151
|
Giannuzzi G, Pazienza M, Huddleston J, Antonacci F, Malig M, Vives L, Eichler EE, Ventura M. Hominoid fission of chromosome 14/15 and the role of segmental duplications. Genome Res 2013; 23:1763-73. [PMID: 24077392 PMCID: PMC3814877 DOI: 10.1101/gr.156240.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ape chromosomes homologous to human chromosomes 14 and 15 were generated by a fission event of an ancestral submetacentric chromosome, where the two chromosomes were joined head-to-tail. The hominoid ancestral chromosome most closely resembles the macaque chromosome 7. In this work, we provide insights into the evolution of human chromosomes 14 and 15, performing a comparative study between macaque boundary region 14/15 and the orthologous human regions. We construct a 1.6-Mb contig of macaque BAC clones in the region orthologous to the ancestral hominoid fission site and use it to define the structural changes that occurred on human 14q pericentromeric and 15q subtelomeric regions. We characterize the novel euchromatin–heterochromatin transition region (∼20 Mb) acquired during the neocentromere establishment on chromosome 14, and find it was mainly derived through pericentromeric duplications from ancestral hominoid chromosomes homologous to human 2q14–qter and 10. Further, we show a relationship between evolutionary hotspots and low-copy repeat loci for chromosome 15, revealing a possible role of segmental duplications not only in mediating but also in “stitching” together rearrangement breakpoints.
Collapse
Affiliation(s)
- Giuliana Giannuzzi
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro," Bari 70125, Italy
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Lee K, Nguyen DT, Choi M, Cha SY, Kim JH, Dadi H, Seo HG, Seo K, Chun T, Park C. Analysis of cattle olfactory subgenome: the first detail study on the characteristics of the complete olfactory receptor repertoire of a ruminant. BMC Genomics 2013; 14:596. [PMID: 24004971 PMCID: PMC3766653 DOI: 10.1186/1471-2164-14-596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/24/2013] [Indexed: 11/21/2022] Open
Abstract
Background Mammalian olfactory receptors (ORs) are encoded by the largest mammalian multigene family. Understanding the OR gene repertoire in the cattle genome could lead to link the effects of genetic differences in these genes to variations in olfaction in cattle. Results We report here a whole genome analysis of the olfactory receptor genes of Bos taurus using conserved OR gene-specific motifs and known OR protein sequences from diverse species. Our analysis, using the current cattle genome assembly UMD 3.1 covering 99.9% of the cattle genome, shows that the cattle genome contains 1,071 OR-related sequences including 881 functional, 190 pseudo, and 352 partial OR sequences. The OR genes are located in 49 clusters on 26 cattle chromosomes. We classified them into 18 families consisting of 4 Class I and 14 Class II families and these were further grouped into 272 subfamilies. Comparative analyses of the OR genes of cattle, pigs, humans, mice, and dogs showed that 6.0% (n = 53) of functional OR cattle genes were species-specific. We also showed that significant copy number variations are present in the OR repertoire of the cattle from the analysis of 10 selected OR genes. Conclusion Our analysis revealed the almost complete OR gene repertoire from an individual cattle genome. Though the number of OR genes were lower than in pigs, the analysis of the genetic system of cattle ORs showed close similarities to that of the pig.
Collapse
Affiliation(s)
- Kyooyeol Lee
- Department of Animal Biotechnology, Konkuk University, 263 Achasan-ro, Gwangjin-gu, Seoul 143-701, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Lyons DB, Allen WE, Goh T, Tsai L, Barnea G, Lomvardas S. An epigenetic trap stabilizes singular olfactory receptor expression. Cell 2013; 154:325-36. [PMID: 23870122 PMCID: PMC3929589 DOI: 10.1016/j.cell.2013.06.039] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/06/2013] [Accepted: 06/20/2013] [Indexed: 11/27/2022]
Abstract
The molecular mechanisms regulating olfactory receptor (OR) expression in the mammalian nose are not yet understood. Here, we identify the transient expression of histone demethylase LSD1 and the OR-dependent expression of adenylyl cyclase 3 (Adcy3) as requirements for initiation and stabilization of OR expression. As a transcriptional coactivator, LSD1 is necessary for desilencing and initiating OR transcription, but as a transcriptional corepressor, it is incompatible with maintenance of OR expression, and its downregulation is imperative for stable OR choice. Adcy3, a sensor of OR expression and a transmitter of an OR-elicited feedback, mediates the downregulation of LSD1 and promotes the differentiation of olfactory sensory neurons (OSNs). This novel, three-node signaling cascade locks the epigenetic state of the chosen OR, stabilizes its singular expression, and prevents the transcriptional activation of additional OR alleles for the life of the neuron.
Collapse
Affiliation(s)
- David B Lyons
- Tetrad Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
154
|
Vamathevan JJ, Hall MD, Hasan S, Woollard PM, Xu M, Yang Y, Li X, Wang X, Kenny S, Brown JR, Huxley-Jones J, Lyon J, Haselden J, Min J, Sanseau P. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development. Toxicol Appl Pharmacol 2013; 270:149-57. [DOI: 10.1016/j.taap.2013.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
|
155
|
Jones G, Teeling EC, Rossiter SJ. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats. Front Physiol 2013; 4:117. [PMID: 23755015 PMCID: PMC3667242 DOI: 10.3389/fphys.2013.00117] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/07/2013] [Indexed: 01/06/2023] Open
Abstract
Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biological Sciences, University of Bristol Bristol, UK
| | | | | |
Collapse
|
156
|
The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 2013; 45:701-706. [PMID: 23624526 PMCID: PMC4000948 DOI: 10.1038/ng.2615] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 03/27/2013] [Indexed: 12/23/2022]
Abstract
The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.
Collapse
|
157
|
Olfaction and olfactory-mediated behaviour in psychiatric disease models. Cell Tissue Res 2013; 354:69-80. [DOI: 10.1007/s00441-013-1617-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/12/2013] [Indexed: 12/26/2022]
|
158
|
Spielman SJ, Wilke CO. Membrane environment imposes unique selection pressures on transmembrane domains of G protein-coupled receptors. J Mol Evol 2013; 76:172-82. [PMID: 23355009 DOI: 10.1007/s00239-012-9538-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 12/25/2022]
Abstract
We have investigated the influence of the plasma membrane environment on the molecular evolution of G protein-coupled receptors (GPCRs), the largest receptor family in Metazoa. In particular, we have analyzed the site-specific rate variation across the two primary structural partitions, transmembrane (TM) and extramembrane (EM), of these membrane proteins. We find that TM domains evolve more slowly than do EM domains, though TM domains display increased rate heterogeneity relative to their EM counterparts. Although the majority of residues across GPCRs experience strong to weak purifying selection, many GPCRs experience positive selection at both TM and EM residues, albeit with a slight bias towards the EM. Further, a subset of GPCRs, chemosensory receptors (including olfactory and taste receptors), exhibit increased rates of evolution relative to other GPCRs, an effect which is more pronounced in their TM spans. Although it has been previously suggested that the TM's low evolutionary rate is caused by their high percentage of buried residues, we show that their attenuated rate seems to stem from the strong biophysical constraints of the membrane itself, or by functional requirements. In spite of the strong evolutionary constraints acting on the TM spans of GPCRs, positive selection and high levels of evolutionary rate variability are common. Thus, biophysical constraints should not be presumed to preclude a protein's ability to evolve.
