151
|
Abstract
Retinoic acid (RA), the active derivative of vitamin A, has been implicated in various steps of cardiovascular development. The retinaldehyde dehydrogenase 2 (RALDH2) enzyme catalyzes the second oxidative step in RA biosynthesis and its loss of function creates a severe embryonic RA deficiency. Raldh2(-/-) knockout embryos fail to undergo heart looping and have impaired atrial and sinus venosus development. To understand the mechanism(s) producing these changes, we examined the contribution of the second heart field (SHF) to pharyngeal mesoderm, atria, and outflow tract in Raldh2(-/-) embryos. RA deficiency alters SHF gene expression in two ways. First, Raldh2(-/-) embryos exhibited a posterior expansion of anterior markers of the SHF, including Tbx1, Fgf8, and the Mlc1v-nlacZ-24/Fgf10 reporter transgene as well as of Islet1. This occurred at early somite stages, when cardiac defects became irreversible in an avian vitamin A-deficiency model, indicating that endogenous RA is required to restrict the SHF posteriorly. Explant studies showed that this expanded progenitor population cannot differentiate properly. Second, RA up-regulated cardiac Bmp expression levels at the looping stage. The contribution of the SHF to both inflow and outflow poles was perturbed under RA deficiency, creating a disorganization of the heart tube. We also investigated genetic cross-talk between Nkx2.5 and RA signaling by generating double mutant mice. Strikingly, Nkx2.5 deficiency was able to rescue molecular defects in the posterior region of the Raldh2(-/-) mutant heart, in a gene dosage-dependent manner.
Collapse
|
152
|
Abstract
Congenital heart defects occur in nearly 1% of human live births and many are lethal if not surgically repaired. In addition, the genetic contribution to congenital or acquired cardiovascular diseases that are silent at birth, but progress to cause significant disease in later life is being increasingly appreciated. Heart development and structure are highly conserved between mouse and human. The discoveries that are being made in this model system are highly relevant to understanding the pathogenesis of human heart defects whether they occus in isolation, or in the context of a syndrome. Many of the genes required for cardiovascular development were discovered fortuitously when early lethality or structural defects were observed in mouse mutants generated for other purposes, and relevant genes continue to be defined in this manner. Candidate genes for this process are being identified by their roles other species, or by their expression in pertinent tissues in mice. In this review, I will briefly summarize heart development as currently understood in the mouse, and then discuss how complementary studies in mouse and human have identified genes and pathways that are critical for normal cardiovascular development, and for maintaining the structure and function of this organ system throughout life.
Collapse
Affiliation(s)
- Anne Moon
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
153
|
Abstract
In this review we discuss the major morphogenetic and regulative events that control myocardial progenitor cells from the time that they delaminate from the epiblast in the primitive streak to their differentiation into cardiomyocytes in the heart tube. During chick and mouse embryogenesis, myocardial progenitor cells go through four specific processes that are sequential but overlapping: specification of the cardiogenic mesoderm, determination of the bilaterally symmetric heart fields, patterning of the heart field, and finally cardiomyocyte differentiation and formation of the heart tube. We describe the morphological and molecular events that play a pivotal role in each of these four processes.
Collapse
Affiliation(s)
- Radwan Abu-Issa
- Department of Pediatrics, Neonatal-Perinatal Research Institute, Duke University, Durham, NC 27712, USA.
| | | |
Collapse
|
154
|
|
155
|
Abstract
Velocardiofacial syndrome, DiGeorge syndrome, and some other clinical syndromes have in common a high frequency of hemizygous deletions of chromosome 22q11.2. This deletion syndrome is very common, affecting nearly one in 3000 children. Here, we focus on recent advances in cardiac assessment, speech, immunology, and pathophysiology of velocardiofacial syndrome. The complex medical care of patients needs a multidisciplinary approach, and every patient has his own unique clinical features that need a tailored approach. Patients with chromosome 22q11.2 deletion syndrome might have high level of functioning, but most often need interventions to improve the function of many organ systems.
