151
|
Extracellular matrix nitration alters growth factor release and activates bioactive complement in human retinal pigment epithelial cells. PLoS One 2017; 12:e0177763. [PMID: 28505174 PMCID: PMC5432172 DOI: 10.1371/journal.pone.0177763] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/03/2017] [Indexed: 12/18/2022] Open
Abstract
Purpose We have shown previously that non-enzymatic nitration (NEN) of the extracellular matrix (ECM), which serves as a model of Bruch’s membrane (BM) aging, has a profound effect on the behavior of the overlying retinal pigment epithelial (RPE) cells, including altered phagocytic ability, reduced cell adhesion, and inhibition of proliferation. We know that transplanted RPE monolayers will encounter a hostile sub-RPE environment, including age-related alterations in BM that may compromise cell function and survival. Here we use our previous NEN model of BM aging to determine the effects of NEN of the ECM on growth factor release and complement activation in RPE cells. Methods Human induced-pluripotent stem cells (iPSCs) were differentiated into RPE cells, and confirmed by immunohistochemistry, confocal microscopy, and polymerase chain reaction. IPSC-derived RPE cells were plated onto RPE-derived ECM under untreated or nitrite-modified conditions. Cells were cultured for 7 days and barrier function measured by transepithelial resistance (TER). Vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), and complement component C3a were measured using enzyme-linked immunosorbent assay (ELISA). Results On average nitrite-modified ECM increased VEGF release both apically and basally by 0.15 ± 0.014 ng/mL (p <0.0001) and 0.21 ± 0.022 ng/mL (p <0.0001), respectively, in iPSC-derived RPE cells. Nitrite-modified ECM increased PEDF release in iPSC-derived RPE cells apically by 0.16 ± 0.031 ng/mL (p <0.0001), but not basally (0.27 ± 0.015 vs. 0.32 ± 0.029 ng/mL, (p >0.05)). Nitrite-modified ECM increased production of C3a in iPSC-derived RPE cells by 0.52 ± 0.123 ng/mL (p <0.05). Conclusion Nitrite-modified ECM increased VEGF, PEDF release, and C3a production in human iPSC-derived RPE cells. This model demonstrates changes seen in the basement membrane can lead to alterations in the cell biology of the RPE cells that may be related to the development of age-related macular degeneration.
Collapse
|
152
|
Kersten E, Paun CC, Schellevis RL, Hoyng CB, Delcourt C, Lengyel I, Peto T, Ueffing M, Klaver CCW, Dammeier S, den Hollander AI, de Jong EK. Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv Ophthalmol 2017; 63:9-39. [PMID: 28522341 DOI: 10.1016/j.survophthal.2017.05.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Abstract
Biomarkers can help unravel mechanisms of disease and identify new targets for therapy. They can also be useful in clinical practice for monitoring disease progression, evaluation of treatment efficacy, and risk assessment in multifactorial diseases, such as age-related macular degeneration (AMD). AMD is a highly prevalent progressive retinal disorder for which multiple genetic and environmental risk factors have been described, but the exact etiology is not yet fully understood. Many compounds have been evaluated for their association with AMD. We performed an extensive literature review of all compounds measured in serum, plasma, vitreous, aqueous humor, and urine of AMD patients. Over 3600 articles were screened, resulting in more than 100 different compounds analyzed in AMD studies, involved in neovascularization, immunity, lipid metabolism, extracellular matrix, oxidative stress, diet, hormones, and comorbidities (such as kidney disease). For each compound, we provide a short description of its function and discuss the results of the studies in relation to its usefulness as AMD biomarker. In addition, biomarkers identified by hypothesis-free techniques, including metabolomics, proteomics, and epigenomics, are covered. In summary, compounds belonging to the oxidative stress pathway, the complement system, and lipid metabolism are the most promising biomarker candidates for AMD. We hope that this comprehensive survey of the literature on systemic and ocular fluid compounds as potential biomarkers in AMD will provide a stepping stone for future research and possible implementation in clinical practice.
Collapse
Affiliation(s)
- Eveline Kersten
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Constantin C Paun
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rosa L Schellevis
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cécile Delcourt
- Université de Bordeaux, ISPED, Bordeaux, France; INSERM, U1219-Bordeaux Population Health Research Center, Bordeaux, France
| | - Imre Lengyel
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Tunde Peto
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Marius Ueffing
- Department for Ophthalmology and Medical Bioanalytics Centre Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sascha Dammeier
- Department for Ophthalmology and Medical Bioanalytics Centre Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
153
|
Guziewicz KE, Sinha D, Gómez NM, Zorych K, Dutrow EV, Dhingra A, Mullins RF, Stone EM, Gamm DM, Boesze-Battaglia K, Aguirre GD. Bestrophinopathy: An RPE-photoreceptor interface disease. Prog Retin Eye Res 2017; 58:70-88. [PMID: 28111324 PMCID: PMC5441932 DOI: 10.1016/j.preteyeres.2017.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
Bestrophinopathies, one of the most common forms of inherited macular degenerations, are caused by mutations in the BEST1 gene expressed in the retinal pigment epithelium (RPE). Both human and canine BEST1-linked maculopathies are characterized by abnormal accumulation of autofluorescent material within RPE cells and bilateral macular or multifocal lesions; however, the specific mechanism leading to the formation of these lesions remains unclear. We now provide an overview of the current state of knowledge on the molecular pathology of bestrophinopathies, and explore factors promoting formation of RPE-neuroretinal separations, using the first spontaneous animal model of BEST1-associated retinopathies, canine Best (cBest). Here, we characterize the nature of the autofluorescent RPE cell inclusions and report matching spectral signatures of RPE-associated fluorophores between human and canine retinae, indicating an analogous composition of endogenous RPE deposits in Best Vitelliform Macular Dystrophy (BVMD) patients and its canine disease model. This study also exposes a range of biochemical and structural abnormalities at the RPE-photoreceptor interface related to the impaired cone-associated microvillar ensheathment and compromised insoluble interphotoreceptor matrix (IPM), the major pathological culprits responsible for weakening of the RPE-neuroretina interactions, and consequently, formation of vitelliform lesions. These salient alterations detected at the RPE apical domain in cBest as well as in BVMD- and ARB-hiPSC-RPE model systems provide novel insights into the pathological mechanism of BEST1-linked disorders that will allow for development of critical outcome measures guiding therapeutic strategies for bestrophinopathies.
Collapse
Affiliation(s)
- Karina E Guziewicz
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA.
| | - Divya Sinha
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Néstor M Gómez
- Department of Anatomy & Cell Biology, School of Dental Medicine, University of Pennsylvania, PA 19104, USA
| | - Kathryn Zorych
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| | - Emily V Dutrow
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| | - Anuradha Dhingra
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, PA 19104, USA
| | - Robert F Mullins
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Edwin M Stone
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Gustavo D Aguirre
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| |
Collapse
|
154
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
155
|
Zekavat SM, Lu J, Maugeais C, Mazer NA. An in silico model of retinal cholesterol dynamics (RCD model): insights into the pathophysiology of dry AMD. J Lipid Res 2017; 58:1325-1337. [PMID: 28442497 PMCID: PMC5496031 DOI: 10.1194/jlr.m074088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/10/2017] [Indexed: 12/23/2022] Open
Abstract
We developed an in silico mathematical model of retinal cholesterol (Ch) dynamics (RCD) to quantify the physiological rate of Ch turnover in the rod outer segment (ROS), the lipoprotein transport mechanisms by which Ch enters and leaves the outer retina, and the rates of drusen growth and macrophage-mediated clearance in dry age-related macular degeneration. Based on existing experimental data and mechanistic hypotheses, we estimated the Ch turnover rate in the ROS to be 1–6 pg/mm2/min, dependent on the rate of Ch recycling in the outer retina, and found comparable rates for LDL receptor-mediated endocytosis of Ch by the retinal pigment epithelium (RPE), ABCA1-mediated Ch transport from the RPE to the outer retina, ABCA1-mediated Ch efflux from the RPE to the choroid, and the secretion of 70 nm ApoB-Ch particles from the RPE. The drusen growth rate is predicted to increase from 0.7 to 4.2 μm/year in proportion to the flux of ApoB-Ch particles. The rapid regression of drusen may be explained by macrophage-mediated clearance if the macrophage density reaches ∼3,500 cells/mm2. The RCD model quantifies retinal Ch dynamics and suggests that retinal Ch turnover and recycling, ApoB-Ch particle efflux, and macrophage-mediated clearance may explain the dynamics of drusen growth and regression.
Collapse
Affiliation(s)
| | - James Lu
- Departments of Clinical Pharmacology and Neuroscience, Ophthalmology, and
| | - Cyrille Maugeais
- Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Norman A Mazer
- Departments of Clinical Pharmacology and Neuroscience, Ophthalmology, and.
| |
Collapse
|
156
|
Tian Y, Zonca MR, Imbrogno J, Unser AM, Sfakis L, Temple S, Belfort G, Xie Y. Polarized, Cobblestone, Human Retinal Pigment Epithelial Cell Maturation on a Synthetic PEG Matrix. ACS Biomater Sci Eng 2017; 3:890-902. [PMID: 33429561 DOI: 10.1021/acsbiomaterials.6b00757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell attachment is essential for the growth and polarization of retinal pigment epithelial (RPE) cells. Currently, surface coatings derived from biological proteins are used as the gold standard for cell culture. However, downstream processing and purification of these biological products can be cumbersome and expensive. In this study, we constructed a library of chemically modified nanofibers to mimic the Bruch's membrane of the retinal pigment epithelium. Using atmospheric-pressure plasma-induced graft polymerization with a high-throughput screening platform to modify the nanofibers, we identified three polyethylene glycol (PEG)-grafted nanofiber surfaces (PEG methyl ether methacrylate, n = 4, 8, and 45) from a library of 62 different surfaces as favorable for RPE cell attachment, proliferation, and maturation in vitro with cobblestone morphology. Compared with the biologically derived culture matrices such as vitronectin-based peptide Synthemax, our newly discovered synthetic PEG surfaces exhibit similar growth and polarization of retinal pigment epithelial (RPE) cells. However, they are chemically defined, are easy to synthesize on a large scale, are cost-effective, are stable with long-term storage capability, and provide a more physiologically accurate environment for RPE cell culture. To our knowledge, no one has reported that PEG derivatives directly support attachment and growth of RPE cells with cobblestone morphology. This study offers a unique PEG-modified 3D cell culture system that supports RPE proliferation, differentiation, and maturation with cobblestone morphology, providing a new avenue for RPE cell culture, disease modeling, and cell replacement therapy.
