151
|
Urli S, Corte Pause F, Crociati M, Baufeld A, Monaci M, Stradaioli G. Impact of Microplastics and Nanoplastics on Livestock Health: An Emerging Risk for Reproductive Efficiency. Animals (Basel) 2023; 13:ani13071132. [PMID: 37048387 PMCID: PMC10093235 DOI: 10.3390/ani13071132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Pollution due to microplastics and nanoplastics is one of the major environmental issues of the last decade and represents a growing threat to human and animal health. In aquatic species, there is a large amount of information regarding the perturbation of marine organisms; instead, there are only a few studies focusing on the pathophysiological consequences of an acute and chronic exposure to micro- and nanoplastics in mammalian systems, especially on the reproductive system. There are several studies that have described the damage caused by plastic particles, including oxidative stress, apoptosis, inflammatory response, dysregulation of the endocrine system and accumulation in various organs. In addition to this, microplastics have recently been found to influence the evolution of microbial communities and increase the gene exchange, including antibiotic and metal resistance genes. Special attention must be paid to farm animals, because they produce food such as milk, eggs and meat, with the consequent risk of biological amplification along the food chain. The results of several studies indicate that there is an accumulation of microplastics and nanoplastics in human and animal tissues, with several negative effects, but all the effects in the body have not been ascertained, especially considering the long-term consequences. This review provides an overview of the possible adverse effects of the exposure of livestock to micro- and nanoplastics and assesses the potential risks for the disruption of reproductive physiological functions.
Collapse
Affiliation(s)
- Susy Urli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| | - Francesca Corte Pause
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Anja Baufeld
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Maurizio Monaci
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Giuseppe Stradaioli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
152
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
153
|
Muhib MI, Uddin MK, Rahman MM, Malafaia G. Occurrence of microplastics in tap and bottled water, and food packaging: A narrative review on current knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161274. [PMID: 36587673 DOI: 10.1016/j.scitotenv.2022.161274] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, microplastic has been detected in many environmental samples, including aquatic and terrestrial environments. However, few studies recently have addressed their attention to microplastic contamination in different drinking sources and food packages. This review paper has narrated those few findings in brief. Literature showed that different pieces of microplastic fragments, e.g., polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyethylene (PE), high-density polyethylene (HDPE), low-density polyethylene (LDPE), etc. are detected in plastic drinking bottle, tap water, and food packaging containers. Microplastic fragmentation may be associated with mechanical stress, UV radiation, low plastic material quality, aging factor, and atmospheric deposition. Besides these, microplastic is a hub of different chemical compounds and can also retain other complex materials from the surroundings. This makes the microplastic contamination even more complicated and difficult to detect them accurately in a single method. Additionally, one of the common practices at the community level is the long-time repeated usage of plastic drinking bottles and food boxes that subsequently cause microplastic leaching and potential health threats to consumers. This narrative study summarizes the current scenario of microplastic contamination from drinking bottles and food containers and emphasizes doing more quality research in this subtle but highly imposed field to understand potential exposure better.
Collapse
Affiliation(s)
- Md Iftakharul Muhib
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
154
|
Siddiqui SA, Khan S, Tariq T, Sameen A, Nawaz A, Walayat N, Oboturova NP, Ambartsumov TG, Nagdalian AA. Potential risk assessment and toxicological impacts of nano/micro-plastics on human health through food products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:361-395. [PMID: 36863839 DOI: 10.1016/bs.afnr.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The problem of environmental pollution with plastic is becoming more and more acute every year. Due to the low rate of decomposition of plastic, its particles get into food and harm the human body. This chapter focuses on the potential risks and toxicological effects of both nano and microplastics on human health. The main places of distribution of various toxicants along with the food chain have been established. The effects of some examples of the main sources of micro/nanoplastics on the human body are also emphasised. The processes of entry and accumulation of micro/nanoplastics are described, and the mechanism of accumulation that occurs inside the body is briefly explained. Potential toxic effects reported from studies on various organisms are highlighted as well.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany.