Collapse
Affiliation(s)
- Lisa J Kobrynski
- Department of Pediatrics, Allergy and Immunology Section, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
156
|
Langdon YG, Goetz SC, Berg AE, Swanik JT, Conlon FL. SHP-2 is required for the maintenance of cardiac progenitors. Development 2007; 134:4119-30. [PMID: 17928416 DOI: 10.1242/dev.009290] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The isolation and culturing of cardiac progenitor cells has demonstrated that growth factor signaling is required to maintain cardiac cell survival and proliferation. In this study, we demonstrate in Xenopus that SHP-2 activity is required for the maintenance of cardiac precursors in vivo. In the absence of SHP-2 signaling, cardiac progenitor cells downregulate genes associated with early heart development and fail to initiate cardiac differentiation. We further show that this requirement for SHP-2 is restricted to cardiac precursor cells undergoing active proliferation. By demonstrating that SHP-2 is phosphorylated on Y542/Y580 and that it binds to FRS-2, we place SHP-2 in the FGF pathway during early embryonic heart development. Furthermore, we demonstrate that inhibition of FGF signaling mimics the cellular and biochemical effects of SHP-2 inhibition and that these effects can be rescued by constitutively active/Noonan-syndrome-associated forms of SHP-2. Collectively, these results show that SHP-2 functions within the FGF/MAPK pathway to maintain survival of proliferating populations of cardiac progenitor cells.
Collapse
Affiliation(s)
- Yvette G Langdon
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
157
|
Abstract
The heart of higher vertebrates is a structurally complicated multi-chambered pump that contracts synchronously. For its proper function a number of distinct integrated components have to be generated, including force-generating compartments, unidirectional valves, septa and a system in charge of the initiation and coordinated propagation of the depolarizing impulse over the heart. Not surprisingly, a large number of regulating factors are involved in these processes that act in complex and intertwined pathways to regulate the activity of target genes responsible for morphogenesis and function. The finding that mutations in T-box transcription factor-encoding genes in humans lead to congenital heart defects has focused attention on the importance of this family of regulators in heart development. Functional and genetic analyses in a variety of divergent species has demonstrated the critical roles of multiple T-box factor gene family members, including Tbx11, −2, −3, −5, −18 and −20, in the patterning, recruitment, specification, differentiation and growth processes underlying formation and integration of the heart components. Insight into the roles of T-box factors in these processes will enhance our understanding of heart formation and the underlying molecular regulatory pathways.
Collapse
Affiliation(s)
- W. M. H. Hoogaars
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| | - P. Barnett
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| | - A. F. M. Moorman
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| | - V. M. Christoffels
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
158
|
Cohen ED, Wang Z, Lepore JJ, Lu MM, Taketo MM, Epstein DJ, Morrisey EE. Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. J Clin Invest 2007; 117:1794-804. [PMID: 17607356 PMCID: PMC1891000 DOI: 10.1172/jci31731] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/08/2007] [Indexed: 11/17/2022] Open
Abstract
The anterior heart field (AHF), which contributes to the outflow tract and right ventricle of the heart, is defined in part by expression of the LIM homeobox transcription factor Isl-1. The importance of Isl-1-positive cells in cardiac development and homeostasis is underscored by the finding that these cells are required for cardiac development and act as cardiac stem/progenitor cells within the postnatal heart. However, the molecular pathways regulating these cells' expansion and differentiation are poorly understood. We show that Isl-1-positive AHF progenitor cells in mice were responsive to Wnt/beta-catenin signaling, and these responsive cells contributed to the outflow tract and right ventricle of the heart. Loss of Wnt/beta-catenin signaling in the AHF caused defective outflow tract and right ventricular development with a decrease in Isl-1-positive progenitors and loss of FGF signaling. Conversely, Wnt gain of function in these cells led to expansion of Isl-1-positive progenitors with a concomitant increase in FGF signaling through activation of a specific set of FGF ligands including FGF3, FGF10, FGF16, and FGF20. These data reveal what we believe to be a novel Wnt-FGF signaling axis required for expansion of Isl-1-positive AHF progenitors and suggest future therapies to increase the number and function of these cells for cardiac regeneration.
