151
|
Shinozaki K, Okuda M. The effects of fat mass and obesity-associated gene variants on the body mass index among ethnic groups and in children and adults. Indian J Endocrinol Metab 2012; 16:S588-S595. [PMID: 23565494 PMCID: PMC3602988 DOI: 10.4103/2230-8210.105576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association analyses have revealed common gene variations related to obesity. Variants of the fat mass and obesity-associated (FTO) gene among more than 40 genes studied were most closely associated with obesity, but the association varies among ethnicities. Moreover, the effect is significant in people of European descent as well as Asians, but less significant among people of African descent. Although the variants were also associated with type 2 diabetes and glucose homeostasis, the associations were attenuated or abolished after adjusting for adiposity. The present review considers our current understanding of the effects of the FTO variants in different ethnic groups and in adults and children.
Collapse
Affiliation(s)
- Keiko Shinozaki
- Department of Environmental Safety, Graduate School of Science and Engineering, Yamaguchi University, Japan
| | - Masayuki Okuda
- Department of Environmental Safety, Graduate School of Science and Engineering, Yamaguchi University, Japan
| |
Collapse
|
152
|
Boender AJ, van Rozen AJ, Adan RAH. Nutritional state affects the expression of the obesity-associated genes Etv5, Faim2, Fto, and Negr1. Obesity (Silver Spring) 2012; 20:2420-5. [PMID: 22627920 DOI: 10.1038/oby.2012.128] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Obesity is a risk factor for type II diabetes, atherosclerosis, and some forms of cancer. Variation in common measures of obesity (e.g., BMI, waist/hip ratio) is largely explained by heritability. The advent of genome-wide association studies (GWAS) has made it possible to identify several genetic variants that associate with measures of obesity, but how exactly these genetic variants contribute to overweight has remained largely unresolved. One first hint is given by the fact that many of the associated variants reside in or near genes that act in the central nervous system, which implicates neuronal signaling in the etiology of obesity. Although the brain controls both energy intake and expenditure, it has more capacity to regulate energy intake rather than energy expenditure. In environments where food is abundant, this renders the body prone to weight increases. To gain more insight into the neurobiological mechanisms involved, we set out to investigate the effect of dietary exposure on the expression levels of obesity-associated genes in the ventro-medial hypothalamus (VMH)/arcuate nucleus (ARC) and the substantia nigra (SN)/ventral tegmental area (VTA), two brain regions that are implicated in feeding behavior. We show that the expression of Etv5, Faim2, Fto, Negr1 but not Sh2b1 is affected by nutritional state in these two areas, thereby providing insight into the relationship between nutritional state and expression levels of obesity-associated genes in two brain areas relevant to feeding.
Collapse
Affiliation(s)
- Arjen J Boender
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
153
|
Jacobsson JA, Schiöth HB, Fredriksson R. The impact of intronic single nucleotide polymorphisms and ethnic diversity for studies on the obesity gene FTO. Obes Rev 2012; 13:1096-109. [PMID: 22931202 DOI: 10.1111/j.1467-789x.2012.01025.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In 2007, the first common genetic variants were identified, which undoubtedly affect our susceptibility to obesity. These variants are located in the fat mass and obesity-associated gene FTO. Since then, over 50 loci for common obesity have been identified. As the research on these loci is still at an early stage, there is a great need to review, for clarification purposes, the current research on FTO, as this is likely to influence future studies. Based on the current knowledge, FTO seems to be directly involved in the regulation of energy intake, but there is an urgent need for the identification of regulatory polymorphisms. Thus, herein, we discuss current knowledge and highlight putative functional regions in FTO based on published data and computer-based analysis.
Collapse
Affiliation(s)
- J A Jacobsson
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
154
|
Richards HB, McCarthy MI. Recent Developments in the Genetic and Genomic Basis of Type 2 Diabetes. CURRENT CARDIOVASCULAR RISK REPORTS 2012. [DOI: 10.1007/s12170-012-0281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
155
|
FTO at rs9939609, food responsiveness, emotional control and symptoms of ADHD in preschool children. PLoS One 2012; 7:e49131. [PMID: 23155456 PMCID: PMC3498333 DOI: 10.1371/journal.pone.0049131] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
The FTO minor allele at rs9939609 has been associated with body mass index (BMI: weight (kg)/height (m)2) in children from 5 years onwards, food intake, and eating behaviour. The high expression of FTO in the brain suggests that this gene may also be associated with behavioural phenotypes, such as impulsivity and control. We examined the effect of the FTO minor allele (A) at rs9939609 on eating behaviour, impulsivity and control in young children, thus before the BMI effect becomes apparent. This study was embedded in the Generation R Study, a population-based cohort from fetal life onwards. 1,718 children of European descent were genotyped for FTO at rs9939609. With logistic regression assuming an additive genetic model, we examined the association between the FTO minor allele and eating behaviour, impulsivity and control in preschool children. There was no relation between FTO at rs9939609 and child BMI at this age. The A allele at rs9939609 was associated with increased food responsiveness (OR 1.21, p = 0.03). Also, children with the A allele were less likely to have symptoms of ADHD (OR 0.74, p = 0.01) and showed more emotional control (OR 0.64, p = 0.01) compared to children without the A allele. Our findings suggest that before the association between FTO and BMI becomes apparent, the FTO minor allele at rs9939609 leads to increased food responsiveness, a decreased risk for symptoms of ADHD and better emotional control. Future studies are needed to investigate whether these findings represent one single mechanism or reflect pleiotropic effects of FTO.
Collapse
|
156
|
Wang Y, Rao K, Yuan L, Everaert N, Buyse J, Grossmann R, Zhao R. Chicken FTO gene: Tissue-specific expression, brain distribution, breed difference and effect of fasting. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:246-52. [DOI: 10.1016/j.cbpa.2012.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 01/01/2023]
|
157
|
Williams MJ, Almén MS, Fredriksson R, Schiöth HB. What model organisms and interactomics can reveal about the genetics of human obesity. Cell Mol Life Sci 2012; 69:3819-34. [PMID: 22618246 PMCID: PMC11114734 DOI: 10.1007/s00018-012-1022-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/22/2012] [Accepted: 05/02/2012] [Indexed: 01/05/2023]
Abstract
Genome-wide association studies have identified a number of genes associated with human body weight. While some of these genes are large fields within obesity research, such as MC4R, POMC, FTO and BDNF, the majority do not have a clearly defined functional role explaining why they may affect body weight. Here, we searched biological databases and discovered 33 additional genes associated with human obesity (CADM2, GIPR, GPCR5B, LRP1B, NEGR1, NRXN3, SH2B1, FANCL, GNPDA2, HMGCR, MAP2K5, NUDT3, PRKD1, QPCTL, TNNI3K, MTCH2, DNAJC27, SLC39A8, MTIF3, RPL27A, SEC16B, ETV5, HMGA1, TFAP2B, TUB, ZNF608, FAIM2, KCTD15, LINGO2, POC5, PTBP2, TMEM18, TMEM160). We find that the majority have orthologues in distant species, such as D. melanogaster and C. elegans, suggesting that they are important for the biology of most bilateral species. Intriguingly, signalling cascade genes and transcription factors are enriched among these obesity genes, and several of the genes show properties that could be useful for potential drug discovery. In this review, we demonstrate how information from several distant model species, interactomics and signalling pathway analysis represents an important way to better understand the functional diversity of the surprisingly high number of molecules that seem to be important for human obesity.
Collapse
Affiliation(s)
- Michael J. Williams
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| | - Markus S. Almén
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| |
Collapse
|
158
|
Abstract
Obesity is a complex disease that affects all ethnic populations worldwide. The etiology of this disease is based on the interaction of genetic factors, environment and lifestyles indicators. Genetic contribution to the epidemic has gained attention from 2 sources: monogenic syndromes that display severe obesity, and the polygenic model of common obesity. Single mutations can render a syndrome with severe obesity resulting from alteration in central o peripheral appetite control mechanisms. The interaction of several polymorphisms and epigenetic modifications constitute the basic plot for common obesity, molecular ingredients that should not confuse the investigator-they make this riddle even harder to decipher.
Collapse
|
159
|
Abstract
Work on obesity is evolving, and obesity is a consequence of our evolutionary history. In the space of 50 years, we have become an obese species. The reasons why can be addressed at a number of different levels. These include separating between whether the primary cause lies on the food intake or energy expenditure side of the energy balance equation, and determining how genetic and environmental effects contribute to weight variation between individuals. Opinion on whether increased food intake or decreased energy expenditure drives the obesity epidemic is still divided, but recent evidence favours the idea that food intake, rather than altered expenditure, is most important. There is more of a consensus that genetics explains most (probably around 65%) of weight variation between individuals. Recent advances in genome-wide association studies have identified many polymorphisms that are linked to obesity, yet much of the genetic variance remains unexplained. Finding the causes of this unexplained variation will be an impetus of genetic and epigenetic research on obesity over the next decade. Many environmental factors - including gut microbiota, stress and endocrine disruptors - have been linked to the risk of developing obesity. A better understanding of gene-by-environment interactions will also be key to understanding obesity in the years to come.
