151
|
Soyer-Gobillard MO. Perturbateurs endocriniens et troubles du comportement : non, nous n’avons pas encore tiré toutes les leçons de l’histoire du DES. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.mlong.2011.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
152
|
Vandegehuchte MB, Janssen CR. Epigenetics and its implications for ecotoxicology. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:607-624. [PMID: 21424724 DOI: 10.1007/s10646-011-0634-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2011] [Indexed: 05/30/2023]
Abstract
Epigenetics is the study of mitotically or meiotically heritable changes in gene function that occur without a change in the DNA sequence. Interestingly, epigenetic changes can be triggered by environmental factors. Environmental exposure to e.g. metals, persistent organic pollutants or endocrine disrupting chemicals has been shown to modulate epigenetic marks, not only in mammalian cells or rodents, but also in environmentally relevant species such as fish or water fleas. The associated changes in gene expression often lead to modifications in the affected organism's phenotype. Epigenetic changes can in some cases be transferred to subsequent generations, even when these generations are no longer exposed to the external factor which induced the epigenetic change, as observed in a study with fungicide exposed rats. The possibility of this phenomenon in other species was demonstrated in water fleas exposed to the epigenetic drug 5-azacytidine. This way, populations can experience the effects of their ancestors' exposure to chemicals, which has implications for environmental risk assessment. More basic research is needed to assess the potential phenotypic and population-level effects of epigenetic modifications in different species and to evaluate the persistence of chemical exposure-induced epigenetic effects in multiple subsequent generations.
Collapse
Affiliation(s)
- Michiel B Vandegehuchte
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University (UGent), Jozef Plateaustraat 22, 9000 Ghent, Belgium.
| | | |
Collapse
|
153
|
Storvik M, Huuskonen P, Kyllönen T, Lehtonen S, El-Nezami H, Auriola S, Pasanen M. Aflatoxin B1 – a potential endocrine disruptor – up-regulates CYP19A1 in JEG-3 cells. Toxicol Lett 2011; 202:161-7. [DOI: 10.1016/j.toxlet.2011.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 11/28/2022]
|
154
|
Perspectives on epigenetics and its relevance to adverse drug reactions. Clin Pharmacol Ther 2011; 89:902-7. [PMID: 21508940 DOI: 10.1038/clpt.2011.21] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
155
|
Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol 2011; 31:337-43. [PMID: 21055462 PMCID: PMC3068236 DOI: 10.1016/j.reprotox.2010.10.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/21/2010] [Accepted: 10/26/2010] [Indexed: 12/22/2022]
Abstract
Environmental factors have a significant impact on biology. Therefore, environmental toxicants through similar mechanisms can modulate biological systems to influence physiology and promote disease states. The majority of environmental toxicants do not have the capacity to modulate DNA sequence, but can alter the epigenome. In the event an environmental toxicant such as an endocrine disruptor modifies the epigenome of a somatic cell, this may promote disease in the individual exposed, but not be transmitted to the next generation. In the event a toxicant modifies the epigenome of the germ line permanently, then the disease promoted can become transgenerationaly transmitted to subsequent progeny. The current review focuses on the ability of environmental factors such as endocrine disruptors to promote transgenerational phenotypes.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States.
| | | | | |
Collapse
|
156
|
Abstract
Exposure to endocrine disrupting chemicals (EDCs) is associated with dysfunctions of metabolism, energy balance, thyroid function and reproduction, and an increased risk of endocrine cancers. These multifactorial disorders can be 'programmed' through molecular epigenetic changes induced by exposure to EDCs early in life, the expression of which may not manifest until adulthood. In some cases, EDCs have detrimental effects on subsequent generations, which indicates that traits for disease predisposition may be passed to future generations by nongenomic inheritance. This Review discusses current understanding of the epigenetic mechanisms that underlie sexual differentiation of reproductive neuroendocrine systems in mammals and summarizes the literature on transgenerational epigenetic effects of representative EDCs: vinclozolin, diethylstilbesterol, bisphenol A and polychlorinated biphenyls. The article differentiates between context-dependent epigenetic transgenerational changes--namely, those that require environmental exposure, either via the EDC itself or through behavioral or physiological differences in parents--and germline-dependent epigenetic mechanisms. These processes, albeit discrete, are not mutually exclusive and can involve similar molecular mechanisms including DNA methylation and histone modifications and may predispose exposed individuals to transgenerational disruption of reproductive processes. New insights stress the crucial need to develop a clear understanding of how EDCs may program the epigenome of exposed individuals and their descendants.
Collapse
Affiliation(s)
- Deena M Walker
- Institute for Neuroscience, The University of Texas at Austin, 1 University Station, Box A1915, Austin, TX 78712, USA
| | | |
Collapse
|
157
|
Kuzawa CW, Thayer ZM. Timescales of human adaptation: the role of epigenetic processes. Epigenomics 2011; 3:221-34. [DOI: 10.2217/epi.11.11] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human biology includes multiple adaptive mechanisms that allow adjustment to varying timescales of environmental change. Sensitive or critical periods in early development allow for the transfer of environmental information between generations, which helps an organism track gradual environmental change. There is growing evidence that offspring biology is responsive to experiences encoded in maternal biology and her epigenome as signaled through the transfer of nutrients and hormones across the placenta and via breast milk. Principles of evolutionary and comparative biology lead to the expectation that transient fluctuations in early experience should have greater long-term impacts in small, short-lived species compared with large, long-lived species such as humans. This implies greater buffering of the negative effects of early-life stress in humans, but also a reduced sensitivity to short-term interventions that aim to improve long-term health outcomes. Taking the timescales of adaptation seriously will allow the design of interventions that emulate long-term environmental change and thereby coax the developing human body into committing to a changed long-term strategy, yielding lasting improvements in human health and wellbeing.
Collapse
Affiliation(s)
- Christopher W Kuzawa
- Cells 2 Society, The Center on Social Disparities & Health at the Institute for Policy Research, Northwestern University, Evanston, IL 60208, USA
| | - Zaneta M Thayer
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
158
|
Vandenberg LN. Exposure to bisphenol A in Canada: invoking the precautionary principle. CMAJ 2011; 183:1265-70. [PMID: 21343266 DOI: 10.1503/cmaj.101408] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Laura N Vandenberg
- Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA.
| |
Collapse
|
159
|
Paul-Prasanth B, Shibata Y, Horiguchi R, Nagahama Y. Exposure to diethylstilbestrol during embryonic and larval stages of medaka fish (Oryzias latipes) leads to sex reversal in genetic males and reduced gonad weight in genetic females. Endocrinology 2011; 152:707-17. [PMID: 21239430 DOI: 10.1210/en.2010-0812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Molecular and cellular mechanisms involved in artificially induced ovarian differentiation were analyzed by exposing embryos of medaka (Oryzias latipes) to a potent nonsteroidal estrogen, diethylstilbestrol (DES). Embryos were exposed for short-exposure (SE) [from 0 to 8 d postfertilization (dpf)] and long-exposure (LE) periods (from 0 to 18/28 dpf) to 1 ng/ml of DES, and status of sexual differentiation in somatic and germ cells of these gonads was analyzed at 8, 18, and 28 dpf by histology, cell proliferation assays, TUNEL assay, and in situ hybridization using sex-specific somatic and germ cell markers. Additionally, gonads of exposed fry were examined after withdrawal of DES to see whether effects of DES in exposed fish were reversible or not. DES induced germ cell proliferation and meiosis in XY fry of SE and LE groups. However, SE induced only a partial reduction in expression of gonadal soma-derived factor, the male-dominant somatic cell marker, and was not sufficient to induce ovarian development after withdrawal of DES. On the contrary, LE resulted in complete loss of such male-specific gene expression in somatic cells of XY gonads, and these gonads underwent sustained ovarian development even after withdrawal of DES. Importantly, LE to DES affected germ cell proliferation in XX gonads adversely during early stages of sexual differentiation, leading to reduced gonad weight in adulthood. Interestingly, apoptosis was not the cause for reduction in germ cell number. Taken together, these results indicated that DES exposure has long-lasting effects on the gonadal development in genetic males (sex reversal) and females (reduced gonad weight) of medaka.