Collapse
|
159
|
Coppola DM, Waggener CT, Radwani SM, Brooks DA. An electroolfactogram study of odor response patterns from the mouse olfactory epithelium with reference to receptor zones and odor sorptiveness. J Neurophysiol 2013; 109:2179-91. [PMID: 23343905 DOI: 10.1152/jn.00769.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Olfactory sensory neuron (OSN) responses to odors, measured at the population level, tend to be spatially heterogeneous in the vertebrates that have been studied. These response patterns vary between odors but are similar across subjects for a given stimulus. However, few species have been studied making functional interpretation of these patterns problematic. One proximate explanation for the spatial heterogeneity of odor responses comes from evidence that olfactory receptor (OR) genes in rodents are expressed in OSN populations that are spatially restricted to a few zones in the olfactory epithelium (OE). A long-standing functional explanation for response anisotropy in the OE posits that it is the signature of a supplementary mechanism for quality coding, based on the sorptive properties of odor molecules. These theories are difficult to assess because most mapping studies have utilized few odors, provided little replication, or involved but a single species (rat). In fact, to our knowledge, a detailed olfactory response "map" has not been reported for mouse, the species used in most studies of gene localization. Here we report the results of a study of mouse OE response patterns using the electroolfactogram (EOG). We focused on the medial aspect of olfactory turbinates that are accessible in the midsagittal section. This limited approach still allowed us to test predictions derived from the zonal distribution of OSN types and the sorption hypothesis. In 3 separate experiments, 290 mice were used to record EOGs from a set of standard locations along each of 4 endoturbinates utilizing 11 different odors resulting in over 4,400 separate recordings. Our results confirmed a marked spatial heterogeneity in odor responses that varied with odor, as seen in other species. However, no discontinuities were found in the odor-specific response patterns across the OE as might have been predicted given the existence of classical receptor zones nor did we find clear support for the hypothesis that OE response patterns, presumably a reflection of OSN distribution, have been shaped through natural selection by the relative sorptive properties of odors. We propose that receptor zones may be an epiphenomenon of a contingent evolutionary process. In this formulation, constraints on developmental programs for distributing OSN classes within the OE may be minimally related to the odor ligands of specific class members. Further, we propose that odor sorptiveness, which appears to be correlated with the inherent response patterns in the OE of larger species, may be of minimal effect in mice owing to scaling issues.
Collapse
Affiliation(s)
- D M Coppola
- Dept. of Biology, Randolph Macon College, 304 Caroline St., Ashland, VA 23005, USA.
| | | | | | | |
Collapse
|
160
|
Abstract
Chemical senses are essential for the survival of animals. In vertebrates, mainly three different types of receptors, olfactory receptors (ORs), vomeronasal receptors type 1 (V1Rs), and vomeronasal receptors type 2 (V2Rs), are responsible for the detection of chemicals in the environment. Mouse or rat genomes contain >1,000 OR genes, forming the largest multigene family in vertebrates, and have >100 V1R and V2R genes as well. Recent advancement in genome sequencing enabled us to computationally identify nearly complete repertories of OR, V1R, and V2R genes from various organisms, revealing that the numbers of these genes are highly variable among different organisms depending on each species' living environment. Here I would explain bioinformatic methods to identify the entire repertoires of OR, V1R, and V2R genes from vertebrate genome sequences.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
161
|
Abstract
Olfaction is essential for the survival of mammals. Diverse odorant molecules in the environment are detected by olfactory receptors (ORs) expressed in the olfactory epithelium of the nasal cavity. In general, mammalian genomes harbor ~1,000 OR genes, which form the largest multigene family in mammals. The recent advances in genome sequencing technology have enabled us to computationally identify nearly complete repertoires of OR genes from various organisms. Such studies have revealed that the numbers of OR genes are highly variable among organisms depending on their living environments. Because OR genes are intronless, it is possible to find all OR genes by conducting homology searches against the genome sequences using known OR genes as queries. However, some caution is necessary during the process of extracting intact coding sequences of OR genes and distinguishing among OR and non-OR genes. Presented here is a description of bioinformatics methods to identify the entire OR gene repertoires from mammalian genome sequences.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
162
|
Nguyen DT, Lee K, Choi H, Choi MK, Le MT, Song N, Kim JH, Seo HG, Oh JW, Lee K, Kim TH, Park C. The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome. BMC Genomics 2012; 13:584. [PMID: 23153364 PMCID: PMC3499278 DOI: 10.1186/1471-2164-13-584] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/09/2012] [Indexed: 11/10/2022] Open
Abstract
Background Insects and animals can recognize surrounding environments by detecting thousands of chemical odorants. Olfaction is a complicated process that begins in the olfactory epithelium with the specific binding of volatile odorant molecules to dedicated olfactory receptors (ORs). OR proteins are encoded by the largest gene superfamily in the mammalian genome. Results We report here the whole genome analysis of the olfactory receptor genes of S. scrofa using conserved OR gene specific motifs and known OR protein sequences from diverse species. We identified 1,301 OR related sequences from the S. scrofa genome assembly, Sscrofa10.2, including 1,113 functional OR genes and 188 pseudogenes. OR genes were located in 46 different regions on 16 pig chromosomes. We classified the ORs into 17 families, three Class I and 14 Class II families, and further grouped them into 349 subfamilies. We also identified inter- and intra-chromosomal duplications of OR genes residing on 11 chromosomes. A significant number of pig OR genes (n = 212) showed less than 60% amino acid sequence similarity to known OR genes of other species. Conclusion As the genome assembly Sscrofa10.2 covers 99.9% of the pig genome, our analysis represents an almost complete OR gene repertoire from an individual pig genome. We show that S. scrofa has one of the largest OR repertoires, suggesting an expansion of OR genes in the swine genome. A significant number of unique OR genes in the pig genome may suggest the presence of swine specific olfactory stimulation.
Collapse
Affiliation(s)
- Dinh Truong Nguyen
- Department of Animal Biotechnology, Konkuk University, 263 Achasan-ro, Gwangjin-gu, Seoul 143-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Salazar I, Cifuentes JM, Sánchez-Quinteiro P. Morphological and Immunohistochemical Features of the Vomeronasal System in Dogs. Anat Rec (Hoboken) 2012; 296:146-55. [DOI: 10.1002/ar.22617] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/30/2012] [Accepted: 09/18/2012] [Indexed: 01/12/2023]
|
164
|
Niimura Y. Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genomics 2012; 13:103-14. [PMID: 23024602 PMCID: PMC3308321 DOI: 10.2174/138920212799860706] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/12/2011] [Accepted: 09/29/2011] [Indexed: 01/17/2023] Open
Abstract
Olfaction is essential for the survival of animals. Diverse odor molecules in the environment are detected by the olfactory receptors (ORs) in the olfactory epithelium of the nasal cavity. There are ~400 and ~1,000 OR genes in the human and mouse genomes, respectively, forming the largest multigene family in mammals. The relationships between ORs and odorants are multiple-to-multiple, which allows for discriminating almost unlimited number of different odorants by a combination of ORs. However, the OR-ligand relationships are still largely unknown, and predicting the quality of odor from its molecular structure is unsuccessful.Extensive bioinformatic analyses using the whole genomes of various organisms revealed a great variation in number of OR genes among species, reflecting the diversity of their living environments. For example, higher primates equipped with a well-developed vision system and dolphins that are secondarily adapted to the aquatic life have considerably smaller numbers of OR genes than most of other mammals do. OR genes are characterized by extremely frequent gene duplications and losses. The OR gene repertories are also diverse among human individuals, explaining the diversity of odor perception such as the specific anosmia.OR genes are present in all vertebrates. The number of OR genes is smaller in teleost fishes than in mammals, while the diversity is higher in the former than the latter. Because the genome of amphioxus, the most basal chordate species, harbors vertebrate-like OR genes, the origin of OR genes can be traced back to the common ancestor of the phylum Chordata.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
165
|
Olender T, Waszak SM, Viavant M, Khen M, Ben-Asher E, Reyes A, Nativ N, Wysocki CJ, Ge D, Lancet D. Personal receptor repertoires: olfaction as a model. BMC Genomics 2012; 13:414. [PMID: 22908908 PMCID: PMC3462693 DOI: 10.1186/1471-2164-13-414] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/26/2012] [Indexed: 01/07/2023] Open
Abstract
Background Information on nucleotide diversity along completely sequenced human genomes has increased tremendously over the last few years. This makes it possible to reassess the diversity status of distinct receptor proteins in different human individuals. To this end, we focused on the complete inventory of human olfactory receptor coding regions as a model for personal receptor repertoires. Results By performing data-mining from public and private sources we scored genetic variations in 413 intact OR loci, for which one or more individuals had an intact open reading frame. Using 1000 Genomes Project haplotypes, we identified a total of 4069 full-length polypeptide variants encoded by these OR loci, average of ~10 per locus, constituting a lower limit for the effective human OR repertoire. Each individual is found to harbor as many as 600 OR allelic variants, ~50% higher than the locus count. Because OR neuronal expression is allelically excluded, this has direct effect on smell perception diversity of the species. We further identified 244 OR segregating pseudogenes (SPGs), loci showing both intact and pseudogene forms in the population, twenty-six of which are annotatively “resurrected” from a pseudogene status in the reference genome. Using a custom SNP microarray we validated 150 SPGs in a cohort of 468 individuals, with every individual genome averaging 36 disrupted sequence variations, 15 in homozygote form. Finally, we generated a multi-source compendium of 63 OR loci harboring deletion Copy Number Variations (CNVs). Our combined data suggest that 271 of the 413 intact OR loci (66%) are affected by nonfunctional SNPs/indels and/or CNVs. Conclusions These results portray a case of unusually high genetic diversity, and suggest that individual humans have a highly personalized inventory of functional olfactory receptors, a conclusion that might apply to other receptor multigene families.