Collapse
Affiliation(s)
- John R. Speakman
- Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
160
|
Yeo GS, O'Rahilly S. Uncovering the biology of FTO. Mol Metab 2012; 1:32-6. [PMID: 24024116 PMCID: PMC3757649 DOI: 10.1016/j.molmet.2012.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 11/22/2022] Open
Abstract
Genome-wide association studies have revealed that SNPs in the first intron of FTO (Fat mass and Obesity related) are robustly associated with body mass index and obesity. Subsequently, it has become clear that this association with body weight, and increasingly food intake, is replicable across multiple populations and different age groups. However, to date, no conclusive link has been made between the risk alleles and FTO expression or its physiological role. FTO deficiency leads to a complex phenotype including postnatal mortality and growth retardation, pointing to some fundamental developmental role. Yet, the weight of evidence from a number of animal models where FTO expression has been perturbed indicates some role for FTO in energy homoeostasis. In addition, emerging data points to a role for FTO in the sensing of nutrients. In this review, we explore the in vivo and in vitro evidence detailing FTO's different faces and discuss how these might link to the regulation of body weight.
Collapse
Affiliation(s)
- Giles S.H. Yeo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
161
|
Abstract
Obesity and related complications are major health burdens. Almost 700 million adults are currently obese globally and the prevalence is predicted to rise towards 2030. The sudden change of lifestyle with physical inactivity and excessive calorie intake undoubtedly have a major part of the epidemic development; however, some individuals seem to be more prone to be affected by an unhealthy lifestyle than others. Hence, genetic predisposition also has an essential role in determining disease susceptibility and response to lifestyle factors. Since the introduction of genome-wide association studies (GWAS), the success of identifying obesity susceptibility variants have increased, and a total of 32 variants have been identified associating genome-wide significantly with body mass index (BMI) and 18 with measures of fat distribution during four overall obesity GWAS waves. However, the immediate success of the GWAS approach has eased off, but the proportion of explained variance for BMI by the identified obesity variants remains low. This review suggests and discusses new initiatives to take GWAS of obesity to the next level, including gene–environment interactions as modulating/masking factors, low-frequent or rare variants and ways to address such analyses, and finally reflections about the applicability of epigenetic modifications when elucidating the genetic background of obesity.
Collapse
Affiliation(s)
- C H Sandholt
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
162
|
Yoganathan P, Karunakaran S, Ho MM, Clee SM. Nutritional regulation of genome-wide association obesity genes in a tissue-dependent manner. Nutr Metab (Lond) 2012; 9:65. [PMID: 22781276 PMCID: PMC3537611 DOI: 10.1186/1743-7075-9-65] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/21/2012] [Indexed: 12/13/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have recently identified several new genetic variants associated with obesity. The majority of the variants are within introns or between genes, suggesting they affect gene expression, although it is not clear which of the nearby genes they affect. Understanding the regulation of these genes will be key to determining the role of these variants in the development of obesity and will provide support for a role of these genes in the development of obesity. Methods We examined the expression of 19 GWAS obesity genes in the brain and specifically the hypothalamus, adipose tissue and liver of mice by real-time quantitative PCR. To determine whether these genes are nutritionally regulated, as may be expected for genes affecting obesity, we compared tissues from fasting and non-fasting animals and tissues from mice consuming a high fat high sucrose diet in comparison to standard rodent chow. Results We found complex, tissue-dependent patterns of nutritional regulation of most of these genes. For example, Bat2 expression was increased ~10-fold in the brain of fed mice but was lower or unchanged in the hypothalamus and adipose tissue. Kctd15 expression was upregulated in the hypothalamus, brain and adipose tissue of fed mice and downregulated by high fat feeding in liver, adipose tissue and the hypothalamus but not the remainder of the brain. Sh2b1 expression in the brain and Faim2 expression in adipose tissue were specifically increased >20-fold in fed mice. Tmem18 expression in adipose tissue but not the brain was reduced 80% by high fat feeding. Few changes in the expression of these genes were observed in liver. Conclusions These data show nutritional regulation of nearly all these GWAS obesity genes, particularly in the brain and adipose tissue, and provide support for their role in the development of obesity. The complex patterns of nutritional and tissue-dependent regulation also highlight the difficulty that may be encountered in determining how the GWAS genetic variants affect gene expression and consequent obesity risk in humans where access to tissues is constrained.
Collapse
Affiliation(s)
- Piriya Yoganathan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
163
|
Pitman RT, Fong JT, Billman P, Puri N. Knockdown of the fat mass and obesity gene disrupts cellular energy balance in a cell-type specific manner. PLoS One 2012; 7:e38444. [PMID: 22675562 PMCID: PMC3367022 DOI: 10.1371/journal.pone.0038444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Recent studies suggest that FTO variants strongly correlate with obesity and mainly influence energy intake with little effect on the basal metabolic rate. We suggest that FTO influences eating behavior by modulating intracellular energy levels and downstream signaling mechanisms which control energy intake and metabolism. Since FTO plays a particularly important role in adipocytes and in hypothalamic neurons, SH-SY5Y neuronal cells and 3T3-L1 adipocytes were used to understand how siRNA mediated knockdown of FTO expression alters cellular energy homeostasis. Cellular energy status was evaluated by measuring ATP levels using a luminescence assay and uptake of fluorescent glucose. FTO siRNA in SH-SY5Y cells mediated mRNA knockdown (−82%), increased ATP concentrations by up to 46% (P = 0.013) compared to controls, and decreased phosphorylation of AMPk and Akt in SH-SY5Y by −52% and −46% respectively as seen by immunoblotting. In contrast, FTO siRNA in 3T3-L1 cells decreased ATP concentration by −93% (p<0.0005), and increased AMPk and Akt phosphorylation by 204% and 70%, respectively suggesting that FTO mediates control of energy levels in a cell-type specific manner. Furthermore, glucose uptake was decreased in both SH-SY5Y (−51% p = 0.015) and 3T3-L1 cells (−30%, p = 0.0002). We also show that FTO knockdown decreases NPY mRNA expression in SH-SY5Y cells (−21%) through upregulation of pSTAT3 (118%). These results provide important evidence that FTO-variant linked obesity may be associated with altered metabolic functions through activation of downstream metabolic mediators including AMPk.
Collapse
Affiliation(s)
- Ryan T. Pitman
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Jason T. Fong
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Penny Billman
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
- * E-mail:
| |
Collapse
|
164
|
Cecil J, Dalton M, Finlayson G, Blundell J, Hetherington M, Palmer C. Obesity and eating behaviour in children and adolescents: contribution of common gene polymorphisms. Int Rev Psychiatry 2012; 24:200-10. [PMID: 22724641 DOI: 10.3109/09540261.2012.685056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of childhood obesity is increasing in many countries and confers risks for early type 2 diabetes, cardiovascular disease and metabolic syndrome. In the presence of potent 'obesogenic' environments not all children become obese, indicating the presence of susceptibility and resistance. Taking an energy balance approach, susceptibility could be mediated through a failure of appetite regulation leading to increased energy intake or via diminished energy expenditure. Evidence shows that heritability estimates for BMI and body fat are paralleled by similar coefficients for energy intake and preferences for dietary fat. Twin studies implicate weak satiety and enhanced food responsiveness as factors determining an increase in BMI. Single gene mutations, for example in the leptin receptor gene, that lead to extreme obesity appear to operate through appetite regulating mechanisms and the phenotypic response involves overconsumption and a failure to inhibit eating. Investigations of robustly characterized common gene variants of fat mass and obesity associated (FTO), peroxisome proliferator-activated receptor (PPARG) and melanocortin 4 receptor (MC4R) which contribute to variance in BMI also influence the variance in appetite factors such as measured energy intake, satiety responsiveness and the intake of palatable energy-dense food. A review of the evidence suggests that susceptibility to childhood obesity involving specific allelic variants of certain genes is mediated primarily through food consumption (appetite regulation) rather than through a decrease in activity-related energy expenditure. This conclusion has implications for early detection of susceptibility, and for prevention and management of childhood obesity.
Collapse
Affiliation(s)
- Joanne Cecil
- School of Medicine, University of St Andrews, UK.
| | | | | | | | | | | |
Collapse
|
165
|
Matsuo T, Nakata Y, Murotake Y, Hotta K, Tanaka K. Effects of FTO genotype on weight loss and metabolic risk factors in response to calorie restriction among Japanese women. Obesity (Silver Spring) 2012; 20:1122-6. [PMID: 22016090 DOI: 10.1038/oby.2011.322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Effects of gene variants in the fat-mass and obesity-associated (FTO) gene (primarily rs9939609) on weight loss induced by lifestyle intervention are controversial. The aim of this study was to investigate whether FTO gene variations are associated with weight-reduction and changes in metabolic risk factors in response to a 14-week calorie restriction. In total, 204 Japanese women (aged 24-66 years; BMI ≥ 25 kg/m(2)) enrolled as subjects and attended dietary lectures instructing them on how to consume a nutritionally balanced diet of 1,200 kcal/day. Fat mass, both at baseline (P = 0.100) and after the intervention (P = 0.020), was higher in subjects with the AA genotype (n = 15; 7.3%) than in those with TT (n = 114; 55.9%) and TA (n = 75; 36.8%) genotypes. The change in fat-mass tended to be smaller in subjects with the AA genotype than in those with other genotypes (P = 0.065). However, the subjects with the risk allele could still decrease their body weight and improve metabolic risk factors significantly. Our data suggest that the impact of FTO rs9939609 in Japanese women may not be great enough to change body weight or metabolic risk factors in response to calorie restriction. Environmental and behavioral factors may overcome the effects of genes on weight reduction.
