinetics following liver transplant. Wellcome Open Res 2018; 3:96. [PMID: 30175249 PMCID: PMC6107978 DOI: 10.12688/wellcomeopenres.14696.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/26/2022] Open
Abstract
Background: There is a growing interest in the role of circadian regulated pathways in disease pathogenesis. Methods: In a cohort of hepatitis C virus (HCV) infected patients undergoing liver transplantation, we observed differences in early viral infection kinetics of the allograft that associated with the time of liver transplant. Results: A higher frequency of subjects transplanted in the morning showed a rebound in viral RNA levels (n=4/6) during the first week post-surgery. In contrast, no viral rebound was observed in seven subjects transplanted in the afternoon. None of the other parameters previously reported to influence viral replication in the post-transplant setting, such as donor age, cold-ischemia time and length of surgery associated with viral rebound. Conclusions: These observation highlights a role for circadian processes to regulate HCV infection of the liver and warrants further investigation.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX3 7AZ, UK
| | - Alvina G. Lai
- Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX3 7AZ, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX3 7AZ, UK
| | - Ian Rowe
- Institute for Data Analytics, University of Leeds, Leeds, Yorkshire, UK
| | - Peter Balfe
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| |
Collapse
|
189
|
Cutolo M. Circadian rhythms and rheumatoid arthritis. Joint Bone Spine 2018; 86:327-333. [PMID: 30227223 DOI: 10.1016/j.jbspin.2018.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022]
Abstract
Circadian rhythms (Nobel prize for Medicine 2017) regulate, under action of biological clocks located both at the level of central nervous system and inside peripheral cells, several daily activities, embracing sleep, feeding times, energy metabolism, endocrine and immune functions with related pathological conditions, including rheumatoid arthritis (RA). In RA the circadian rhythms impact on cellular functions, involving night synthesis and release of pro-inflammatory cytokines and chemokines, cell migration to inflamed tissues, phagocytosis, proliferative cell response and all are peaking at late night. In chronic inflammatory conditions such as RA, the amplitude of the circadian rhythm of the anti-inflammatory endogenous cortisol availability is not increased as expected and requested, which indicate a reduced night cortisol secretion under the adrenal chronic stress induced by the disease. Therefore, the prevention/treatment of the immune cell night hyperactivity, with related flare of cytokine synthesis and morning RA clinical symptoms, has been shown more effective when the availability of the exogenous glucocorticoids is obtained in the middle of the night (night release). The impressive positive results observed in RA patients treated with modified-night release prednisone with a low-dose chronotherapy, seem applicable even for other agents such as conventional NSAIDs and DMARDs, including the positive experimental and clinical results obtained by the night time daily administration of methotrexate. Interestingly, a very recent study showed that methotrexate upregulates important cell circadian genes, resulting in induction of apoptosis in synovial fibroblasts. The link between the circadian rhythms of the disease and the chronotherapy of RA is promising.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Research Laboratories and Academic Division of Rheumatology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; Postgraduate School of Rheumatology, University of Genova, 16132 Genova, Italy; Department of Internal Medicine, IRCCS Polyclinic Hospital San Martino, 16132 Genova, Italy.
| |
Collapse
|
190
|
Tognini P, Murakami M, Sassone-Corsi P. Interplay between Microbes and the Circadian Clock. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028365. [PMID: 29038112 DOI: 10.1101/cshperspect.a028365] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Circadian rhythms influence virtually all life forms on our planet, a notion that opens the question on how the circadian cycles of individual organisms may interplay with each other. In mammals, a potentially dangerous environmental stress is represented by encounters with infectious agents. Microbial attack is a major risk for organismal homeostasis and therefore needs to be efficiently counteracted by mechanisms implemented by the host immune system. Accumulating evidence shows that the immune system may anticipate an emerging pathogenic exposure through an enhanced inflammatory state. Notably, the circadian clock orchestrates these anticipatory responses to fluctuating conditions in the external world. In this article, we review the current knowledge about the relationship between the circadian clock and pathogenic infections. We discuss the role of the circadian clock against infection and specific pathogens, the core clock proteins involved in the defense mechanisms, and the specific tissue or cell type in which they function to counteract the infection. Finally, circadian oscillations in the gut microbiome composition and its possible role in protecting against foodborne pathogen colonization are presented.