Collapse
Affiliation(s)
- Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
160
|
Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol 2011; 24:6-19. [PMID: 21053929 PMCID: PMC3119362 DOI: 10.1021/tx100231n] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many endocrine disrupting chemicals (EDCs) adversely impact estrogen signaling by interacting with two estrogen receptors (ERs): ERα and ERβ. Though the receptors have similar ligand binding and DNA binding domains, ERα and ERβ have some unique properties in terms of ligand selectivity and target gene regulation. EDCs that target ER signaling can modify genomic and nongenomic ER activity through direct interactions with ERs, indirectly through transcription factors such as the aryl hydrocarbon receptor (AhR), or through modulation of metabolic enzymes that are critical for normal estrogen synthesis and metabolism. Many EDCs act through multiple mechanisms as exemplified by chemicals that bind both AhR and ER, such as 3-methylcholanthrene. Other EDCs that target ER signaling include phytoestrogens, bisphenolics, and organochlorine pesticides, and many alter normal ER signaling through multiple mechanisms. EDCs can also display tissue-selective ER agonist and antagonist activities similar to selective estrogen receptor modulators (SERMs) designed for pharmaceutical use. Thus, biological effects of EDCs need to be carefully interpreted because EDCs can act through complex tissue-selective modulation of ERs and other signaling pathways in vivo. Current requirements by the U.S. Environmental Protection Agency require some in vitro and cell-based assays to identify EDCs that target ER signaling through direct and metabolic mechanisms. Additional assays may be useful screens for identifying EDCs that act through alternative mechanisms prior to further in vivo study.
Collapse
Affiliation(s)
- Erin K. Shanle
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Avenue, Madison, WI 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
161
|
Nagao T, Takada N, Onoda N. Transgenerational Teratogenesis by Prenatal Exposure to Endocrine Disrupting Chemicals. Genes Environ 2011. [DOI: 10.3123/jemsge.33.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
162
|
Dinsdale EC, Ward WE. Early exposure to soy isoflavones and effects on reproductive health: a review of human and animal studies. Nutrients 2010; 2:1156-87. [PMID: 22254003 PMCID: PMC3257624 DOI: 10.3390/nu2111156] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/11/2010] [Accepted: 11/19/2010] [Indexed: 11/22/2022] Open
Abstract
Soy isoflavones are phytoestrogens with potential hormonal activity due to their similar chemical structure to 17-β-estradiol. The increasing availability of soy isoflavones throughout the food supply and through use of supplements has prompted extensive research on biological benefits to humans in chronic disease prevention and health maintenance. While much of this research has focused on adult populations, infants fed soy protein based infant formulas are exposed to substantial levels of soy isoflavones, even when compared to adult populations that consume a higher quantity of soy-based foods. Infant exposure, through soy formula, primarily occurs from birth to one year of life, a stage of development that is particularly sensitive to dietary and environmental compounds. This has led investigators to study the potential hormonal effects of soy isoflavones on later reproductive health outcomes. Such studies have included minimal human data with the large majority of studies using animal models. This review discusses key aspects of the current human and animal studies and identifies critical areas to be investigated as there is no clear consensus in this research field.
Collapse
Affiliation(s)
- Elsa C Dinsdale
- Department of Nutritional Science, Faculty of Medicine, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
163
|
Epigenetics and chemical safety assessment. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2010; 705:83-95. [DOI: 10.1016/j.mrrev.2010.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/29/2010] [Accepted: 04/08/2010] [Indexed: 01/01/2023]
|
164
|
Singer TM, Yauk CL. Germ cell mutagens: risk assessment challenges in the 21st century. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:919-928. [PMID: 20740630 DOI: 10.1002/em.20613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Heritable mutations may result in a wide variety of detrimental outcomes, from embryonic lethality to genetic disease in the offspring. Despite this, today's commonly used test batteries do not include assays for germ cell mutation. Current challenges include a lack of practical assays and concrete evidence for human germline mutagens, and large data gaps that often impede risk assessment. Moreover, most regulatory assessments are based on the assumption that somatic cell mutation assays also protect the germline by default, which has not been adequately confirmed. The field is also faced with new challenges aimed at dramatically reducing animal testing, and attempts to rapidly classify thousands of chemicals using high throughput in vitro assays. These approaches may not adequately capture effects that may be particular to gametes, since many aspects of the germline are unique. In light of these challenges, an urgent need exists to develop new approaches to evaluate the potential of toxicants to cause germline mutation. The application of new technologies will greatly enhance our understanding of mutation in humans exposed to environmental mutagens. However, we must be poised to collect and interpret these data, and facilitate risk translation to regulators and the public. Genetic toxicologists must also become actively involved in the development of high-throughput tools to study germline mutation. Appropriate attention to these areas will result in the development of policies that prioritize the protection of the germline and future generations from DNA sequence mutations.
Collapse
Affiliation(s)
- Timothy M Singer
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
165
|
Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 2010; 5:e13100. [PMID: 20927350 PMCID: PMC2948035 DOI: 10.1371/journal.pone.0013100] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/31/2010] [Indexed: 12/16/2022] Open
Abstract
Previous observations have demonstrated that embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes transgenerational adult onset disease such as male infertility, kidney disease, prostate disease, immune abnormalities and tumor development. The current study investigates genome-wide promoter DNA methylation alterations in the sperm of F3 generation rats whose F0 generation mother was exposed to vinclozolin. A methylated DNA immunoprecipitation with methyl-cytosine antibody followed by a promoter tilling microarray (MeDIP-Chip) procedure was used to identify 52 different regions with statistically significant altered methylation in the sperm promoter epigenome. Mass spectrometry bisulfite analysis was used to map the CpG DNA methylation and 16 differential DNA methylation regions were confirmed, while the remainder could not be analyzed due to bisulfite technical limitations. Analysis of these validated regions identified a consensus DNA sequence (motif) that associated with 75% of the promoters. Interestingly, only 16.8% of a random set of 125 promoters contained this motif. One candidate promoter (Fam111a) was found to be due to a copy number variation (CNV) and not a methylation change, suggesting initial alterations in the germline epigenome may promote genetic abnormalities such as induced CNV in later generations. This study identifies differential DNA methylation sites in promoter regions three generations after the initial exposure and identifies common genome features present in these regions. In addition to primary epimutations, a potential indirect genetic abnormality was identified, and both are postulated to be involved in the epigenetic transgenerational inheritance observed. This study confirms that an environmental agent has the ability to induce epigenetic transgenerational changes in the sperm epigenome.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Matthew Settles
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ben Lucker
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
166
|
Lawson C, Gieske M, Murdoch B, Ye P, Li Y, Hassold T, Hunt PA. Gene expression in the fetal mouse ovary is altered by exposure to low doses of bisphenol A. Biol Reprod 2010; 84:79-86. [PMID: 20739668 DOI: 10.1095/biolreprod.110.084814] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Evidence from experimental studies suggests that fetal exposure to the endocrine-disrupting chemical bisphenol A (BPA) has adverse reproductive effects in both males and females. Studies from our laboratory suggest that exposure to the developing female fetus produces a unique, multigenerational effect. Specifically, maternal exposure affects the earliest stages of oogenesis in the developing fetal ovary, and the resulting subtle meiotic defects increase the likelihood that embryos produced by the exposed female in adulthood (i.e., the grandchildren) will be chromosomally abnormal. To understand the impact of BPA on the developing ovary, we conducted expression studies to characterize gene expression changes in the fetal ovary that result from BPA exposure. We first tested the validity of the approach, asking whether we could reliably detect temporal changes in expression levels of meiotic genes in controls. As anticipated, we were able to identify appropriate increases in expression in meiotic, but in few other, genes. Intriguingly, this analysis provided data on a small set of genes for which timing and expression changes suggest that they may have important and heretofore unrecognized meiotic roles. After verifying the utility of our approach, we focused our analysis on BPA-exposed animals. We found modest, but significant, changes in gene expression in the fetal ovaries from exposed fetuses. The first changes were evident within 24 h of exposure, and the most extensive changes correlated with the onset of meiosis. Furthermore, gene ontology analysis suggested that BPA acts to down-regulate mitotic cell-cycle genes, raising the possibility that fetal BPA exposure may act to limit expansion of the primordial germ cell population.