Collapse
Affiliation(s)
- Tomoaki Matsuo
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
166
|
Sällman Almén M, Rask-Andersen M, Jacobsson JA, Ameur A, Kalnina I, Moschonis G, Juhlin S, Bringeland N, Hedberg LA, Ignatovica V, Chrousos GP, Manios Y, Klovins J, Marcus C, Gyllensten U, Fredriksson R, Schiöth HB. Determination of the obesity-associated gene variants within the entire FTO gene by ultra-deep targeted sequencing in obese and lean children. Int J Obes (Lond) 2012; 37:424-31. [PMID: 22531089 PMCID: PMC3595467 DOI: 10.1038/ijo.2012.57] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The Fat mass and obesity-associated gene (FTO) was the first gene reliably associated with body mass index in genome-wide association studies on a population level. At present, the genetic variations within the FTO gene are still the common variants that have the largest influence on body mass index. METHODS In the current study, we amplified the entire FTO gene, in total 412 Kbp, in over 200 long-range PCR fragments from each individual, from 524 severely obese and 527 lean Swedish children, and sequenced the products as two DNA pools using massive parallel sequencing (SOLiD). RESULTS The sequencing achieved very high coverage (median 18 000 reads) and we detected and estimated allele frequencies for 705 single nucleotide polymorphisms (SNPs) (19 novel) and 40 indels (24 novel) using a sophisticated statistical approach to remove false-positive SNPs. We identified 19 obesity-associated SNPs within intron one of the FTO gene, and validated our findings with genotyping. Ten of the validated obesity-associated SNPs have a stronger obesity association (P<0.007) than the commonly studied rs9939609 SNP (P<0.012). CONCLUSIONS This study provides a comprehensive obesity-associated variation map of FTO, identifies novel lead SNPs and evaluates putative causative variants. We conclude that intron one is the only region within the FTO gene associated with obesity, and finally, we establish next generation sequencing of pooled DNA as a powerful method to investigate genetic association with complex diseases and traits.
Collapse
Affiliation(s)
- M Sällman Almén
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Studies in humans have independently identified single nucleotide polymorphisms (SNPs) in the fat mass and obesity associated (FTO) gene associated with obesity in multiple populations. It was shown that FTO participated in the regulation of energy homeostasis and associated with increased lipolytic activity in adipocytes. To ascertain whether there were mutations in the bovine FTO gene, this study investigated the variation of the FTO gene through PCR-SSCP and sequencing. Five synonymous mutations, two missense mutations, and three intronic SNPs were identified in 614 cattle from five independent populations. Haplotype frequencies and linkage disequilibrium (LD) coefficients of these SNPs in three Chinese indigenous cattle breeds were analyzed. Two LD blocks were found in the Qinchuan and Nanyang cattle breeds and three LD blocks were found in the Jiaxian cattle breed, suggesting the possibility of a recombination hotspot between exon 5 and intron 5 of the bovine FTO gene. The variations detected here might have an impact on the FTO gene activity and function.
Collapse
|
168
|
Abstract
Genome-wide association studies (GWAS) have revolutionised the discovery of genes for common traits and diseases, including obesity-related traits. In less then four years time, 52 genetic loci were identified to be unequivocally associated with obesity-related traits. This vast success raised hope and expectations that genetic information would become soon an integral part of personalised medicine. However, these loci have only small effects on obesity-susceptibility and explain just a fraction of the total variance. As such, their accuracy to predict obesity is poor and not competitive with the predictive ability of traditional risk factors. Nevertheless, some of these loci are being used in commercially available personal genome tests to estimate individuals' lifetime risk of obesity. While proponents believe that personal genome profiling could have beneficial effects on behaviour, early reports do not support this hypothesis. To conclude, the most valuable contribution of GWAS-identified loci lies in their contribution to elucidating new physiological pathways that underlie obesity-susceptibility.
Collapse
Affiliation(s)
- Ruth J F Loos
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
169
|
Cheung WW, Mao P. Recent advances in obesity: genetics and beyond. ISRN ENDOCRINOLOGY 2012; 2012:536905. [PMID: 22474595 PMCID: PMC3313574 DOI: 10.5402/2012/536905] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022]
Abstract
The prevalence of obesity, which is a heritable trait that arises from the interactions of multiple genes and lifestyle factors, continues to increase worldwide, causing serious health problems and imposing a substantial economic burden on societies. For the past several years, various genetic epidemiological approaches have been utilized to identify genetic loci for obesity. Recent evidence suggests that development of obesity involves hormones and neurotransmitters (such as leptin, cocaine- and amphetamine-regulated transcript (CART), and ghrelin) that regulate appetite and energy expenditure. These hormones act on specific centers in the brain that regulate the sensations of satiety. Mutations in these hormones or their receptors can lead to obesity. Aberrant circadian rhythms and biochemical pathways in peripheral organs or tissues have also been implicated in the pathology of obesity. More interestingly, increasing evidence indicates a potential relation between obesity and central nervous system disorders (such as cognitive deficits). This paper discusses recent advances in the field of genetics of obesity with an emphasis on several established loci that influence obesity. These recently identified loci may hold the promise to substantially improve our insights into the pathophysiology of obesity and open up new therapeutic strategies to combat growing obesity epidemic facing the human population today.
Collapse
Affiliation(s)
- Wai W. Cheung
- Division of Pediatric Nephrology, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peizhong Mao
- Division of Neuroscience, Oregon National Primate Research Center, Department of Public Health & Preventive Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
170
|
Association of FTO polymorphisms with early age of obesity in obese Italian subjects. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:872176. [PMID: 22454631 PMCID: PMC3290805 DOI: 10.1155/2012/872176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/10/2011] [Accepted: 12/10/2011] [Indexed: 12/18/2022]
Abstract
Obesity is recognized as a major health problem worldwide. Genetic factors play a major role in obesity, and genomewide association studies have provided evidence that several common variants within the fat mass- and obesity-associated (FTO) gene are significantly associated with obesity. Very limited data is available on FTO in the Italian population.
Aims of our study are to investigate: (1) the association of FTO gene SNPs rs9939609 and rs9930506 with body mass index (BMI) and obesity-related parameters in a large cohort (n = 752) of Italian obese subjects; (2) the association between the two FTO SNPs and age of onset of obesity.
Our results demonstrate a strong association between FTO SNPs rs9939609 (P < 0.043) and rs9930506 (P < 0.029) with BMI in the Italian population. FTO rs9930506 was significantly associated with higher BMI in a G allele dose-dependent manner (BMI + 1.4 kg/m2 per G allele). We also observed that the association with BMI of the two FTO variants varied with age, with the carriers of the risk alleles developing an increase in body weight earlier in life. In conclusion, our study further demonstrates a role of the genetic variability in FTO on BMI in a large Italian population.
Collapse
|
171
|
Gutierrez-Aguilar R, Kim DH, Woods SC, Seeley RJ. Expression of new loci associated with obesity in diet-induced obese rats: from genetics to physiology. Obesity (Silver Spring) 2012; 20:306-12. [PMID: 21779089 DOI: 10.1038/oby.2011.236] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) are a powerful tool for revealing genes associated with common human obesity. New loci associated with obesity have recently been reported, but their function and metabolic implications remain to be elucidated. In order to begin identifying the role of some of these obesity-related loci, the closest genes to the polymorphism of each locus were selected and their expression was compared in the hypothalamus, adipose tissue, liver, soleus muscle, and extensor digitorum longus muscle (EDL) of Long-Evans rats maintained on chow or a high-fat diet (HFD) for 6 weeks. From a total of 19 genes analyzed, seven genes (ETV5, FTO, GNPDA2, KCTD15, TMEM18, MC4R, and SH2B1) were down-regulated in the hypothalamus of HFD compared to chow-fed rats. In adipose tissue of rats fed on HFD, the mRNA levels of BCDIN3, KCTD15, and SULT1A1 were down-regulated, whereas those of MTCH2, PTER, and TUFM were up-regulated. In the liver, three genes were up-regulated (PTER, SULT1A1, and TUFM) in HFD relative to chow-fed rats, and TMEM18 was down-regulated. Finally, in soleus muscle of HFD-fed rats, BCDIN3, BDNF, and TMEM18 were down-regulated, and in the EDL muscle SH2B1 and TUFM were up-regulated. mRNA levels in the hypothalamus were compared between fed and fasted states, and only KCTD15 was down-regulated during fasting when fed a chow diet. In conclusion, novel genes found to be associated with obesity are regulated by a HFD and the mRNA levels of KCTD15 is dependent on the nutritional status. These results suggest a potential role of these genes in the regulation of energy balance.