Collapse
Affiliation(s)
- Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Adipietro KA, Mainland JD, Matsunami H. Functional evolution of mammalian odorant receptors. PLoS Genet 2012; 8:e1002821. [PMID: 22807691 PMCID: PMC3395614 DOI: 10.1371/journal.pgen.1002821] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 05/23/2012] [Indexed: 12/23/2022] Open
Abstract
The mammalian odorant receptor (OR) repertoire is an attractive model to study evolution, because ORs have been subjected to rapid evolution between species, presumably caused by changes of the olfactory system to adapt to the environment. However, functional assessment of ORs in related species remains largely untested. Here we investigated the functional properties of primate and rodent ORs to determine how well evolutionary distance predicts functional characteristics. Using human and mouse ORs with previously identified ligands, we cloned 18 OR orthologs from chimpanzee and rhesus macaque and 17 mouse-rat orthologous pairs that are broadly representative of the OR repertoire. We functionally characterized the in vitro responses of ORs to a wide panel of odors and found similar ligand selectivity but dramatic differences in response magnitude. 87% of human-primate orthologs and 94% of mouse-rat orthologs showed differences in receptor potency (EC50) and/or efficacy (dynamic range) to an individual ligand. Notably dN/dS ratio, an indication of selective pressure during evolution, does not predict functional similarities between orthologs. Additionally, we found that orthologs responded to a common ligand 82% of the time, while human OR paralogs of the same subfamily responded to the common ligand only 33% of the time. Our results suggest that, while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy dynamically change during evolution, even in closely related species. These functional changes in orthologs provide a platform for examining how the evolution of ORs can meet species-specific demands.
Collapse
Affiliation(s)
- Kaylin A. Adipietro
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joel D. Mainland
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
167
|
Doherty A, Alvarez-Ponce D, McInerney JO. Increased genome sampling reveals a dynamic relationship between gene duplicability and the structure of the primate protein-protein interaction network. Mol Biol Evol 2012; 29:3563-73. [PMID: 22723304 DOI: 10.1093/molbev/mss165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although gene duplications occur at a higher rate, only a small fraction of these are retained. The position of a gene's encoded product in the protein-protein interaction network has recently emerged as a determining factor of gene duplicability. However, the direction of the relationship between network centrality and duplicability is not universal: In Escherichia coli, yeast, fly, and worm, duplicated genes more often act at the periphery of the network, whereas in humans, such genes tend to occupy the most central positions. Herein, we have inferred duplication events that took place in the different branches of the primate phylogeny. In agreement with previous observations, we found that duplications generally affected the most central network genes, which is presumably the process that has most influenced the trend in humans. However, the opposite trend--that is, duplication being more common in genes whose encoded products are peripheral in the network--is observed for three recent branches, including, quite counterintuitively, the external branch leading to humans. This indicates a shift in the relationship between centrality and duplicability during primate evolution. Furthermore, we found that genes encoding interacting proteins exhibit phylogenetic tree topologies that are more similar than expected for random pairs and that genes duplicated in a given branch of the phylogeny tend to interact with those that duplicated in the same lineage. These results indicate that duplication of a gene increases the likelihood of duplication of its interacting partners. Our observations indicate that the structure of the primate protein-protein interaction network affects gene duplicability in previously unrecognized ways.
Collapse
Affiliation(s)
- Aoife Doherty
- Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | | |
Collapse
|
168
|
Hou ZC, Sterner KN, Romero R, Than NG, Gonzalez JM, Weckle A, Xing J, Benirschke K, Goodman M, Wildman DE. Elephant transcriptome provides insights into the evolution of eutherian placentation. Genome Biol Evol 2012; 4:713-25. [PMID: 22546564 PMCID: PMC3381679 DOI: 10.1093/gbe/evs045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The chorioallantoic placenta connects mother and fetus in eutherian pregnancies. In order to understand the evolution of the placenta and provide further understanding of placenta biology, we sequenced the transcriptome of a term placenta of an African elephant (Loxodonta africana) and compared these data with RNA sequence and microarray data from other eutherian placentas including human, mouse, and cow. We characterized the composition of 55,910 expressed sequence tag (i.e., cDNA) contigs using our custom annotation pipeline. A Markov algorithm was used to cluster orthologs of human, mouse, cow, and elephant placenta transcripts. We found 2,963 genes are commonly expressed in the placentas of these eutherian mammals. Gene ontology categories previously suggested to be important for placenta function (e.g., estrogen receptor signaling pathway, cell motion and migration, and adherens junctions) were significantly enriched in these eutherian placenta–expressed genes. Genes duplicated in different lineages and also specifically expressed in the placenta contribute to the great diversity observed in mammalian placenta anatomy. We identified 1,365 human lineage–specific, 1,235 mouse lineage–specific, 436 cow lineage–specific, and 904 elephant-specific placenta-expressed (PE) genes. The most enriched clusters of human-specific PE genes are signal/glycoprotein and immunoglobulin, and humans possess a deeply invasive human hemochorial placenta that comes into direct contact with maternal immune cells. Inference of phylogenetically conserved and derived transcripts demonstrates the power of comparative transcriptomics to trace placenta evolution and variation across mammals and identified candidate genes that may be important in the normal function of the human placenta, and their dysfunction may be related to human pregnancy complications.
Collapse
Affiliation(s)
- Zhuo-Cheng Hou
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/NIH/DHHS, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Dehara Y, Hashiguchi Y, Matsubara K, Yanai T, Kubo M, Kumazawa Y. Characterization of squamate olfactory receptor genes and their transcripts by the high-throughput sequencing approach. Genome Biol Evol 2012; 4:602-16. [PMID: 22511035 PMCID: PMC3342882 DOI: 10.1093/gbe/evs041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The olfactory receptor (OR) genes represent the largest multigene family in the genome of terrestrial vertebrates. Here, the high-throughput next-generation sequencing (NGS) approach was applied to characterization of OR gene repertoires in the green anole lizard Anolis carolinensis and the Japanese four-lined ratsnake Elaphe quadrivirgata. Tagged polymerase chain reaction (PCR) products amplified from either genomic DNA or cDNA of the two species were used for parallel pyrosequencing, assembling, and screening for errors in PCR and pyrosequencing. Starting from the lizard genomic DNA, we accurately identified 56 of 136 OR genes that were identified from its draft genome sequence. These recovered genes were broadly distributed in the phylogenetic tree of vertebrate OR genes without severe biases toward particular OR families. Ninety-six OR genes were identified from the ratsnake genomic DNA, implying that the snake has more OR gene loci than the anole lizard in response to an increased need for the acuity of olfaction. This view is supported by the estimated number of OR genes in the Burmese python's draft genome (∼280), although squamates may generally have fewer OR genes than terrestrial mammals and amphibians. The OR gene repertoire of the python seems unique in that many class I OR genes are retained. The NGS approach also allowed us to identify candidates of highly expressed and silent OR gene copies in the lizard's olfactory epithelium. The approach will facilitate efficient and parallel characterization of considerable unbiased proportions of multigene family members and their transcripts from nonmodel organisms.