Collapse
Affiliation(s)
- Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Michael R Zonca
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Joseph Imbrogno
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York 12180, United States
| | - Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Lauren Sfakis
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Sally Temple
- Neural Stem Cell Institute, One Discovery Drive, Rensselaer, New York 12144, United States
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York 12180, United States
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
157
|
HYPERSPECTRAL AUTOFLUORESCENCE IMAGING OF DRUSEN AND RETINAL PIGMENT EPITHELIUM IN DONOR EYES WITH AGE-RELATED MACULAR DEGENERATION. Retina 2017; 36 Suppl 1:S127-S136. [PMID: 28005671 DOI: 10.1097/iae.0000000000001325] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To elucidate the molecular pathogenesis of age-related macular degeneration (AMD) and interpretation of fundus autofluorescence imaging, the authors identified spectral autofluorescence characteristics of drusen and retinal pigment epithelium (RPE) in donor eyes with AMD. METHODS Macular RPE/Bruch membrane flat mounts were prepared from 5 donor eyes with AMD. In 12 locations (1-3 per eye), hyperspectral autofluorescence images in 10-nm-wavelength steps were acquired at 2 excitation wavelengths (λex 436, 480 nm). A nonnegative tensor factorization algorithm was used to recover 5 abundant emission spectra and their corresponding spatial localizations. RESULTS At λex 436 nm, the authors consistently localized a novel spectrum (SDr) with a peak emission near 510 nm in drusen and sub-RPE deposits. Abundant emission spectra seen previously (S0 in Bruch membrane and S1, S2, and S3 in RPE lipofuscin/melanolipofuscin, respectively) also appeared in AMD eyes, with the same shapes and peak wavelengths as in normal tissue. Lipofuscin/melanolipofuscin spectra localizations in AMD eyes varied widely in their overlap with drusen, ranging from none to complete. CONCLUSION An emission spectrum peaking at ∼510 nm (λex 436 nm) appears to be sensitive and specific for drusen and sub-RPE deposits. One or more abundant spectra from RPE organelles exhibit characteristic relationships with drusen.
Collapse
|
158
|
Saini JS, Corneo B, Miller JD, Kiehl TR, Wang Q, Boles NC, Blenkinsop TA, Stern JH, Temple S. Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration. Cell Stem Cell 2017; 20:635-647.e7. [PMID: 28132833 DOI: 10.1016/j.stem.2016.12.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 10/14/2016] [Accepted: 12/30/2016] [Indexed: 12/22/2022]
Abstract
Age-related macular degeneration (AMD) affects the retinal pigment epithelium (RPE), a cell monolayer essential for photoreceptor survival, and is the leading cause of vision loss in the elderly. There are no disease-altering therapies for dry AMD, which is characterized by accumulation of subretinal drusen deposits and complement-driven inflammation. We report the derivation of human-induced pluripotent stem cells (hiPSCs) from patients with diagnosed AMD, including two donors with the rare ARMS2/HTRA1 homozygous genotype. The hiPSC-derived RPE cells produce several AMD/drusen-related proteins, and those from the AMD donors show significantly increased complement and inflammatory factors, which are most exaggerated in the ARMS2/HTRA1 lines. Using a panel of AMD biomarkers and candidate drug screening, combined with transcriptome analysis, we discover that nicotinamide (NAM) ameliorated disease-related phenotypes by inhibiting drusen proteins and inflammatory and complement factors while upregulating nucleosome, ribosome, and chromatin-modifying genes. Thus, targeting NAM-regulated pathways is a promising avenue for developing therapeutics to combat AMD.
Collapse
Affiliation(s)
- Janmeet S Saini
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany - SUNY, Albany, NY 12201, USA
| | - Barbara Corneo
- Stem Cell Core Facility, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | - Qingjie Wang
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | - Timothy A Blenkinsop
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
159
|
Linsenmeier RA, Zhang HF. Retinal oxygen: from animals to humans. Prog Retin Eye Res 2017; 58:115-151. [PMID: 28109737 DOI: 10.1016/j.preteyeres.2017.01.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
This article discusses retinal oxygenation and retinal metabolism by focusing on measurements made with two of the principal methods used to study O2 in the retina: measurements of PO2 with oxygen-sensitive microelectrodes in vivo in animals with a retinal circulation similar to that of humans, and oximetry, which can be used non-invasively in both animals and humans to measure O2 concentration in retinal vessels. Microelectrodes uniquely have high spatial resolution, allowing the mapping of PO2 in detail, and when combined with mathematical models of diffusion and consumption, they provide information about retinal metabolism. Mathematical models, grounded in experiments, can also be used to simulate situations that are not amenable to experimental study. New methods of oximetry, particularly photoacoustic ophthalmoscopy and visible light optical coherence tomography, provide depth-resolved methods that can separate signals from blood vessels and surrounding tissues, and can be combined with blood flow measures to determine metabolic rate. We discuss the effects on retinal oxygenation of illumination, hypoxia and hyperoxia, and describe retinal oxygenation in diabetes, retinal detachment, arterial occlusion, and macular degeneration. We explain how the metabolic measurements obtained from microelectrodes and imaging are different, and how they need to be brought together in the future. Finally, we argue for revisiting the clinical use of hyperoxia in ophthalmology, particularly in retinal arterial occlusions and retinal detachment, based on animal research and diffusion theory.
Collapse
Affiliation(s)
- Robert A Linsenmeier
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston 60208-3107, IL, USA; Neurobiology Department, Northwestern University, 2205 Tech Drive, Evanston 60208-3520, IL, USA; Ophthalmology Department, Northwestern University, 645 N. Michigan Ave, Suite 440, Chicago 60611, IL, USA.
| | - Hao F Zhang
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston 60208-3107, IL, USA; Ophthalmology Department, Northwestern University, 645 N. Michigan Ave, Suite 440, Chicago 60611, IL, USA.
| |
Collapse
|
160
|
Stasiukonyte N, Liutkeviciene R, Vilkeviciute A, Banevicius M, Kriauciuniene L. Associations between Rs4244285 and Rs762551 gene polymorphisms and age-related macular degeneration. Ophthalmic Genet 2017; 38:357-364. [PMID: 28095090 DOI: 10.1080/13816810.2016.1242018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Age-related macular degeneration is the leading cause of blindness in elderly individuals in developed countries. The etiology and pathophysiology of age-related macular degeneration have not been elucidated yet. Knowing that the main pathological change of age-related macular degeneration is formation of drusen containing about 40% of lipids, there have been attempts to find associations between age-related macular degeneration and genes controlling lipid metabolism. PURPOSE To determine the frequency of CYP2C19 (G681A) Rs4244285 and CYP1A2 (-163C>A) Rs762551 genotypes in patients with age-related macular degeneration. METHODS The study enrolled 150 patients with early age-related macular degeneration and 296 age- and gender-matched healthy controls. The genotyping of Rs4244285 and Rs762551 was carried out by using the real-time polymerase chain reaction method. RESULTS The CYP1A2 (-163C>A) Rs762551 C/C genotype was more frequently detected in patients with age-related macular degeneration than in the control group (32.7% vs. 21.6%, p = 0.011) and was associated with an increased risk of developing early age-related macular degeneration (OR = 1.759, 95% CI: 1.133-2.729; p = 0.012). The CYP1A2 (-163C>A) Rs762551 C/A genotype was more frequently documented in the control group compared with patients with age-related macular degeneration (46.3% vs. 30.7%, p = 0.002) and was associated with a decreased risk of having age-related macular degeneration (OR = 0.580. 95% CI: 0.362-0.929, p = 0.023) in the co-dominant model. CONCLUSION The study showed that the CYP1A2 (-163C>A) Rs762551 C/C genotype was associated with an increased risk of age-related macular degeneration.
Collapse
Affiliation(s)
- Neringa Stasiukonyte
- a Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Rasa Liutkeviciene
- b Department of Ophthalmology, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania.,c Neuroscience Institute, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Alvita Vilkeviciute
- c Neuroscience Institute, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Mantas Banevicius
- b Department of Ophthalmology, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Loresa Kriauciuniene
- b Department of Ophthalmology, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania.,c Neuroscience Institute, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| |
Collapse
|
161
|
Miller JW, Bagheri S, Vavvas DG. Advances in Age-related Macular Degeneration Understanding and Therapy. ACTA ACUST UNITED AC 2017; 10:119-130. [PMID: 29142592 PMCID: PMC5683729 DOI: 10.17925/usor.2017.10.02.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the development of anti-vascular endothelial growth factor (anti-VEGF) as a therapy for neovascular age-related macular degeneration (AMD) was a great success, the pathologic processes underlying dry AMD that eventually leads to photoreceptor dysfunction, death, and vision loss remain elusive to date, with a lack of effective therapies and increasing prevalence of the disease. There is an overwhelming need to improve the classification system of AMD, to increase our understanding of cell death mechanisms involved in both neovascular and non-neovascular AMD, and to develop better biomarkers and clinical endpoints to eventually be able to identify better therapeutic targets—especially early in the disease process. There is no doubt that it is a matter of time before progress will be made and better therapies will be developed for non-neovascular AMD.
Collapse
Affiliation(s)
- Joan W Miller
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Saghar Bagheri
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Demetrios G Vavvas
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| |
Collapse
|
162
|
Iannaccone A, Hollingsworth TJ, Koirala D, New DD, Lenchik NI, Beranova-Giorgianni S, Gerling IC, Radic MZ, Giorgianni F. Retinal pigment epithelium and microglia express the CD5 antigen-like protein, a novel autoantigen in age-related macular degeneration. Exp Eye Res 2016; 155:64-74. [PMID: 27989757 DOI: 10.1016/j.exer.2016.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022]
Abstract
We report on a novel autoantigen expressed in human macular tissues, identified following an initial Western blot (WB)-based screening of sera from subjects with age-related macular degeneration (AMD) for circulating auto-antibodies (AAbs) recognizing macular antigens. Immunoprecipitation, 2D-gel electrophoresis (2D-GE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), direct enzyme-linked immunosorbent assays (ELISA), WBs, immunohistochemistry (IHC), human primary and ARPE-19 immortalized cell cultures were used to characterize this novel antigen. An approximately 40-kDa autoantigen in AMD was identified as the scavenger receptor CD5 antigen-like protein (CD5L), also known as apoptosis inhibitor of macrophage (AIM). CD5L/AIM was localized to human RPE by IHC and WB methods and to retinal microglial cells by IHC. ELISAs with recombinant CD5L/AIM on a subset of AMD sera showed a nearly 2-fold higher anti-CD5L/AIM reactivity in AMD vs. Control sera (p = 0.000007). Reactivity ≥0.4 was associated with 18-fold higher odds of having AMD (χ2 = 21.42, p = 0.00063). Circulating CD5L/AIM levels were also nearly 2-fold higher in AMD sera compared to controls (p = 0.0052). The discovery of CD5L/AIM expression in the RPE and in retinal microglial cells adds to the known immunomodulatory roles of these cells in the retina. The discovery of AAbs recognizing CD5L/AIM identifies a possible novel disease biomarker and suggest a potential role for CD5L/AIM in the pathogenesis of AMD in situ. The possible mechanisms via which anti-CD5L/AIM AAbs may contribute to AMD pathogenesis are discussed. In particular, since CD5L is known to stimulate autophagy and to participate in oxidized LDL uptake in macrophages, we propose that anti-CD5L/AIM auto-antibodies may play a role in drusen biogenesis and inflammatory RPE damage in AMD.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, USA.