Collapse
|
172
|
Association of the fat mass and obesity-associated (FTO) gene variant (rs9939609) with dietary intake in the Finnish Diabetes Prevention Study. Br J Nutr 2012; 108:1859-65. [PMID: 22265018 DOI: 10.1017/s0007114511007410] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A cluster of variants in the fat mass and obesity-associated (FTO) gene are associated with the common form of obesity. Well-documented dietary data are required for identifying how the genetic risk can be modified by dietary factors. The objective of the present study was to investigate the associations between the FTO risk allele (rs9939609) and dietary intake, and to evaluate how dietary intake affects the association between FTO and BMI in the Finnish Diabetes Prevention Study during a mean follow-up of 3·2 years. A total of 479 (BMI >25 kg/m2) men and women were genotyped for rs9939609. The participants completed a 3 d food record at baseline and before every annual study visit. The average intakes at baseline and during the years 1, 2 and 3 were calculated. At baseline, the FTO variant rs9939609 was not associated with the mean values of total energy intake, macronutrients or fibre. At baseline, a higher BMI by the FTO risk genotype was detected especially in those who reported a diet high in fat with mean BMI of 30·6 (sd 4·1), 31·3 (sd 4·6) and 34·5 (sd 6·2) kg/m2 for TT, TA and AA carriers, respectively (P =0·005). Higher BMI was also observed in those who had a diet low in carbohydrates (P =0·028) and fibre (P =0·015). However, in the analyses adjusted for total energy intake, age and sex, significant interactions between FTO and dietary intakes were not found. These findings suggest that the association between the FTO genotype and obesity is influenced by the components of dietary intake, and the current dietary recommendations are particularly beneficial for those who are genetically susceptible for obesity.
Collapse
|
173
|
Senekal M. Genotype-based personalised nutrition for obesity prevention and treatment: are we there yet? SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2012. [DOI: 10.1080/16070658.2012.11734396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
174
|
McTaggart JS, Lee S, Iberl M, Church C, Cox RD, Ashcroft FM. FTO is expressed in neurones throughout the brain and its expression is unaltered by fasting. PLoS One 2011; 6:e27968. [PMID: 22140494 PMCID: PMC3227617 DOI: 10.1371/journal.pone.0027968] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/28/2011] [Indexed: 11/20/2022] Open
Abstract
Single-nucleotide polymorphisms in the first intron of the ubiquitously expressed FTO gene are associated with obesity. Although the physiological functions of FTO remain unclear, food intake is often altered when Fto expression levels are manipulated. Furthermore, deletion of FTO from neurones alone has a similar effect on food intake to deletion of FTO in all tissues. These results indicate that FTO expression in the brain is particularly important. Considerable focus has been placed on the dynamic regulation of Fto mRNA expression in the hypothalamus after short-term (16–48 hour) fasting, but results have been controversial. There are no studies that quantify FTO protein levels across the brain, and assess its alteration following short-term fasting. Using immunohistochemistry, we found that FTO protein is widely expressed in mouse brain, and present in the majority of neurones. Using quantitative Western blotting and RT-qPCR we show that FTO protein and mRNA levels in the hypothalamus, cerebellum and rostral brain are relatively uniform, and levels in the brain are higher than in skeletal muscles of the lower limbs. Fasting for 18 hours does not alter the expression pattern, or levels, of FTO protein and mRNA. We further show that the majority of POMC neurones, which are critically involved in food intake regulation, also express FTO, but that the percentage of FTO-positive POMC neurones is not altered by fasting. In summary, we find no evidence that Fto/FTO expression is regulated by short-term (18-hour) fasting. Thus, it is unlikely that the hunger and increased post-fasting food intake caused by such food deprivation is driven by alterations in Fto/FTO expression. The widespread expression of FTO in neurones also suggests that physiological studies of this protein should not be limited to the hypothalamus.
Collapse
Affiliation(s)
- James S. McTaggart
- Department of Physiology, Anatomy and Genetics, OXION Centre for Ion Channel Studies, Henry Wellcome Centre for Gene Function, Oxford, United Kingdom
- OXION Centre for Ion Channel Studies, Henry Wellcome Centre for Gene Function, Oxford, United Kingdom
| | - Sheena Lee
- Department of Physiology, Anatomy and Genetics, OXION Centre for Ion Channel Studies, Henry Wellcome Centre for Gene Function, Oxford, United Kingdom
- OXION Centre for Ion Channel Studies, Henry Wellcome Centre for Gene Function, Oxford, United Kingdom
| | - Michaela Iberl
- Department of Physiology, Anatomy and Genetics, OXION Centre for Ion Channel Studies, Henry Wellcome Centre for Gene Function, Oxford, United Kingdom
- OXION Centre for Ion Channel Studies, Henry Wellcome Centre for Gene Function, Oxford, United Kingdom
| | - Chris Church
- OXION Centre for Ion Channel Studies, Henry Wellcome Centre for Gene Function, Oxford, United Kingdom
- MRC Harwell, Metabolism and Inflammation, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Roger D. Cox
- OXION Centre for Ion Channel Studies, Henry Wellcome Centre for Gene Function, Oxford, United Kingdom
- MRC Harwell, Metabolism and Inflammation, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Frances M. Ashcroft
- Department of Physiology, Anatomy and Genetics, OXION Centre for Ion Channel Studies, Henry Wellcome Centre for Gene Function, Oxford, United Kingdom
- OXION Centre for Ion Channel Studies, Henry Wellcome Centre for Gene Function, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
175
|
Jia X, Nie Q, Lamont SJ, Zhang X. Variation in sequence and expression of the avian FTO, and association with glucose metabolism, body weight, fatness and body composition in chickens. Int J Obes (Lond) 2011; 36:1054-61. [PMID: 22105519 DOI: 10.1038/ijo.2011.221] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The fat mass and obesity-associated gene (FTO), a crucial gene that affects human obesity and metabolism, has been widely studied in mammals but remains poorly characterized in birds. We aimed to identify variant FTO transcripts in domestic avian species, and to characterize the expression and biological functions of FTO in chickens. METHODS Variant FTO transcripts and their expression in birds were investigated using RACE and real-time quantitative reverse transcriptase-PCR technology. The effects of FTO on glucose metabolism, growth and body composition were determined by fasting and various diet treatments, as well as association analysis in a F₂ resource population. The function of cFTO1 was further studied by overexpression in chick embryo fibroblast (CEF) cells. RESULTS Variant FTO transcripts were identified in chicken (cFTO1 to cFTO4), duck (dFTO1, dFTO2 and dFTO4) and goose (gFTO1, gFTO2 and gFTO5). In the chicken, the complete transcript (cFTO1) was predominantly expressed in the leg muscle, pituitary, hypothalamus and cerebellum. Fasting increased both cFTO1 and PGC1α gene expression in the cerebrum, liver, breast muscle and subcutaneous fat, but decreased expression in the pituitary and anterior hypothalamus. In all tested tissues in chickens, a high-glucose diet markedly increased cFTO1 and PGC1α expression. Feeding a high-fat diet increased both cFTO1 and PGC1α expression, except in the pituitary. Overexpression of cFTO1 in CEF cells significantly increased the expression of PGC1α (2.5-fold), STAT3 (2.2-fold) and HL (1.5-fold), a cluster of genes related to energy metabolism. A total of 65 single nucleotide polymorphisms (SNPs) were identified in chicken FTO, and 18 tested SNPs were significantly associated with traits of body weight, body composition and fatness. CONCLUSIONS These data collectively indicate that FTO is related to glucose metabolism, body weight, fatness and body composition in birds, thus expanding knowledge of FTO function to non-mammalian species.
Collapse
Affiliation(s)
- X Jia
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | | | | | | |
Collapse
|
176
|
Rask-Andersen M, Almén MS, Olausen HR, Olszewski PK, Eriksson J, Chavan RA, Levine AS, Fredriksson R, Schiöth HB. Functional coupling analysis suggests link between the obesity gene FTO and the BDNF-NTRK2 signaling pathway. BMC Neurosci 2011; 12:117. [PMID: 22087873 PMCID: PMC3248879 DOI: 10.1186/1471-2202-12-117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 11/16/2011] [Indexed: 11/24/2022] Open
Abstract
Background The Fat mass and obesity gene (FTO) has been identified through genome wide association studies as an important genetic factor contributing to a higher body mass index (BMI). However, the molecular context in which this effect is mediated has yet to be determined. We investigated the potential molecular network for FTO by analyzing co-expression and protein-protein interaction databases, Coxpresdb and IntAct, as well as the functional coupling predicting multi-source database, FunCoup. Hypothalamic expression of FTO-linked genes defined with this bioinformatics approach was subsequently studied using quantitative real time-PCR in mouse feeding models known to affect FTO expression. Results We identified several candidate genes for functional coupling to FTO through database studies and selected nine for further study in animal models. We observed hypothalamic expression of Profilin 2 (Pfn2), cAMP-dependent protein kinase catalytic subunit beta (Prkacb), Brain derived neurotrophic factor (Bdnf), neurotrophic tyrosine kinase, receptor, type 2 (Ntrk2), Signal transducer and activator of transcription 3 (Stat3), and Btbd12 to be co-regulated in concert with Fto. Pfn2 and Prkacb have previously not been linked to feeding regulation. Conclusions Gene expression studies validate several candidates generated through database studies of possible FTO-interactors. We speculate about a wider functional role for FTO in the context of current and recent findings, such as in extracellular ligand-induced neuronal plasticity via NTRK2/BDNF, possibly via interaction with the transcription factor CCAAT/enhancer binding protein β (C/EBPβ).