Collapse
Affiliation(s)
- Yuki Dehara
- Department of Information and Biological Sciences and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, Japan
| | | | | | | | | | | |
Collapse
|
170
|
Piasecka B, Kutalik Z, Roux J, Bergmann S, Robinson-Rechavi M. Comparative modular analysis of gene expression in vertebrate organs. BMC Genomics 2012; 13:124. [PMID: 22458817 PMCID: PMC3359279 DOI: 10.1186/1471-2164-13-124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 03/29/2012] [Indexed: 12/30/2022] Open
Abstract
Background The degree of conservation of gene expression between homologous organs largely remains an open question. Several recent studies reported some evidence in favor of such conservation. Most studies compute organs' similarity across all orthologous genes, whereas the expression level of many genes are not informative about organ specificity. Results Here, we use a modularization algorithm to overcome this limitation through the identification of inter-species co-modules of organs and genes. We identify such co-modules using mouse and human microarray expression data. They are functionally coherent both in terms of genes and of organs from both organisms. We show that a large proportion of genes belonging to the same co-module are orthologous between mouse and human. Moreover, their zebrafish orthologs also tend to be expressed in the corresponding homologous organs. Notable exceptions to the general pattern of conservation are the testis and the olfactory bulb. Interestingly, some co-modules consist of single organs, while others combine several functionally related organs. For instance, amygdala, cerebral cortex, hypothalamus and spinal cord form a clearly discernible unit of expression, both in mouse and human. Conclusions Our study provides a new framework for comparative analysis which will be applicable also to other sets of large-scale phenotypic data collected across different species.
Collapse
Affiliation(s)
- Barbara Piasecka
- Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
171
|
Abstract
The recent explosion of genome sequences from all major phylogenetic groups has unveiled an unexpected wealth of cases of recurrent evolution of strikingly similar genomic features in different lineages. Here, we review the diverse known types of recurrent evolution in eukaryotic genomes, with a special focus on metazoans, ranging from reductive genome evolution to origins of splice-leader trans-splicing, from tandem exon duplications to gene family expansions. We first propose a general classification scheme for evolutionary recurrence at the genomic level, based on the type of driving force-mutation or selection-and the environmental and genomic circumstances underlying these forces. We then discuss various cases of recurrent genomic evolution under this scheme. Finally, we provide a broader context for repeated genomic evolution, including the unique relationship of genomic recurrence with the genotype-phenotype map, and the ways in which the study of recurrent genomic evolution can be used to understand fundamental evolutionary processes.
Collapse
Affiliation(s)
- Ignacio Maeso
- Department of Zoology, University of Oxford, United Kingdom
| | - Scott William Roy
- Department of Biology, Stanford University
- Department of Biology, San Francisco State University
| | - Manuel Irimia
- Department of Biology, Stanford University
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Canada
| |
Collapse
|
172
|
Dong D, Jin K, Wu X, Zhong Y. CRDB: database of chemosensory receptor gene families in vertebrate. PLoS One 2012; 7:e31540. [PMID: 22393364 PMCID: PMC3290609 DOI: 10.1371/journal.pone.0031540] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/12/2012] [Indexed: 11/19/2022] Open
Abstract
Chemosensory receptors (CR) are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of ‘birth-and-death’ evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates.
Collapse
Affiliation(s)
- Dong Dong
- Institute of Molecular Ecology and Evolution, iAIR, East China Normal University, Shanghai, China.
| | | | | | | |
Collapse
|
173
|
Rasmussen MD, Kellis M. Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome Res 2012; 22:755-65. [PMID: 22271778 DOI: 10.1101/gr.123901.111] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene phylogenies provide a rich source of information about the way evolution shapes genomes, populations, and phenotypes. In addition to substitutions, evolutionary events such as gene duplication and loss (as well as horizontal transfer) play a major role in gene evolution, and many phylogenetic models have been developed in order to reconstruct and study these events. However, these models typically make the simplifying assumption that population-related effects such as incomplete lineage sorting (ILS) are negligible. While this assumption may have been reasonable in some settings, it has become increasingly problematic as increased genome sequencing has led to denser phylogenies, where effects such as ILS are more prominent. To address this challenge, we present a new probabilistic model, DLCoal, that defines gene duplication and loss in a population setting, such that coalescence and ILS can be directly addressed. Interestingly, this model implies that in addition to the usual gene tree and species tree, there exists a third tree, the locus tree, which will likely have many applications. Using this model, we develop the first general reconciliation method that accurately infers gene duplications and losses in the presence of ILS, and we show its improved inference of orthologs, paralogs, duplications, and losses for a variety of clades, including flies, fungi, and primates. Also, our simulations show that gene duplications increase the frequency of ILS, further illustrating the importance of a joint model. Going forward, we believe that this unified model can offer insights to questions in both phylogenetics and population genetics.
Collapse
Affiliation(s)
- Matthew D Rasmussen
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
174
|
Abstract
MicroRNAs (miRNAs) are among the most important regulatory elements of gene expression in animals and plants. However, their origin and evolutionary dynamics have not been studied systematically. In this paper, we identified putative miRNA genes in 11 plant species using the bioinformatic technique and examined their evolutionary changes. Our homology search indicated that no miRNA gene is currently shared between green algae and land plants. The number of miRNA genes has increased substantially in the land plant lineage, but after the divergence of eudicots and monocots, the number has changed in a lineage-specific manner. We found that miRNA genes have originated mainly by duplication of preexisting miRNA genes or protein-coding genes. Transposable elements also seem to have contributed to the generation of species-specific miRNA genes. The relative importance of these mechanisms in plants is quite different from that in Drosophila species, where the formation of hairpin structures in the genomes seems to be a major source of miRNA genes. This difference in the origin of miRNA genes between plants and Drosophila may be explained by the difference in the binding to target mRNAs between plants and animals. We also found that young miRNA genes are less conserved than old genes in plants as well as in Drosophila species. Yet, nearly half of the gene families in the ancestor of flowering plants have been lost in at least one species examined. This indicates that the repertoires of miRNA genes have changed more dynamically than previously thought during plant evolution.
Collapse
Affiliation(s)
- Masafumi Nozawa
- Department of Biology, Institute of Molecular Evolutionary Genetics, Pennsylvania State University, PA, USA.
| | | | | |
Collapse
|
175
|
Ma M. Odor and pheromone sensing via chemoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:93-106. [PMID: 22399397 DOI: 10.1007/978-1-4614-1704-0_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evolutionally, chemosensation is an ancient but yet enigmatic sense. All organisms ranging from the simplest unicellular form to the most advanced multicellular creature possess the capability to detect chemicals in the surroundings. Conversely, all living things emit some forms of smells, either as communicating signals or as by-products of metabolism. Many species (from worms, insects to mammals) rely on the olfactory systems which express a large number of chemoreceptors to locate food and mates and to avoid danger. Most chemoreceptors expressed in olfactory organs are G-protein coupled receptors (GPCRs) and can be classified into two major categories: odorant receptors (ORs) and pheromone receptors, which principally detect general odors and pheromones, respectively. In vertebrates, these two types of receptors are often expressed in two distinct apparatuses: The main olfactory epithelium (MOE) and the vomeronasal organ (VNO), respectively. Each olfactory sensory neuron (OSN) in the MOE typically expresses one type of OR from a large repertoire. General odors activate ORs and their host OSNs (ranging from narrowly- to broadly-tuned) in a combinatorial manner and the information is sent to the brain via the main olfactory system leading to perception of smells. In contrast, pheromones stimulate relatively narrowly-tuned receptors and their host VNO neurons and the information is sent to the brain via the accessory olfactory system leading to behavioral and endocrinological changes. Recent studies indicate that the functional separation between these two systems is blurred in some cases and there are more subsystems serving chemosensory roles. This chapter focuses on the molecular and cellular mechanisms underlying odor and pheromone sensing in rodents, the best characterized vertebrate models.