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Asad Nawaz
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | | | | | | |
Collapse
|
155
|
Siddiqui SA, Bahmid NA, Salman SHM, Nawaz A, Walayat N, Shekhawat GK, Gvozdenko AA, Blinov AV, Nagdalian AA. Migration of microplastics from plastic packaging into foods and its potential threats on human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:313-359. [PMID: 36863838 DOI: 10.1016/bs.afnr.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Microplastics from food packaging material have risen in number and dispersion in the aquatic system, the terrestrial environment, and the atmosphere in recent decades. Microplastics are of particular concern due to their long-term durability in the environment, their great potential for releasing plastic monomers and additives/chemicals, and their vector-capacity for adsorbing or collecting other pollutants. Consumption of foods containing migrating monomers can lead to accumulation in the body and the build-up of monomers in the body can trigger cancer. The book chapter focuses the commercial plastic food packaging materials and describes their release mechanisms of microplastics from packaging into foods. To prevent the potential risk of microplastics migrated into food products, the factors influencing microplastic to the food products, e.g., high temperatures, ultraviolet and bacteria, have been discussed. Additionally, as many evidences shows that the microplastic components are toxic and carcinogenic, the potential threats and negative effects on human health have also been highlighted. Moreover, future trends is summarized to reduce the microplastic migration by enhancing public awareness as well as improving waste management.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany.
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | | | - Asad Nawaz
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Garima Kanwar Shekhawat
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Jaipur, India
| | | | | | - Andrey Ashotovich Nagdalian
- Food Technology and Engineering Department, North Caucasus Federal University, Stavropol, Russia; Saint Petersburg State Agrarian University, St Petersburg, Russia
| |
Collapse
|
156
|
Makhdoumi P, Pirsaheb M, Amin AA, Kianpour S, Hossini H. Microplastic pollution in table salt and sugar: occurrence, qualification and quantification and risk assessment. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
157
|
Sorensen RM, Kanwar RS, Jovanovi B. Past, present, and possible future policies on plastic use in the United States, particularly microplastics and nanoplastics: A review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:474-488. [PMID: 36036190 DOI: 10.1002/ieam.4678] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/07/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
As the levels of plastic use in global society have increased, it has become crucial to regulate plastics of all sizes including both microplastics (MPs) and nanoplastics (NPs). Here, the published literature on the current laws passed by the US Congress and regulations developed by various federal agencies such as the US Environmental Protection Agency and the US Food and Drug Administration (FDA) that could be used to regulate MPs and NPs have been reviewed and analyzed. Statutes such as the Clean Water Act, the Safe Drinking Water Act, the Toxic Substances Control Act (TSCA), the Resource Conservation and Recovery Act, and the Clean Air Act can all be used to address plastic pollution. These statutes have not been invoked for MP and NP waste in water or air. The Federal Food, Drug, and Cosmetic Act provides guidance on how the FDA should evaluate plastics use in food, food packaging, cosmetics, drug packaging, and medical devices. The FDA has recommended that acceptable levels of ingestible contaminant from recycled plastic are less than 1.5 µg/person/day, which is 476 000 times less than the possible ingested daily dose. Plastic regulation is present at the state level. States have banned plastic bags, and several cities have banned plastic straws. California is the only state beginning to focus on monitoring MPs in drinking water. The future of MP regulation in the USA should use TSCA to test the safety of plastics. The other statutes need to include MPs in their definitions. For the FDA, MPs should be redefined as contaminants-allowing tolerances to be set for MPs in food and beverages. Through minor changes in how MPs are classified, it is possible to begin to use the current statutes to understand and begin to minimize the possible effects of MPs on human health and the environment. Integr Environ Assess Manag 2023;19:474-488. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Rachel M Sorensen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Rameshwar S Kanwar
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
| | - Boris Jovanovi
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
158
|
Alma AM, de Groot GS, Buteler M. Microplastics incorporated by honeybees from food are transferred to honey, wax and larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121078. [PMID: 36642174 DOI: 10.1016/j.envpol.2023.121078] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MP) are ubiquitous in the environment, and there is little information available on their impact on terrestrial organisms. Their effect on insects and particularly on honeybees is relevant, given the prevalence of these organisms in the environment and the fact that they provide key ecosystem services. We conducted a field study to assess (1) the fate of these ingested MP within the hive, and (2) MP effect on Apis mellifera population growth during chronic exposure. We aimed to determine if MP ingested by honeybees are incorporated into hive matrices, including honey, and their effect on colony development and honey reserves. We fed beehives with sucrose solutions treated or untreated with 50 mg of Polyester microfibers/L for one month. Microplastic fibers (MF) from treated syrup were incorporated by adult worker bees, remaining in their cuticle, digestive tract, larvae, honey, and wax. Most of the MF were accumulated in wax showing that honey remains as a safe food. At the end of the experiment, no differences in honey reserves or bee population were observed. This is the first study to evaluate in the field the effects and dynamics of MP inside honeybee hives. Our results showed that bees can incorporate MP from the environment and deliver them into the different matrices of the hive. Concentration of MF found in honey of treated hives was like that found in commercial honey, suggesting that honeybees might be exposed to similar MP contamination levels in the environment compared to our experiment. Finally, our results highlight a way in which MP might enter the food chain, with direct implication for human health.