| | - T J Hollingsworth
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA
| | - Diwa Koirala
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - David D New
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA
| | - Nataliya I Lenchik
- University of Tennessee Health Science Center, Department of Ophthalmology, Hamilton Eye Institute, Memphis, TN, USA; University of Tennessee Health Science Center, Department of Medicine, Division of Endocrinology, Memphis, TN, USA
| | - Sarka Beranova-Giorgianni
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Ivan C Gerling
- University of Tennessee Health Science Center, Department of Medicine, Division of Endocrinology, Memphis, TN, USA
| | - Marko Z Radic
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, TN, USA
| | - Francesco Giorgianni
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, USA
| |
Collapse
|
163
|
Clinical Characteristics, Choroidal Neovascularization, and Predictors of Visual Outcomes in Acquired Vitelliform Lesions. Am J Ophthalmol 2016; 172:28-38. [PMID: 27640006 DOI: 10.1016/j.ajo.2016.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 01/29/2023]
Abstract
PURPOSE To quantify the temporal properties of the acquired vitelliform lesion (AVL) life cycle, define the clinical characteristics of choroidal neovascularization (NV) in this setting, and determine the predictors of long-term visual outcomes. DESIGN Retrospective cohort study. METHODS Clinical and imaging data from 199 eyes of 124 consecutive patients with AVLs associated with age-related macular degeneration (AMD) and adult-onset foveomacular vitelliform dystrophy (AOFVD) were analyzed. Volumetric calculations of vitelliform material were determined using spectral-domain optical coherence tomography and the temporal properties of the AVL life cycle were quantified. The clinical characteristics of NV were assessed, as were the predictors of final best-corrected visual acuity (BCVA) and change in BCVA. RESULTS Mean age was 79.2 ± 12.1 years. AVLs grew and collapsed at approximately the same rate (P = .275). Fifteen eyes (7.5%) developed NV, of which all were type 1. In 13 of these eyes, NV occurred during the collapse phase of the AVL life cycle, after the peak AVL volume was reached. The risk of NV (P = .006) and the decline in BCVA (P = .001) were both significantly greater among eyes with AMD. Foveal atrophy was the characteristic most significantly associated with final BCVA and change in BCVA from baseline (both P < .0005). The development of NV was not predictive of long-term visual outcomes (all P = .216). CONCLUSIONS Complications associated with AVLs typically occur during the collapse phase of the AVL life cycle. Visual outcomes and risk of NV are related to the underlying disease associated with AVLs.
Collapse
|
164
|
Veerappan M, El-Hage-Sleiman AKM, Tai V, Chiu SJ, Winter KP, Stinnett SS, Hwang TS, Hubbard GB, Michelson M, Gunther R, Wong WT, Chew EY, Toth CA. Optical Coherence Tomography Reflective Drusen Substructures Predict Progression to Geographic Atrophy in Age-related Macular Degeneration. Ophthalmology 2016; 123:2554-2570. [PMID: 27793356 DOI: 10.1016/j.ophtha.2016.08.047] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/21/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Structural and compositional heterogeneity within drusen comprising lipids, carbohydrates, and proteins have been previously described. We sought to detect and define phenotypic patterns of drusen heterogeneity in the form of optical coherence tomography-reflective drusen substructures (ODS) and examine their associations with age-related macular degeneration (AMD)-related features and AMD progression. DESIGN Retrospective analysis in a prospective study. PARTICIPANTS Patients with intermediate AMD (n = 349) enrolled in the multicenter Age-Related Eye Disease Study 2 (AREDS2) ancillary spectral-domain optical coherence tomography (SD OCT) study. METHODS Baseline SD OCT scans of 1 eye per patient were analyzed for the presence of ODS. Cross-sectional and longitudinal associations of ODS presence with AMD-related features visible on SD OCT and color photographs, including drusen volume, geographic atrophy (GA), and preatrophic features, were evaluated for the entire macular region. Similar associations were also made locally within a 0.5-mm-diameter region around individual ODS and corresponding control region without ODS in the same eye. MAIN OUTCOME MEASURES Preatrophy SD OCT changes and GA, central GA, and choroidal neovascularization (CNV) from color photographs. RESULTS Four phenotypic subtypes of ODS were defined: low reflective cores, high reflective cores, conical debris, and split drusen. Among the 349 participants, there were 307 eligible eyes and 74 (24%) had at least 1 ODS. The ODS at baseline were associated with (1) greater macular drusen volume at baseline (P < 0.001), (2) development of preatrophic changes at year 2 (P = 0.001-0.01), and (3) development of macular GA (P = 0.005) and preatrophic changes at year 3 (P = 0.002-0.008), but not development of CNV. The ODS at baseline in a local region were associated with (1) presence of preatrophy changes at baseline (P = 0.02-0.03) and (2) development of preatrophy changes at years 2 and 3 within the region (P = 0.008-0.05). CONCLUSIONS Optical coherence tomography-reflective drusen substructures are optical coherence tomography-based biomarkers of progression to GA, but not to CNV, in eyes with intermediate AMD. Optical coherence tomography-reflective drusen substructures may be a clinical entity helpful in monitoring AMD progression and informing mechanisms in GA pathogenesis.
Collapse
Affiliation(s)
- Malini Veerappan
- Duke Eye Center, Duke University Medical Center, Durham, North Carolina.
| | | | - Vincent Tai
- Duke Eye Center, Duke University Medical Center, Durham, North Carolina
| | - Stephanie J Chiu
- Duke Eye Center, Duke University Medical Center, Durham, North Carolina
| | - Katrina P Winter
- Duke Eye Center, Duke University Medical Center, Durham, North Carolina
| | - Sandra S Stinnett
- Duke Eye Center, Duke University Medical Center, Durham, North Carolina
| | - Thomas S Hwang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | | | | | - Randall Gunther
- Duke Eye Center, Duke University Medical Center, Durham, North Carolina
| | - Wai T Wong
- National Eye Institute, National Institute of Health, Bethesda, Maryland
| | - Emily Y Chew
- National Eye Institute, National Institute of Health, Bethesda, Maryland
| | - Cynthia A Toth
- Duke Eye Center, Duke University Medical Center, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | |
Collapse
|
165
|
Algvere PV, Kvanta A, Seregard S. Drusen maculopathy: a risk factor for visual deterioration. Acta Ophthalmol 2016; 94:427-33. [PMID: 27009526 DOI: 10.1111/aos.13011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/09/2016] [Indexed: 02/06/2023]
Abstract
Age-related macular degeneration (AMD), the most common cause of visual loss after the age of 65, displays a degeneration of the retinal pigment epithelial (RPE) cells and photoreceptors in the retinal centre (macula). The central macula (fovea) that contains mostly cone photoreceptors mediates the high visual acuity. Drusen maculopathy may lead to visual deterioration. Drusen are extracellular deposits of debris that accumulate on Bruch's membrane. Drusen attract inflammatory, immunological and vasoactive stimuli. RPE and photoreceptor cells overlying drusen exhibit biochemical and morphological signs of degeneration. Strong and intermittent light exposure (photons) induces the formation of free radicals in the very high oxygen tension milieu of the retina. The negative effects of irradiation stimulate accumulation of lipofuscin in RPE and photoreceptor cells leading to mitochondrial dysfunction and apoptotic cell death. A hydrophobic barrier is built up in Bruch's membrane reducing diffusion to the choroid. Hereditary and inflammatory factors modify the risk for AMD. There is a genetic dysregulation of the complement system leading to inappropriate complement activation. The genetic polymorphism of complement factor H (CFH) and age-related maculopathy susceptibilty 2 (ARMS2) increase the risk of progression to advanced AMD. The photoelectric effect creates free radicals, resulting in a continuous increase of lipofuscin formation and impairing mitochondrial activity. In addition, inflammation and complement dysregulation contribute to the formation of drusen and vasoproliferative reactions with neovascularization. Antioxidants neutralize reactive oxygen species and reduce lipofuscin accumulation in RPE and photoreceptor cells. For prophylactic treatment of drusen maculopathy, high doses of antioxidants such as vitamins C and E, lutein, zeaxanthine and zinc are used according to the Age-Related Eye Disease Study 2 (AREDS 2). The risk of developing advanced AMD was reduced by 27% at 10 years follow-up. No adverse events were noted.
Collapse
Affiliation(s)
- Peep V. Algvere
- Karolinska Institute; St Erik Eye Hospital; Stockholm Sweden
| | - Anders Kvanta
- Karolinska Institute; St Erik Eye Hospital; Stockholm Sweden
| | - Stefan Seregard
- Karolinska Institute; St Erik Eye Hospital; Stockholm Sweden
| |
Collapse
|
166
|
Cellular and Molecular Pathology of Age-Related Macular Degeneration: Potential Role for Proteoglycans. J Ophthalmol 2016; 2016:2913612. [PMID: 27563459 PMCID: PMC4983667 DOI: 10.1155/2016/2913612] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is a retinal disease evident after the age of 50 that damages the macula in the centre of retina. It leads to a loss of central vision with retained peripheral vision but eventual blindness occurs in many cases. The initiation site of AMD development is Bruch's membrane (BM) where multiple changes occur including the deposition of plasma derived lipids, accumulation of extracellular debris, changes in cell morphology, and viability and the formation of drusen. AMD manifests as early and late stage; the latter involves cell proliferation and neovascularization in wet AMD. Current therapies target the later hyperproliferative and invasive wet stage whilst none target early developmental stages of AMD. In the lipid deposition disease atherosclerosis modified proteoglycans bind and retain apolipoproteins in the artery wall. Chemically modified trapped lipids are immunogenic and can initiate a chronic inflammatory process manifesting as atherosclerotic plaques and subsequent artery blockages, heart attacks, or strokes. As plasma derived lipoprotein deposits are found in BM in early AMD, it is possible that they arise by a similar process within the macula. In this review we consider aspects of the pathological processes underlying AMD with a focus on the potential role of modifications to secreted proteoglycans being a cause and therefore a target for the treatment of early AMD.
Collapse
|
167
|
Abstract
Mouse models are powerful tools for the study of ocular diseases. Alterations in the morphology and function of the retinal pigment epithelium (RPE) are common features shared by many ocular disorders. We report a detailed protocol to collect, seed, culture and characterize RPE cells from mice. We describe a reproducible method that we previously developed to collect and culture murine RPE cells on Transwells as functional polarized monolayers. The collection of RPE cells takes ∼3 h, and the cultures mimic in vivo RPE cell features within 1 week. This protocol also describes methods to characterize the cells on Transwells within 1-2 weeks by transmission and scanning electron microscopy (TEM and SEM, respectively), immunostaining of vibratome sections and flat mounts, and measurement of transepithelial electrical resistance. The RPE cell cultures are suitable to study the biology of the RPE from wild-type and genetically modified strains of mice between the ages of 10 d and 12 months. The RPE cells can also be manipulated to investigate molecular mechanisms underlying the RPE pathology in the numerous mouse models of ocular disorders. Furthermore, modeling the RPE pathology in vitro represents a new approach to testing drugs that will help accelerate the development of therapies for vision-threatening disorders such as macular degeneration (MD).
Collapse
|
168
|
Shaw PX, Stiles T, Douglas C, Ho D, Fan W, Du H, Xiao X. Oxidative stress, innate immunity, and age-related macular degeneration. AIMS MOLECULAR SCIENCE 2016; 3:196-221. [PMID: 27239555 PMCID: PMC4882104 DOI: 10.3934/molsci.2016.2.196] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have previously hypothesized that the tight homeostatic control of inflammation via the innate immune system is likely critical for avoidance of disease progression. However, the presence of a multitude of potential triggers of inflammation results in a sensitive balance in which perturbations thereof would subsequently alter the inflammatory state of the retina, leading to a state of chronic inflammation and pathologic progression. In this review, we will highlight the background literature surrounding the known genetic and environmental contributors to AMD risk, as well as a discussion of the potential mechanistic interplay of these factors that lead to disease pathogenesis with particular emphasis on the delicate control of inflammatory homeostasis and the centrality of the innate immune system in this process.