Collapse
Affiliation(s)
- Crystal Lawson
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7520, USA
| | | | | | | | | | | | | |
Collapse
|
167
|
Endocrine disruptors and obesity: an examination of selected persistent organic pollutants in the NHANES 1999-2002 data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:2988-3005. [PMID: 20717554 PMCID: PMC2922741 DOI: 10.3390/ijerph7072988] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 11/16/2022]
Abstract
Recent evidence suggests that endocrine disrupting chemicals (EDCs) may cause perturbations in endogenous hormonal regulation that predispose to weight gain. Using data from NHANES (1999-2002), we investigated the association between body mass index (BMI), waist circumference (WC) and selected persistent organic pollutants (POPs) via multiple linear regressions. Consistent interaction was found between gender, ln oxychlordane and ln p,p' DDT. Also, we found an association between WC and ln oxychlordane and ln hpcdd in subjects with detectable levels of POPs, whereas an association between WC and ln p,p' DDT was observed in all subjects. Furthermore, ln Ocdd showed an increase with higher WC and BMI, whereas, ln trans-nonachlor decreased with higher BMI. Hence, BMI and WC are associated with POPs levels, making the chemicals plausible contributors to the obesity epidemic.
Collapse
|
168
|
Abstract
The critical role of social interactions in driving phenotypic variation has long been inferred from the association between early social deprivation and adverse neurodevelopmental outcomes. Recent evidence has implicated molecular pathways involved in the regulation of gene expression as one possible route through which these long-term outcomes are achieved. These epigenetic effects, though not exclusive to social experiences, may be a mechanism through which the quality of the social environment becomes embedded at a biological level. Moreover, there is increasing evidence for the transgenerational impact of these early experiences mediated through changes in social and reproductive behavior exhibited in adulthood. In this review, recent studies which highlight the epigenetic effects of parent-offspring, peer and adult social interactions both with and across generations will be discussed and the implications of this research for understanding the developmental origins of individual differences in brain and behavior will be explored.
Collapse
Affiliation(s)
- Frances A Champagne
- Department of Psychology, Columbia University, Room 406, Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
169
|
Verloop J, van Leeuwen FE, Helmerhorst TJM, van Boven HH, Rookus MA. Cancer risk in DES daughters. Cancer Causes Control 2010; 21:999-1007. [PMID: 20204493 PMCID: PMC2883094 DOI: 10.1007/s10552-010-9526-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 02/10/2010] [Indexed: 12/26/2022]
Abstract
OBJECTIVE We examined long-term risk of cancer in women exposed to diethylstilbestrol (DES) in utero. METHODS A total of 12,091 DES-exposed women in the Netherlands were followed prospectively from December 1992 till June 2008. Cancer incidence was assessed through linkage with the Dutch pathology database (PALGA) and the Netherlands Cancer Registry and compared with the Dutch female population. RESULTS A total of 348 medically verified cancers occurred; median age at end of follow-up was 44.0 years. No overall increased risk of cancer was found (standardized incidence ratio [SIR] = 1.01; 95% confidence interval [CI] = 0.91, 1.13). The risk of clear cell adenocarcinoma of the vagina and cervix (CCA) was statistically significantly increased (SIR = 24.23; 95% CI = 8.89, 52.74); the elevated risk persisted above 40 years of age. The risk of melanoma diagnosed before age 40 was increased (SIR = 1.59; 95% CI = 1.08, 2.26). No excess risks were found for other sites, including breast cancer. CONCLUSIONS Except for an elevated risk of CCA, persisting at older ages, and an increased risk of melanoma at young ages, we found no increased risk of cancer. Longer follow-up is warranted to examine cancer risk at ages when cancer occurs more frequently.
Collapse
Affiliation(s)
- Janneke Verloop
- Department of Epidemiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Flora E. van Leeuwen
- Department of Epidemiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Theo J. M. Helmerhorst
- Department of Obstetrics and Gynaecology, Erasmus MC, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Hester H. van Boven
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Matti A. Rookus
- Department of Epidemiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
170
|
Hsu PY, Hsu HK, Singer GA, Yan PS, Rodriguez BA, Liu JC, Weng YI, Deatherage DE, Chen Z, Pereira JS, Lopez R, Russo J, Wang Q, Lamartiniere CA, Nephew KP, Huang THM. Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping. Genome Res 2010; 20:733-44. [PMID: 20442245 PMCID: PMC2877570 DOI: 10.1101/gr.101923.109] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 03/17/2010] [Indexed: 01/16/2023]
Abstract
The current concept of epigenetic repression is based on one repressor unit corresponding to one silent gene. This notion, however, cannot adequately explain concurrent silencing of multiple loci observed in large chromosome regions. The long-range epigenetic silencing (LRES) can be a frequent occurrence throughout the human genome. To comprehensively characterize the influence of estrogen signaling on LRES, we analyzed transcriptome, methylome, and estrogen receptor alpha (ESR1)-binding datasets from normal breast epithelia and breast cancer cells. This "omics" approach uncovered 11 large repressive zones (range, 0.35 approximately 5.98 megabases), including a 14-gene cluster located on 16p11.2. In normal cells, estrogen signaling induced transient formation of multiple DNA loops in the 16p11.2 region by bringing 14 distant loci to focal ESR1-docking sites for coordinate repression. However, the plasticity of this free DNA movement was reduced in breast cancer cells. Together with the acquisition of DNA methylation and repressive chromatin modifications at the 16p11.2 loci, an inflexible DNA scaffold may be a novel determinant used by breast cancer cells to reinforce estrogen-mediated repression.
Collapse
Affiliation(s)
- Pei-Yin Hsu
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hang-Kai Hsu
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gregory A.C. Singer
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Pearlly S. Yan
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin A.T. Rodriguez
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Joseph C. Liu
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yu-I Weng
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Daniel E. Deatherage
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zhong Chen
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Julia S. Pereira
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Ricardo Lopez
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Qianben Wang
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Coral A. Lamartiniere
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA
| | - Tim H.-M. Huang
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
171
|
Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. HORMONES & CANCER 2010; 1:146-55. [PMID: 21761357 PMCID: PMC3140020 DOI: 10.1007/s12672-010-0015-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diethylstilbestrol (DES) and bisphenol-A (BPA) are estrogen-like endocrine-disrupting chemicals that induce persistent epigenetic changes in the developing uterus. However, DES exposure in utero is also associated with an increased risk of breast cancer in adult women. Similarly, fetal exposure to BPA induces neoplastic changes in mammary tissue of mice. We hypothesized that epigenetic alterations would precede the increased risk of breast neoplasia after in utero exposure to endocrine disruptors. Enhancer of Zeste Homolog 2 (EZH2) is a histone methyltransferase that has been linked to breast cancer risk and epigenetic regulation of tumorigenesis. We examined the effect of BPA and DES on EZH2 expression and function in MCF-7 cells and in mammary glands of mice exposed in utero. DES and BPA treatment approximated human exposure. EZH2 functional activity was assessed by measuring histone H3 trimethylation. Treatment of MCF-7 cells with DES or BPA led to a 3- and 2-fold increase in EZH2 mRNA expression, respectively (p < 0.05) as well as increased EZH2 protein expression. Mice exposed to DES in utero showed a >2-fold increase in EZH2 expression in adult mammary tissue compared with controls (p < 0.05). EZH2 protein was elevated in mammary tissue of mice exposed to DES or BPA. Histone H3 trimethylation was increased in MCF-7 cells treated with BPA or DES. Similarly, mice exposed to BPA or DES in utero showed increased mammary histone H3 trimethylation. Developmental programming of EZH2 is a novel mechanism by which in utero exposure to endocrine disruptors leads to epigenetic regulation of the mammary gland.