Collapse
Affiliation(s)
- Minghong Ma
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
176
|
Abstract
Sensory systems detect small molecules, mechanical perturbations, or radiation via the activation of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled receptors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR-based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illustrate the integration of diverse modulatory signals at the receptor, as seen in the thermosensory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous examples in which gene duplication and sequence divergence have created novel sensory specificities. This is the evolutionary basis for the observed diversity in temperature- and ligand-dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche. The many specialized anatomic structures, such as the eye and ear, that house primary sensory neurons further enhance the detection of relevant stimuli.
Collapse
Affiliation(s)
- David Julius
- Department of Physiology, University of California School of Medicine, San Francisco, California 94158, USA.
| | | |
Collapse
|
177
|
Diagnosis of tuberculosis by trained African giant pouched rats and confounding impact of pathogens and microflora of the respiratory tract. J Clin Microbiol 2011; 50:274-80. [PMID: 22135255 DOI: 10.1128/jcm.01199-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trained African giant-pouched rats (Cricetomys gambianus) can detect Mycobacterium tuberculosis and show potential for the diagnosis of tuberculosis (TB). However, rats' ability to discriminate between clinical sputum containing other Mycobacterium spp. and nonmycobacterial species of the respiratory tract is unknown. It is also unknown whether nonmycobacterial species produce odor similar to M. tuberculosis and thereby cause the detection of smear-negative sputum. Sputum samples from 289 subjects were analyzed by smear microscopy, culture, and rats. Mycobacterium spp. were isolated on Lowenstein-Jensen medium, and nonmycobacterial species were isolated on four different media. The odor from nonmycobacterial species from smear- and M. tuberculosis culture-negative sputa detected by ≥2 rats ("rat positive") was analyzed by gas chromatography-mass spectrometry and compared to the M. tuberculosis odor. Rats detected 45 of 56 confirmed cases of TB, 4 of 5 suspected cases of TB, and 63 of 228 TB-negative subjects (sensitivity, 80.4%; specificity, 72.4%; accuracy, 73.9%; positive predictive value, 41.7%; negative predictive value, 93.8%). A total of 37 (78.7%) of 47 mycobacterial isolates were M. tuberculosis complex, with 75.7% from rat-positive sputa. Ten isolates were nontuberculous mycobacteria, one was M. intracellulare, one was M. avium subsp. hominissuis, and eight were unidentified. Rat-positive sputa with Moraxella catarrhalis, Streptococcus pneumoniae, Staphylococcus spp., and Enterococcus spp. were associated with TB. Rhodococcus, Nocardia, Streptomyces, Staphylococcus, and Candida spp. from rat-positive sputa did not produce M. tuberculosis-specific volatiles (methyl nicotinate, methyl para-anisate, and ortho-phenylanisole). Prevalence of Mycobacterium-related Nocardia and Rhodococcus in smear-negative sputa did not equal that of smear-negative mycobacteria (44.7%), of which 28.6% were rat positive. These findings and the absence of M. tuberculosis-specific volatiles in nonmycobacterial species indicate that rats can be trained to specifically detect M. tuberculosis.
Collapse
|
178
|
Wu YC, Rasmussen MD, Kellis M. Evolution at the subgene level: domain rearrangements in the Drosophila phylogeny. Mol Biol Evol 2011; 29:689-705. [PMID: 21900599 PMCID: PMC3258039 DOI: 10.1093/molbev/msr222] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although the possibility of gene evolution by domain rearrangements has long been appreciated, current methods for reconstructing and systematically analyzing gene family evolution are limited to events such as duplication, loss, and sometimes, horizontal transfer. However, within the Drosophila clade, we find domain rearrangements occur in 35.9% of gene families, and thus, any comprehensive study of gene evolution in these species will need to account for such events. Here, we present a new computational model and algorithm for reconstructing gene evolution at the domain level. We develop a method for detecting homologous domains between genes and present a phylogenetic algorithm for reconstructing maximum parsimony evolutionary histories that include domain generation, duplication, loss, merge (fusion), and split (fission) events. Using this method, we find that genes involved in fusion and fission are enriched in signaling and development, suggesting that domain rearrangements and reuse may be crucial in these processes. We also find that fusion is more abundant than fission, and that fusion and fission events occur predominantly alongside duplication, with 92.5% and 34.3% of fusion and fission events retaining ancestral architectures in the duplicated copies. We provide a catalog of ∼9,000 genes that undergo domain rearrangement across nine sequenced species, along with possible mechanisms for their formation. These results dramatically expand on evolution at the subgene level and offer several insights into how new genes and functions arise between species.
Collapse
Affiliation(s)
- Yi-Chieh Wu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Massachusetts, USA.
| | | | | |
Collapse
|
179
|
Amaral AJ, Ferretti L, Megens HJ, Crooijmans RPMA, Nie H, Ramos-Onsins SE, Perez-Enciso M, Schook LB, Groenen MAM. Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS One 2011; 6:e14782. [PMID: 21483733 PMCID: PMC3070695 DOI: 10.1371/journal.pone.0014782] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 01/29/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Artificial selection has caused rapid evolution in domesticated species. The identification of selection footprints across domesticated genomes can contribute to uncover the genetic basis of phenotypic diversity. METHODOLOGY/MAIN FINDINGS Genome wide footprints of pig domestication and selection were identified using massive parallel sequencing of pooled reduced representation libraries (RRL) representing ∼2% of the genome from wild boar and four domestic pig breeds (Large White, Landrace, Duroc and Pietrain) which have been under strong selection for muscle development, growth, behavior and coat color. Using specifically developed statistical methods that account for DNA pooling, low mean sequencing depth, and sequencing errors, we provide genome-wide estimates of nucleotide diversity and genetic differentiation in pig. Widespread signals suggestive of positive and balancing selection were found and the strongest signals were observed in Pietrain, one of the breeds most intensively selected for muscle development. Most signals were population-specific but affected genomic regions which harbored genes for common biological categories including coat color, brain development, muscle development, growth, metabolism, olfaction and immunity. Genetic differentiation in regions harboring genes related to muscle development and growth was higher between breeds than between a given breed and the wild boar. CONCLUSIONS/SIGNIFICANCE These results, suggest that although domesticated breeds have experienced similar selective pressures, selection has acted upon different genes. This might reflect the multiple domestication events of European breeds or could be the result of subsequent introgression of Asian alleles. Overall, it was estimated that approximately 7% of the porcine genome has been affected by selection events. This study illustrates that the massive parallel sequencing of genomic pools is a cost-effective approach to identify footprints of selection.