Collapse
Affiliation(s)
- Paola Tognini
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California, Irvine California 92617
| | - Mari Murakami
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California, Irvine California 92617
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California, Irvine California 92617
| |
Collapse
|
191
|
Zhuang X, Lai AG, McKeating JA, Rowe I, Balfe P. Daytime variation in hepatitis C virus replication kinetics following liver transplant. Wellcome Open Res 2018; 3:96. [PMID: 30175249 PMCID: PMC6107978 DOI: 10.12688/wellcomeopenres.14696.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2018] [Indexed: 09/29/2023] Open
Abstract
Background: There is a growing interest in the role of circadian regulated pathways in disease pathogenesis. Methods: In a cohort of hepatitis C virus (HCV) infected patients undergoing liver transplantation, we observed differences in early viral infection kinetics of the allograft that associated with the time of liver transplant. Results: A higher frequency of subjects transplanted in the morning showed a rebound in viral RNA levels (n=4/6) during the first week post-surgery. In contrast, no viral rebound was observed in seven subjects transplanted in the afternoon. None of the other parameters previously reported to influence viral replication in the post-transplant setting, such as donor age, cold-ischemia time and length of surgery associated with viral rebound. Conclusions: These observation highlights a role for circadian processes to regulate HCV infection of the liver and warrants further investigation.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX3 7AZ, UK
| | - Alvina G. Lai
- Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX3 7AZ, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX3 7AZ, UK
| | - Ian Rowe
- Institute for Data Analytics, University of Leeds, Leeds, Yorkshire, UK
| | - Peter Balfe
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| |
Collapse
|
192
|
Unger G, Benozzi S, Campion A, Pennacchiotti G. Preanalytical phase: Effects of water ingestion during fasting on routine hematological parameters in a small cohort of young women. Clin Chim Acta 2018; 483:126-129. [DOI: 10.1016/j.cca.2018.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/17/2022]
|
193
|
Abreu M, Basti A, Genov N, Mazzoccoli G, Relógio A. The reciprocal interplay between TNFα and the circadian clock impacts on cell proliferation and migration in Hodgkin lymphoma cells. Sci Rep 2018; 8:11474. [PMID: 30065253 PMCID: PMC6068144 DOI: 10.1038/s41598-018-29847-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
A bidirectional interaction between the circadian network and effector mechanisms of immunity brings on a proper working of both systems. In the present study, we used Hodgkin lymphoma (HL) as an experimental model for a type of cancer involving cells of the immune system. We identified this cancer type among haematological malignancies has having a strong differential expression of core-clock elements. Taking advantage of bioinformatics analyses and experimental procedures carried out in III- and IV-stage HL cells, and lymphoblastoid B cells, we explored this interplay and bear out diverse interacting partners of both systems. In particular, we assembled a wide-ranging network of clock-immune-related genes and pinpointed TNF as a crucial intermediary player. A robust circadian clock hallmarked III-stage lymphoma cells, differently from IV-stage HL cells, which do not harbour a properly functioning clockwork. TNF and circadian gene modulation impacted on clock genes expression and triggered phenotypic changes in lymphoma cells, suggesting a crucial involvement of core-clock elements and TNF in the physiopathological mechanisms hastening malignancy. Our results move forward our understanding of the putative role of the core-clock and TNF in the pathobiology of Hodgkin lymphoma, and highlight their influence in cellular proliferation and migration in lymphatic cancers.
Collapse
Affiliation(s)
- Mónica Abreu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Theoretical Biology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research Center, Berlin, Germany
| | - Alireza Basti
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Theoretical Biology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research Center, Berlin, Germany
| | - Nikolai Genov
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Theoretical Biology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research Center, Berlin, Germany
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Angela Relógio
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Theoretical Biology, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research Center, Berlin, Germany.