Collapse
Affiliation(s)
- Leo F. Doherty
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, P. O. Box 208063, New Haven, CT 06520 USA
| | - Jason G. Bromer
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, P. O. Box 208063, New Haven, CT 06520 USA
| | - Yuping Zhou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, P. O. Box 208063, New Haven, CT 06520 USA
| | - Tamir S. Aldad
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, P. O. Box 208063, New Haven, CT 06520 USA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, P. O. Box 208063, New Haven, CT 06520 USA
| |
Collapse
|
172
|
Simmons CD, Pabona JM, Zeng Z, Velarde MC, Gaddy D, Simmen FA, Simmen RCM. Response of adult mouse uterus to early disruption of estrogen receptor-alpha signaling is influenced by Krüppel-like factor 9. J Endocrinol 2010; 205:147-57. [PMID: 20164373 PMCID: PMC2972657 DOI: 10.1677/joe-09-0474] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inappropriate early exposure of the hormone-responsive uterus to estrogenic compounds is associated with increased risk for adult reproductive diseases including endometrial cancers. While the dysregulation of estrogen receptor-alpha (ESR1) signaling is well acknowledged to mediate early events in tumor initiation, mechanisms contributing to sustained ESR1 activity later in life and leading to induction of oncogenic pathways remain poorly understood. We had shown previously that the transcription factor Krüppel-like factor 9 (KLF9) represses ESR1 expression and activity in Ishikawa endometrial glandular epithelial cells. We hypothesized that KLF9 functions as a tumor suppressor, and that loss of its expression enhances ESR1 signaling. Here, we evaluated the contribution of KLF9 to early perturbations in uterine ESR1 signaling pathways elicited by the administration of synthetic estrogen diethylstilbestrol (DES) to wild-type (WT) and Klf9 null (KO) mice on postnatal days (PNDs) 1-5. Uterine tissues collected at PND84 were subjected to histological, immunological, and molecular analyses. Compared with WT mice, KO mice demonstrated larger endometrial glands and lower endometrial gland numbers; DES exposure exacerbated these differences. Loss of KLF9 expression resulted in increased glandular ESR1 immunoreactivity with DES, without effects on serum estradiol levels. Quantitative RT-PCR analyses indicated altered expression of uterine genes commonly dysregulated in endometrial cancers (Akt1, Mmp9, Slpi, and Tgfbeta1) and of those involved in growth regulation (Fos, Myc, Tert, and Syk), with loss of Klf9, alone or in concert with DES. Our data support a molecular network between KLF9 and ESR1 in the uterus, and suggest that silencing of KLF9 may contribute to endometrial dysfunctions initiated by aberrant estrogen action.
Collapse
Affiliation(s)
| | | | | | | | | | | | - R C M Simmen
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas 72202, USA
| |
Collapse
|
173
|
|
174
|
Abstract
Obesity has reached epidemic proportions in the United States, with 35.1% of adults being classified as obese. Obesity affects every segment of the US population and continues to increase steadily, especially in children. Obesity increases the risk for many other chronic diseases, including diabetes mellitus, cardiovascular disease, and nonalcoholic fatty liver disease, and decreases overall quality of life. The current US generation may have a shorter life expectancy than their parents if the obesity epidemic is not controlled, and there is no indication that the prevalence of obesity is decreasing. Because of the complexity of obesity, it is likely to be one of the most difficult public health issues our society has faced.
Collapse
Affiliation(s)
- Victoria A Catenacci
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Denver, Denver, CO 80220, USA
| | | | | |
Collapse
|
175
|
Franklin TB, Mansuy IM. Epigenetic inheritance in mammals: evidence for the impact of adverse environmental effects. Neurobiol Dis 2009; 39:61-5. [PMID: 19931614 DOI: 10.1016/j.nbd.2009.11.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 12/31/2022] Open
Abstract
The epigenome is the overall epigenetic state of a cell and represents the ensemble of chromatin modifications. It is an essential mechanism for the regulation of the genome that depends on modifications of DNA and histones but does not involve any change of the DNA sequence. It was previously assumed that in order for appropriate cellular development and differentiation to occur in mammals, the epigenome was fully erased and reestablished between generations. However, several examples of incomplete erasure at specific genes have been reported, and this is suggested to be associated with the epigenetic inheritance of gene profiles. Although the existence of such a mode of inheritance has been controversial, there is increasing evidence that it does occur in rodents and humans. In this review, we discuss the evidence that adverse environmental factors can affect not only the individuals directly exposed to these factors but also their offspring. Because the epigenome is sensitive to environmental influence and, in some cases, can, in part, be transmitted across generations, it provides a potential mechanism for the transgenerational transmission of the impact of environmental factors. Environmental factors examined include exposure to toxicants, diet, and postnatal care, and DNA methylation is the main mechanism discussed in this review.
Collapse
Affiliation(s)
- Tamara B Franklin
- Brain Research Institute, Medical Faculty of the University of Zürich and Department of Biology, Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
176
|
Zama AM, Uzumcu M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology 2009; 150:4681-91. [PMID: 19589859 PMCID: PMC2754680 DOI: 10.1210/en.2009-0499] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P < 0.05), whereas the ERalpha promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.
Collapse
Affiliation(s)
- Aparna Mahakali Zama
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8525, USA
| | | |
Collapse
|
177
|
Abstract
The ability of an environmental factor or toxicant to promote a phenotype or disease state not only in the individual exposed, but also in subsequent progeny for multiple generations, is termed transgenerational inheritance. The majority of environmental agents do not promote genetic mutations or alterations in DNA sequence, but do have the capacity to alter the epigenome. Although most environmental exposures will influence somatic cells and not allow the transgenerational transmission of a phenotype, the ability of an environmental factor to reprogram the germline epigenome can promote a transgenerational inheritance of phenotypes and disease states. A limited number of critical developmental periods exist when environmental signals can produce a significant epigenetic reprogramming of the germline. In this review, the ability of environmental factors or toxicants to promote epigenetic transgenerational phenotypes is reviewed.
Collapse
Affiliation(s)
- Michael K Skinner
- Author for correspondence: Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA Tel.: +1 509 335 1524 Fax: +1 509 335 2176
| | - Carlos Guerrero-Bosagna
- Author for correspondence: Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA Tel.: +1 509 335 1524 Fax: +1 509 335 2176
| |
Collapse
|
178
|
Curley JP, Davidson S, Bateson P, Champagne FA. Social enrichment during postnatal development induces transgenerational effects on emotional and reproductive behavior in mice. Front Behav Neurosci 2009; 3:25. [PMID: 19826497 PMCID: PMC2759344 DOI: 10.3389/neuro.08.025.2009] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/19/2009] [Indexed: 11/13/2022] Open
Abstract
Across species there is evidence that the quality of the early social environment can have a profound impact on neurobiology and behavior. In the present study we explore the effect of communal rearing conditions (three dams with three litters per cage) during the postnatal period on offspring (F1) and grand-offspring (F2) anxiety-like and maternal behavior in Balb/c mice. Females rearing pups in communal nests exhibited increased levels of postpartum maternal care and communal rearing was found to abolish sex-differences in weaning weights. In adulthood, communally reared offspring were observed to display reduced anxiety-like behavior when placed in a novel environment. When rearing their own offspring under standard conditions, communally reared females demonstrated higher levels of motivation to retrieve pups, built higher quality nests, and exhibited higher levels of postpartum care compared to standard reared females. When exposed to an intruder male, communally reared females were more subordinate and less aggressive. F2 offspring of communally reared females were observed to engage in reduced anxiety-like behavior, have larger litter sizes and an increased frequency of nursing on PND 1. Analysis of neuropeptide receptor levels suggest that a communal rearing environment may exert sustained effects on behavior through modification of oxytocin and vasopressin (V1a) receptor densities. Though Balb-C mice are often considered "socially-incompetent" and high in anxiety-like behavior, our findings suggest that through enrichment of the postnatal environment, these behavioral and neuroendocrine deficits may be attenuated both within and across generations.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, Columbia University New York, NY, USA
| | | | | | | |
Collapse
|
179
|
Ma L. Endocrine disruptors in female reproductive tract development and carcinogenesis. Trends Endocrinol Metab 2009; 20:357-63. [PMID: 19709900 PMCID: PMC2774851 DOI: 10.1016/j.tem.2009.03.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/20/2009] [Accepted: 03/24/2009] [Indexed: 02/07/2023]
Abstract
Growing concerns over endocrine disrupting chemicals (EDCs) and their effects on human fetal development and adult health have promoted research into the underlying molecular mechanisms of endocrine disruption. Gene targeting technology has allowed insight into the genetic pathways governing reproductive tract development and how exposure to EDCs during a critical developmental window can alter reproductive tract development, potentially forming the basis for adult diseases. This review primarily uses diethylstilbestrol (DES) as a model agent for EDCs and discusses the recent progress elucidating how DES and other EDCs affect murine female reproductive tract development and cancer at the molecular level.