Collapse
Affiliation(s)
- Ethan David Cohen
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Department of Genetics and
Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zhishan Wang
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Department of Genetics and
Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John J. Lepore
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Department of Genetics and
Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Min Min Lu
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Department of Genetics and
Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Makoto M. Taketo
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Department of Genetics and
Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas J. Epstein
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Department of Genetics and
Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Edward E. Morrisey
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Department of Genetics and
Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
159
|
Snider P, Olaopa M, Firulli AB, Conway SJ. Cardiovascular development and the colonizing cardiac neural crest lineage. ScientificWorldJournal 2007; 7:1090-113. [PMID: 17619792 PMCID: PMC2613651 DOI: 10.1100/tsw.2007.189] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that regulate myocardial proliferation, can signal to the epicardium to subsequently secrete a growth factor/s, or may even contribute directly to the heart. Although there are species differences between mouse, chick, and Xenopus during cardiac neural crest cell morphogenesis, recent data suggest mouse and chick are more similar to each other than to the zebrafish neural crest cell lineage. Several groups have used the genetically defined Pax3 (splotch) mutant mice model to address the role of the cardiac neural crest lineage. Here we review the current literature, the neural crest-related role of the Pax3 transcription factor, and discuss potential function/s of cardiac neural crest-derived cells during cardiovascular developmental remodeling.
Collapse
Affiliation(s)
- Paige Snider
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Michael Olaopa
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Anthony B. Firulli
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Simon J. Conway
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
- *Simon J. Conway:
| |
Collapse
|
160
|
Abstract
Congenital heart diseases are the most commonly observed human birth defects and are the leading cause of infant morbidity and mortality. Accumulating evidence indicates that transforming growth factor-beta/bone morphogenetic protein signaling pathways play critical roles during cardiogenesis. Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of transforming growth factor-beta/bone morphogenetic protein signaling. The aim of this work was to investigate the roles of Smad4 during heart development. To overcome the early embryonic lethality of Smad4(-/-) mice, we specifically disrupted Smad4 in the myocardium using a Cre/loxP system. We show that myocardial-specific inactivation of Smad4 caused heart failure and embryonic lethality at midgestation. Histological analysis revealed that mutant mice displayed a hypocellular myocardial wall defect, which is likely the primary cause for heart failure. Both decreased cell proliferation and increased apoptosis contributed to the myocardial wall defect in mutant mice. Data presented in this article contradict a previous report showing that Smad4 is dispensable for heart development. Our further molecular characterization showed that expression of Nmyc and its downstream targets, including cyclin D1, cyclin D2, and Id2, were downregulated in mutant embryos. Reporter analysis indicated that the transcriptional activity of the 351-bp Nmyc promoter can be positively regulated by bone morphogenetic protein stimulation and negatively regulated by transforming growth factor-beta stimulation. Chromatin immunoprecipitation analysis revealed that the Nmyc promoter can form a complex with Smad4, suggesting that Nmyc is a direct downstream target of Smad4. In conclusion, this study provides the first mouse model showing that Smad4 plays essential roles during cardiogenesis.