| |
Collapse
|
194
|
Gordon CJ, Comas M, Postnova S, Miller CB, Roy D, J. Bartlett D, R. Grunstein R. The effect of consecutive transmeridian flights on alertness, sleep–wake cycles and sleepiness: A case study. Chronobiol Int 2018; 35:1471-1480. [DOI: 10.1080/07420528.2018.1493597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Christopher J. Gordon
- Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Maria Comas
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
- Central Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Svetlana Postnova
- School of Physics, Faculty of Science, University of Sydney, Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
| | - Christopher B. Miller
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Dibyendu Roy
- School of Physics, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Delwyn J. Bartlett
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
- Central Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Ronald R. Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
- Central Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
195
|
Martínez-García EA, Zavala-Cerna MG, Lujano-Benítez AV, Sánchez-Hernández PE, Martín-Márquez BT, Sandoval-García F, Vázquez-Del Mercado M. Potential Chronotherapeutic Optimization of Antimalarials in Systemic Lupus Erythematosus: Is Toll-Like Receptor 9 Expression Dependent on the Circadian Cycle in Humans? Front Immunol 2018; 9:1497. [PMID: 30034390 PMCID: PMC6043638 DOI: 10.3389/fimmu.2018.01497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 9 (TLR9) belongs to the group of endosomal receptors of the innate immune system with the ability to recognize hypomethylated CpG sequences from DNA. There is scarce information about TLR9 expression and its association with the circadian cycle (CC). Different patterns of TLR9 expression are regulated by the CC in mice, with an elevated expression at Zeitgeber time 19 (1:00 a.m.); nevertheless, we still need to corroborate this in humans. In systemic lupus erythematosus (SLE), the inhibitory effect of chloroquine (CQ) on TLR9 is limited. TLR9 activation has been associated with the presence of some autoantibodies: anti-Sm/RNP, anti-histone, anti-Ro, anti-La, and anti-double-stranded DNA. Treatment with CQ for SLE has been proven to be useful, in part by interfering with HLA-antigen coupling and with TLR9 ligand recognition. Studies have shown that TLR9 inhibitors such as antimalarial drugs are able to mask TLR9-binding sites on nucleic acids. The data presented here provide the basic information that could be useful for other clinical researchers to design studies that will have an impact in achieving a chronotherapeutic effect by defining the ideal time for CQ administration in SLE patients, consequently reducing the pathological effects that follow the activation of TLR9.
Collapse
Affiliation(s)
- Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Maria Guadalupe Zavala-Cerna
- Immunology Research Laboratory, Programa Internacional de Medicina, Universidad Autonoma de Guadalajara, Guadalajara, Mexico
| | - Andrea Verónica Lujano-Benítez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Pedro Ernesto Sánchez-Hernández
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Laboratorio de Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Flavio Sandoval-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG CA-701, Inmunometabolismo en Enfermedades Emergentes (GIIEE), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mónica Vázquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Hospital Civil de Guadalajara “Juan I. Menchaca”, Servicio de Reumatología, Programa Nacional de Posgrados de Calidad (PNPC), Consejo Nacional de Ciencia y Tecnología (CONACYT), Guadalajara, Mexico
| |
Collapse
|
196
|
Abstract
Circadian rhythms are a ubiquitous feature of virtually all living organisms, regulating a wide diversity of physiological systems. It has long been established that the circadian clockwork plays a key role in innate immune responses, and recent studies reveal that several aspects of adaptive immunity are also under circadian control. We discuss the latest insights into the genetic and biochemical mechanisms linking immunity to the core circadian clock of the cell and hypothesize as to why the immune system is so tightly controlled by circadian oscillations. Finally, we consider implications for human health, including vaccination strategies and the emerging field of chrono-immunotherapy.
Collapse
Affiliation(s)
- Christoph Scheiermann
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Biomedical Centre, Planegg, Martinsried, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Julie Gibbs
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Louise Ince
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Biomedical Centre, Planegg, Martinsried, Germany
| | - Andrew Loudon
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
197
|
Circadian Rhythm and Alzheimer's Disease. Med Sci (Basel) 2018; 6:medsci6030052. [PMID: 29933646 PMCID: PMC6164904 DOI: 10.3390/medsci6030052] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder with a growing epidemiological importance characterized by significant disease burden. Sleep-related pathological symptomatology often accompanies AD. The etiology and pathogenesis of disrupted circadian rhythm and AD share common factors, which also opens the perspective of viewing them as a mutually dependent process. This article focuses on the bi-directional relationship between these processes, discussing the pathophysiological links and clinical aspects. Common mechanisms linking both processes include neuroinflammation, neurodegeneration, and circadian rhythm desynchronization. Timely recognition of sleep-specific symptoms as components of AD could lead to an earlier and correct diagnosis with an opportunity of offering treatments at an earlier stage. Likewise, proper sleep hygiene and related treatments ought to be one of the priorities in the management of the patient population affected by AD. This narrative review brings a comprehensive approach to clearly demonstrate the underlying complexities linking AD and circadian rhythm disruption. Most clinical data are based on interventions including melatonin, but larger-scale research is still scarce. Following a pathophysiological reasoning backed by evidence gained from AD models, novel anti-inflammatory treatments and those targeting metabolic alterations in AD might prove useful for normalizing a disrupted circadian rhythm. By restoring it, benefits would be conferred for immunological, metabolic, and behavioral function in an affected individual. On the other hand, a balanced circadian rhythm should provide greater resilience to AD pathogenesis.