Collapse
Affiliation(s)
- Liang Ma
- Division of Dermatology, Department of Medicine and Department of Developmental Biology Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
180
|
Jablonka E, Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. QUARTERLY REVIEW OF BIOLOGY 2009; 84:131-76. [PMID: 19606595 DOI: 10.1086/598822] [Citation(s) in RCA: 839] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review describes new developments in the study of transgenerational epigenetic inheritance, a component of epigenetics. We start by examining the basic concepts of the field and the mechanisms that underlie epigenetic inheritance. We present a comprehensive review of transgenerational cellular epigenetic inheritance among different taxa in the form of a table, and discuss the data contained therein. The analysis of these data shows that epigenetic inheritance is ubiquitous and suggests lines of research that go beyond present approaches to the subject. We conclude by exploring some of the consequences of epigenetic inheritance for the study of evolution, while also pointing to the importance of recognizing and understanding epigenetic inheritance for practical and theoretical issues in biology.
Collapse
Affiliation(s)
- Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
181
|
Chantrain CF, Sauvage D, Brichard B, Dupont S, Poirel HA, Ameye G, De Weer A, Vandenberghe P, Detaille T, Anslot C, de Cléty SC, Vermylen C. Neonatal acute myeloid leukemia in an infant whose mother was exposed to diethylstilboestrol in utero. Pediatr Blood Cancer 2009; 53:220-2. [PMID: 19405140 DOI: 10.1002/pbc.22040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report on an acute myeloid leukemia in a neonate whose mother was exposed to diethylstilboestrol in utero. The newborn presented with leukemia cutis, hemorrhagic skin lesions, hyperleucocytosis and disseminated intravascular coagulation. A bone marrow examination confirmed the diagnosis of acute monocytic leukemia with a t(11;19) MLL-ELL fusion transcript. Chemotherapy was initiated but the child developed a bilateral pulmonary infection that led to fatal respiratory distress. This case shows acute myeloid leukemia and the third pediatric leukemia reported after maternal diethylstilboestrol exposure.
Collapse
Affiliation(s)
- C F Chantrain
- Department of Pediatric Hematology-Oncology, St-Luc University Hospital, Université catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Hsu PY, Deatherage DE, Rodriguez BA, Liyanarachchi S, Weng YI, Zuo T, Liu J, Cheng AS, Huang THM. Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res 2009; 69:5936-45. [PMID: 19549897 PMCID: PMC2855843 DOI: 10.1158/0008-5472.can-08-4914] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Early exposure to xenoestrogens may predispose to breast cancer risk later in adult life. It is likely that long-lived, self-regenerating epithelial progenitor cells are more susceptible to these exposure injuries over time and transmit the injured memory through epigenetic mechanisms to their differentiated progeny. Here, we used progenitor-containing mammospheres as an in vitro exposure model to study this epigenetic effect. Expression profiling identified that, relative to control cells, 9.1% of microRNAs (82 of 898 loci) were altered in epithelial progeny derived from mammospheres exposed to a synthetic estrogen, diethylstilbestrol. Repressive chromatin marks, trimethyl Lys27 of histone H3 (H3K27me3) and dimethyl Lys9 of histone H3 (H3K9me2), were found at a down-regulated locus, miR-9-3, in epithelial cells preexposed to diethylstilbestrol. This was accompanied by recruitment of DNA methyltransferase 1 that caused an aberrant increase in DNA methylation of its promoter CpG island in mammosphere-derived epithelial cells on diethylstilbestrol preexposure. Functional analyses suggest that miR-9-3 plays a role in the p53-related apoptotic pathway. Epigenetic silencing of this gene, therefore, reduces this cellular function and promotes the proliferation of breast cancer cells. Promoter hypermethylation of this microRNA may be a hallmark for early breast cancer development, and restoration of its expression by epigenetic and microRNA-based therapies is another viable option for future treatment of this disease.
Collapse
Affiliation(s)
- Pei-Yin Hsu
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Daniel E. Deatherage
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Benjamin A.T. Rodriguez
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Sandya Liyanarachchi
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Yu-I Weng
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Tao Zuo
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Joseph Liu
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alfred S.L. Cheng
- Institute of Digestive Disease, Faculty Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Tim H-M. Huang
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
183
|
Bouskine A, Nebout M, Brücker-Davis F, Benahmed M, Fenichel P. Low doses of bisphenol A promote human seminoma cell proliferation by activating PKA and PKG via a membrane G-protein-coupled estrogen receptor. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1053-8. [PMID: 19654912 PMCID: PMC2717129 DOI: 10.1289/ehp.0800367] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 02/12/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND Fetal exposure to environmental estrogens may contribute to hypofertility and/or to testicular germ cell cancer. However, many of these xenoestrogens have only a weak affinity for the classical estrogen receptors (ERs,) which is 1,000-fold less potent than the affinity of 17beta-estradiol (E(2)). Thus, several mechanisms have been suggested to explain how they could affect male germ cell proliferation at low environmental relevant concentrations. OBJECTIVES In this study we aimed to explore the possible promoting effect of bisphenol A (BPA) on human testicular seminoma cells. BPA is a well-recognized estrogenic endocrine disruptor used as a monomer to manufacture poly carbonate plastic and released from resin-lined food or beverage cans or from dental sealants. METHODS AND RESULTS BPA at very low concentrations (10(-9) to 10(-12) M) similar to those found in human fluids stimulated JKT-1 cell proliferation in vitro. BPA activated both cAMP-dependent protein kinase and cGMP-dependent protein kinase pathways and triggered a rapid (15 min) phosphorylation of the transcription factor cAMP response-element-binding protein (CREB) and the cell cycle regulator retinoblastoma protein (Rb). This nongenomic activation did not involve classical ERs because it could not be reversed by ICI 182780 (an ER antagonist) or reproduced either by E(2) or by diethylstilbestrol (a potent synthetic estrogen), which instead triggered a suppressive effect. This activation was reproduced only by E(2) coupled to bovine serum albumin (BSA), which is unable to enter the cell. As with E(2)-BSA, BPA promoted JKT-1 cell proliferation through a G-protein-coupled nonclassical membrane ER (GPCR) involving a Galpha(s) and a Galpha(i)/Galpha(q) subunit, as shown by the reversible effect observed by the corresponding inhibitors NF449 and pertussis toxin. CONCLUSION This GPCR-mediated nongenomic action represents--in addition to the classical ER-mediated effect--a new basis for evaluating xenoestrogens such as BPA that, at low doses and with a high affinity for this GPCR, could interfere with the developmental programming of fetal germ cell proliferation and/or differentiation when they cross the placenta.