Collapse
Affiliation(s)
- Lanying Song
- Department of Genetics, Division of Genetic and Translational Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
161
|
Hakim ZS, DiMichele LA, Doherty JT, Homeister JW, Beggs HE, Reichardt LF, Schwartz RJ, Brackhan J, Smithies O, Mack CP, Taylor JM. Conditional deletion of focal adhesion kinase leads to defects in ventricular septation and outflow tract alignment. Mol Cell Biol 2007; 27:5352-64. [PMID: 17526730 PMCID: PMC1952084 DOI: 10.1128/mcb.00068-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine a role for focal adhesion kinase (FAK) in cardiac morphogenesis, we generated a line of mice with a conditional deletion of FAK in nkx2-5-expressing cells (herein termed FAKnk mice). FAKnk mice died shortly after birth, likely resulting from a profound subaortic ventricular septal defect and associated malalignment of the outflow tract. Additional less penetrant phenotypes included persistent truncus arteriosus and thickened valve leaflets. Thus, conditional inactivation of FAK in nkx2-5-expressing cells leads to the most common congenital heart defect that is also a subset of abnormalities associated with tetralogy of Fallot and the DiGeorge syndrome. No significant differences in proliferation or apoptosis between control and FAKnk hearts were observed. However, decreased myocardialization was observed for the conal ridges of the proximal outflow tract in FAKnk hearts. Interestingly, chemotaxis was significantly attenuated in isolated FAK-null cardiomyocytes in comparison to genetic controls, and these effects were concomitant with reduced tyrosine phosphorylation of Crk-associated substrate (CAS). Thus, it is possible that ventricular septation and appropriate outflow tract alignment is dependent, at least in part, upon FAK-dependent CAS activation and subsequent induction of polarized myocyte movement into the conal ridges. Future studies will be necessary to determine the precise contributions of the additional nkx2-5-derived lineages to the phenotypes observed.
Collapse
Affiliation(s)
- Zeenat S Hakim
- Department of Pathology and Carolina Cardiovascular Biology Center, 501 Brinkhous-Bullitt Bldg. CB 7525, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Grifone R, Kelly RG. Heartening news for head muscle development. Trends Genet 2007; 23:365-9. [PMID: 17524520 DOI: 10.1016/j.tig.2007.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/02/2007] [Accepted: 05/09/2007] [Indexed: 11/15/2022]
Abstract
Branchiomeric craniofacial muscles differ from all other skeletal muscles with respect to embryological origin, motor innervation and upstream activators of myogenesis. A series of recent studies has revealed a striking juxtaposition and overlapping genetic program of craniofacial skeletal muscle progenitor cells with a population of cells giving rise to cardiac muscle. The divergent myogenic fates of adjacent progenitor cells revealed by these data provide a new framework for the study of craniofacial myogenesis.
Collapse
Affiliation(s)
- Raphaëlle Grifone
- Developmental Biology Institute of Marseilles - Luminy, Inserm Avenir Group, UMR 6216 CNRS-Université de la Méditerranée, Campus de Luminy Case 907, 13288 Marseilles Cedex 9, France
| | | |
Collapse
|
163
|
Ai D, Fu X, Wang J, Lu MF, Chen L, Baldini A, Klein WH, Martin JF. Canonical Wnt signaling functions in second heart field to promote right ventricular growth. Proc Natl Acad Sci U S A 2007; 104:9319-24. [PMID: 17519332 PMCID: PMC1890492 DOI: 10.1073/pnas.0701212104] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The second heart field (SHF), progenitor cells that are initially sequestered outside the heart, migrates into the heart and gives rise to endocardium, myocardium, and smooth muscle. Because of its distinct developmental history, the SHF is likely subjected to different signals from that of the first heart field. Previous experiments revealed that canonical Wnt signaling negatively regulated first heart field specification. We inactivated the obligate canonical Wnt effector beta-catenin using a beta-catenin conditional null allele and the Mef2c AHF cre driver that directs cre activity specifically in SHF. We also expressed a stabilized form of beta-catenin to model continuous Wnt signaling in SHF. Our data indicate that Wnt signaling acts in a positive fashion to promote right ventricular and interventricular myocardial expansion. Cyclin D2 and Tgfbeta2 expression was drastically reduced in beta-catenin loss-of-function mutants, indicating that Wnt signaling is required for patterning and expansion of SHF derivatives. Our findings reveal that Wnt signaling plays a major positive role in promoting growth and diversification of SHF precursors into right ventricular and interventricular myocardium.