Collapse
Affiliation(s)
- Peter X Shaw
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Travis Stiles
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Christopher Douglas
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Daisy Ho
- Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Wei Fan
- Huaxi Hospital, Sichuan University, China
| | | | - Xu Xiao
- Sichuan People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
169
|
Fernández-Navarro J, Aldea P, de Hoz R, Salazar JJ, Ramírez AI, Rojas B, Gallego BI, Triviño A, Tejerina T, Ramírez JM. Neuroprotective Effects of Low-Dose Statins in the Retinal Ultrastructure of Hypercholesterolemic Rabbits. PLoS One 2016; 11:e0154800. [PMID: 27144842 PMCID: PMC4856380 DOI: 10.1371/journal.pone.0154800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022] Open
Abstract
To evaluate the pleiotropic effects to statins, we analyze the qualitative and quantitative retinal changes in hypercholesterolemic rabbits after a low-dosage statin treatment. For this purpose, New Zealand rabbits were split into three groups: control (G0; n = 10), fed a standard diet; hypercholesterolemic (G1; n = 8), fed a 0.5% cholesterol-enriched diet for 8 months; and statins (G2; n = 8), fed a 0.5% cholesterol-enriched diet for 8 months, together with the administration of statin (pravastatin or fluvastatin sodium) at a dose of 2 mg / kg / day each diet. The retinas were analyzed by transmission electron microscopy and immunohistochemistry (glial fibrillary acidic protein). The retinal thickness of nuclear and plexiform layers were quantified in semi-thin sections. The results revealed that the low-statin-treated rabbits in comparison with the hypercholesterolemic group showed: i) a more preserved structure in all retinal layers; ii) a significant reduction in retinal thickness; iii) a decrease in cell death in the nuclear-and ganglion-cell layers; iv) a reduction of hydropic degeneration in the plexiform and nerve-fiber layers; v) a preservation of astrocytes and of the retinal area occupied by them; and vi) a better-preserved retinal vascular structure. Our findings indicate that low doses of statins can prevent retinal degeneration, acting on retinal macroglia, neurons and retinal vessels, despite that hypercholesterolemia remained unchanged. Thus, the pleiotropic effects of the statins may help safeguard the retinal ultrastructure.
Collapse
Affiliation(s)
- Judith Fernández-Navarro
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense Madrid (UCM), Spain
| | - Pilar Aldea
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense Madrid (UCM), Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense Madrid (UCM), Spain
- Facultad de Óptica y Optometría, UCM, Spain
| | - Juan J Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense Madrid (UCM), Spain
- Facultad de Óptica y Optometría, UCM, Spain
| | - Ana I Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense Madrid (UCM), Spain
- Facultad de Óptica y Optometría, UCM, Spain
| | - Blanca Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense Madrid (UCM), Spain
- Facultad de Medicina, UCM, Spain
| | - Beatriz I. Gallego
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense Madrid (UCM), Spain
- Facultad de Óptica y Optometría, UCM, Spain
| | - Alberto Triviño
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense Madrid (UCM), Spain
- Facultad de Medicina, UCM, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Complutense University, Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense Madrid (UCM), Spain
- Facultad de Medicina, UCM, Spain
- * E-mail:
| |
Collapse
|
170
|
Fini ME, Bauskar A, Jeong S, Wilson MR. Clusterin in the eye: An old dog with new tricks at the ocular surface. Exp Eye Res 2016; 147:57-71. [PMID: 27131907 DOI: 10.1016/j.exer.2016.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/30/2022]
Abstract
The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted glycoprotein present in ram rete testis fluid that enhanced aggregation ('clustering') of a variety of cells in vitro. It was also independently discovered in a number of other systems. By the early 1990s, CLU was known under many names and its expression had been demonstrated throughout the body, including in the eye. Its homeostatic activities in proteostasis, cytoprotection, and anti-inflammation have been well documented, however its roles in health and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 1996 it was demonstrated to be the most highly expressed transcript in the human cornea, the protein product being localized to the apical layers of the mucosal epithelia of the cornea and conjunctiva. CLU protein is also present in human tears. Using a preclinical mouse model for desiccating stress that mimics human dry eye disease, the authors recently demonstrated that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration in the tears. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. CLU depletion from the ocular surface epithelia is seen in a variety of inflammatory conditions in humans and mice that lead to squamous metaplasia and a keratinized epithelium. This suggests that CLU might have a specific role in maintaining mucosal epithelial differentiation, an idea that can now be tested using the mouse model for desiccating stress. Most excitingly, the new findings suggest that CLU could serve as a novel biotherapeutic for dry eye disease.
Collapse
Affiliation(s)
- M Elizabeth Fini
- USC Institute for Genetic Medicine and Departments of Cell & Neurobiology and Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Aditi Bauskar
- USC Institute for Genetic Medicine and Graduate Program in Medical Biology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Shinwu Jeong
- USC Institute for Genetic Medicine and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522 Australia.
| |
Collapse
|
171
|
Kurihara T, Westenskow PD, Gantner ML, Usui Y, Schultz A, Bravo S, Aguilar E, Wittgrove C, Friedlander MS, Paris LP, Chew E, Siuzdak G, Friedlander M. Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. eLife 2016; 5. [PMID: 26978795 PMCID: PMC4848091 DOI: 10.7554/elife.14319] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/11/2016] [Indexed: 12/24/2022] Open
Abstract
Photoreceptors are the most numerous and metabolically demanding cells in the retina. Their primary nutrient source is the choriocapillaris, and both the choriocapillaris and photoreceptors require trophic and functional support from retinal pigment epithelium (RPE) cells. Defects in RPE, photoreceptors, and the choriocapillaris are characteristic of age-related macular degeneration (AMD), a common vision-threatening disease. RPE dysfunction or death is a primary event in AMD, but the combination(s) of cellular stresses that affect the function and survival of RPE are incompletely understood. Here, using mouse models in which hypoxia can be genetically triggered in RPE, we show that hypoxia-induced metabolic stress alone leads to photoreceptor atrophy. Glucose and lipid metabolism are radically altered in hypoxic RPE cells; these changes impact nutrient availability for the sensory retina and promote progressive photoreceptor degeneration. Understanding the molecular pathways that control these responses may provide important clues about AMD pathogenesis and inform future therapies. DOI:http://dx.doi.org/10.7554/eLife.14319.001 Cells use a sugar called glucose as fuel to provide energy for many essential processes. The light-sensing cells in the eye, known as photoreceptors, need tremendous amounts of glucose, which they receive from the blood with the help of neighboring cells called retinal pigment epithelium (RPE) cells. Without a reliable supply of this sugar, the photoreceptors die and vision is lost. As we age, we are at greater risk of vision loss because RPE cells become less efficient at transporting glucose and our blood vessels shrink so that the photoreceptors may become starved of glucose. To prevent age-related vision loss, we need new strategies to keep blood vessels and RPE cells healthy. However, it was not clear exactly how RPE cells supply photoreceptors with glucose, and what happens when blood supplies are reduced. To address this question, Kurihara, Westenskow et al. used genetically modified mice to investigate how cells in the eye respond to starvation. The experiments show that when nutrients are scarce the RPE cells essentially panic, radically change their diet, and become greedy. That is to say that they double in size and begin burning fuel faster while also stockpiling extra sugar and fat for later use. In turn, the photoreceptors don’t get the energy they need and so they slowly stop working and die. Kurihara, Westenskow et al. also show that there is a rapid change in the way in which sugar and fat are processed in the eye during starvation. Learning how to prevent these changes in patients with age-related vision loss could protect their photoreceptors from starvation and death. The next step following on from this research is to design drugs to improve the supply of glucose and nutrients to the photoreceptors by repairing aging blood vessels and/or preventing RPE cells from stockpiling glucose for themselves. DOI:http://dx.doi.org/10.7554/eLife.14319.002
Collapse
Affiliation(s)
- Toshihide Kurihara
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Peter D Westenskow
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States.,The Lowy Medical Research Institute, La Jolla, United States
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, United States
| | - Yoshihiko Usui
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Andrew Schultz
- Center for Metabolomics, The Scripps Research Institute, La Jolla, United States
| | - Stephen Bravo
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Edith Aguilar
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Carli Wittgrove
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Mollie Sh Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Liliana P Paris
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| | - Emily Chew
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Gary Siuzdak
- Center for Metabolomics, The Scripps Research Institute, La Jolla, United States
| | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
172
|
Lin JB, Tsubota K, Apte RS. A glimpse at the aging eye. NPJ Aging Mech Dis 2016; 2:16003. [PMID: 28721262 PMCID: PMC5515005 DOI: 10.1038/npjamd.2016.3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022] Open
Abstract
Extensive investigations have demonstrated that organismal aging is associated with tissue dysfunction in many organs. The eye is no exception to this rule. Under healthy conditions, the eye is designed like an advanced camera with the central role of translating light from the external world into a coherent neural signal that can be transmitted to the brain for processing into a precise visual image. This complex process requires precisely maintained machinery. At the front of the eye, the transparency of both the cornea and the lens are crucial to allow passage of photons to the light-sensitive portion of the eye. Similarly, the highly organized structure of the retina located at the back of the eye is indispensable to allow for effective signal transduction and efficient signal transmission. Aging affects ocular structures in various ways, and these sequelae have been well defined as distinct clinical entities. In many instances, aging leads to ocular tissue dysfunction and disease. Nonetheless, despite clear evidence that age-associated visual impairment has significant psychosocial consequences, current treatment paradigms for many of these conditions are inadequate. In addition, strategies to decelerate or reverse age-associated deterioration in ocular function are still in their infancy. This review focuses on the cellular and molecular pathophysiology of the aging eye. Ultimately, we hope that a refined understanding of the aging eye can guide targeted therapies against cellular aging and disease.
Collapse
Affiliation(s)
- Jonathan B Lin
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
173
|
Prakash G, Agrawal R, Natung T. Role of Lipids in Retinal Vascular and Macular Disorders. Indian J Clin Biochem 2016; 32:3-8. [PMID: 28149006 DOI: 10.1007/s12291-016-0560-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/25/2016] [Indexed: 12/20/2022]
Abstract
Retinal diseases are significant by increasing problem in every part of the world. While excellent treatment has emerged for various retinal diseases, treatment for early disease is lacking due to an incomplete understanding of all molecular events. With aging, there is a striking accumulation of neutral lipids in Bruch's membrane. These neutral lipids leads to the creation of a lipid wall at the same locations where drusen and basal linear deposit, pathognomonic lesions of Age-related macular degeneration, subsequently form. High lipid levels are also known to cause endothelial dysfunction, an important factor in the pathogenesis of Diabetic Retinopathy. Various studies suggest that 20 % of Retinal Vascular Occlusion is connected to hyperlipidemia. Biochemical studies have implicated mutation in gene encoding ABCA4, a lipid transporter in pathogenesis of Stargardt disease. This article reviews how systemic and local production of lipids might contribute to the pathogenesis of above retinal disorders.