Collapse
Affiliation(s)
- Adil Bouskine
- Institut National de la recherché Médicale (INSERM) U895, Team 5—Environment and Reproduction: Genomic and Nongenomic Mechanisms, University of Nice-Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Marielle Nebout
- Institut National de la recherché Médicale (INSERM) U895, Team 5—Environment and Reproduction: Genomic and Nongenomic Mechanisms, University of Nice-Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Françoise Brücker-Davis
- Institut National de la recherché Médicale (INSERM) U895, Team 5—Environment and Reproduction: Genomic and Nongenomic Mechanisms, University of Nice-Sophia-Antipolis, Faculty of Medicine, Nice, France
- Department of Reproductive Endocrinology, University Hospital of Nice, Nice, France
| | - Mohamed Benahmed
- Institut National de la recherché Médicale (INSERM) U895, Team 5—Environment and Reproduction: Genomic and Nongenomic Mechanisms, University of Nice-Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Patrick Fenichel
- Institut National de la recherché Médicale (INSERM) U895, Team 5—Environment and Reproduction: Genomic and Nongenomic Mechanisms, University of Nice-Sophia-Antipolis, Faculty of Medicine, Nice, France
- Department of Reproductive Endocrinology, University Hospital of Nice, Nice, France
- Address correspondence to P. Fénichel, University Hospital of Nice, 06202 Cedex 3, France. Telephone: 33-04-92-03-55-19. Fax: 33-04-92-03-54-25. E-mail:
| |
Collapse
|
184
|
Patisaul HB, Adewale HB. Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front Behav Neurosci 2009; 3:10. [PMID: 19587848 PMCID: PMC2706654 DOI: 10.3389/neuro.08.010.2009] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/10/2009] [Indexed: 01/05/2023] Open
Abstract
It is well established that, over the course of development, hormones shape the vertebrate brain such that sex specific physiology and behaviors emerge. Much of this occurs in discrete developmental windows that span gestation through the prenatal period, although it is now becoming clear that at least some of this process continues through puberty. Perturbation of this developmental progression can permanently alter the capacity for reproductive success. Wildlife studies have revealed that exposure to endocrine disrupting compounds (EDCs), either naturally occurring or man made, can profoundly alter reproductive physiology and ultimately impact entire populations. Laboratory studies in rodents and other species have elucidated some of the mechanisms by which this occurs and strongly indicate that humans are also vulnerable to disruption. Use of hormonally active compounds in human medicine has also unfortunately revealed that the developing fetus can be exposed to and affected by endocrine disruptors, and that it might take decades for adverse effects to manifest. Research within the field of environmental endocrine disruption has also contributed to the general understanding of how early life experiences can alter reproductive physiology and behavior through non-genomic, epigenetic mechanisms such as DNA methylation and histone acetylation. These types of effects have the potential to impact future generations if the germ line is affected. This review provides an overview of how exposure to EDCs, particularly those that interfere with estrogen action, impacts reproductive physiology and behaviors in vertebrates.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biology, North Carolina State University Raleigh, NC 27695, USA.
| | | |
Collapse
|
185
|
Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009; 30:293-342. [PMID: 19502515 PMCID: PMC2726844 DOI: 10.1210/er.2009-0002] [Citation(s) in RCA: 2878] [Impact Index Per Article: 179.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/17/2009] [Indexed: 12/11/2022]
Abstract
There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor gamma, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness.
Collapse
Affiliation(s)
- Evanthia Diamanti-Kandarakis
- Endocrine Section of First Department of Medicine, Laiko Hospital, Medical School University of Athens, 11527 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Newbold RR, Jefferson WN, Padilla-Banks E. Prenatal exposure to bisphenol a at environmentally relevant doses adversely affects the murine female reproductive tract later in life. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:879-85. [PMID: 19590677 PMCID: PMC2702400 DOI: 10.1289/ehp.0800045] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 01/15/2009] [Indexed: 05/08/2023]
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals during critical developmental periods causes adverse consequences later in life; an example is prenatal exposure to the pharmaceutical diethylstilbestrol (DES). Bisphenol A (BPA), an environmental estrogen used in the synthesis of plastics, is of concern because its chemical structure resembles that of DES, and it is a "high-volume production" chemical with widespread human exposure. OBJECTIVES In this study we investigated whether prenatal BPA causes long-term adverse effects in female reproductive tissues in an experimental animal model previously shown useful in studying effects of prenatal DES. METHODS Timed pregnant CD-1 mice were treated on days 9-16 of gestation with BPA (0.1, 1, 10, 100, or 1,000 mug/kg/day). After delivery, pups were held for 18 months; reproductive tissues were then evaluated. RESULTS Ovarian cysts were significantly increased in the 1-mug/kg BPA group; ovarian cyst-adenomas were seen in the other three BPA-treated groups but not in corn-oil controls. We observed increased progressive proliferative lesions of the oviduct after BPA treatment, similar to those described in response to DES. Further, although not statistically different from the controls, prominent mesonephric (Wolffian) remnants and squamous metaplasia of the uterus, as well as vaginal adenosis, were present in BPA-treated mice, similar to lesions reported following DES treatment. More severe pathologies observed in some BPA-treated animals included atypical hyperplasia and stromal polyps of the uterus; sarcoma of the uterine cervix; and mammary adenocarcinoma. We did not observe these lesions in controls. CONCLUSIONS These data suggest that BPA causes long-term adverse reproductive and carcinogenic effects if exposure occurs during critical periods of differentiation.
Collapse
Affiliation(s)
- Retha R Newbold
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
187
|
Mattingly CJ, Hampton TH, Brothers KM, Griffin NE, Planchart A. Perturbation of defense pathways by low-dose arsenic exposure in zebrafish embryos. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:981-7. [PMID: 19590694 PMCID: PMC2702417 DOI: 10.1289/ehp.0900555] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/22/2009] [Indexed: 04/14/2023]
Abstract
BACKGROUND Exposure to arsenic is a critical risk factor in the complex interplay among genetics, the environment, and human disease. Despite the potential for in utero exposure, the mechanism of arsenic action on vertebrate development and disease is unknown. OBJECTIVES The objective of this study was to identify genes and gene networks perturbed by arsenic during development in order to enhance understanding of the molecular mechanisms of arsenic action. METHODS We exposed zebrafish embryos at 0.25-1.25 hr postfertilization to 10 or 100 ppb arsenic for 24 or 48 hr. We then used total RNA to interrogate genome microarrays and to test levels of gene expression changes by quantitative real-time polymerase chain reaction (QPCR). Computational analysis was used to identify gene expression networks perturbed by arsenic during vertebrate development. RESULTS We identified a set of 99 genes that responded to low levels of arsenic. Nineteen of these genes were predicted to function in a common regulatory network that was significantly associated with immune response and cancer (p < 10(-41)). Arsenic-mediated expression changes were validated by QPCR. CONCLUSIONS In this study we demonstrated that arsenic significantly down-regulates expression levels of multiple genes potentially critical for regulating the establishment of an immune response. The data also provide molecular evidence consistent with phenotypic observations reported in other model systems. Additional mechanistic studies will help explain molecular events regulating early stages of the immune system and long-term consequences of arsenic-mediated perturbation of this system during development.
Collapse
Affiliation(s)
| | - Thomas H. Hampton
- Center for Environmental Health Sciences, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Nina E. Griffin
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Antonio Planchart
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
- Address correspondence to A. Planchart, Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Rd., Salisbury Cove, ME 04679 USA. Telephone: (207) 288-9880 ext. 443. Fax: (207) 288-2130. E-mail:
| |
Collapse
|
188
|
Abstract
Bisphenol A (BPA) is a component of polycarbonate and other plastics including resins that line food and beverage containers. BPA is known to leach from products in contact with food and drink, and is therefore thought to be routinely ingested. In a recent cross sectional study, BPA was detected in urine samples from 92.6% of the US population examined. The potential for BPA to influence body weight is suggested by in vitro studies demonstrating effects of BPA on adipocyte differentiation, lipid accumulation, glucose transport and adiponectin secretion. Data from in vivo studies have revealed dose-dependent and sex dependent effects on body weight in rodents exposed perinatally to BPA. The mechanisms through which perinatal BPA exposure acts to exert persistent effects on body weight and adiposity remain to be determined. Possible targets of BPA action are discussed.