Collapse
Affiliation(s)
- Andrea Marina Alma
- Instituto de Investigaciones en Medio Ambiente y Biodiversidad (INIBIOMA)-CONICET-Universidad Nacional Del Comahue, Bariloche, Argentina
| | - Grecia Stefanía de Groot
- Instituto de Investigaciones en Medio Ambiente y Biodiversidad (INIBIOMA)-CONICET-Universidad Nacional Del Comahue, Bariloche, Argentina
| | - Micaela Buteler
- Instituto de Investigaciones en Medio Ambiente y Biodiversidad (INIBIOMA)-CONICET-Universidad Nacional Del Comahue, Bariloche, Argentina.
| |
Collapse
|
159
|
Altunışık A. Microplastic pollution and human risk assessment in Turkish bottled natural and mineral waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39815-39825. [PMID: 36602737 DOI: 10.1007/s11356-022-25054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs), which arise from the deterioration of larger plastics that are frequently used in daily life and are smaller than 5 mm in size, are found in many environments and can pose a serious threat to human health. Humans ingest these microplastics unintendedly through drinking water. Although plastic pollution has been extensively investigated in a variety of water sources, research on MP contamination in bottled waters is scarce. Hence, in this study, the presence and distribution of MPs were investigated in 150 samples of bottled natural and mineral water brands in Türkiye. Using FTIR stereoscopy and stereomicroscope analysis, MPs were detected in 43 out of the 50 (86%) of these brands. Among the four types of polymers detected, the most abundant type was polyethylene (33%), polypropylene (31%), polyethylene terephthalate (25%), and polyamid (11%). In comparison to natural waters, mineral waters had larger average-sized particles (63.98 ± 4.06 vs. 104.83 ± 14.28 µm) and higher MP concentrations (4.6 ± 0.5 vs. 12.6 ± 1.6 particles/L). Although the most dominant shape was found as fiber in natural waters, fragments were more prevalent in mineral waters. The estimated daily intakes (EDI) for adults and children were expected to be 0.019 and 0.42 MP/kg/bw/day, respectively, in natural waters while EDI were 0.009 and 0.04 MP/kg/bw/day, respectively, in mineral waters. The results of the study suggest that the EDI and annual intake (EAI) are negligible when compared to other studies. The baseline data on MP contamination of bottled water provided in the present study may be significant and useful for researchers to have a better understanding of microplastic contamination exposure.
Collapse
Affiliation(s)
- Abdullah Altunışık
- Faculty of Arts and Sciences, Biology Department, Recep Tayyip Erdoğan University, 53100, Rize, Türkiye.