Collapse
Affiliation(s)
- Di Ai
- *Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 Holcombe Boulevard, Houston, TX 77030
| | - Xueyao Fu
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, TX 77030
- Training Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77225; and
| | - Jun Wang
- *Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 Holcombe Boulevard, Houston, TX 77030
| | - Mei-Fang Lu
- *Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 Holcombe Boulevard, Houston, TX 77030
| | - Li Chen
- *Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 Holcombe Boulevard, Houston, TX 77030
- Program in Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Antonio Baldini
- *Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 Holcombe Boulevard, Houston, TX 77030
| | - William H. Klein
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, TX 77030
- Training Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77225; and
| | - James F. Martin
- *Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 Holcombe Boulevard, Houston, TX 77030
- Training Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77225; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
164
|
|
165
|
Goddeeris MM, Schwartz R, Klingensmith J, Meyers EN. Independent requirements for Hedgehog signaling by both the anterior heart field and neural crest cells for outflow tract development. Development 2007; 134:1593-604. [PMID: 17344228 DOI: 10.1242/dev.02824] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac outflow tract (OFT) septation is crucial to the formation of the aortic and pulmonary arteries. Defects in the formation of the OFT can result in serious congenital heart defects. Two cell populations, the anterior heart field (AHF) and cardiac neural crest cells (CNCCs), are crucial for OFT development and septation. In this study, we use a series of tissue-specific genetic manipulations to define the crucial role of the Hedgehog pathway in these two fields of cells during OFT development. These data indicate that endodermally-produced SHH ligand is crucial for several distinct processes,all of which are required for normal OFT septation. First, SHH is required for CNCCs to survive and populate the OFT cushions. Second, SHH mediates signaling to myocardial cells derived from the AHF to complete septation after cushion formation. Finally, endodermal SHH signaling is required in an autocrine manner for the survival of the pharyngeal endoderm, which probably produces a secondary signal required for AHF survival and for OFT lengthening. Disruption of any of these steps can result in a single OFT phenotype.
Collapse
Affiliation(s)
- Matthew M Goddeeris
- Departments of Cell Biology and Pediatrics, Neonatal-Perinatal Research Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
166
|
Dunwoodie SL. Combinatorial signaling in the heart orchestrates cardiac induction, lineage specification and chamber formation. Semin Cell Dev Biol 2007; 18:54-66. [PMID: 17236794 DOI: 10.1016/j.semcdb.2006.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The complexity of mammalian cardiogenesis is compounded, as the heart must function in the embryo whilst it is still being formed. Great advances have been made recently as additional cardiac progenitor cell populations have been identified. The induction and maintenance of these progenitors, and their deployment to the developing heart relies on combinatorial molecular signalling, a feature also of cardiac chamber formation. Many forms of congenital heart disease in humans are likely to arise from defects in the early stages of heart development; therefore it is important to understand the molecular pathways that underlie some of the key events that shape the heart during the early stages of it development.
Collapse
Affiliation(s)
- Sally L Dunwoodie
- Developmental Biology Program, Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst, NSW, Australia.
| |
Collapse
|
167
|
Breckenridge R, Kotecha S, Towers N, Bennett M, Mohun T. Pan-myocardial expression of Cre recombinase throughout mouse development. Genesis 2007; 45:135-44. [PMID: 17334998 DOI: 10.1002/dvg.20275] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mouse-lines expressing Cre recombinase in a tissue-specific manner are a powerful tool in developmental biology. Here, we report that a 3 kb fragment of the Xenopus laevis myosin light-chain 2 (XMLC2) promoter drives Cre recombinase expression in a cardiac-restricted fashion in the mouse embryo. We have isolated two XMLC2-Cre lines that express recombinase exclusively within cardiomyocytes, from the onset of their differentiation in the cardiac crescent of the early embryo. Expression is maintained throughout the myocardium of the embryonic heart tube and subsequently the mature myocardium of the chambered heart. Recombinase activity is detected in all myocardial tissue, including the pulmonary veins. One XMLC2-Cre line shows uniform expression while the other only expresses recombinase in a mosaic fashion encompassing less than 50% of the myocardial cells. Both lines cause severe cardiac malformations when crossed to a conditional Tbx5 line, resulting in embryonic death at midgestation. Optical projection tomography reveals that the spectrum of developmental abnormalities includes a shortening of the outflow tract and its abnormal alignment, along with a dramatic reduction in trabeculation of the ventricular segment of the looping heart tube.