Collapse
Affiliation(s)
- Beverly S Rubin
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111, United States.
| | | |
Collapse
|
189
|
Abstract
Ethanol is a classic teratogen capable of inducing a wide range of developmental abnormalities. Studies in animal models suggest that differences in timing and dosage underlie this variability, with three particularly important developmental periods: preconception, preimplantation, and gastrulation. These periods of teratogenesis correlate with peak periods of epigenetic reprogramming which, together with the evidence that ethanol interferes with one-carbon metabolism, DNA methylation, histone modifications, and noncoding RNA, suggests an important role for epigenetic mechanisms in the etiology of fetal alcohol spectrum disorders (FASDs). In addition to a number of testable hypotheses, an epigenetic model suggests that the concept of a "fetal alcohol spectrum" should be expanded to include "preconceptional effects." This proposal has important public health implications, highlighting the urgency of research into the epigenetic basis of FASDs.
Collapse
Affiliation(s)
- Philip C Haycock
- Division of Human Genetics, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
190
|
Hunt PA, Susiarjo M, Rubio C, Hassold TJ. The bisphenol A experience: a primer for the analysis of environmental effects on mammalian reproduction. Biol Reprod 2009; 81:807-13. [PMID: 19458313 DOI: 10.1095/biolreprod.109.077008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is increasingly evident that environmental factors are a veritable Pandora's box from which new concerns and complications continue to emerge. Although previously considered the domain of toxicologists, it is now clear that an understanding of the effects of the environment on reproduction requires a far broader range of expertise and that, at least for endocrine-disrupting chemicals, many of the tenets of classical toxicology need to be revisited. Indeed, because of the wide range of reproductive effects induced by these chemicals, interest among reproductive biologists has grown rapidly: in 2000, the program for the annual Society for the Study of Reproduction meeting included a single minisymposium on the fetal origins of adult disease, one platform session on endocrine disruption, and 23 toxicology poster presentations. In contrast, environmental factors featured prominently at the 2009 meeting, with strong representation in the plenary, minisymposia, platform, and poster sessions. Clearly, a lot has happened in a decade, and environmental issues have become an increasingly important research focus for reproductive biologists. In this review, we summarize some of the inherent difficulties in assessing environmental effects on reproductive performance, focusing on the endocrine disruptor bisphenol A (BPA) to illustrate important emerging concerns. In addition, because the BPA experience serves as a prototype for scientific activism, public education, and advocacy, these issues are also discussed.
Collapse
Affiliation(s)
- Patricia A Hunt
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-4660, USA.
| | | | | | | |
Collapse
|
191
|
Ferguson SA, Delclos KB, Newbold RR, Flynn KM. Few effects of multi-generational dietary exposure to genistein or nonylphenol on sodium solution intake in male and female Sprague–Dawley rats. Neurotoxicol Teratol 2009; 31:143-8. [PMID: 19452615 DOI: 10.1016/j.ntt.2009.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
192
|
Abstract
Obesity and obesity-related disorders, such as type 2 diabetes, hypertension, and cardiovascular disease, are epidemic in Western countries, particularly the United States. The conventional wisdom holds that obesity is primarily the result of a positive energy balance, i.e. too many calories in and too few calories burned. Although it is self-evident that fat cannot be accumulated without a higher caloric intake than expenditure, recent research in a number of laboratories suggests the existence of chemicals that alter regulation of energy balance to favor weight gain and obesity. These obesogens derail the homeostatic mechanisms important for weight control, such that exposed individuals are predisposed to weight gain, despite normal diet and exercise. This review considers the evidence for obesogens, how they might act, and where future research is needed to clarify their relative contribution to the obesity epidemic.
Collapse
Affiliation(s)
- Felix Grün
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300, USA
| | | |
Collapse
|
193
|
Abstract
PURPOSE OF REVIEW Epigenetics investigates heritable changes in gene expression occurring without changes in DNA sequence. Several epigenetic mechanisms, including DNA methylation, histone modifications, and microRNA expression, can change genome function under exogenous influence. Here, we review current evidence indicating that epigenetic alterations mediate toxicity from environmental chemicals. RECENT FINDINGS In-vitro, animal, and human investigations have identified several classes of environmental chemicals that modify epigenetic marks, including metals (cadmium, arsenic, nickel, chromium, and methylmercury), peroxisome proliferators (trichloroethylene, dichloroacetic acid, and TCA), air pollutants (particulate matter, black carbon, and benzene), and endocrine-disrupting/reproductive toxicants (diethylstilbestrol, bisphenol A, persistent organic pollutants, and dioxin). Most studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied environmental chemicals in relation to histone modifications and microRNA. SUMMARY For several exposures, it has been proved that chemicals can alter epigenetic marks, and that the same or similar epigenetic alterations can be found in patients with the disease of concern or in diseased tissues. Future prospective investigations are needed to determine whether exposed individuals develop epigenetic alterations over time and, in turn, which such alterations increase the risk of disease. Also, further research is needed to determine whether environmental epigenetic changes are transmitted transgenerationally.
Collapse
Affiliation(s)
- Andrea Baccarelli
- Laboratory of Environmental Epigenetics, Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, University of Milan, Via San Barnaba 8, Milan, Italy.
| | | |
Collapse
|
194
|
Delclos KB, Weis CC, Bucci TJ, Olson G, Mellick P, Sadovova N, Latendresse JR, Thorn B, Newbold RR. Overlapping but distinct effects of genistein and ethinyl estradiol (EE(2)) in female Sprague-Dawley rats in multigenerational reproductive and chronic toxicity studies. Reprod Toxicol 2009; 27:117-32. [PMID: 19159674 PMCID: PMC2706590 DOI: 10.1016/j.reprotox.2008.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/05/2008] [Accepted: 12/19/2008] [Indexed: 01/28/2023]
Abstract
Genistein and ethinyl estradiol (EE(2)) were examined in multigenerational reproductive and chronic toxicity studies that had different treatment intervals among generations. Sprague-Dawley rats received genistein (0, 5, 100, or 500 ppm) or EE(2) (0, 2, 10, or 50 ppb) in a low phytoestrogen diet. Nonneoplastic effects in females are summarized here. Genistein at 500 ppm and EE(2) at 50 ppb produced similar effects in continuously exposed rats, including decreased body weights, accelerated vaginal opening, and altered estrous cycles in young animals. At the high dose, anogenital distance was subtly affected by both compounds, and a reduction in litter size was evident in genistein-treated animals. Genistein at 500 ppm induced an early onset of aberrant cycles relative to controls in the chronic studies. EE(2) significantly increased the incidence of uterine lesions (atypical focal hyperplasia and squamous metaplasia). These compound-specific effects appeared to be enhanced in the offspring of prior exposed generations.
Collapse
Affiliation(s)
- K Barry Delclos
- National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Grim KC, Wolfe MJ, Edwards M, Kaufman J, Onjukka S, Moran P, Wolf JC. Epizootic Ameloblastomas in Chinook Salmon (Oncorhynchus tshawytscha) of the Northwestern United States. Vet Pathol 2009; 46:622-35. [DOI: 10.1354/vp.08-vp-0150-w-fl] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abnormal growths were observed on the lips and in the oral cavities of 2- and 3-year-old Chinook salmon (Oncorhynchus tshawytscha) maintained in one freshwater and one saltwater captive fish-rearing facility in the Columbia River (Pacific Northwest). Initially presenting as bilaterally symmetrical, red, irregular plaques on oral mucosal surfaces, the lesions developed progressively into large, disfiguring masses. Of the 502 natural parr collected for captive broodstock, 432 (86%) displayed these tumors, whereas cohort salmon (i.e., same year classes) in these same facilities remained unaffected. Morphologically similar neoplasms were collected occasionally from adult Chinook salmon that had returned to their natal streams. Histologic features of the tumors suggested that they were derived from the portion of dental lamina destined to form tooth root sulci; therefore, these neoplasms were diagnosed as ameloblastomas. The lesions also resembled archived specimens of Chinook salmon oral tumors, which had been described decades earlier. Etiologic investigations performed during the current outbreak included bacteriologic, virologic, genetic, ultrastructural analyses, and cohabitation exposure studies. Results of these efforts did not indicate an obvious genetic basis for this syndrome, attempts to isolate potentially causative viruses or bacteria were negative, and disease transmission to naïve fish was unsuccessful. A few intracytoplasmic hexagonal structures, possibly consistent with viral particles (∼100 nm), were observed ultrastructurally in a tumor cell from 1 of 6 specimens submitted for transmission electron microscopy. Although the presence of these particles does not constitute sufficient evidence for causality, an infectious or multifactorial etiology seems plausible.