| |
Collapse
|
160
|
Joseph A, Parveen N, Ranjan VP, Goel S. Drinking hot beverages from paper cups: Lifetime intake of microplastics. CHEMOSPHERE 2023; 317:137844. [PMID: 36640991 DOI: 10.1016/j.chemosphere.2023.137844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have been found in many packaged food products such as salt, tea bags, milk, and fish. In a previous study by this group, MPs were found to leach into hot water from the plastic lining of disposable paper cups. No studies were found in the literature quantifying health risks or lifetime intake of MPs. At present, it is not possible to quantify health risks due to MPs because dose-response and toxicity assessments are not available. Therefore, the objective of the current study was to assess the intake of MPs and associated contaminants like fluoride that are released into these hot beverages. MPs in the previous study were quantified in terms of particle counts only and a simple method was adopted in the present study to convert the microplastics count into its respective mass. Chronic daily intake (CDI) and lifetime intake (LTI) of MPs through the ingestion pathway were calculated. CDI and Hazard Quotient (HQ) due to fluoride ingestion were also estimated following USEPA guidelines. Monte Carlo (MC) simulations were used to account for the variability in input variables such as concentration of MPs, body weight, averaging time, exposure duration, exposure frequency and ingestion rate to evaluate the impact on CDI and LTI values. The CDI was used to estimate the LTI of MPs and HQ for fluoride ingestion. MC simulations with 100,000 iterations resulted in an average CDI of 0.03 ± 0.025 mg of microplastic per kg of body weight per day and 7.04 ± 8.8 μg fluoride per kg body weight per day. This study takes us one step closer to estimating the human health risk due to the ingestion of microplastics and other contaminants through food items.
Collapse
Affiliation(s)
- Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Ved Prakash Ranjan
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India; Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
161
|
Sol D, Menéndez-Manjón A, Carrasco S, Crisóstomo-Miranda J, Laca A, Laca A, Díaz M. Contribution of household dishwashing to microplastic pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45140-45150. [PMID: 36701065 PMCID: PMC10076389 DOI: 10.1007/s11356-023-25433-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
At household level, clothes washing has been recognised as an emitter of microplastics (MPs) into the environment and it is supposed that dishwashing is also a source of MPs, although little attention has been paid so far. In this work, the emission of MPs released from dishwashing procedures at household level has been studied. The effect of different parameters such as time, temperature and type of detergent has been analysed. In addition, the MP content of tap water has been evaluated in order to determine its contribution to the MPs in dishwasher effluent. Results showed that when the dishwasher was operated empty with a pre-wash programme (15 min and room water temperature), between 207 and 427 MPs were released per load (3 L), whereas this value increased notably with an intensive programme (164 min and water at 70 °C) (1025-1370 MPs per load, 15 L), which highlighted the effect of temperature and time on MP release. Additionally, when a polypropylene lunch box was washed, the number of MPs released increased by 14 ± 3 MPs and 166 ± 12 MPs of total. Finally, the influence of the use of detergent with the dishwasher empty and containing lunch boxes has been studied. With detergent, 35-54% more MPs were released from dishwasher accessories, whereas no additional release took place from lunch boxes. This work shows for the first time the important contribution of domestic dishwashing to MP pollution and the environmental benefits of using more environmentally friendly materials in both dishwashing machine accessories and food utensils.
Collapse
Affiliation(s)
- Daniel Sol
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Andrea Menéndez-Manjón
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Sofía Carrasco
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Jacinto Crisóstomo-Miranda
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| |
Collapse
|
162
|
Capozzi F, Sorrentino MC, Cascone E, Iuliano M, De Tommaso G, Granata A, Giordano S, Spagnuolo V. Biomonitoring of Airborne Microplastic Deposition in Semi-Natural and Rural Sites Using the Moss Hypnum cupressiforme. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12050977. [PMID: 36903839 PMCID: PMC10005416 DOI: 10.3390/plants12050977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
We show that the native moss Hypnum cupressiforme can be used as a biomonitor of atmospheric microplastics (MPs). The moss was collected in seven semi-natural and rural sites in Campania (southern Italy) and was analyzed for the presence of MPs, according to standard protocols. Moss samples from all sites accumulated MPs, with fibers representing the largest fraction of plastic debris. Higher numbers of MPs and longer fibers were recorded in moss samples from sites closer to urbanized areas, likely as the results of a continuous flux from sources. The MP size class distribution showed that small size classes characterized sites having a lower level of MP deposition and a high altitude above sea level.