Collapse
Affiliation(s)
- Ross Breckenridge
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill,London, United Kingdom
| | | | | | | | | |
Collapse
|
168
|
|
169
|
Kelly RG, Papaioannou VE. Visualization of outflow tract development in the absence ofTbx1 using anFgF10 enhancer trap transgene. Dev Dyn 2007; 236:821-8. [PMID: 17238155 DOI: 10.1002/dvdy.21063] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Tbx1, the major gene underlying del22q11.2 or DiGeorge syndrome in humans, is required for normal development and septation of the cardiac outflow tract. The fibroblast growth factor 10 gene (Fgf10) and an Fgf10 enhancer trap transgene are expressed in outflow tract myocardial progenitor cells of the anterior heart field. To visualize outflow tract development in the absence of Tbx1, we have analyzed the expression profile of the Fgf10 enhancer trap transgene during outflow tract development in Tbx1(-/-) embryos. Transgene expression confirms hypoplasia of the distal outflow tract in the absence of Tbx1, and altered expression in pharyngeal mesoderm reveals loss of specific bilateral subpopulations of outflow tract progenitor cells and disruption of the posterior boundary of the anterior heart field. Our results support the conclusion that Tbx1 controls deployment of Fgf10-expressing progenitor cells during heart tube extension. Furthermore, although normal Fgf10 levels are dependent on Tbx1, loss of Fgf10 alleles does not significantly modify the cardiac phenotype of Tbx1 heterozygous or homozygous mutant embryos.
Collapse
Affiliation(s)
- Robert G Kelly
- Department of Genetics and Development, Columbia University, New York, NY, USA.
| | | |
Collapse
|
170
|
Xu H, Baldini A. Genetic pathways to mammalian heart development: Recent progress from manipulation of the mouse genome. Semin Cell Dev Biol 2006; 18:77-83. [PMID: 17178242 PMCID: PMC1934561 DOI: 10.1016/j.semcdb.2006.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian heart development requires multiple genetic networks, only some of which are becoming known in all their complexity. Substantial new information has become available thanks to an expanding toolkit that offers more and more mouse gene manipulation options, and that is taking the mouse closer to more powerful invertebrate genetic models. We review examples of recent data with a cardiac-lineage-based view of heart development, especially outflow tract and right ventricle. The medical significance of these studies is not only relevant to congenital heart disease, but also to the biology of cardiac cell regeneration.