Collapse
Affiliation(s)
- Mathias Rask-Andersen
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Uppsala SE 75124, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Objective: Recent genome-wide association studies have identified a strong association between obesity and common variants in the fat mass and obesity associated (FTO) gene. FTO has been detected in the hypothalamus, but little is known about its regulation in that particular brain structure. The present study addressed the hypothesis that hypothalamic FTO expression is regulated by nutrients, specifically by glucose, and that its regulation by nutrients is impaired in obesity. Research design and methods: The effect of intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration of glucose on hypothalamic Fto mRNA levels was examined in fasted mice. Additionally, the effect of glucose on Fto mRNA levels was also investigated ex vivo using mouse hypothalamic explants. Lastly, the effect of i.p. glucose injection on hypothalamic Fto immunoreactivity and food intake was compared between lean wild-type and obese ob/ob mice. Results: In wild-type mice, fasting reduced both Fto mRNA levels and the number of Fto-immunoreactive cells in the hypothalamus, whereas i.p. glucose treatment reversed this effect of fasting. Furthermore, i.c.v. glucose treatment also increased hypothalamic Fto mRNA levels in fasted mice. Incubation of hypothalamic explants at high glucose concentration increased Fto mRNA levels. In ob/ob mice, both fasting and i.p. glucose treatment failed to alter the number of Fto-immunoreactive cells in the hypothalamus. Glucose-induced feeding suppression was abolished in ob/ob mice. Conclusion: Reduction in hypothalamic Fto expression after fasting likely arises at least partly from reduced circulating glucose levels and/or reduced central action of glucose. Obesity is associated with impairments in glucose-mediated regulation of hypothalamic Fto expression and anorexia. Hypothalamic Fto-expressing neurons may have a role in the regulation of metabolism by monitoring metabolic states of the body.
Collapse
|
178
|
Abstract
This article reviews factors that contribute to excessive weight gain in children and outlines current knowledge regarding approaches for treating pediatric obesity. Most of the known genetic causes of obesity primarily increase energy intake. Genes regulating the leptin signaling pathway are particularly important for human energy homeostasis. Obesity is a chronic disorder that requires long-term strategies for management. The foundation for all treatments for pediatric obesity remains restriction of energy intake with lifestyle modification. There are few long-term studies of pharmacotherapeutic interventions for pediatric obesity. Bariatric surgical approaches are the most efficacious treatment but, because of their potential risks, are reserved for those with the most significant complications of obesity.
Collapse
|
179
|
Caruso V, Chen H, Morris MJ. Early hypothalamic FTO overexpression in response to maternal obesity--potential contribution to postweaning hyperphagia. PLoS One 2011; 6:e25261. [PMID: 21980407 PMCID: PMC3182187 DOI: 10.1371/journal.pone.0025261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/30/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intrauterine and postnatal overnutrition program hyperphagia, adiposity and glucose intolerance in offspring. Single-nucleotide polymorphisms (SNPs) of the fat mass and obesity associated (FTO) gene have been linked to increased risk of obesity. FTO is highly expressed in hypothalamic regions critical for energy balance and hyperphagic phenotypes were linked with FTO SNPs. As nutrition during fetal development can influence the expression of genes involved in metabolic function, we investigated the impact of maternal obesity on FTO. METHODS Female Sprague Dawley rats were exposed to chow or high fat diet (HFD) for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1 (PND1), some litters were adjusted to 3 pups (vs. 12 control) to induce postnatal overnutrition. At PND20, rats were weaned onto chow or HFD for 15 weeks. FTO mRNA expression in the hypothalamus and liver, as well as hepatic markers of lipid metabolism were measured. RESULTS At weaning, hypothalamic FTO mRNA expression was increased significantly in offspring of obese mothers and FTO was correlated with both visceral and epididymal fat mass (P<0.05); body weight approached significance (P = 0.07). Hepatic FTO and Fatty Acid Synthase mRNA expression were decreased by maternal obesity. At 18 weeks, FTO mRNA expression did not differ between groups; however body weight was significantly correlated with hypothalamic FTO. Postnatal HFD feeding significantly reduced hepatic Carnitine Palmitoyltransferase-1a but did not affect the expression of other hepatic markers investigated. FTO was not affected by chronic HFD feeding. SIGNIFICANCE Maternal obesity significantly impacted FTO expression in both hypothalamus and liver at weaning. Early overexpression of hypothalamic FTO correlated with increased adiposity and later food intake of siblings exposed to HFD suggesting upregulation of FTO may contribute to subsequent hyperphagia, in line with some human data. No effect of maternal obesity was observed on FTO in adulthood.
Collapse
Affiliation(s)
- Vanni Caruso
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hui Chen
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- School of Medical and Molecular Bioscience, Faculty of Science, University of Technology, Sydney, New South Wales, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
180
|
Association of TMEM18 variants with BMI and waist circumference in children and correlation of mRNA expression in the PFC with body weight in rats. Eur J Hum Genet 2011; 20:192-7. [PMID: 21952719 DOI: 10.1038/ejhg.2011.176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies have shown a strong association of single-nucleotide polymorphisms (SNPs) in the near vicinity of the TMEM18 gene. The effects of the TMEM18-associated variants are more readily observed in children. TMEM18 encodes a 3TM protein, which locates to the nuclear membrane. The functional context of TMEM18 and the effects of its associated variants are as of yet undetermined. To further explore the effects of near-TMEM18 variants, we have genotyped two TMEM18-associated SNPs, rs6548238 and rs4854344, in a cohort of 2352 Greek children (Healthy Growth Study). Included in this study are data on anthropomorphic traits body weight, BMI z-score and waist circumference. Also included are dietary energy and macronutrient intake as measured via 24-h recall interviews. Major alleles of rs6548238 and rs4854344 were significantly associated with an increased risk of obesity (odds ratio = 1.489 (1.161-1.910) and 1.494 (1.165-1.917), respectively), and positively correlated to body weight (P = 0.017, P = 0.010) and waist circumference (P = 0.003, P = 0.003). An association to energy and macronutrient intake was not observed in this cohort. We also correlated food intake and body weight in a food choice model in rats to Tmem18 expression in central regions involved in feeding behavior. We observed a strong positive correlation between TMEM18 expression and body weight in the prefrontal cortex (PFC) (r = 0.5694, P = 0.0003) indicating a potential role for TMEM18 in higher functions related to feeding involving the PFC.
Collapse
|
181
|
Demerath EW, Lutsey PL, Monda KL, Linda Kao WH, Bressler J, Pankow JS, North KE, Folsom AR. Interaction of FTO and physical activity level on adiposity in African-American and European-American adults: the ARIC study. Obesity (Silver Spring) 2011; 19:1866-72. [PMID: 21593801 PMCID: PMC3293392 DOI: 10.1038/oby.2011.131] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Physical inactivity accentuates the association of variants in the FTO locus with obesity-related traits but evidence is largely lacking in non-European populations. Here we tested the hypothesis that physical activity (PA) modifies the association of the FTO single-nucleotide polymorphism (SNP) rs9939609 with adiposity traits in 2,656 African Americans (AA) (1,626 women and 1,030 men) and 9,867 European Americans (EA) (5,286 women and 4,581 men) aged 45-66 years in the Atherosclerosis Risk in Communities (ARIC) study. Individuals in the lowest quintile of the sport activity index of the Baecke questionnaire were categorized as low PA. Baseline BMI, waist circumference (WC), and skinfold measures were dependent variables in regression models testing the additive effect of the SNP, low PA, and their interaction, adjusting for age, alcohol use, cigarette use, educational attainment, and percent European ancestry in AA adults, stratified by sex and race/ethnicity. rs9939609 was associated with adiposity in all groups other than AA women. The SNP × PA interaction was significant in AA men (P ≤ 0.002 for all traits) and EA men (P ≤ 0.04 for all traits). For each additional copy of the A (risk) allele, WC in AA men was higher in those with low PA (β(lowPA): 5.1 cm, 95% confidence interval (CI): 2.6-7.5) than high PA (β(highPA): 0.7 cm, 95% CI: -0.4 to 1.9); P (interaction) = 0.002). The interaction effect was not observed in EA or AA women. FTO SNP × PA interactions on adiposity were observed for AA as well as EA men. Differences by sex require further examination.
Collapse
Affiliation(s)
- Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Choh AC, Curran JE, Odegaard AO, Nahhas RW, Czerwinski SA, Blangero J, Towne B, Demerath EW. Differences in the heritability of growth and growth velocity during infancy and associations with FTO variants. Obesity (Silver Spring) 2011; 19:1847-54. [PMID: 21720422 PMCID: PMC4013792 DOI: 10.1038/oby.2011.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
While the associations of common variants in the FTO gene with obesity have been widely replicated in adults, there is conflicting evidence regarding their effects in infancy. We hypothesize that the genetic influences on growth traits vary during infancy, and that conflicting results may stem from variation in the ages at which FTO associations have been examined. Using longitudinal weight and length data at 0, 1, 3, 6, 9, 12, 18, 24, 30, and 36 months in 917 (444 females, 473 males) family members from the Fels Longitudinal Study, we used a variance components-based approach (SOLAR) to: (i) examine differences in heritability (gene-by-age interaction) in weight, length, relative weight (BMI and ponderal index (PI)) and instantaneous weight and length velocities over the course of infancy, and (ii) test whether a common FTO variant (rs9939609) was associated with infant growth at three ages (maximum trait heritability, birth and 36 months). All heritabilities at birth (of 39-74%) were significant (P < 3.9 × 10(-10)), but changed with age (gene-by-age interaction, P < 0.05). Weight, relative weight, and weight velocity reached maximum heritabilities (of 76-89%) at 6-9 months, while length and length velocity reached maximum heritabilities (of 96-99%) at 18-30 months. We found no association of rs9939609 with growth status or velocity measured at any age (P > 0.11). This study for the first time demonstrates the fluctuation of genetic influences on infant growth, but further work is required to determine which gene variants explain the strong additive genetic effects observed.