Collapse
Affiliation(s)
- Fiore Capozzi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Maria Cristina Sorrentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
- Correspondence: or
| | - Eleonora Cascone
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Mauro Iuliano
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Gaetano De Tommaso
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Angelo Granata
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Simonetta Giordano
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Valeria Spagnuolo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| |
Collapse
|
163
|
Microplastics in Terrestrial Domestic Animals and Human Health: Implications for Food Security and Food Safety and Their Role as Sentinels. Animals (Basel) 2023; 13:ani13040661. [PMID: 36830448 PMCID: PMC9951732 DOI: 10.3390/ani13040661] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Terrestrial domestic animals are exposed to microplastics, therefore, contaminating the food chain, in the case of livestock, or acting as sentinels for human exposure, in the case of companion animals. The aim of this review was to address the importance of terrestrial domestic animals on human exposure to microplastics. Animal products may already show some microplastics contamination, which may occur during their lifetime, possibly also compromising productivity, and during processing, originating from equipment and packaging. Moreover, release of microplastics in animal feces (or manure) leads to the contamination of agricultural fields, with possible impacts and internalization in plants. Therefore, microplastics pose a threat to food security, compromising food productivity, and food safety, by being a foreign material found in animal products. Conversely, in urban environments, companion animals (cats and dogs) may be relevant sentinels for human exposure. While oral exposure may vary in pets compared to humans, due to indiscriminate ingestion and chewing or licking behaviors, airborne exposure is likely to be a good indicator for human exposure. Therefore, future studies should address the importance of terrestrial domestic animals for human exposure of microplastics, both in the food chain and as sentinels for environmental exposure.
Collapse
|
164
|
Cary CM, DeLoid GM, Yang Z, Bitounis D, Polunas M, Goedken MJ, Buckley B, Cheatham B, Stapleton PA, Demokritou P. Ingested Polystyrene Nanospheres Translocate to Placenta and Fetal Tissues in Pregnant Rats: Potential Health Implications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:720. [PMID: 36839088 PMCID: PMC9965230 DOI: 10.3390/nano13040720] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 05/29/2023]
Abstract
Recent studies in experimental animals found that oral exposure to micro- and nano-plastics (MNPs) during pregnancy had multiple adverse effects on outcomes and progeny, although no study has yet identified the translocation of ingested MNPs to the placenta or fetal tissues, which might account for those effects. We therefore assessed the placental and fetal translocation of ingested nanoscale polystyrene MNPs in pregnant rats. Sprague Dawley rats (N = 5) were gavaged on gestational day 19 with 10 mL/kg of 250 µg/mL 25 nm carboxylated polystyrene spheres (PS25C) and sacrificed after 24 h. Hyperspectral imaging of harvested placental and fetal tissues identified abundant PS25C within the placenta and in all fetal tissues examined, including liver, kidney, heart, lung and brain, where they appeared in 10-25 µm clusters. These findings demonstrate that ingested nanoscale polystyrene MNPs can breach the intestinal barrier and subsequently the maternal-fetal barrier of the placenta to access the fetal circulation and all fetal tissues. Further studies are needed to assess the mechanisms of MNP translocation across the intestinal and placental barriers, the effects of MNP polymer, size and other physicochemical properties on translocation, as well as the potential adverse effects of MNP translocation on the developing fetus.