Collapse
Affiliation(s)
- Huansheng Xu
- Institute of Biosciences and Technology, Texas A&M University System, Houston, TX, 77030
| | - Antonio Baldini
- Institute of Biosciences and Technology, Texas A&M University System, Houston, TX, 77030
- Department of Biochemistry, University Federico II, and Tigem, Via P. Castellino Naples, Italy
| |
Collapse
|
171
|
Park EJ, Ogden LA, Talbot A, Evans S, Cai CL, Black BL, Frank DU, Moon AM. Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 2006; 133:2419-33. [PMID: 16720879 PMCID: PMC1780034 DOI: 10.1242/dev.02367] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor 8 (Fgf8) is a secreted signaling protein expressed in numerous temporospatial domains that are potentially relevant to cardiovascular development. However, the pathogenesis of complex cardiac and outflow tract defects observed in Fgf8-deficient mice, and the specific source(s) of Fgf8 required for outflow tract formation and subsequent remodeling are unknown. A detailed examination of the timing and location of Fgf8 production revealed previously unappreciated expression in a subset of primary heart field cells; Fgf8 is also expressed throughout the anterior heart field (AHF) mesoderm and in pharyngeal endoderm at the crescent and early somite stages. We used conditional mutagenesis to examine the requirements for Fgf8 function in these different expression domains during heart and outflow tract morphogenesis. Formation of the primary heart tube and the addition of right ventricular and outflow tract myocardium depend on autocrine Fgf8 signaling in cardiac crescent mesoderm. Loss of Fgf8 in this domain resulted in decreased expression of the Fgf8 target gene Erm, and aberrant production of Isl1 and its target Mef2c in the anterior heart field, thus linking Fgf8 signaling with transcription factor networks that regulate survival and proliferation of the anterior heart field. We further found that mesodermal- and endodermal-derived Fgf8 perform specific functions during outflow tract remodeling: mesodermal Fgf8 is required for correct alignment of the outflow tract and ventricles, whereas activity of Fgf8 emanating from pharyngeal endoderm regulates outflow tract septation. These findings provide a novel insight into how the formation and remodeling of primary and anterior heart field-derived structures rely on Fgf8 signals from discrete temporospatial domains.
Collapse
Affiliation(s)
- Eon Joo Park
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Zhang Z, Huynh T, Baldini A. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 2006; 133:3587-95. [PMID: 16914493 PMCID: PMC1850622 DOI: 10.1242/dev.02539] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of the segmented pharyngeal apparatus involves complex interaction of tissues derived from all three germ layers. The role of mesoderm is the least studied, perhaps because of its apparent lack of anatomical boundaries and positionally restricted gene expression. Here, we report that the mesoderm-specific deletion of Tbx1, a T-box transcription factor, caused severe pharyngeal patterning and cardiovascular defects, while mesoderm-specific restoration of Tbx1 expression in a mutant background corrected most of those defects in the mouse. We show that some organs, e.g. the thymus, require Tbx1 expression in the mesoderm and in the epithelia. In addition, these experiments revealed that different pharyngeal arches require Tbx1 in different tissues. Finally, we show that Tbx1 in the mesoderm is required to sustain cell proliferation. Thus, the mesodermal transcription program is not only crucial for cardiovascular development, but is also key in the development and patterning of pharyngeal endoderm.
Collapse
Affiliation(s)
- Zhen Zhang
- Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Tuong Huynh
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Antonio Baldini
- Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Author for correspondence (e-mail: )
| |
Collapse
|
173
|
Kritikou E. FGF8 — you're making my heart! Nat Rev Mol Cell Biol 2006. [DOI: 10.1038/nrm1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
174
|
FGF8 — you're making my heart! Nat Rev Genet 2006. [DOI: 10.1038/nrg1910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
175
|
Abstract
DiGeorge syndrome is the most frequent microdeletion syndrome in humans, and is characterized by cardiovascular, thymic and parathyroid, and craniofacial anomalies. The underlying cause is disturbed formation of the pharyngeal apparatus, a transient structure present during vertebrate development that gives rise to endocrine glands, craniofacial tissue, and the cardiac outflow tract. The pharyngeal apparatus is composed of derivatives of ectoderm, endoderm, mesoderm and the neural crest. Thus, complex interactions between cell types from different origins have to be orchestrated in the correct spatiotemporal manner to establish proper formation of the pharyngeal system. The analysis of engineered mouse mutants developing a phenotype resembling DiGeorge syndrome has revealed genes and signalling pathways crucial for this process. Intriguingly, these mouse models reveal that interference with either of two distinct phases of pharyngeal apparatus development can contribute to the aetiology of DiGeorge syndrome.
Collapse
Affiliation(s)
- Heiko Wurdak
- Institute of Cell Biology, Department of Biology, ETH Zurich, ETH-Hönggerberg, Zurich, Switzerland
| | | | | |
Collapse
|