Collapse
Affiliation(s)
- Audrey C Choh
- Lifespan Health Research Center, Department of Community Health, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Ramos RB, Casanova GK, Maturana MA, Spritzer PM. Variations in the fat mass and obesity-associated (FTO) gene are related to glucose levels and higher lipid accumulation product in postmenopausal women from southern Brazil. Fertil Steril 2011; 96:974-9. [PMID: 21868005 DOI: 10.1016/j.fertnstert.2011.07.1148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To test the association between polymorphisms rs9939609 T>A and rs8050136 A>C of the fat mass and obesity-associated (FTO) gene and metabolic and cardiovascular variables in postmenopause. DESIGN Cross-sectional study. SETTING University hospital. PATIENT(S) A total of 135 postmenopausal women (mean age 52 ± 4 years). INTERVENTION(S) Anthropometric measurements and collection of blood samples. MAIN OUTCOME MEASURE(S) Blood pressure, metabolic variables, and FTO genotype. RESULT(S) The frequency of polymorphism rs9939609 was 43.7% for the wild TT genotype, 43.0% for TA, and 13.3% for AA. The frequency of the rs8050136 polymorphism was 12.6% for the wild AA genotype, 39.3% for AC, and 48.1% for CC. The polymorphic AA genotype of the SNP rs9939609 was associated with higher glucose levels and lipid accumulation product (LAP) index, whereas the wild AA genotype of the SNP rs8050136 was associated with higher LAP. CONCLUSION(S) The rs9939609 polymorphism in the FTO gene is related to abnormal glucose levels and with LAP, a surrogate marker of diabetes and cardiovascular risk in postmenopause. Further studies are needed in different ethnic backgrounds to confirm the clinical relevance of these associations.
Collapse
Affiliation(s)
- Ramon Bossardi Ramos
- Gynecologic Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
184
|
Friebe D, Löffler D, Schönberg M, Bernhard F, Büttner P, Landgraf K, Kiess W, Körner A. Impact of metabolic regulators on the expression of the obesity associated genes FTO and NAMPT in human preadipocytes and adipocytes. PLoS One 2011; 6:e19526. [PMID: 21687707 PMCID: PMC3110598 DOI: 10.1371/journal.pone.0019526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/07/2011] [Indexed: 11/23/2022] Open
Abstract
Background FTO and NAMPT/PBEF/visfatin are thought to play a role in obesity but their transcriptional regulation in adipocytes is not fully understood. In this study, we evaluated the transcriptional regulation of FTO and NAMPT in preadipocytes and adipocytes by metabolic regulators. Methodology and Principal Findings We assessed FTO mRNA expression during human adipocyte differentiation of Simpson-Golabi-Behmel syndrome (SGBS) cells and primary subcutaneous preadipocytes in vitro and evaluated the effect of the metabolic regulators glucose, insulin, dexamethasone, IGF-1 and isoproterenol on FTO and NAMPT mRNA expression in SGBS preadipocytes and adipocytes. FTO mRNA levels were not significantly modulated during adipocyte differentiation. Also, metabolic regulators had no impact on FTO expression in preadipocytes or adipocytes. In SGBS preadipocytes NAMPT expression was more than 3fold induced by dexamethasone and isoproterenol and 1.6fold by dexamethasone in adipocytes. Complete glucose restriction caused an increase in NAMPT mRNA expression by more than 5fold and 1.4fold in SGBS preadipocytes and adipocytes, respectively. Conclusion FTO mRNA expression is not significantly affected by differentiation or metabolic regulators in human adipocytes. The stimulation of NAMPT expression by dexamethasone, isoproterenol and complete glucose restriction may indicate a regulation of NAMPT by metabolic stress, which was more pronounced in preadipocytes compared to mature adipocytes.
Collapse
Affiliation(s)
- Daniela Friebe
- University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Dennis Löffler
- University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Maria Schönberg
- University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Falk Bernhard
- University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Petra Büttner
- University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Wieland Kiess
- University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
- * E-mail:
| |
Collapse
|
185
|
Peng S, Zhu Y, Xu F, Ren X, Li X, Lai M. FTO gene polymorphisms and obesity risk: a meta-analysis. BMC Med 2011; 9:71. [PMID: 21651756 PMCID: PMC3118373 DOI: 10.1186/1741-7015-9-71] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/08/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The pathogenesis of obesity is reportedly related to variations in the fat mass and an obesity-associated gene (FTO); however, as the number of reports increases, particularly with respect to varying ethnicities, there is a need to determine more precisely the effect sizes in each ethnic group. In addition, some reports have claimed ethnic-specific associations with alternative SNPs, and to that end there has been a degree of confusion. METHODS We searched PubMed, MEDLINE, Web of Science, EMBASE, and BIOSIS Preview to identify studies investigating the associations between the five polymorphisms and obesity risk. Individual study odds ratios (OR) and their 95% confidence intervals (CI) were estimated using per-allele comparison. Summary ORs were estimated using a random effects model. RESULTS We identified 59 eligible case-control studies in 27 articles, investigating 41,734 obesity cases and 69,837 healthy controls. Significant associations were detected between obesity risk and the five polymorphisms: rs9939609 (OR: 1.31, 95% CI: 1.26 to 1.36), rs1421085 (OR: 1.43, 95% CI: 1.33 to 1.53), rs8050136 (OR: 1.25, 95% CI: 1.13 to 1.38), rs17817449 (OR: 1.54, 95% CI: 1.41 to 1.68), and rs1121980 (OR: 1.34, 95% CI: 1.10 to 1.62). Begg's and Egger's tests provided no evidence of publication bias for the polymorphisms except rs1121980. There is evidence of higher heterogeneity, with I2 test values ranging from 38.1% to 84.5%. CONCLUSIONS This meta-analysis suggests that FTO may represent a low-penetrance susceptible gene for obesity risk. Individual studies with large sample size are needed to further evaluate the associations between the polymorphisms and obesity risk in various ethnic populations.
Collapse
Affiliation(s)
- Sihua Peng
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Yimin Zhu
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Fangying Xu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Xiaobin Ren
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Xiaobo Li
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| |
Collapse
|
186
|
Abstract
Genome-wide association studies have been very powerful, uncovering potentially new biology that would not have been possible using a candidate gene approach. A prime example of this is the gene FTO (fat mass and obesity associated), which first came to light in 2007, when single nucleotide polymorphisms in its first intron were robustly associated with body mass index and obesity. Subsequently, as it became clear that this association with body weight, and increasingly food intake, was replicable across multiple populations and different age groups, attention was turned to studying the biology of FTO, about which absolutely nothing was known. This review focuses on the genetic and biochemical approaches as well as animal models that have been used by us and others since 2007 to try and uncover the complex biology of FTO.
Collapse
Affiliation(s)
- Yi-Chun Loraine Tung
- University of Cambridge Metabolic Research Labs, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
187
|
Olszewski PK, Fredriksson R, Eriksson JD, Mitra A, Radomska KJ, Gosnell BA, Solvang MN, Levine AS, Schiöth HB. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression. Biochem Biophys Res Commun 2011; 408:422-6. [PMID: 21514276 DOI: 10.1016/j.bbrc.2011.04.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/07/2011] [Indexed: 12/31/2022]
Abstract
Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Kivimäki M, Jokela M, Hamer M, Geddes J, Ebmeier K, Kumari M, Singh-Manoux A, Hingorani A, Batty GD. Examining overweight and obesity as risk factors for common mental disorders using fat mass and obesity-associated (FTO) genotype-instrumented analysis: The Whitehall II Study, 1985-2004. Am J Epidemiol 2011; 173:421-9. [PMID: 21248310 DOI: 10.1093/aje/kwq444] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Mendelian randomization approach exploits genetic variants to improve causal inference when using observational data. The authors examined the relation between long-term obesity and common mental disorders (CMD) by utilizing the known relation between fat mass and obesity-associated (FTO) genotype and body mass index (BMI; weight (kg)/height (m)(2)). Data collection in 2,981 men and 1,164 women (mean age at baseline = 44 years) from the Whitehall II Study (London, United Kingdom) included 4 repeated examinations of BMI and CMD over a 19-year follow-up period (1985-2004), plus an assessment of FTO polymorphism rs1421085. In men, there was an association of FTO genotype with all measures of adiposity (mean BMI, number of times obese, and, in nonobese persons, number of times overweight). FTO was also associated with CMD in men. This was independent of adiposity, thus potentially violating the exclusion restriction assumption. According to both conventional and FTO-instrumented regression analysis, measurement of obesity was associated with an increased occurrence of CMD. In the FTO-instrumented analysis only, higher BMI and overweight were also associated with CMD. In women, there was no link between FTO and adiposity. Mendelian randomization analyses supported the status of long-term obesity as a risk factor for CMD in men-a finding that should be interpreted cautiously because the function of the FTO gene is unknown.