Collapse
Affiliation(s)
- Chelsea M. Cary
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M. DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Dimitrios Bitounis
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Marianne Polunas
- Research Pathology Services, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael J. Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian Buckley
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Phoebe A. Stapleton
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
165
|
Ramasamy R, Subramanian RB. Microfiber mitigation from synthetic textiles - impact of combined surface modification and finishing process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49136-49149. [PMID: 36773261 DOI: 10.1007/s11356-023-25611-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023]
Abstract
The use of proper mitigation strategies to control the impact of microfiber pollution is need of the hour requirement. Though several laundry aids were developed to reduce the environmental impact caused by synthetic microfiber, due to the lack of awareness among the public, their effectiveness was limited. Hence, the mitigation measures at the production stage of textile materials can be a proactive solution with greater effectiveness in mitigating the issue at different stages rather than focussing only on domestic laundering. In this aspect, few recent attempts have been made to control the microfiber release from textiles by the surface finishing process. Thus, the current research focused on utilizing the surface modification process and surface finishing process to reduce the microfiber release behavior of knitted polyester fabrics. In this study, polyester knitted fabric (PES) was surface finished with chitosan (PES-Ch), sericin (PES-Se), and polyvinyl alcohol (PES-PVA), and their effectiveness in reducing microfiber shedding during laundry was analyzed. These finishes are applied directly on the polyester fabric and also after surface modification by alkali (Al) and enzyme (En) pre-treatments. The results reported that at the first wash, directly finished samples showed a reduction of 30-40% in microfiber shedding, and the samples finished after alkali pre-treatment showed a significant reduction of 47-84.29% (p < 0.05). Reduction in microfiber release was noted in the order of chitosan finish with alkali pre-treatment (PES-Al-Ch) > chitosan finish (PES-Ch) > sericin finish with alkali pre-treatment (PES-Al-Se) > polyvinyl alcohol finish with alkali pre-treatment (PES-Al-PVA) > polyvinyl alcohol finish (PES-PVA) for both fiber count and mass. In the case of enzyme pre-treatment, no reduction was reported, irrespective of the finishes applied. Repeated wash test results showed that the finishes could withstand and effectively control the microfiber release from the polyester fabric even after 20 washes. The performance of PES-Al-Ch fabric was superior among other modifications up to the fifth wash (with an 83.55% reduction in microfiber release). At extended washes like the 15th and 20th wash, the performance of PES-Al-PVA fabric was found to be better, with 94% and 95% microfiber reduction, respectively.
Collapse
|
166
|
Mamun AA, Prasetya TAE, Dewi IR, Ahmad M. Microplastics in human food chains: Food becoming a threat to health safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159834. [PMID: 36461575 DOI: 10.1016/j.scitotenv.2022.159834] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
While versatile application of plastics has generated huge benefits in our life, the 'plastic end-of-life' comes with downsides of emerging concern is plastic particles within all parts of environments. Plastics are highly resistant to degradation and sustain in the environment for a prolonged period resulting in easy access of microplastics into human food chain. Microplastic exposure to humans is caused by foods of both animal and plant origin, food additives, drinks, and plastic food packaging. Living organisms can accumulate microplastics in cells and tissues which results in threats of chronic biological effects and potential health hazards for humans including body gastrointestinal disorders, immunity, respiratory problem, cancer, infertility, and alteration in chromosomes. Because of the threat of microplastics on human health, it is essential to ensure food safety as well as control plastic use with strict regulation of proper management. This study aims to enlighten future research into the core component of microplastics, their exposure to human food, prevention to human food chain, and biological reactions in human body. Finally, it is recommended to consider the presence of microplastics in different foods, as most of the existing research mainly focused on sea foods. And it is important to study the mechanism of toxicity with pathways in the human body based on the different types, shapes, and sizes of plastic particles.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Faculty of Public Health, Universitas Airlangga, Campus C, Surabaya 60115, East Java, Indonesia.
| | - Tofan Agung Eka Prasetya
- Health Department, Faculty of Vocational Studies, Universitas Airlangga, Campus B, Surabaya 60286, East Java, Indonesia.
| | - Indiah Ratna Dewi
- Centre for Leather, Rubber and Plastics, Yogyakarta 55166, Indonesia.
| | - Monsur Ahmad
- Department of Applied Chemistry and Chemical Technology, Chattogram Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| |
Collapse
|
167
|
Adegoke KA, Adu FA, Oyebamiji AK, Bamisaye A, Adigun RA, Olasoji SO, Ogunjinmi OE. Microplastics toxicity, detection, and removal from water/wastewater. MARINE POLLUTION BULLETIN 2023; 187:114546. [PMID: 36640497 DOI: 10.1016/j.marpolbul.2022.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The world has witnessed massive and preeminent microplastics (MPs) pollution in water bodies due to the inevitable continuous production of plastics for various advantageous chemical and mechanical features. Plastic pollution, particularly contamination by MPs (plastic particles having a diameter lesser than 5 mm), has been a rising environmental concern in recent years due to the inappropriate disposal of plastic trash. This study presents the recent advancements in different technologies for MPs removal in order to gain proper insight into their strengths and weaknesses, thereby orchestrating the preparation for innovation in the field. The production, origin, and global complexity of MPs were discussed. This study also reveals MPs' mode of transportation, its feedstock polymers, toxicities, detection techniques, and the conventional removal strategies of MPs from contaminated systems. Modification of conventional methods vis-à-vis new materials/techniques and other emerging technologies, such as magnetic extraction and sol-gel technique with detailed mechanistic information for the removal of MPs are presented in this study. Conclusively, some future research outlooks for advancing the MPs removal technologies/materials for practical realization are highlighted.