Collapse
Affiliation(s)
- Gunjan Prakash
- Upgraded Department of Ophthalmology, S.N Medical College, Room No. 186, SBH, Agra, 282002 India
| | - Rachit Agrawal
- Upgraded Department of Ophthalmology, S.N Medical College, Room No. 186, SBH, Agra, 282002 India
| | - Tanie Natung
- North Eastern Indira Gandhi Regional Institute Of Health and Medical Sciences, Shillong, India
| |
Collapse
|
174
|
Nobl M, Reich M, Dacheva I, Siwy J, Mullen W, Schanstra JP, Choi CY, Kopitz J, Kretz FTA, Auffarth GU, Koch F, Koss MJ. Proteomics of vitreous in neovascular age-related macular degeneration. Exp Eye Res 2016; 146:107-117. [PMID: 26769219 DOI: 10.1016/j.exer.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/23/2015] [Accepted: 01/02/2016] [Indexed: 01/02/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) has been described as a predominantly inflammatory and proangiogenic retino-choroidal disease. Vitreous humor (VH) is the adjacent and accessible compartment which, due to the vicinity to the retina, might best represent changes of protein-based mediators of nAMD. The aim of this clinical-experimental study was to analyze the nAMD associated VH proteome of previously untreated patients whilst taking different groups of nAMD into account, based on their clinical presentation (clinical diagnosis groups). Electrophoresis coupled online to mass spectrometry (CE-MS) as well as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were used to analyze VH of 108 nAMD patients and 24 controls with idiopathic floaters. A total of 101 different proteins with at least two unique peptides could be identified. Using a stringent statistical analysis with implementation of the closed test principle, we were able to identify four proteins that may be involved in the pathophysiology of nAMD: Clusterin, opticin, pigment epithelium-derived factor and prostaglandin-H2 d-isomerase. Using independent samples, ROC-Area under the curve was determined proving the validity of the results: Clusterin 0.747, opticin 0.656, pigment epithelium-derived factor 0.514, prostaglandin-H2 d-isomerase 0.712. In addition, validation through ELISA measurements was performed. The identified proteins may serve as potential biomarkers or even targets of therapy for nAMD.
Collapse
Affiliation(s)
- Matthias Nobl
- Department of Ophthalmology, University of Heidelberg, Germany
| | - Michael Reich
- Department of Ophthalmology, University of Heidelberg, Germany; Department of Ophthalmology, University of Freiburg, Germany
| | - Ivanka Dacheva
- Department of Ophthalmology, University of Heidelberg, Germany
| | | | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Chul Young Choi
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; David J Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Pathology, University of Heidelberg, Germany
| | | | - Gerd U Auffarth
- Department of Ophthalmology, University of Heidelberg, Germany; David J Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Heidelberg, Germany
| | - Frank Koch
- Department of Ophthalmology, Goethe University, Frankfurt am Main, Germany
| | - Michael J Koss
- Department of Ophthalmology, University of Heidelberg, Germany; David J Apple International Laboratory for Ocular Pathology and International Vision Correction Research Centre (IVCRC), Heidelberg, Germany; Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
175
|
Extracellular Matrix Alterations and Deposit Formation in AMD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:53-8. [PMID: 26427393 DOI: 10.1007/978-3-319-17121-0_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Age related macular degeneration (AMD) is the primary cause of vision loss in the western world (Friedman et al., Arch Ophthalmol 122:564-572, 2004). The first clinical indication of AMD is the presence of drusen. However, with age and prior to the formation of drusen, extracellular basal deposits accumulate between the retinal pigment epithelium (RPE) and Bruch's membrane (BrM). Many studies on the molecular composition of the basal deposits and drusen have demonstrated the presence of extracellular matrix (ECM) proteins, complement components and cellular debris. The evidence reviewed here suggests that alteration in RPE cell function might be the primary cause for the accumulation of ECM and cellular debri found in basal deposits. Further studies are obviously needed in order to unravel the specific pathways that lead to abnormal formation of ECM and complement activation.
Collapse
|
176
|
Relationship between Oxidative Stress, Circadian Rhythms, and AMD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7420637. [PMID: 26885250 PMCID: PMC4738726 DOI: 10.1155/2016/7420637] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
Abstract
This work reviews concepts regarding oxidative stress and the mechanisms by which endogenous and exogenous factors produce reactive oxygen species (ROS). It also surveys the relationships between oxidative stress, circadian rhythms, and retinal damage in humans, particularly those related to light and photodamage. In the first section, the production of ROS by different cell organelles and biomolecules and the antioxidant mechanisms that antagonize this damage are reviewed. The second section includes a brief review of circadian clocks and their relationship with the cellular redox state. In the third part of this work, the relationship between retinal damage and ROS is described. The last part of this work focuses on retinal degenerative pathology, age-related macular degeneration, and the relationships between this pathology, ROS, and light. Finally, the possible interactions between the retinal pigment epithelium (RPE), circadian rhythms, and this pathology are discussed.
Collapse
|
177
|
Clinically detectable drusen domains in fibulin-5-associated age-related macular degeneration (AMD) : Drusen subdomains in fibulin-5 AMD. Int Ophthalmol 2015; 36:569-75. [PMID: 26694911 DOI: 10.1007/s10792-015-0164-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
Abstract
To evaluate whether drusen of subjects with fibulin-5 mutation-associated age-related macular degeneration (AMD) have clinically demonstrable drusen domains as evidenced by differences between color and fluorescein angiographic profiles. Of seven patients we identified with AMD due to mutations in the fibulin-5 gene (Fib-5 AMD), five had color fundus photography and fluorescein angiography (FA). One had bilateral choroidal neovascularization and no drusen. For each eye, the green channel (GC) of the digital RGB (Red-Green-Blue) color image and hyperfluorescent domain (HD) intensity of the FA image were registered and drusen were manually segmented and measured. Totally 75 small (≤62 μm), 110 intermediate (63-125 μm), and 30 large (>125 μm) drusen were measured in four patients within the 6 × 6 mm central macular areas. All four subjects demonstrated central or paracentral HDs within each drusen perimeter. HDs were found in association with each druse, with a HD/GC ratio of 0.82, 0.76, and 0.72 respectively for small, intermediate, and large drusen (Student T Test: P < 0.01, P < 0.01, P < 0.01). A statistical difference was found for the HD/GC ratios between small- and intermediate-sized drusen and small- and large-sized drusen but not between intermediate-sized and large-sized drusen (P = 0.001, P < 0.001, P > 0.05, respectively). AMD patients with mutations in fibulin-5 share drusen phenotypic structure and have HD/GC ratios that are similar to individuals with cuticular or basal laminar drusen. Drusen substructure may reflect similarities in drusen stage and/or genesis and appear to vary among AMD genotypes.
Collapse
|
178
|
Lin JB, Mast N, Bederman IR, Li Y, Brunengraber H, Björkhem I, Pikuleva IA. Cholesterol in mouse retina originates primarily from in situ de novo biosynthesis. J Lipid Res 2015; 57:258-64. [PMID: 26630912 DOI: 10.1194/jlr.m064469] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/18/2022] Open
Abstract
The retina, a thin tissue in the back of the eye, has two apparent sources of cholesterol: in situ biosynthesis and cholesterol available from the systemic circulation. The quantitative contributions of these two cholesterol sources to the retinal cholesterol pool are unknown and have been determined in the present work. A new methodology was used. Mice were given separately deuterium-labeled drinking water and chow containing 0.3% deuterium-labeled cholesterol. In the retina, the rate of total cholesterol input was 21 μg of cholesterol/g retina • day, of which 15 μg of cholesterol/g retina • day was provided by local biosynthesis and 6 μg of cholesterol/g retina • day was uptaken from the systemic circulation. Thus, local cholesterol biosynthesis accounts for the majority (72%) of retinal cholesterol input. We also quantified cholesterol input to mouse brain, the organ sharing important similarities with the retina. The rate of total cerebral cholesterol input was 121 μg of cholesterol/g brain • day with local biosynthesis providing 97% of total cholesterol input. Our work addresses a long-standing question in eye research and adds new knowledge to the potential use of statins (drugs that inhibit cholesterol biosynthesis) as therapeutics for age-related macular degeneration, a common blinding disease.
Collapse
Affiliation(s)
- Joseph B Lin
- Department of Ophthalmology and Visual Sciences,Case Western Reserve University, Cleveland, OH 44106
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences,Case Western Reserve University, Cleveland, OH 44106
| | - Ilya R Bederman
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106
| | - Yong Li
- Department of Ophthalmology and Visual Sciences,Case Western Reserve University, Cleveland, OH 44106
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Huddinge, Stockholm 141 86 Sweden
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences,Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
179
|
Fernandez-Godino R, Garland DL, Pierce EA. A local complement response by RPE causes early-stage macular degeneration. Hum Mol Genet 2015; 24:5555-69. [PMID: 26199322 PMCID: PMC4572070 DOI: 10.1093/hmg/ddv287] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/06/2015] [Accepted: 07/13/2015] [Indexed: 01/05/2023] Open
Abstract
Inherited and age-related macular degenerations (AMDs) are important causes of vision loss. An early hallmark of these disorders is the formation of sub-retinal pigment epithelium (RPE) basal deposits. A role for the complement system in MDs was suggested by genetic association studies, but direct functional connections between alterations in the complement system and the pathogenesis of MD remain to be defined. We used primary RPE cells from a mouse model of inherited MD due to a p.R345W mutation in EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) to investigate the role of the RPE in early MD pathogenesis. Efemp1(R345W) RPE cells recapitulate the basal deposit formation observed in vivo by producing sub-RPE deposits in vitro. The deposits share features with basal deposits, and their formation was mediated by EFEMP1(R345W) or complement component 3a (C3a), but not by complement component 5a (C5a). Increased activation of complement appears to occur in response to an abnormal extracellular matrix (ECM), generated by the mutant EFEMP1(R345W) protein and reduced ECM turnover due to inhibition of matrix metalloproteinase 2 by EFEMP1(R345W) and C3a. Increased production of C3a also stimulated the release of cytokines such as interleukin (IL)-6 and IL-1B, which appear to have a role in deposit formation, albeit downstream of C3a. These studies provide the first direct indication that complement components produced locally by the RPE are involved in the formation of basal deposits. Furthermore, these results suggest that C3a generated by RPE is a potential therapeutic target for the treatment of EFEMP1-associated MD as well as AMD.
Collapse
Affiliation(s)
| | | | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology and Berman-Gund Laboratory for the Study of Retinal Degenerations, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
180
|
Ferrington DA, Sinha D, Kaarniranta K. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog Retin Eye Res 2015; 51:69-89. [PMID: 26344735 DOI: 10.1016/j.preteyeres.2015.09.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Maintenance of protein homeostasis, also referred to as "Proteostasis", integrates multiple pathways that regulate protein synthesis, folding, translocation, and degradation. Failure in proteostasis may be one of the underlying mechanisms responsible for the cascade of events leading to age-related macular degeneration (AMD). This review covers the major degradative pathways (ubiquitin-proteasome and lysosomal involvement in phagocytosis and autophagy) in the retinal pigment epithelium (RPE) and summarizes evidence of their involvement in AMD. Degradation of damaged and misfolded proteins via the proteasome occurs in coordination with heat shock proteins. Evidence of increased content of proteasome and heat shock proteins in retinas from human donors with AMD is consistent with increased oxidative stress and extensive protein damage with AMD. Phagocytosis and autophagy share key molecules in phagosome maturation as well as degradation of their cargo following fusion with lysosomes. Phagocytosis and degradation of photoreceptor outer segments ensures functional integrity of the neural retina. Autophagy rids the cell of toxic protein aggregates and defective mitochondria. Evidence suggesting a decline in autophagic flux includes the accumulation of autophagic substrates and damaged mitochondria in RPE from AMD donors. An age-related decrease in lysosomal enzymatic activity inhibits autophagic clearance of outer segments, mitochondria, and protein aggregates, thereby accelerating the accumulation of lipofuscin. This cumulative damage over a person's lifetime tips the balance in RPE from a state of para-inflammation, which strives to restore cell homeostasis, to the chronic inflammation associated with AMD.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA.