Collapse
Affiliation(s)
- Andreia J. Amaral
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Luca Ferretti
- Department of Animal Science and Food Technology, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Animal Science Department, Centre for Research in Agricultural Genomics, Bellaterra, Spain
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | | | - Haisheng Nie
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Sebastian E. Ramos-Onsins
- Department of Animal Science and Food Technology, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Animal Science Department, Centre for Research in Agricultural Genomics, Bellaterra, Spain
| | - Miguel Perez-Enciso
- Department of Animal Science and Food Technology, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Animal Science Department, Centre for Research in Agricultural Genomics, Bellaterra, Spain
- Life and Medical Sciences, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Lawrence B. Schook
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Martien A. M. Groenen
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
180
|
Hua Z, Zou C, Shiu SH, Vierstra RD. Phylogenetic comparison of F-Box (FBX) gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS One 2011; 6:e16219. [PMID: 21297981 PMCID: PMC3030570 DOI: 10.1371/journal.pone.0016219] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/07/2010] [Indexed: 11/18/2022] Open
Abstract
The emergence of multigene families has been hypothesized as a major contributor to the evolution of complex traits and speciation. To help understand how such multigene families arose and diverged during plant evolution, we examined the phylogenetic relationships of F-Box (FBX) genes, one of the largest and most polymorphic superfamilies known in the plant kingdom. FBX proteins comprise the target recognition subunit of SCF-type ubiquitin-protein ligases, where they individually recruit specific substrates for ubiquitylation. Through the extensive analysis of 10,811 FBX loci from 18 plant species, ranging from the alga Chlamydomonas reinhardtii to numerous monocots and eudicots, we discovered strikingly diverse evolutionary histories. The number of FBX loci varies widely and appears independent of the growth habit and life cycle of land plants, with a little as 198 predicted for Carica papaya to as many as 1350 predicted for Arabidopsis lyrata. This number differs substantially even among closely related species, with evidence for extensive gains/losses. Despite this extraordinary inter-species variation, one subset of FBX genes was conserved among most species examined. Together with evidence of strong purifying selection and expression, the ligases synthesized from these conserved loci likely direct essential ubiquitylation events. Another subset was much more lineage specific, showed more relaxed purifying selection, and was enriched in loci with little or no evidence of expression, suggesting that they either control more limited, species-specific processes or arose from genomic drift and thus may provide reservoirs for evolutionary innovation. Numerous FBX loci were also predicted to be pseudogenes with their numbers tightly correlated with the total number of FBX genes in each species. Taken together, it appears that the FBX superfamily has independently undergone substantial birth/death in many plant lineages, with its size and rapid evolution potentially reflecting a central role for ubiquitylation in driving plant fitness.
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Cheng Zou
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Richard D. Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
181
|
Comparative genomic analysis reveals more functional nasal chemoreceptors in nocturnal mammals than in diurnal mammals. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-4202-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
182
|
Ramayo-Caldas Y, Castelló A, Pena RN, Alves E, Mercadé A, Souza CA, Fernández AI, Perez-Enciso M, Folch JM. Copy number variation in the porcine genome inferred from a 60 k SNP BeadChip. BMC Genomics 2010; 11:593. [PMID: 20969757 PMCID: PMC3091738 DOI: 10.1186/1471-2164-11-593] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/22/2010] [Indexed: 12/17/2022] Open
Abstract
Background Recent studies in pigs have detected copy number variants (CNVs) using the Comparative Genomic Hybridization technique in arrays designed to cover specific porcine chromosomes. The goal of this study was to identify CNV regions (CNVRs) in swine species based on whole genome SNP genotyping chips. Results We used predictions from three different programs (cnvPartition, PennCNV and GADA) to analyze data from the Porcine SNP60 BeadChip. A total of 49 CNVRs were identified in 55 animals from an Iberian x Landrace cross (IBMAP) according to three criteria: detected in at least two animals, contained three or more consecutive SNPs and recalled by at least two programs. Mendelian inheritance of CNVRs was confirmed in animals belonging to several generations of the IBMAP cross. Subsequently, a segregation analysis of these CNVRs was performed in 372 additional animals from the IBMAP cross and its distribution was studied in 133 unrelated pig samples from different geographical origins. Five out of seven analyzed CNVRs were validated by real time quantitative PCR, some of which coincide with well known examples of CNVs conserved across mammalian species. Conclusions Our results illustrate the usefulness of Porcine SNP60 BeadChip to detect CNVRs and show that structural variants can not be neglected when studying the genetic variability in this species.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
Odor signals received by odorant receptors (ORs) in the olfactory epithelium are represented as an odor map of activated glomeruli in the olfactory bulb. In the mouse olfactory system, it appears that much of axon pathfinding and sorting occurs autonomously by olfactory neuron axons. Here, we review the recent progress on the study of olfactory map formation in rodents. We will discuss how neuronal identity is represented at axon termini and how the OR-instructed axonal projection is regulated.
Collapse
Affiliation(s)
- Hitoshi Sakano
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
184
|
The DUB/USP17 deubiquitinating enzymes: a gene family within a tandemly repeated sequence, is also embedded within the copy number variable beta-defensin cluster. BMC Genomics 2010; 11:250. [PMID: 20403174 PMCID: PMC2874809 DOI: 10.1186/1471-2164-11-250] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 04/19/2010] [Indexed: 11/21/2022] Open
Abstract
Background The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A). Subsequently we have identified a number of human family members and shown that one of these (DUB-3) is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1. Results Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable beta-defensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating. Conclusions The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.
Collapse
|
185
|
Mozaffarieh M, Hauenstein D, Schoetzau A, Konieczka K, Flammer J. Smell perception in normal tension glaucoma patients. Mol Vis 2010; 16:506-10. [PMID: 20352025 PMCID: PMC2845666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/16/2010] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The aim of this study was to quantify the ability to identify odors in normal tension glaucoma (NTG) patients and healthy subjects with and without a primary vascular dysregulation (PVD). METHODS Both self-assessment of smell perception and evaluation of odor identification by means of the 12-item odor identification test ("Sniffin' Sticks") were performed in the following groups of subjects: 1) 18 NTG patients with PVD (G+), 2) 18 NTG patients without PVD (G-), 3) 18 healthy subjects with PVD (H(+)) and 4) 18 healthy subjects without PVD (H-). The subjects self-assessment of smell perception was evaluated before the Sniffin' Sticks test by asking them to judge their ability to identify odors as either "average," "better than average," or "worse than average." RESULTS Subjects with a PVD (G+ and H(+)) can identify odors significantly better than those without a PVD (G- and H-; in a score scale of 1-12 the score point difference=2.64, 95% CI=1.88-3.40, p<0.001). No significant differences in odor identification was found between NTG (groups G+ and G-) and healthy subjects (groups H(+) and H-; score point difference=-0.14, 95% CI=-0.9-0.62, p=0.72). CONCLUSIONS Subjects with a PVD can identify odors significantly better than those without a PVD.
Collapse
|
186
|
Abstract
The olfactory sense plays a key role in animals'life time. The main gene related with olfaction was olfactory receptor (OR) gene. This review introduced the structure, expression regulation, distribution, molecular evolution and polymorphism of OR gene. The relationship between OR gene and olfactory function and olfactory deficits was also discussed.
Collapse
|
187
|
Abstract
Adaptive shifts associated with human origins are brought to light as we examine the human fossil record and study our own genome and that of our closest ape relatives. However, the more ancient roots of many human characteristics are revealed through the study of a broader array of living anthropoids and the increasingly dense fossil record of the earliest anthropoid radiations. Genomic data and fossils of early primates in Asia and Africa clarify relationships among the major clades of primates. Progress in comparative anatomy, genomics, and molecular biology point to key changes in sensory ecology and brain organization that ultimately set the stage for the emergence of the human lineage.