Collapse
Affiliation(s)
- Kayode Adesina Adegoke
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria; Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Folasade Abimbola Adu
- Discipline of Microbiology, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Abel Kolawole Oyebamiji
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria.
| | - Abayomi Bamisaye
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Rasheed Adewale Adigun
- Department of Chemical Sciences, Fountain University, P. M. B. 4491, Osogbo, Osun State, Nigeria.
| | | | | |
Collapse
|
168
|
Shruti VC, Kutralam-Muniasamy G, Pérez-Guevara F, Roy PD, Elizalde-Martínez I. First evidence of microplastic contamination in ready-to-use packaged food ice cubes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120905. [PMID: 36549445 DOI: 10.1016/j.envpol.2022.120905] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Concern over microplastics has grown tremendously, and they have been found in all environmental compartments; yet, much remains unknown regarding their impact on a variety of human-consuming food products. Here, we contribute to ongoing research by screening the 15 most popular commercial brands of packaged food ice cubes in Mexico City for microplastics. Microplastics were detected in 100% of the samples evaluated, with concentrations ranging from 19 ± 4 to 178 ± 78 L-1. There was a significant difference in the microplastic concentration across samples. The mean microplastic concentration was 79 ± 47 L-1, and the main types were polypropylene, polyethylene, polyvinyl alcohol, tygon polymer, sealing ring gardena 2824 large, polyamide 6, and cellophane. Moreover, microplastics that are fibrous (87%), non-colored (54%), and less than 300 μm in size (63%), were found to be more prevalent. The SEM-EDX analysis showed heterogeneous structural and morphological characteristics of microplastics, as well as traces of Si, S, Ti, Ca, Al, and Na. Furthermore, we estimate that ice cube consumption in Mexico City can result in the inadvertent ingestion of 4.9 × 102 ± 3.4 × 102-1 × 104 ± 7.2 × 103 microplastics annually. The findings of the study revealed that microplastics were identified in ice cubes and can be conveyed to humans, stressing the need of managing and eradicating such contamination from our food.
Collapse
Affiliation(s)
- V C Shruti
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - I Elizalde-Martínez
- Instituto Politécnico Nacional (IPN), Centro Mexicano para la Producción más Limpia (CMP+L), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340, México City, Mexico
| |
Collapse
|
169
|
Mondal I, Ghosh D, Biswas PK. Cost-effective remedial to microfiber pollution from wash effluent in Kolkata and Ranaghat. CHEMOSPHERE 2023; 313:137548. [PMID: 36521749 DOI: 10.1016/j.chemosphere.2022.137548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The microfibers generated from Polyester and Nylon based materials during washing cause serious environmental pollution by both contaminating the aquatic environment and the livelihood of the underwater creatures as well. This study aims at investigating the microfiber-pollution in wash effluents collected from different regions of Kolkata which is believed to be one of the microfiber-polluted cities in the South-east Asia in recent times. In this work, packed bed microfiltration (PBMF) was adopted in an economic and eco-friendly manner to arrest adequate amounts of microfibers and non-biodegradable matters present in the water samples collected from different regions of Kolkata and its surrounding areas. Moreover, effective parameters such as packed bed height to diameter ratio (H/D), mess size of the adopted filtration unit were varied from 0.71 to 2.85 and 60 to 100, respectively to understand the efficacy of the approach and to justify the potential of such alternative in order to alleviate the concern as well. The present study reveals that the microfiltration efficiency of the proposed PBMF unit was achieved maximum 93.5% for sample A and 92.2% for sample D respectively to reduce the microfiber count from 7614 to 543 in an hour operation at a flow rate of 60 L h-1. Besides, the cost of such system was found to be promising as much as 5 US$ on a yearly basis.