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland.
| |
Collapse
|
181
|
Juel HB, Faber C, Munthe-Fog L, Bastrup-Birk S, Reese-Petersen AL, Falk MK, Singh A, Sørensen TL, Garred P, Nissen MH. Systemic and Ocular Long Pentraxin 3 in Patients with Age-Related Macular Degeneration. PLoS One 2015; 10:e0132800. [PMID: 26176960 PMCID: PMC4503310 DOI: 10.1371/journal.pone.0132800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/19/2015] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) has been associated with both systemic and ocular alterations of the immune system. In particular dysfunction of complement factor H (CFH), a soluble regulator of the alternative pathway of the complement system, has been implicated in AMD pathogenesis. One of the ligands for CFH is long pentraxin 3 (PTX3), which is produced locally in the retinal pigment epithelium (RPE). To test the hypothesis that PTX3 is relevant to retinal immunohomeostasis and may be associated with AMD pathogenesis, we measured plasma PTX3 protein concentration and analyzed the RPE/choroid PTX3 gene expression in patients with AMD. To measure the ability of RPE cells to secrete PTX3 in vitro, polarized ARPE-19 cells were treated with activated T cells or cytokines (interferon (IFN)-gamma and/or tumor necrosis factor (TNF)-alpha) from the basolateral side; then PTX3 protein concentration in supernatants and PTX3 gene expression in tissue lysates were quantified. Plasma levels of PTX3 were generally low and did not significantly differ between patients and controls (P=0.307). No statistically significant difference was observed between dry and exudative AMD nor was there any correlation with hsCRP or CFH genotype. The gene expression of PTX3 increased in RPE/choroid with age (P=0.0098 macular; P=0.003 extramacular), but did not differ between aged controls and AMD patients. In vitro, ARPE-19 cells increased expression of the PTX3 gene as well PTX3 apical secretions after stimulation with TNF-alpha or activated T cells (P<0.01). These findings indicate that PTX3 expressed in the eye cannot be detected systemically and systemic PTX3 may have little or no impact on disease progression, but our findings do not exclude that locally produced PTX3 produced in the posterior segment of the eye may be part of the AMD immunopathogenesis.
Collapse
Affiliation(s)
- Helene Bæk Juel
- Eye Research Unit, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Faber
- Eye Research Unit, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Glostrup Hospital, Glostrup, Denmark
- * E-mail:
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Simone Bastrup-Birk
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alexander Lynge Reese-Petersen
- Eye Research Unit, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Krüger Falk
- Department of Ophthalmology, Copenhagen University Hospital, Roskilde, Denmark
| | - Amardeep Singh
- Department of Ophthalmology, Copenhagen University Hospital, Roskilde, Denmark
| | - Torben Lykke Sørensen
- Department of Ophthalmology, Copenhagen University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mogens Holst Nissen
- Eye Research Unit, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
182
|
Fields MA, Cai H, Bowrey HE, Moreira EF, Beck Gooz M, Kunchithapautham K, Gong J, Vought E, Del Priore LV. Nitrite Modification of Extracellular Matrix Alters CD46 Expression and VEGF Release in Human Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2015; 56:4231-8. [PMID: 26161984 PMCID: PMC4703405 DOI: 10.1167/iovs.15-16438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/17/2015] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Loss of CD46 has recently been implicated in choroidal neovascularization in mice. Herein we investigated the effect of nitrite modification of the extracellular matrix (ECM) as an in vitro model of "aging" and its effect on CD46 expression and vascular endothelial growth factor (VEGF) release in cocultured human retinal pigment epithelium (RPE). METHODS ARPE-19 cells were plated onto RPE-derived ECM conditions (untreated; nitrite modified; nitrite modified followed by washing with Triton X-100; or nitrite modified followed by washing with Triton X-100 and coated with extracellular matrix ligands). Cells were cultured for 7 days and CD46 expression was analyzed by immunohistochemistry and Western blot. Additionally, CD46 short interfering RNA (siRNA) was transfected into ARPE-19 cells, and VEGF levels were determined by ELISA. Finally, in the same ECM conditions, ARPE-19 cells were challenged with normal human serum and VEGF levels determined by ELISA. RESULTS CD46 is expressed on the basolateral surface of ARPE-19 cells on RPE-derived ECM. Nitrite modification of ECM reduced the expression of CD46 on ARPE-19 cells by 0.5-fold (P = 0.003) and increased VEGF release in ARPE-19 cells by 1.7-fold (P < 0.001). CD46 knockdown also increased release of VEGF on the apical and basal sides of ARPE-19 cells in culture by 1.3- (P = 0.012) and 1.2-fold (P = 0.017), respectively. CONCLUSIONS Nitrite modification of the ECM decreased CD46 expression and increased the release of VEGF from ARPE-19 cells. Changes in CD46 expression may lead to changes in VEGF and play a pathologic role in the development of age-related macular degeneration.
Collapse
Affiliation(s)
- Mark A. Fields
- Department of Ophthalmology Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Hui Cai
- Department of Ophthalmology, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Hannah E. Bowrey
- Department of Ophthalmology Medical University of South Carolina, Charleston, South Carolina, United States
| | - Ernesto F. Moreira
- Department of Ophthalmology Medical University of South Carolina, Charleston, South Carolina, United States
| | - Monika Beck Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kannan Kunchithapautham
- Department of Ophthalmology Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jie Gong
- Department of Ophthalmology Medical University of South Carolina, Charleston, South Carolina, United States
| | - Emma Vought
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Lucian V. Del Priore
- Department of Ophthalmology Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
183
|
Hoh Kam J, Lynch A, Begum R, Cunea A, Jeffery G. Topical cyclodextrin reduces amyloid beta and inflammation improving retinal function in ageing mice. Exp Eye Res 2015; 135:59-66. [PMID: 25921262 DOI: 10.1016/j.exer.2015.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/18/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
Abstract
Retinal ageing results in chronic inflammation, extracellular deposition, including that of amyloid beta (Aβ) and declining visual function. In humans this can progress into age-related macular degeneration (AMD), which is without cure. Therapeutic approaches have focused on systemic immunotherapies without clinical resolution. Here, we show using aged mice that 2-Hydroxypropyl-β-cyclodextrin, a sugar molecule given as eye drops over 3 months results in significant reductions in Aβ by 65% and inflammation by 75% in the aged mouse retina. It also elevates retinal pigment epithelium specific protein 65 (RPE65), a key molecule in the visual cycle, in aged retina. These changes are accompanied by a significant improvement in retinal function measured physiologically. 2-Hydroxypropyl-β-cyclodextrin is as effective in reducing Aβ and inflammation in the complement factor H knockout (Cfh(-/-)) mouse that shows advanced ageing and has been proposed as an AMD model. β-cyclodextrin is economic, safe and may provide an efficient route to reducing the impact of retinal ageing.
Collapse
Affiliation(s)
- Jaimie Hoh Kam
- Institute of Ophthalmology, University College London, UK
| | - Aisling Lynch
- Institute of Ophthalmology, University College London, UK
| | - Rana Begum
- Institute of Ophthalmology, University College London, UK
| | - Alex Cunea
- Institute of Ophthalmology, University College London, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, UK.
| |
Collapse
|
184
|
7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: a potential pathogenic mechanism underlying age-related macular degeneration. Sci Rep 2015; 5:9144. [PMID: 25775051 PMCID: PMC4360733 DOI: 10.1038/srep09144] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/23/2015] [Indexed: 11/26/2022] Open
Abstract
Age-related macular degeneration (AMD) has been associated with both accumulation of lipid and lipid oxidative products, as well as increased neuroinflammatory changes and microglial activation in the outer retina. However, the relationships between these factors are incompletely understood. 7-Ketocholesterol (7KCh) is a cholesterol oxidation product localized to the outer retina with prominent pro-inflammatory effects. To explore the potential relationship between 7KCh and microglial activation, we localized 7KCh and microglia to the outer retina of aged mice and investigated 7KCh effects on retinal microglia in both in vitro and in vivo systems. We found that retinal microglia demonstrated a prominent chemotropism to 7KCh and readily internalized 7KCh. Sublethal concentrations of 7KCh resulted in microglial activation and polarization to a pro-inflammatory M1 state via NLRP3 inflammasome activation. Microglia exposed to 7KCh reduced expression of neurotrophic growth factors but increased expression of angiogenic factors, transitioning to a more neurotoxic and pro-angiogenic phenotype. Finally, subretinal transplantation of 7KCh-exposed microglia promoted choroidal neovascularization (CNV) relative to control microglia in a Matrigel-CNV model. The interaction of retinal microglia with 7KCh in the aged retina may thus underlie how outer retinal lipid accumulation in intermediate AMD results in neuroinflammation that ultimately drives progression towards advanced AMD.
Collapse
|
185
|
Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA, Mullins RF. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 2015; 45:1-29. [PMID: 25486088 PMCID: PMC4339497 DOI: 10.1016/j.preteyeres.2014.11.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 12/24/2022]
Abstract
Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies.
Collapse
Affiliation(s)
- S Scott Whitmore
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Elliott H Sohn
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Kathleen R Chirco
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Arlene V Drack
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Edwin M Stone
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Budd A Tucker
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Robert F Mullins
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| |
Collapse
|
186
|
Identification of hydroxyapatite spherules provides new insight into subretinal pigment epithelial deposit formation in the aging eye. Proc Natl Acad Sci U S A 2015; 112:1565-70. [PMID: 25605911 DOI: 10.1073/pnas.1413347112] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Accumulation of protein- and lipid-containing deposits external to the retinal pigment epithelium (RPE) is common in the aging eye, and has long been viewed as the hallmark of age-related macular degeneration (AMD). The cause for the accumulation and retention of molecules in the sub-RPE space, however, remains an enigma. Here, we present fluorescence microscopy and X-ray diffraction evidence for the formation of small (0.5-20 μm in diameter), hollow, hydroxyapatite (HAP) spherules in Bruch's membrane in human eyes. These spherules are distinct in form, placement, and staining from the well-known calcification of the elastin layer of the aging Bruch's membrane. Secondary ion mass spectrometry (SIMS) imaging confirmed the presence of calcium phosphate in the spherules and identified cholesterol enrichment in their core. Using HAP-selective fluorescent dyes, we show that all types of sub-RPE deposits in the macula, as well as in the periphery, contain numerous HAP spherules. Immunohistochemical labeling for proteins characteristic of sub-RPE deposits, such as complement factor H, vitronectin, and amyloid beta, revealed that HAP spherules were coated with these proteins. HAP spherules were also found outside the sub-RPE deposits, ready to bind proteins at the RPE/choroid interface. Based on these results, we propose a novel mechanism for the growth, and possibly even the formation, of sub-RPE deposits, namely, that the deposit growth and formation begin with the deposition of insoluble HAP shells around naturally occurring, cholesterol-containing extracellular lipid droplets at the RPE/choroid interface; proteins and lipids then attach to these shells, initiating or supporting the growth of sub-RPE deposits.