Collapse
|
188
|
Niimura Y. Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents. Hum Genomics 2010; 4:107-18. [PMID: 20038498 PMCID: PMC3525206 DOI: 10.1186/1479-7364-4-2-107] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Olfaction is essential for the survival of animals. Versatile odour molecules in the environment are received by olfactory receptors (ORs), which form the largest multigene family in vertebrates. Identification of the entire repertories of OR genes using bioinformatics methods from the whole-genome sequences of diverse organisms revealed that the numbers of OR genes vary enormously, ranging from ~1,200 in rats and ~400 in humans to ~150 in zebrafish and ~15 in pufferfish. Most species have a considerable fraction of pseudogenes. Extensive phylogenetic analyses have suggested that the numbers of gene gains and losses are extremely large in the OR gene family, which is a striking example of the birth-and-death evolution. It appears that OR gene repertoires change dynamically, depending on each organism's living environment. For example, higher primates equipped with a well-developed vision system have lost a large number of OR genes. Moreover, two groups of OR genes for detecting airborne odorants greatly expanded after the time of terrestrial adaption in the tetrapod lineage, whereas fishes retain diverse repertoires of genes that were present in aquatic ancestral species. The origin of vertebrate OR genes can be traced back to the common ancestor of all chordate species, but insects, nematodes and echinoderms utilise distinctive families of chemoreceptors, suggesting that chemoreceptor genes have evolved many times independently in animal evolution.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
189
|
Matsui A, Go Y, Niimura Y. Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision. Mol Biol Evol 2010; 27:1192-200. [PMID: 20061342 DOI: 10.1093/molbev/msq003] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Odor molecules in the environment are detected by olfactory receptors (ORs), being encoded by a large multigene family in mammalian genomes. It is generally thought that primates are vision oriented and dependent weakly on olfaction. Previous studies suggested that Old World monkeys (OWMs) and hominoids lost many functional OR genes after the divergence from New World monkeys (NWMs) due to the acquisition of well-developed trichromatic vision. To examine this hypothesis, here we analyzed OR gene repertoires of five primate species including NWMs, OWMs, and hominoids for which high-coverage genome sequences are available, together with two prosimians and tree shrews with low-coverage genomes. The results showed no significant differences in the number of functional OR genes between NWMs (marmosets) and OWMs/hominoids. Two independent analyses, identification of orthologous genes among the five primates and estimation of the numbers of ancestral genes by the reconciled tree method, did not support a sudden loss of OR genes at the branch of the OWMs/hominoids ancestor but suggested a gradual loss in every lineage. Moreover, we found that humans retain larger numbers of ancestral OR genes that were in the common ancestor of NWMs/OWMs/hominoids than orangutans and macaques and that the OR gene repertoire in humans is more similar to that of marmosets than those of orangutans and macaques. These results suggest that the degeneration of OR genes in primates cannot simply be explained by the acquisition of trichromatic vision, and our sense of smell may not be inferior to other primate species.
Collapse
Affiliation(s)
- Atsushi Matsui
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | | | | |
Collapse
|
190
|
Jaeger SR, McRae JF, Salzman Y, Williams L, Newcomb RD. A preliminary investigation into a genetic basis for cis-3-hexen-1-ol odour perception: A genome-wide association approach. Food Qual Prefer 2010. [DOI: 10.1016/j.foodqual.2009.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
191
|
Abstract
Cellular electrophysiological systems, like developmental systems, appear to evolve primarily by means of regulatory evolution. It is suggested that electrophysiological systems share two key features with developmental systems that account for this dependence on regulatory evolution. For both systems, structural evolution has the potential to create significant problems of pleiotropy and both systems are predominantly computational in nature. It is concluded that the relative balance of physical and computational tasks that a biological system has to perform, combined with the probability that these tasks may have to change significantly during the course of evolution, will be major factors in determining the relative mix of regulatory and structural evolution that is observed for a given system. Physiological systems that directly interface with the environment will almost always perform some low-level physical task. In the majority of cases this will require evolution of protein function in order for the tasks themselves to evolve. For complex physiological systems a large fraction of their function will be devoted to high-level control functions that are predominantly computational in nature. In most cases regulatory evolution will be sufficient in order for these computational tasks to evolve.
Collapse
Affiliation(s)
- Barbara Rosati
- Department of Physiology and Biophysics, Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
192
|
Steiger SS, Fidler AE, Mueller JC, Kempenaers B. Evidence for adaptive evolution of olfactory receptor genes in 9 bird species. ACTA ACUST UNITED AC 2009; 101:325-33. [PMID: 19965911 DOI: 10.1093/jhered/esp105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It has been suggested that positive selection, in particular selection favoring a change in the protein sequence, plays a role in the evolution of olfactory receptor (OR) gene repertoires in fish and mammals. ORs are 7-transmembrane domain (TM) proteins, members of the G-protein-coupled receptor superfamily in vertebrate genomes, and responsible for odorant binding and discrimination. OR gene repertoires in birds are surprisingly large and diverse, suggesting that birds have a keen olfactory sense. The aim of this study is to investigate signatures of positive selection in an expanded OR clade (group-gamma-c) that seems to be a characteristic of avian genomes. Using maximum-likelihood methods that estimate the d(N)/d(S) ratios and account for the effects of recombination, we show here that there is evidence for positive selection in group-gamma-c partial OR coding sequences of 9 bird species that are likely to have different olfactory abilities: the blue tit (Cyanistes caeruleus), the black coucal (Centropus grillii), the brown kiwi (Apteryx australis), the canary (Serinus canaria), the galah (Eolophus roseicapillus), the kakapo (Strigops habroptilus), the mallard (Anas platyrhynchos), the red jungle fowl (Gallus gallus), and the snow petrel (Pagodroma nivea). Positively selected codons were predominantly located in TMs, which in other vertebrates are involved in odorant binding. Our data suggest that 1) at least some avian OR genes have been subjected to adaptive evolution, 2) the extent of such adaptive evolution differs between bird species, and 3) positive selective pressures may have been stronger on the group-gamma-c OR genes of species that have well-developed olfactory abilities.
Collapse
Affiliation(s)
- Silke S Steiger
- Department of Behavioral Ecology and Evolutionary Genetics, Max-Planck Institute for Ornithology, PO Box 1564, 82305 Starnberg.
| | | | | | | |
Collapse
|
193
|
Rimbault M, Robin S, Vaysse A, Galibert F. RNA profiles of rat olfactory epithelia: individual and age related variations. BMC Genomics 2009; 10:572. [PMID: 19954510 PMCID: PMC2797534 DOI: 10.1186/1471-2164-10-572] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 12/02/2009] [Indexed: 11/21/2022] Open
Abstract
Background Mammalian genomes contain a large number (~1000) of olfactory receptor (OR) genes, many of which (20 to 50%) are pseudogenes. OR gene transcription is not restricted to the olfactory epithelium, but is found in numerous tissues. Using microarray hybridization and RTqPCR, we analyzed the mRNA profiles of the olfactory epithelium of male and female Brown Norway rats of different origins and ages (newborn, adult and old). Results (1) We observed very little difference between males and females and between rats from two different suppliers. (2) Different OR genes were expressed at varying levels, rather than uniformly across the four endoturbinates. (3) A large proportion of the gene transcripts (2/3 of all probes) were detected in all three age groups. Adult and older rats expressed similar numbers of OR genes, both expressing more OR genes than newborns. (4) Comparisons of whole transcriptomes or transcription profiles of expressed OR genes only showed a clear clustering of the samples as a function of age. (5) Most OR genes were expressed at lower levels at birth than in older animals, but a small number of OR genes were expressed specifically or were overexpressed in newborns. Conclusion Not all OR genes are expressed at a detectable level. Pups expressed fewer OR genes than adult rats, and generally at a lower level; however, a small subset of OR genes were more strongly expressed in these newborn rats. The reasons for these differences are not understood. However, the specific expression of some OR genes in newborn olfactory epithelia may be related to the blindness and deafness of pups at birth, when these pups are heavily reliant on olfaction and their mother.
Collapse
Affiliation(s)
- Maud Rimbault
- Faculté de Médecine, Université de Rennes 1, Institut de Génétique et Développement de Rennes, UEB, Rennes, France.
| | | | | | | |
Collapse
|
194
|
Dynamic functional evolution of an odorant receptor for sex-steroid-derived odors in primates. Proc Natl Acad Sci U S A 2009; 106:21247-51. [PMID: 19955411 DOI: 10.1073/pnas.0808378106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Odorant receptors are among the fastest evolving genes in animals. However, little is known about the functional changes of individual odorant receptors during evolution. We have recently demonstrated a link between the in vitro function of a human odorant receptor, OR7D4, and in vivo olfactory perception of 2 steroidal ligands--androstenone and androstadienone--chemicals that are shown to affect physiological responses in humans. In this study, we analyzed the in vitro function of OR7D4 in primate evolution. Orthologs of OR7D4 were cloned from different primate species. Ancestral reconstruction allowed us to reconstitute additional putative OR7D4 orthologs in hypothetical ancestral species. Functional analysis of these orthologs showed an extremely diverse range of OR7D4 responses to the ligands in various primate species. Functional analysis of the nonsynonymous changes in the Old World Monkey and Great Ape lineages revealed a number of sites causing increases or decreases in sensitivity. We found that the majority of the functionally important residues in OR7D4 were not predicted by the maximum likelihood analysis detecting positive Darwinian selection.