Collapse
|
198
|
Bennet L, Walker DW, Horne RSC. Waking up too early - the consequences of preterm birth on sleep development. J Physiol 2018; 596:5687-5708. [PMID: 29691876 DOI: 10.1113/jp274950] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Good quality sleep of sufficient duration is vital for optimal physiological function and our health. Sleep deprivation is associated with impaired neurocognitive function and emotional control, and increases the risk for cardiometabolic diseases, obesity and cancer. Sleep develops during fetal life with the emergence of a recognisable pattern of sleep states in the preterm fetus associated with the development, maturation and connectivity within neural networks in the brain. Despite the physiological importance of sleep, surprisingly little is known about how sleep develops in individuals born preterm. Globally, an estimated 15 million babies are born preterm (<37 weeks gestation) each year, and these babies are at significant risk of neural injury and impaired brain development. This review discusses how sleep develops during fetal and neonatal life, how preterm birth impacts on sleep development to adulthood, and the factors which may contribute to impaired brain and sleep development, leading to altered neurocognitive, behavioural and motor capabilities in the infant and child. Going forward, the challenge is to identify specific risk factors for impaired sleep development in preterm babies to allow for the design of interventions that will improve the quality and quantity of sleep throughout life.
Collapse
Affiliation(s)
- Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Rosemary S C Horne
- The Ritchie Centre, Department of Paediatrics, Monash University and Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
199
|
Guerra-Santos B, López-Olmeda JF, Pereira DSP, Ruiz CE, Sánchez-Vázquez FJ, Esteban MÁ, Cerqueira RB, Fortes-Silva R. Daily rhythms after vaccination on specific and non-specific responses in Nile tilapia (Oreochromis niloticus). Chronobiol Int 2018; 35:1305-1318. [DOI: 10.1080/07420528.2018.1477791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Bartira Guerra-Santos
- Department of Animal Science and Veterinary Medicine, Campus Salvador, Federal University of Bahia (UFBA), Bahia, Brazil
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Denise Soledade Peixoto Pereira
- Laboratory of Feeding Behavior and Fish Nutrition (AquaUFRB), Faculty of Fish Engineering (NEPA), Center of Agricultural Sciences, Environmental and Biological (CCAAB), Campus Cruz das Almas, Federal University of Bahia (UFRB), Bahia, Brazil
| | - Cristóbal Espinossa Ruiz
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Robson Bahia Cerqueira
- Laboratory of Feeding Behavior and Fish Nutrition (AquaUFRB), Faculty of Fish Engineering (NEPA), Center of Agricultural Sciences, Environmental and Biological (CCAAB), Campus Cruz das Almas, Federal University of Bahia (UFRB), Bahia, Brazil
| | - Rodrigo Fortes-Silva
- Laboratory of Feeding Behavior and Fish Nutrition (AquaUFRB), Faculty of Fish Engineering (NEPA), Center of Agricultural Sciences, Environmental and Biological (CCAAB), Campus Cruz das Almas, Federal University of Bahia (UFRB), Bahia, Brazil
| |
Collapse
|
200
|
Martins IJ. Heat Shock Gene Inactivation and Protein Aggregation with Links to Chronic Diseases. Diseases 2018; 6:diseases6020039. [PMID: 29783682 PMCID: PMC6023501 DOI: 10.3390/diseases6020039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
The heat shock response involved in protein misfolding is linked to the formation of toxic immunogenic proteins with heat shock proteins (HSP) as regulators of amyloid beta aggregation. The defective amyloid beta trafficking between different intracellular compartments is now relevant to HSPs and autoimmunity. Overnutrition, temperature dysregulation, and stress repress the heat shock gene Sirtuin 1 with the induction of HSP regulated amyloid beta aggregation involved in the autoimmune response. Defective circadian rhythm alterations are connected to inactivation of the peripheral sink amyloid beta clearance pathway and related to insulin resistance, protein aggregation, and autoimmune disease in non-alcoholic fatty liver disease (NAFLD) and various neurodegenerative diseases such as Alzheimer's disease. Nutritional therapy is critical to prevent immunosenescence, and plasma Sirtuin 1 levels should be determined to reverse, stabilize, and prevent protein aggregation with relevance to mitochondrial apoptosis and programmed cell death in chronic diseases.
Collapse
Affiliation(s)
- Ian James Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, Sarich Neuroscience Research Institute, Edith Cowan University, Verdun Street, Nedlands 6009, Australia.
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands 6009, Australia.
- McCusker Alzheimer's Research Foundation, Hollywood Medical Centre, 85 Monash Avenue, Suite 22, Nedlands 6009, Australia.
| |
Collapse
|