Collapse
|
187
|
NLRP3 Inflammasome and Pathobiology in AMD. J Clin Med 2015; 4:172-92. [PMID: 26237026 PMCID: PMC4470247 DOI: 10.3390/jcm4010172] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of central vision loss and blindness in the elderly. It is characterized by a progressive loss of photoreceptors in the macula due to damage to the retinal pigment epithelium (RPE). Clinically, it is manifested by drusen deposition between the RPE and underlying choroid and accumulation of lipofuscin in the RPE. End-stage disease is characterized by geographic atrophy (dry AMD) or choroidal neovascularization (wet AMD). The NLRP3 inflammasome has recently been implicated in the disease pathology. Here we review the current knowledge on the involvement of this multiprotein complex and its effector cytokines interleukin-1β (IL-1β) and IL-18 in AMD progression. We also describe cell death mechanisms that have been proposed to underlie RPE degeneration in AMD and discuss the role of autophagy in the regulation of disease progression.
Collapse
|
188
|
Sohn EH, Wang K, Thompson S, Riker MJ, Hoffmann JM, Stone EM, Mullins RF. Comparison of drusen and modifying genes in autosomal dominant radial drusen and age-related macular degeneration. Retina 2015; 35:48-57. [PMID: 25077532 PMCID: PMC5513174 DOI: 10.1097/iae.0000000000000263] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal dominant radial drusen (ADRD), also termed Malattia Leventinese and Doyne honeycomb retinal dystrophy, causes early-onset vision loss because of mutation in EFEMP1. Drusen in an exceedingly rare ADRD human donor eye was compared with eyes affected with age-related macular degeneration (AMD). This study also elucidated whether variations in high-risk AMD genotypes modify phenotypic severity of ADRD. METHODS Morphologic and histochemical analyses of drusen in one ADRD donor and seven AMD donors. Evaluation of complement factor H (CFH) and ARMS2/HTRA1 alleles in a cohort of 25 subjects with ADRD. RESULTS Autosomal dominant radial drusen had unique onion skin-like lamination but otherwise shared many compositional features with hard, nodular drusen and/or diffuse soft drusen with basal deposits. Autosomal dominant radial drusen also possessed collagen type IV, an extracellular matrix protein that is absent in age-related drusen. Antibodies directed against the membrane attack complex showed robust labeling of ADRD. Vitronectin and amyloid P were present in drusen of both types. High-risk alleles in the CFH and ARMS2/HTRA1 genes were not associated with increasing ADRD severity. CONCLUSION Drusen from ADRD and AMD exhibit overlap of some major constituents, but ADRD exhibit distinct alterations in the extracellular matrix that are absent in AMD.
Collapse
Affiliation(s)
- Elliott H Sohn
- *Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa; Departments of †Ophthalmology and Visual Sciences, and ‡Biostatistics, University of Iowa, Iowa City, Iowa; and §The Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | | | |
Collapse
|
189
|
Rodriguez IR, Clark ME, Lee JW, Curcio CA. 7-ketocholesterol accumulates in ocular tissues as a consequence of aging and is present in high levels in drusen. Exp Eye Res 2014; 128:151-5. [PMID: 25261634 DOI: 10.1016/j.exer.2014.09.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
We analyzed by LCMS lipid extracts of lens, retina (MNR) and RPE/Choroid (MPEC) from macaque monkeys 2-25 yr in age to determine their content of 7-ketocholesterol (7KCh) as function of age. In addition we also analyzed drusen capped with retinal pigment epithelium (RPE), RPE, and neural retina from human donors age 72-95 yr. The lowest 7KCh levels were found in monkey lens (<0.5-3.5 pmol 7KCh per nmol Ch), the second highest in MNR (1-15 pmol/nmol), and the highest in MPEC (1 to >60 pmol/nmol). Despite individual variability all three tissues demonstrated a strong age-related increase. In older human donors 7KCh levels were significantly higher. The levels in human neural retina ranged from 8 to 20 pmol/nmol, similar to the oldest monkeys, but 7-KCh levels in RPE ranged from 200 to 17,000 pmol/nmol, and in RPE-capped drusen from 200 to 2000 pmol/nmol, levels that would be lethal in most cultured cell systems. Most of the 7KCh is sequestered and not readily available to the surrounding tissue, based on published histochemical evidence that extracellular cholesterol (Ch) and cholesteryl fatty acid esters (CEs) are highly concentrated in Bruch's membrane and drusen. However, adjacent tissues, especially RPE but also choriocapillaris endothelium, could be chronically inflamed and in peril of receiving a lethal exposure. Implications for initiation and progression of age-related macular degeneration are discussed.
Collapse
Affiliation(s)
- Ignacio R Rodriguez
- Laboratory of Retinal Cell and Molecular Biology, Mechanisms of Retinal Disease Section, National Eye Institute, NIH, USA
| | - Mark E Clark
- Department of Ophthalmology, University of Alabama, School of Medicine, Birmingham, AL, USA
| | - Jung Wha Lee
- Laboratory of Retinal Cell and Molecular Biology, Mechanisms of Retinal Disease Section, National Eye Institute, NIH, USA
| | - Christine A Curcio
- Department of Ophthalmology, University of Alabama, School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
190
|
Ma W, Paik DC, Barile GR. Bioactive lysophospholipids generated by hepatic lipase degradation of lipoproteins lead to complement activation via the classical pathway. Invest Ophthalmol Vis Sci 2014; 55:6187-93. [PMID: 25205869 DOI: 10.1167/iovs.14-14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We determined bioactivity of lysophospholipids generated by degradation of the low-density (LDL), very low-density (VLDL), and high-density (HDL) lipoproteins with hepatic lipase (HL), cholesterol esterase (CE), and lipoprotein-associated phospholipase A2 (Lp-PLA2). METHODS The LDL, VLDL, and HDL were treated with HL, CE, and Lp-PLA2 after immobilization on plates, and complement activation studies were performed with diluted human serum. Complement component 3 (C3) fixation, a marker for complement activation, was determined with a monoclonal anti-human C3d antibody. Enzymatic properties of HL and CE were assayed with triglyceride and phosphatidylcholine substrates for triglyceride hydrolase and phospholipase A activities. The ARPE-19 cells were used for viability studies. RESULTS The HL degradation of human lipoproteins LDL, VLDL, or HDL results in the formation of modified lipoproteins that can activate the complement pathway. Complement activation is dose- and time-dependent upon HL and occurs via the classical pathway. Enzymatic studies suggest that the phospholipase A1 activity of HL generates complement-activating lysophospholipids. C-reactive protein (CRP), known to simultaneously interact with complement C1 and complement factor H (CFH), further enhances HL-induced complement activation. The lysophospholipids, 1-Palmitoyl-sn-glycero-3-phosphocholine and 1-Oleoyl-sn-glycero-3-phosphocholine, can be directly cytotoxic to ARPE-19 cells. CONCLUSIONS The HL degradation of lipoproteins, known to accumulate in the outer retina and in drusen, can lead to the formation of bioactive lysophospholipids that can trigger complement activation and induce RPE cellular dysfunction. Given the known risk associations for age-related macular degeneration (AMD) with HL, CRP, and CFH, this study elucidates a possible damage pathway for age-related macular degeneration (AMD) in genetically predisposed individuals, that HL activity may lead to accumulation of lysophospholipids to initiate complement activation, with CFH dysregulation exacerbating the effects of this process.
Collapse
Affiliation(s)
- Wanchao Ma
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - David C Paik
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Gaetano R Barile
- Department of Ophthalmology, Columbia University, New York, New York, United States
| |
Collapse
|
191
|
Kawa MP, Machalinska A, Roginska D, Machalinski B. Complement system in pathogenesis of AMD: dual player in degeneration and protection of retinal tissue. J Immunol Res 2014; 2014:483960. [PMID: 25276841 PMCID: PMC4168147 DOI: 10.1155/2014/483960] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/18/2014] [Accepted: 08/01/2014] [Indexed: 12/25/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly, especially in Western countries. Although the prevalence, risk factors, and clinical course of the disease are well described, its pathogenesis is not entirely elucidated. AMD is associated with a variety of biochemical abnormalities, including complement components deposition in the retinal pigment epithelium-Bruch's membrane-choriocapillaris complex. Although the complement system (CS) is increasingly recognized as mediating important roles in retinal biology, its particular role in AMD pathogenesis has not been precisely defined. Unrestricted activation of the CS following injury may directly damage retinal tissue and recruit immune cells to the vicinity of active complement cascades, therefore detrimentally causing bystander damage to surrounding cells and tissues. On the other hand, recent evidence supports the notion that an active complement pathway is a necessity for the normal maintenance of the neurosensory retina. In this scenario, complement activation appears to have beneficial effect as it promotes cell survival and tissue remodeling by facilitating the rapid removal of dying cells and resulting cellular debris, thus demonstrating anti-inflammatory and neuroprotective activities. In this review, we discuss both the beneficial and detrimental roles of CS in degenerative retina, focusing on the diverse aspects of CS functions that may promote or inhibit macular disease.
Collapse
Affiliation(s)
- Milosz P. Kawa
- Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Machalinska
- Department of Ophthalmology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
- Department of Histology and Embryology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Dorota Roginska
- Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Boguslaw Machalinski
- Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
192
|
Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43:17-75. [PMID: 25038518 DOI: 10.1016/j.preteyeres.2014.07.001] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, Alicante, Spain.
| | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro De la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Aragon Institute of Health Sciences, Zaragoza, Spain
| |
Collapse
|
193
|
Chen S, Popp NA, Chan CC. Animal models of age-related macular degeneration and their translatability into the clinic. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 9:285-295. [PMID: 35600070 PMCID: PMC9119377 DOI: 10.1586/17469899.2014.939171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in people over the age of 55. Despite its common nature, the etiology of the disease involves both genetic and environmental factors, the interaction of which is not fully understood. Animal models, including the mouse, rat, rabbit, pig and non-human primate, have been developed to study various aspects of the disease and to evaluate novel therapies; however, no single model has been developed to emulate all aspects of the disease. This review will discuss the various existing models of AMD, their strengths and limitations and examples of their use in current AMD research.
Collapse
Affiliation(s)
- Shida Chen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Nicholas A Popp
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
194
|
Sharma K, Sharma NK, Anand A. Why AMD is a disease of ageing and not of development: mechanisms and insights. Front Aging Neurosci 2014; 6:151. [PMID: 25071560 PMCID: PMC4091411 DOI: 10.3389/fnagi.2014.00151] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/17/2014] [Indexed: 02/03/2023] Open
Abstract
Ageing disorders can be defined as the progressive and cumulative outcome of several defective cellular mechanisms as well as metabolic pathways, consequently resulting in degeneration. Environment plays an important role in its pathogenesis. In contrast, developmental disorders arise from inherited mutations and usually the role of environmental factors in development of disease is minimal. Age related macular degeneration (AMD) is one such retinal degenerative disorder which starts with the progression of age. Metabolism plays an important role in initiation of such diseases of ageing. Cholesterol metabolism and their oxidized products like 7-ketocholesterol have been shown to adversely impact retinal pigment epithelium (RPE) cells. These molecules can initiate mitochondrial apoptotic processes and also influence the complements factors and expression of angiogenic proteins like VEGF etc. In this review we highlight why and how AMD is an ageing disorder and not a developmental disease substantiated by disrupted cholesterol metabolism common to several age related diseases.