Collapse
|
195
|
Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC. Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 2009; 20:1-9. [PMID: 19952139 DOI: 10.1101/gr.099416.109] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to smell is governed by the largest gene family in mammalian genomes, the olfactory receptor (OR) genes. Although these genes are well annotated in the finished human and mouse genomes, we still do not understand which receptors bind specific odorants or how they fully function. Previous comparative studies have been taxonomically limited and mostly focused on the percentage of OR pseudogenes within species. No study has investigated the adaptive changes of functional OR gene families across phylogenetically and ecologically diverse mammals. To determine the extent to which OR gene repertoires have been influenced by habitat, sensory specialization, and other ecological traits, to better understand the functional importance of specific OR gene families and thus the odorants they bind, we compared the functional OR gene repertoires from 50 mammalian genomes. We amplified more than 2000 OR genes in aquatic, semi-aquatic, and flying mammals and coupled these data with 48,000 OR genes from mostly terrestrial mammals, extracted from genomic projects. Phylogenomic, Bayesian assignment, and principle component analyses partitioned species by ecotype (aquatic, semi-aquatic, terrestrial, flying) rather than phylogenetic relatedness, and identified OR families important for each habitat. Functional OR gene repertoires were reduced independently in the multiple origins of aquatic mammals and were significantly divergent in bats. We reject recent neutralist views of olfactory subgenome evolution and correlate specific OR gene families with physiological requirements, a preliminary step toward unraveling the relationship between specific odors and respective OR gene families.
Collapse
Affiliation(s)
- Sara Hayden
- UCD School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
196
|
Kato A, Touhara K. Mammalian olfactory receptors: pharmacology, G protein coupling and desensitization. Cell Mol Life Sci 2009; 66:3743-53. [PMID: 19652915 PMCID: PMC11115879 DOI: 10.1007/s00018-009-0111-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/10/2009] [Accepted: 07/15/2009] [Indexed: 12/14/2022]
Abstract
The vertebrate olfactory system recognizes and discriminates between thousands of structurally diverse odorants. Detection of odorants in mammals is mediated by olfactory receptors (ORs), which comprise the largest superfamily of G protein-coupled receptors (GPCRs). Upon odorant binding, ORs couple to G proteins, resulting in an increase in intracellular cAMP levels and subsequent receptor signaling. In this review, we will discuss recently published studies outlining the molecular basis of odor discrimination, focusing on pharmacology, G protein activation, and desensitization of ORs. A greater understanding of the molecular mechanisms underlying OR activity may help in the discovery of agonists and antagonists of ORs, and of GPCRs with potential therapeutic applications.
Collapse
Affiliation(s)
- Aya Kato
- Department of Integrated Biosciences, The University of Tokyo, Room 201, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | - Kazushige Touhara
- Department of Integrated Biosciences, The University of Tokyo, Room 201, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| |
Collapse
|
197
|
Abstract
The sense of smell relies on the diversity of olfactory receptor (OR) repertoires in vertebrates. It has been hypothesized that different types of ORs are required in terrestrial and marine environments. Here we show that viviparous sea snakes, which do not rely on a terrestrial environment, have significantly lost ORs compared with their terrestrial relatives, supporting the hypothesis. On the other hand, oviparous sea snakes, which rely on a terrestrial environment for laying eggs, still maintain their ORs, reflecting the importance of the terrestrial environment for them. Furthermore, we found one Colubroidea snake (including sea snakes and their terrestrial relatives)-specific OR subfamily which had diverged widely during snake evolution after the blind snake-Colubroidea snake split. Interestingly, no pseudogenes are included in this subfamily in sea snakes, and this subfamily seems to have been expanding rapidly even in an underwater environment. These findings suggest that the Colubroidea-specific ORs detect nonvolatile odorants.
Collapse
Affiliation(s)
- T Kishida
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
198
|
Abstract
Remarkable advances in our understanding of olfactory perception have been made in recent years, including the discovery of new mechanisms of olfactory signaling and new principles of olfactory processing. Here, we discuss the insight that has been gained into the receptors, cells, and circuits that underlie the sense of smell.
Collapse
Affiliation(s)
| | | | - John R. Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven 06520, USA
| |
Collapse
|
199
|
Fleischer J, Breer H, Strotmann J. Mammalian olfactory receptors. Front Cell Neurosci 2009; 3:9. [PMID: 19753143 PMCID: PMC2742912 DOI: 10.3389/neuro.03.009.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 08/07/2009] [Indexed: 11/30/2022] Open
Abstract
Perception of chemical stimuli from the environment is essential to most animals; accordingly, they are equipped with a complex olfactory system capable of receiving a nearly unlimited number of odorous substances and pheromones. This enormous task is accomplished by olfactory sensory neurons (OSNs) arranged in several chemosensory compartments in the nose. The sensitive and selective responsiveness of OSNs to odorous molecules and pheromones is based on distinct receptors in their chemosensory membrane; consequently, olfactory receptors play a key role for a reliable recognition and an accurate processing of chemosensory information. They are therefore considered as key elements for an understanding of the principles and mechanisms underlying the sense of smell. The repertoire of olfactory receptors in mammals encompasses hundreds of different receptor types which are highly diverse and expressed in distinct subcompartments of the nose. Accordingly, they are categorized into several receptor families, including odorant receptors (ORs), vomeronasal receptors (V1Rs and V2Rs), trace amine-associated receptors (TAARs), formyl peptide receptors (FPRs), and the membrane guanylyl cyclase GC-D. This large and complex receptor repertoire is the basis for the enormous chemosensory capacity of the olfactory system.
Collapse
Affiliation(s)
- Joerg Fleischer
- Institute of Physiology, University of Hohenheim Stuttgart, Germany
| | | | | |
Collapse
|
200
|
Dong D, He G, Zhang S, Zhang Z. Evolution of olfactory receptor genes in primates dominated by birth-and-death process. Genome Biol Evol 2009; 1:258-64. [PMID: 20333195 PMCID: PMC2817421 DOI: 10.1093/gbe/evp026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2009] [Indexed: 11/14/2022] Open
Abstract
Olfactory receptor (OR) is a large family of G protein–coupled receptors that can detect odorant in order to generate the sense of smell. They constitute one of the largest multiple gene families in animals including primates. To better understand the variation in odor perception and evolution of OR genes among primates, we computationally identified OR gene repertoires in orangutans, marmosets, and mouse lemurs and investigated the birth-and-death process of OR genes in the primate lineage. The results showed that 1) all the primate species studied have no more than 400 intact OR genes, fewer than rodents and canine; 2) Despite the similar number of OR genes in the genome, the makeup of the OR gene repertoires between different primate species is quite different as they had undergone dramatic birth-and-death evolution with extensive gene losses in the lineages leading to current species; 3) Apes and Old World monkey (OWM) have similar fraction of pseudogenes, whereas New World monkey (NWM) have fewer pseudogenes. To measure the selective pressure that had affected the OR gene repertoires in primates, we compared the ratio of nonsynonymous with synonymous substitution rates by using 70 one-to-one orthologous quintets among five primate species. We found that OR genes showed relaxed selective constraints in apes (humans, chimpanzees, and orangutans) than in OWMs (macaques) and NWMs (marmosets). We concluded that OR gene repertoires in primates have evolved in such a way to adapt to their respective living environments. Differential selective constraints might play important role in the primate OR gene evolution in each primate species.
Collapse
Affiliation(s)
- Dong Dong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|