Collapse
Affiliation(s)
- K. C. Grim
- US Environmental Protection Agency, Office of Science Coordination and Policy, Washington, DC
- Smithsonian National Zoological Park, Conservation and Research Center, Center for Species Survival, Front Royal, VA
| | - M. J. Wolfe
- The Registry of Tumors in Lower Animals, Experimental Pathology Laboratories, Inc., Sterling, VA
| | - M. Edwards
- Nez Perce Tribe Department of Fisheries Resources Management, Enterprise Field Office, Enterprise, OR
| | - J. Kaufman
- Oregon Department of Fish and Wildlife, Department of Microbiology, Oregon State University, Corvallis, OR
| | - S. Onjukka
- Oregon Department of Fish and Wildlife-Fish Health Services, Eastern Oregon University, La Grande, OR
| | - P. Moran
- National Oceanic and Atmospheric Administration, Conservation Biology Division, Northwest Fisheries Science Center, Seattle, WA
| | - J. C. Wolf
- The Registry of Tumors in Lower Animals, Experimental Pathology Laboratories, Inc., Sterling, VA
| |
Collapse
|
196
|
Brown RC, Barone S, Kimmel CA. Children's health risk assessment: incorporating a lifestage approach into the risk assessment process. ACTA ACUST UNITED AC 2009; 83:511-21. [PMID: 19025790 DOI: 10.1002/bdrb.20172] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This overview paper provides the historical context for the incorporation of lifestage-specific concerns in human health risk assessment, briefly explains the process employed in a lifestage framework for risk assessment, and discusses the scientific rationale for how utilizing lifestage data will strengthen the overall risk assessment process. This risk assessment approach will add value by: (1) providing a more complete evaluation of the potential for vulnerability at different lifestages, including a focus on the underlying biological events and incorporation of mode of action information related to different critical developmental periods; (2) evaluating the potential for toxicity during all lifestages after early lifestage exposure; (3) reviewing the importance of integrating exposure information and adverse health effects across lifestages; and (4) serving as a basis to extend some aspects of the children's health risk assessment framework to all lifestages.
Collapse
Affiliation(s)
- Rebecca C Brown
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Office of Research and Development, 1200 Pennsylvania Avenue NW, Washington, DC 20460, USA.
| | | | | |
Collapse
|
197
|
Rebourcet D, Odet F, Vérot A, Combe E, Meugnier E, Pesenti S, Leduque P, Déchaud H, Magre S, Le Magueresse-Battistoni B. The effects of an in utero exposure to 2,3,7,8-tetrachloro-dibenzo-p-dioxin on male reproductive function: identification of Ccl5 as a potential marker. ACTA ACUST UNITED AC 2009; 33:413-24. [PMID: 20059583 PMCID: PMC2871170 DOI: 10.1111/j.1365-2605.2009.01020.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like compounds are widely encountered toxic substances suspected of interfering with the endocrine systems of humans and wildlife, and of contributing to the loss of fertility. In this study, we determined the changes in testicular gene expression caused by in utero exposure to TCDD along with the intra-testicular testosterone levels, epididymal sperm reserves, daily sperm production (DSP) and testis histology. To this purpose, female pregnant Sprague-Dawley rats orally received TCDD (10, 100 or 200 ng/kg body weight) or vehicle at embryonic day 15, and the offspring was killed throughout development. Hepatic Cyp1a1 gene expression was measured in the offspring to confirm the exposure to TCDD. The gross histology of the testes and intra-testicular testosterone levels were normal among the studied groups. Sperm reserves were altered in 67-day-old rats of the TCDD-200 group, but not in 145-day-old animals or in the other TCDD-exposed groups. Nonetheless, fertility was not altered in males of the TCDD-200 group, and the F2 males generated had normal sperm reserves and DSP. Microarray analysis permitted the identification of eight differentially expressed genes in the 4-week-old testes of the TCDD-200 compared with that of the control group (cut-off value +/- 1.40), including the down-regulated chemokine Ccl5/Rantes. Inhibition of Ccl5/Rantes gene expression was observed throughout development in the TCDD-200 group, and at 67 and 145 days in the TCDD-100 group (animals of younger ages were not examined). Ccl5/Rantes gene expression was mostly confined in Leydig cells. F2 males generated from males of the TCDD-200 group had normal levels of Ccl5/Rantes in testis and Cyp1a1 in liver, which might indicate that Ccl5/Rantes is a marker of TCDD exposure in testis such as Cyp1a1 in liver. In conclusion, we demonstrated a decrease in Ccl5/Rantes RNA levels and a transitory decline in sperm reserves in the testes of rats of TCDD-dosed dams.
Collapse
|
198
|
Sato K, Fukata H, Kogo Y, Ohgane J, Shiota K, Mori C. Neonatal exposure to diethylstilbestrol alters expression of DNA methyltransferases and methylation of genomic DNA in the mouse uterus. Endocr J 2009; 56:131-9. [PMID: 18997445 DOI: 10.1507/endocrj.k08e-239] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Perinatal exposure to diethylstilbestrol (DES) can have numerous adverse effects on the reproductive organs later in life, such as vaginal clear-cell adenocarcinoma. Epigenetic processes including DNA methylation may be involved in the mechanisms. We subcutaneously injected DES to neonatal C57BL/6 mice. At days 5, 14, and 30, expressions of DNA methyltransferases (Dnmts) Dnmt1, Dnmt3a, and Dnmt3b, and transcription factors Sp1 and Sp3 were examined. We also performed restriction landmark genomic scanning (RLGS) to detect aberrant DNA methylation. Real-time RT-PCR revealed that expressions of Dnmt1, Dnmt3b, and Sp3 were decreased at day 5 in DES-treated mice, and that those of Dnmt1, Dnmt3a, and Sp1 were also decreased at day 14. RLGS analysis revealed that 5 genomic loci were demethylated, and 5 other loci were methylated by DES treatment. Two loci were cloned, and differential DNA methylation was quantified. Our results indicated that DES altered the expression levels of Dnmts and DNA methylation.
Collapse
Affiliation(s)
- Koji Sato
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
199
|
Abstract
Transgenerational epigenetic effects include all processes that have evolved to achieve the nongenetic determination of phenotype. There has been a long-standing interest in this area from evolutionary biologists, who refer to it as non-Mendelian inheritance. Transgenerational epigenetic effects include both the physiological and behavioral (intellectual) transfer of information across generations. Although in most cases the underlying molecular mechanisms are not understood, modifications of the chromosomes that pass to the next generation through gametes are sometimes involved, which is called transgenerational epigenetic inheritance. There is a trend for those outside the field of molecular biology to assume that most cases of transgenerational epigenetic effects are the result of transgenerational epigenetic inheritance, in part because of a misunderstanding of the terms. Unfortunately, this is likely to be far from the truth.
Collapse
Affiliation(s)
- Neil A Youngson
- Department of Population Studies and Human Genetics, Queensland Institute of Medical Research, Brisbane 4006, Australia
| | | |
Collapse
|
200
|
Affiliation(s)
- Gail S Prins
- Department Urology, MC 955, University of Illinois at Chicago, 820 South Wood Street, Chicago, Illinois 60612, USA.
| |
Collapse
|