Collapse
Affiliation(s)
- Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| | - Neel Kamal Sharma
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute Bethesda, MD, USA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| |
Collapse
|
195
|
Yoon C, Kim D, Kim S, Park GB, Hur DY, Yang JW, Park SG, Kim YS. MiR-9 regulates the post-transcriptional level of VEGF165a by targeting SRPK-1 in ARPE-19 cells. Graefes Arch Clin Exp Ophthalmol 2014; 252:1369-76. [PMID: 25007957 DOI: 10.1007/s00417-014-2698-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/07/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigate the effect of the overexpression of miRNA-9 to the ratio of pro- and anti-angiogenic isoforms of vascular endothelial growth factor (VEGF) in human retinal pigment cells (ARPE-19). METHODS Oxidative stress was induced to ARPE-19 cells by 4-hydroxynonenal (4-HNE), tert-butyl hydroperoxide (t-BH), and hypoxia chamber with 1% O₂. Expression patterns of miRNAs were validated by qPCR. Relative mRNA levels of VEGF and PEDF were measured by semi-quantitative PCR. After the transfection of miR-9 mimic and inhibitor, transcriptional levels of VEGF165a, VEGF 165b, and SRPK-1 were measured by qPCR. RESULTS We demonstrated that miR-9 expression is decreased in ARPE-19 human retinal pigment cells under hypoxic stress induced by 4-HNE, a lipid peroxidation end-product. We observed that miR-9 mimic transfection of ARPE-19 inhibited one of its targets, serine-arginine protein kinase-1 (SRPK-1), modulating the transcriptional level of VEGF165b. Transfection of miR-9 reduced the alternative splicing of VEGF165a mRNA in ARPE-19 cells under hypoxic conditions, suggesting that miR-mediated regulation of alternative splicing could be a potential therapeutic target in neovascular pathologies. CONCLUSIONS Hypoxic stress decreased the miR-9 level in ARPE-19 cells, which increased the transcriptional level of SRPK-1, resulting in alternative splicing shift to pro-angiogenic isoforms of VEGF165 in human retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Changshin Yoon
- Department of Anatomy, College of Medicine, Inje University, Bokji-ro 75, Busanjin-gu, Busan, South Korea, 614-735
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Hu Y, Lin H, Dib B, Atik A, Bouzika P, Lin C, Yan Y, Tang S, Miller JW, Vavvas DG. Cholesterol crystals induce inflammatory cytokines expression in a human retinal pigment epithelium cell line by activating the NF-κB pathway. DISCOVERY MEDICINE 2014; 18:7-14. [PMID: 25091484 PMCID: PMC5330255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE To investigate the expression of inflammatory cytokines in ARPE-19 cells after stimulation with cholesterol crystals. METHODS APRE-19 cells were cultured, primed with IL-1α, and treated with cholesterol crystals under different concentrations. Inflammatory cytokines (mature-IL-1β, IL-6, and IL-8) in supernatant and inflammatory cytokines (pro-IL-1β, IL-18) in cell lysate were detected by western blot. The NF-κB pathway inhibitor BAY 11-7082 was used to determine the pathway of cytokine expression. RESULTS Cholesterol crystals did not induce the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome, but did increase pro-IL-1β expression in ARPE-19 cells. Cholesterol crystals increased pro-IL-1β expression by activating the NF-κB pathway. Cholesterol crystal activation of the NF-κB pathway also leads to increased IL-6 and IL-8 expression. CONCLUSION Cholesterol crystals can induce inflammatory cytokine expression in ARPE-19 cells by activating the NF-κB pathway.
Collapse
Affiliation(s)
- Yijun Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Haijiang Lin
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Bernard Dib
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Alp Atik
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Peggy Bouzika
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Lin
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Yueran Yan
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, 410015, China
| | - Joan W Miller
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
197
|
Mao H, Seo SJ, Biswal MR, Li H, Conners M, Nandyala A, Jones K, Le YZ, Lewin AS. Mitochondrial oxidative stress in the retinal pigment epithelium leads to localized retinal degeneration. Invest Ophthalmol Vis Sci 2014; 55:4613-27. [PMID: 24985474 DOI: 10.1167/iovs.14-14633] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Oxidative stress in the RPE is widely accepted as a contributing factor to AMD. We have previously shown that ribozyme-mediated reduction in the antioxidant enzyme manganese superoxide dismutase (MnSOD) leads to some of the features of geographic atrophy in mice. To develop a mouse model independent of viral injection, we used a conditional knockout of the Sod2 gene in the RPE to elevate mitochondrial oxidative stress in that cell layer. METHODS Experimental mice in which exon 3 of Sod2 was flanked by loxP sites were also transgenic for PVMD2-rtTA and tetO-PhCMV cre, so that cre recombinase was expressed only in the RPE. Pups of this genotype (Sod2(flox/flox)VMD2cre) were induced to express cre recombinase by feeding doxycycline-laced chow to nursing dams. Controls included mice of this genotype not treated with doxycycline and doxycycline-treated Sod2(flox/flox) mice lacking the cre transgene. Expression of cre in the RPE was verified by immunohistochemistry, and deletion of Sod2 exon 3 in the RPE was confirmed by PCR. Mice were followed up over a period of 9 months by spectral-domain optical coherence tomography (SD-OCT), digital fundus imaging, and full-field ERG. Following euthanasia, retinas were examined by light and electron microscopy or by immunohistochemistry. Contour length of rod outer segments and thickness of the RPE layer were measured by unbiased stereology. RESULTS Following doxycycline induction of cre, Sod2(flox/flox) cre mice demonstrated increased signs of oxidative stress in the RPE and accumulation of autofluorescent material by age 2 months. They showed a gradual decline in the ERG response and thinning of the outer nuclear layer (by SD-OCT), which were statistically significant by 6 months. In addition, OCT and electron microscopy revealed increased porosity of the choroid. At the same interval, hypopigmented foci appeared in fundus micrographs, and vascular abnormalities were detected by fluorescein angiography. By 9 months, the RPE layer in Sod2(flox/flox) cre mice was thicker than in nontransgenic littermates, and the rod outer segments were significantly longer over most of the retina, although localized atrophy of photoreceptors was also obvious in some eyes. CONCLUSIONS Conditional tissue-specific reduction in MnSOD induced oxidative stress in mouse RPE, leading to RPE dysfunction, damage to the choroid, and death of photoreceptor cells. The RPE oxidative stress did not cause drusen-like deposits, but the model recapitulated certain key aspects of the pathology of dry AMD and may be useful in testing therapies.
Collapse
Affiliation(s)
- Haoyu Mao
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Soo Jung Seo
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Manas R Biswal
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Hong Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Mandy Conners
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Arathi Nandyala
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Kyle Jones
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Yun-Zheng Le
- Departments of Medicine, Endocrinology, and Cell Biology and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
198
|
Kunchithapautham K, Atkinson C, Rohrer B. Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation. J Biol Chem 2014; 289:14534-46. [PMID: 24711457 PMCID: PMC4031511 DOI: 10.1074/jbc.m114.564674] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/02/2014] [Indexed: 01/02/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD.
Collapse
Affiliation(s)
| | - Carl Atkinson
- Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Bärbel Rohrer
- From the Departments of Ophthalmology and the Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| |
Collapse
|
199
|
Monte Carlo simulation of laser beams interaction with the human eye using Geant4. Biomed Eng Online 2014; 13:58. [PMID: 24885872 PMCID: PMC4026188 DOI: 10.1186/1475-925x-13-58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
Background Due to the unique characteristics of the eye, ophthalmologic diagnostic techniques often rely on the photons interaction with the retina to infer its internal structure. Although these techniques are widely used, the interpretation of the generated images is not always fully understood, as in scanning laser ophthalmoscopy dark field imaging. This limits the exploitation of its full potential as a diagnostic tool for deep abnormalities in the retina, as in the situation of drusen. Methods With the aim of better understanding the retinal diagnostic images, we have carried out computer simulations of incident laser beams interacting with different structures of the human eye, including a retina with and without drusen. We have used the Geant4 simulation toolkit, applying the optical package of the electromagnetic (EM) physics working group, to simulate the physical processes of reflection, refraction, absorption, and scattering of low energy photons (2 eV) in biological tissues. For each simulation it was used a single beam of orange light, with a Gaussian profile, that travels through all optical elements of the eye. The reflected beam characteristics were analyzed by virtual detectors in different locations, which collected information about the number and position of photons. The geometry and optical properties of all components of the eye were considered according to the published data. Results Simulation results put in evidence that the presence of drusen influences the profile of the reflected beams. It changes the mean free path of the photons, modifying its reflection pattern, which depends on the area illuminated by the incident beam. This result is also visible when the reflected beam is analyzed outside of the eye, when the profile has no longer a symmetrical Gaussian distribution. These results will support the retinal diagnostic images that will be obtained in a near future with a new developed ophthalmic apparatus. Conclusions The shape analysis of the reflected beams in retinal laser scanning techniques could increase its potential as a diagnostic examination tool for the deeper structures of the retina.
Collapse
|
200
|
Auer H, Mobley JA, Ayers LW, Bowen J, Chuaqui RF, Johnson LA, Livolsi VA, Lubensky IA, McGarvey D, Monovich LC, Moskaluk CA, Rumpel CA, Sexton KC, Washington MK, Wiles KR, Grizzle WE, Ramirez NC. The effects of frozen tissue storage conditions on the integrity of RNA and protein. Biotech Histochem 2014; 89:518-28. [PMID: 24799092 DOI: 10.3109/10520295.2014.904927] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unfixed tissue specimens most frequently are stored for long term research uses at either -80° C or in vapor phase liquid nitrogen (VPLN). There is little information concerning the effects such long term storage on tissue RNA or protein available for extraction. Aliquots of 49 specimens were stored for 5-12 years at -80° C or in VPLN. Twelve additional paired specimens were stored for 1 year under identical conditions. RNA was isolated from all tissues and assessed for RNA yield, total RNA integrity and mRNA integrity. Protein stability was analyzed by surface-enhanced or matrix-assisted laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS, MALDI-TOF-MS) and nano-liquid chromatography electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS). RNA yield and total RNA integrity showed significantly better results for -80° C storage compared to VPLN storage; the transcripts that were preferentially degraded during VPLN storage were these involved in antigen presentation and processing. No consistent differences were found in the SELDI-TOF-MS, MALDI-TOF-MS or nLC-ESI-MS/MS analyses of specimens stored for more than 8 years at -80° C compared to those stored in VPLN. Long term storage of human research tissues at -80° C provides at least the same quality of RNA and protein as storage in VPLN.
Collapse
Affiliation(s)
- H Auer
- Functional Genomics Core, Institute for Research in Biomedicine , Barcelona , Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|