Collapse
Affiliation(s)
- Mika Kivimäki
- Department of Epidemiology and Public Health, Faculty of Biomedical Sciences, University College London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Lurie G, Gaudet MM, Spurdle AB, Carney ME, Wilkens LR, Yang HP, Weiss NS, Webb PM, Thompson PJ, Terada K, Setiawan VW, Rebbeck TR, Prescott J, Orlow I, O'Mara T, Olson SH, Narod SA, Matsuno RK, Lissowska J, Liang X, Levine DA, Le Marchand L, Kolonel LN, Henderson BE, Garcia-Closas M, Doherty JA, De Vivo I, Chen C, Brinton LA, Akbari MR, Goodman MT. The obesity-associated polymorphisms FTO rs9939609 and MC4R rs17782313 and endometrial cancer risk in non-Hispanic white women. PLoS One 2011; 6:e16756. [PMID: 21347432 PMCID: PMC3035652 DOI: 10.1371/journal.pone.0016756] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 12/30/2010] [Indexed: 01/14/2023] Open
Abstract
Overweight and obesity are strongly associated with endometrial cancer. Several independent genome-wide association studies recently identified two common polymorphisms, FTO rs9939609 and MC4R rs17782313, that are linked to increased body weight and obesity. We examined the association of FTO rs9939609 and MC4R rs17782313 with endometrial cancer risk in a pooled analysis of nine case-control studies within the Epidemiology of Endometrial Cancer Consortium (E2C2). This analysis included 3601 non-Hispanic white women with histologically-confirmed endometrial carcinoma and 5275 frequency-matched controls. Unconditional logistic regression models were used to assess the relation of FTO rs9939609 and MC4R rs17782313 genotypes to the risk of endometrial cancer. Among control women, both the FTO rs9939609 A and MC4R rs17782313 C alleles were associated with a 16% increased risk of being overweight (p = 0.001 and p = 0.004, respectively). In case-control analyses, carriers of the FTO rs9939609 AA genotype were at increased risk of endometrial carcinoma compared to women with the TT genotype [odds ratio (OR) = 1.17; 95% confidence interval (CI): 1.03–1.32, p = 0.01]. However, this association was no longer apparent after adjusting for body mass index (BMI), suggesting mediation of the gene-disease effect through body weight. The MC4R rs17782313 polymorphism was not related to endometrial cancer risk (per allele OR = 0.98; 95% CI: 0.91–1.06; p = 0.68). FTO rs9939609 is a susceptibility marker for white non-Hispanic women at higher risk of endometrial cancer. Although FTO rs9939609 alone might have limited clinical or public health significance for identifying women at high risk for endometrial cancer beyond that of excess body weight, further investigation of obesity-related genetic markers might help to identify the pathways that influence endometrial carcinogenesis.
Collapse
Affiliation(s)
- Galina Lurie
- Cancer Epidemiology Program, Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail:
| | - Mia M. Gaudet
- Epidemiology Research Program, American Cancer Society, Inc., Atlanta, Georgia, United States of America
| | - Amanda B. Spurdle
- Queensland Institute of Medical Research, Brisbane, Post Office Royal Brisbane Hospital, Brisbane, Australia
| | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Lynne R. Wilkens
- Cancer Epidemiology Program, Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Hannah P. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Noel S. Weiss
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, United States of America
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Penelope M. Webb
- Queensland Institute of Medical Research, Brisbane, Post Office Royal Brisbane Hospital, Brisbane, Australia
| | - Pamela J. Thompson
- Cancer Epidemiology Program, Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Keith Terada
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Veronica Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Timothy R. Rebbeck
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Abramson Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Jennifer Prescott
- Department of Epidemiology, Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Tracy O'Mara
- Queensland Institute of Medical Research, Brisbane, Post Office Royal Brisbane Hospital, Brisbane, Australia
- Hormone Dependent Cancer Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Steven A. Narod
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Rayna K. Matsuno
- Cancer Epidemiology Program, Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii, United States of America
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Xiaolin Liang
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Douglas A. Levine
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Loic Le Marchand
- Cancer Epidemiology Program, Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Laurence N. Kolonel
- Cancer Epidemiology Program, Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Jennifer Anne Doherty
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Immaculata De Vivo
- Department of Epidemiology, Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chu Chen
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, United States of America
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Otolaryngology: Head and Neck Surgery, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Mohammad R. Akbari
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Marc T. Goodman
- Cancer Epidemiology Program, Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii, United States of America
| |
Collapse
|
190
|
Olszewski PK, Radomska KJ, Ghimire K, Klockars A, Ingman C, Olszewska AM, Fredriksson R, Levine AS, Schiöth HB. Fto immunoreactivity is widespread in the rodent brain and abundant in feeding-related sites, but the number of Fto-positive cells is not affected by changes in energy balance. Physiol Behav 2011; 103:248-53. [PMID: 21295049 DOI: 10.1016/j.physbeh.2011.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 01/14/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
A single nucleotide polymorphism in the FTO gene is associated with obesity in humans. Evidence gathered in animals mainly relates energy homeostasis to the central FTO mRNA levels, but our knowledge of the Fto protein distribution and regulation is limited. Fto, a demethylase and transcriptional coactivator, is thought to regulate expression of other genes. Herein, we examined Fto immunoreactivity (IR) in the mouse and rat brain with emphasis on sites governing energy balance. We also studied whether energy status affects central Fto IR. We report that Fto IR, limited to nuclear profiles, is widespread in the brain, in- and outside feeding circuits; it shows a very similar distribution in feeding-related sites in mice and rats. Several areas regulating energy homeostasis display enhanced intensity of Fto staining: the arcuate, paraventricular, supraoptic, dorsomedial, ventromedial nuclei, and dorsal vagal complex. Some regions mediating feeding reward, including the bed nucleus of the stria terminalis, have ample Fto IR. We found that differences in energy status between rats fed ad libitum, deprived or refed following deprivation, did not affect the number of Fto-positive nuclei in 10 sites governing consumption for energy or reward. We conclude that Fto IR, widespread in the rodent brain, is particularly abundant in feeding circuits, but the number of Fto-positive neurons is unaffected by changes in energy balance.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Larder R, Cheung MKM, Tung YCL, Yeo GSH, Coll AP. Where to go with FTO? Trends Endocrinol Metab 2011; 22:53-9. [PMID: 21131211 DOI: 10.1016/j.tem.2010.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/04/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
Abstract
An understanding of the mechanisms underlying body-weight regulation is crucial to tackle the growing problem of obesity. Recent technological advances in the analysis of genetic variation have given novel insights into the molecular basis of common disease. In particular, genomic variants in the fat mass and obesity-associated (FTO) gene have been consistently associated with human adiposity and metabolic disorders. Studies of the product of this previously mysterious gene have formed a vanguard in the quest to turn statistical association into hard biology. In this review, we examine data from human genetic and murine studies that explore the potential role of FTO, a member of the Fe(II)- and 2-oxoglutarate-dependent oxygenase superfamily, in the regulation of energy homeostasis and metabolism.
Collapse
Affiliation(s)
- Rachel Larder
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | | | | | | |
Collapse
|
192
|
Wang P, Yang FJ, Du H, Guan YF, Xu TY, Xu XW, Su DF, Miao CY. Involvement of leptin receptor long isoform (LepRb)-STAT3 signaling pathway in brain fat mass- and obesity-associated (FTO) downregulation during energy restriction. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2011; 17:523-32. [PMID: 21267512 DOI: 10.2119/molmed.2010.00134] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/20/2011] [Indexed: 11/06/2022]
Abstract
Obesity is an important risk factor for cardiovascular disease, diabetes and certain cancers. The fat mass- and obesity-associated (FTO) gene is tightly associated with the pathophysiology of obesity, whereas the exact role of FTO remains poorly understood. Here, we investigated the alternations of FTO mRNA and protein expression in the peripheral metabolic tissues and the brain upon energy restriction (ER) and explored the involvement of the leptin signaling pathway in FTO regulation under ER status. ER decreased the FTO mRNA and protein expression in hypothalamus and brainstem but not in periphery. Using double-immunofluorescence staining, FTO was found to be colocalized with the leptin receptor long isoform (LepRb) in arcuate nucleus of hypothalamus and the nucleus of the solitary tract. In LepRb mutant db/db mice, the FTO downregulation in brain and body weight reduction induced by ER were completely abolished. The enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) induced by ER was also impaired in db/db mice. Moreover, leptin directly activated the STAT3 signaling pathway and downregulated FTO in in vitro arcuate nucleus of hypothalamus cultures and in vivo wild-type mice but not db/db mice. Thus, our results provide the first evidence that the LepRb-STAT3 signaling pathway is involved in the brain FTO downregulation during ER.
Collapse
Affiliation(s)
- Pei Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Wang P, Yang FJ, Du H, Guan YF, Xu TY, Xu XW, Su DF, Miao CY. Involvement of Leptin Receptor Long Isoform (LepRb)-STAT3 Signaling Pathway in Brain Fat Mass- and Obesity-Associated (FTO) Downregulation during Energy Restriction. Mol Med 2011. [DOI: 10.2119/molmed.2010.000134] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
194
|
Cheung MKM, Yeo GSH. FTO Biology and Obesity: Why Do a Billion of Us Weigh 3 kg More? Front Endocrinol (Lausanne) 2011; 2:4. [PMID: 22649359 PMCID: PMC3355857 DOI: 10.3389/fendo.2011.00004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/07/2011] [Indexed: 12/22/2022] Open
Abstract
Few would dispute that the current obesity epidemic has been driven by lifestyle and environmental changes. However, it is clear that individuals respond differently to these "obesigenic" changes and this variation in response has a strong genetic element. Genome-wide association studies have revealed that single nucleotide polymorphisms in Fat mass and obesity-associated transcript (FTO) are robustly associated with body mass index and obesity. Although the effect of these risk alleles are modest, with heterozygous and homozygous carriers weighing approximately 1.5 and 3 kg more respectively, there are an estimated one billion homozygous carriers in the world, spanning multiple different ethnicities and populations. Yet despite its broad impact, the biological function of FTO, particularly its role in controlling energy balance, remains unknown. Although the study of severe Mendelian obesity has been invaluable in illuminating critical pathways controlling food intake, the major burden of disease is carried by those of us with "common obesity," which to date has resisted yielding meaningful biological insights. FTO has at last given us a handle on a huge, worldwide, common problem. In this review, we focus on the available genetic and in vivo evidence to date that implicates FTO in the control of energy balance.
Collapse
Affiliation(s)
- Man-Ka Marcella Cheung
- Metabolic Research Labs, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge Cambridge, UK
| | | |
Collapse
|
195
|
Bravard A, Lefai E, Meugnier E, Pesenti S, Disse E, Vouillarmet J, Peretti N, Rabasa-Lhoret R, Laville M, Vidal H, Rieusset J. FTO is increased in muscle during type 2 diabetes, and its overexpression in myotubes alters insulin signaling, enhances lipogenesis and ROS production, and induces mitochondrial dysfunction. Diabetes 2011; 60:258-68. [PMID: 20943749 PMCID: PMC3012179 DOI: 10.2337/db10-0281] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE A strong association between genetic variants and obesity was found for the fat mass and obesity-associated gene (FTO). However, few details are known concerning the expression and function of FTO in skeletal muscle of patients with metabolic diseases. RESEARCH DESIGN AND METHODS We investigated basal FTO expression in skeletal muscle from obese nondiabetic subjects and type 1 and type 2 diabetic patients, compared with age-matched control subjects, and its regulation in vivo by insulin, glucose, or rosiglitazone. The function of FTO was further studied in myotubes by overexpression experiments. RESULTS We found a significant increase of FTO mRNA and protein levels in muscle from type 2 diabetic patients, whereas its expression was unchanged in obese or type 1 diabetic patients. Moreover, insulin or glucose infusion during specific clamps did not regulate FTO expression in skeletal muscle from control or type 2 diabetic patients. Interestingly, rosiglitazone treatment improved insulin sensitivity and reduced FTO expression in muscle from type 2 diabetic patients. In myotubes, adenoviral FTO overexpression increased basal protein kinase B phosphorylation, enhanced lipogenesis and oxidative stress, and reduced mitochondrial oxidative function, a cluster of metabolic defects associated with type 2 diabetes. CONCLUSIONS This study demonstrates increased FTO expression in skeletal muscle from type 2 diabetic patients, which can be normalized by thiazolidinedione treatment. Furthermore, in vitro data support a potential implication of FTO in oxidative metabolism, lipogenesis and oxidative stress in muscle, suggesting that it could be involved in the muscle defects that characterize type 2 diabetes.
Collapse
Affiliation(s)
- Amélie Bravard
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Etienne Lefai
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Emmanuelle Meugnier
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Sandra Pesenti
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Emmanuel Disse
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Julien Vouillarmet
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Nöel Peretti
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Rémi Rabasa-Lhoret
- Montreal Diabetes Research Center, Montreal University, Montreal, Canada
| | - Martine Laville
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Hubert Vidal
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Jennifer Rieusset
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
- Corresponding author: Jennifer Rieusset,
| |
Collapse
|
196
|
Mangge H, Renner W, Almer G, Weghuber D, Möller R, Horejsi R. Rs9939609 variant of the fat mass and obesity-associated gene and trunk obesity in adolescents. J Obes 2011; 2011:186368. [PMID: 21318054 PMCID: PMC3026980 DOI: 10.1155/2011/186368] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/15/2010] [Accepted: 12/21/2010] [Indexed: 11/30/2022] Open
Abstract
A common T/A polymorphism (rs9939609) in the fat mass and obesity associated (FTO) gene was found associated with early-onset and severe obesity in both adults and children. However, recent observations failed to find associations of FTO with obesity. To investigate the genetic background of early obesity, we analysed the single nucleotide polymorphism (SNP) rs9939609 of FTO in 371 styrian adolescents towards degree of obesity, subcutaneous adipose tissue (SAT)-distribution determined by lipometry, early metabolic and preatherosclerotic symptoms. The percentage of AA homozygotes for the rs9939609 SNP of FTO was significantly increased in the obese adolescents. Compared to the TT wildtype, AA homozygotes showed significantly elevated values of SAT thickness at the trunk-located lipometer measure points neck and frontal chest, body weight, body mass index, waist, and hip circumference. No associations were found with carotis communis intima media thickness, systolic, diastolic blood pressure, ultrasensitive C-reactive protein (US-CRP), homocystein, total cholesterol, triglycerides, HDL cholesterol, oxidized LDL, fasted glucose, insulin, HOMA-index, liver transaminases, uric acid, and adipokines like resistin, leptin, and adiponectin. Taken together, to the best of our knowledge we are the first to report that the rs9939609 FTO SNP is associated with trunk weighted obesity as early as in adolescence.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
- *Harald Mangge:
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Private Medical University Salzburg, 5020 Salzburg, Austria
| | - Reinhard Möller
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Renate Horejsi
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
197
|
Abstract
Obesity (OMIM #601665) is a disease where excessive stores of body fat impact negatively on health. The first law of thermodynamics dictates that energy cannot be created or destroyed so if energy is taken into the body, but not transformed to ATP for metabolic work or dissipated as heat, it will be stored as fat. Therefore, the ultimate cause of obesity is a long-term positive energy imbalance [energy intake (EI) exceeds energy expenditure (EE)]. Despite this simple explanation, there is no single reason why EI may exceed EE meaning that the proximate causes of obesity are multi-factorial in origin involving a complex interplay of genetic, behavioural, and environmental influences on metabolism, diet, and activity.
Collapse
Affiliation(s)
- Laura M Johnson
- Cancer Research UK Health Behaviour Research Centre, Department of Epidemiology and Public Health, University College London, London, UK.
| |
Collapse
|
198
|
Höglund PJ, Nordström KJV, Schiöth HB, Fredriksson R. The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species. Mol Biol Evol 2010; 28:1531-41. [PMID: 21186191 PMCID: PMC3058773 DOI: 10.1093/molbev/msq350] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Solute Carriers (SLCs) are membrane proteins that regulate transport of many types of substances over the cell membrane. The SLCs are found in at least 46 gene families in the human genome. Here, we performed the first evolutionary analysis of the entire SLC family based on whole genome sequences. We systematically mined and analyzed the genomes of 17 species to identify SLC genes. In all, we identified 4,813 SLC sequences in these genomes, and we delineated the evolutionary history of each of the subgroups. Moreover, we also identified ten new human sequences not previously classified as SLCs, which most likely belong to the SLC family. We found that 43 of the 46 SLC families found in Homo sapiens were also found in Caenorhabditis elegans, whereas 42 of them were also found in insects. Mammals have a higher number of SLC genes in most families, perhaps reflecting important roles for these in central nervous system functions. This study provides a systematic analysis of the evolutionary history of the SLC families in Eukaryotes showing that the SLC superfamily is ancient with multiple branches that were present before early divergence of Bilateria. The results provide foundation for overall classification of SLC genes and are valuable for annotation and prediction of substrates for the many SLCs that have not been tested in experimental transport assays.
Collapse
Affiliation(s)
- Pär J Höglund
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
199
|
Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, Wells S, Brüning JC, Nolan PM, Ashcroft FM, Cox RD. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 2010; 42:1086-92. [PMID: 21076408 PMCID: PMC3018646 DOI: 10.1038/ng.713] [Citation(s) in RCA: 521] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 10/19/2010] [Indexed: 12/03/2022]
Abstract
Genome-wide association studies have identified SNPs within FTO, the human fat mass and obesity-associated gene, that are strongly associated with obesity. Individuals homozygous for the at-risk rs9939609 A allele weigh, on average, ~3 kg more than individuals with the low-risk T allele. Mice that lack FTO function and/or Fto expression display increased energy expenditure and a lean phenotype. We show here that ubiquitous overexpression of Fto leads to a dose-dependent increase in body and fat mass, irrespective of whether mice are fed a standard or a high-fat diet. Our results suggest that increased body mass results primarily from increased food intake. Mice with increased Fto expression on a high-fat diet develop glucose intolerance. This study provides the first direct evidence that increased Fto expression causes obesity in mice.
Collapse
Affiliation(s)
- Chris Church
- MRC Harwell, Metabolism and Inflammation, Harwell Science and Innovation Campus, Harwell, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
Obesity is a result of excess body fat accumulation. This excess is associated with adverse health effects such as CVD, type 2 diabetes, and cancer. The development of obesity has an evident environmental contribution, but as shown by heritability estimates of 40% to 70%, a genetic susceptibility component is also needed. Progress in understanding the etiology has been slow, with findings largely restricted to monogenic, severe forms of obesity. However, technological and analytical advances have enabled detection of more than 20 obesity susceptibility loci. These contain genes suggested to be involved in the regulation of food intake through action in the central nervous system as well as in adipocyte function. These results provide plausible biological pathways that may, in the future, be targeted as part of treatment or prevention strategies. Although the proportion of heritability explained by these genes is small, their detection heralds a new phase in understanding the etiology of common obesity.
Collapse
Affiliation(s)
- Blanca M. Herrera
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Cecilia M. Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| |
Collapse
|