Collapse
Affiliation(s)
- Ishita Mondal
- Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Debasis Ghosh
- Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Prasanta Kumar Biswas
- Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
170
|
Lin X, Xie H, Zhang Y, Tian X, Cui L, Shi N, Wang L, Zhao J, An L, Wang J, Li B, Li YF. The toxicity of nano polyethylene terephthalate to mice: Intestinal obstruction, growth retardant, gut microbiota dysbiosis and lipid metabolism disorders. Food Chem Toxicol 2023; 172:113585. [PMID: 36566972 DOI: 10.1016/j.fct.2022.113585] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Polyethylene terephthalate (PET) are widely used in our daily life while they may be broken to smaller fractions as nano-sized PET (nPET) in the environment. The toxicity of nPET is still less studied. This work first evaluated the LD50 of different size of nPET (200 nm, S-nPET; 700 nm, B-nPET) in mice, then studied the health effects of single exposure to S/B-nPET at 200 mg/kg bw for 30 days. It was found that the LD50 was 266 mg/kg bw for S-nPET and 523 mg/kg bw for B-nPET, respectively, showing a size-dependent effect. S-nPET caused weight loss, cyst, intestinal obstruction, organ damage and mortality (40%), and perturbed gut microbiome and metabolome especially lipid metabolism, such as upregulated cholesterol, glycocholic, propionic acid, niacinamide, ectoine and xanthine, and downregulated arachidonic acid, anserine, histamine, while B-nPET did not. Serological analysis found S-nPET brought more lipid metabolic immune and neurological damage than B-nPET, confirming the size-dependent effect. To the best of our knowledge, this is the first report on the systematic toxicity of nPET to mice. Further studies are warranted for life-long effects of nPET. The protocol applied in this work may also be used for the study of the health effects of other plastics.
Collapse
Affiliation(s)
- Xiaoying Lin
- Jilin Medical University, Jilin, 132013, Jilin, China.
| | - Hongxin Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfei Zhang
- Jilin Medical University, Jilin, 132013, Jilin, China
| | - Xue Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nianqiu Shi
- Jilin Medical University, Jilin, 132013, Jilin, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
171
|
Taurozzi D, Cesarini G, Scalici M. Epiplastic microhabitats for epibenthic organisms: a new inland water frontier for diatoms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17984-17993. [PMID: 36205868 PMCID: PMC9540040 DOI: 10.1007/s11356-022-23335-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution is widespread in each type of ecosystems. However, the colonization events of microorganisms on plastics seem to be neglected in inland waters. Therefore, in this study we analyze the possible colonization on the surface (hereafter epiplastic microhabitats) of two typology of plastic supports by diatom community. Specifically, we located 20 supports in expanded polystyrene and 20 in polyethylene terephthalate both floating and dipped (~ 1 m) in a central Italian shallow water pond, in order to evaluate the diachronic colonization of diatoms from November 2019 to August 2020. Our result showed the tendency in colonizing both epiplastic microhabitats without significant differences in number of species; additionally, depth does not appear to affect the number of species. As regard the temporal colonization, the number of species tends to increase over time from autumn-winter to spring-summer in both types of epiplastic microhabitats and depth. Instead, increase in dominance of some species over time has been demonstrated: only a few species keep a high number of individuals compared to the others; therefore, the number of individuals within the species is not uniformly distributed. These results suggest the tendency of diatom community to colonize plastic supports in lentic waters, and this evidence can be very important because artificial supports can increase the surface available for the settlement of the algae community with an increase of productivity and the colonization of new communities of different taxa. Further studies are mandatory to investigate the possible effects on the epiplastic community and the ecological implications in freshwater environments.
Collapse
Affiliation(s)
- Davide Taurozzi
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | - Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy.
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| |
Collapse
|
172
|
Survey on Phthalates in Beer Packaged in Aluminum Cans, PET and Glass Bottles. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phthalates are known as endocrine disruptors and are common in plastic polymers, varnishes, and printing inks. However, they most often enter the human body through food. Plastic materials that hold food contain different chemicals, and phthalates are one of them. Phthalates can also be found in microplastics since microplastic particles serve as a vector for different chemicals that can be slowly released into food and beverages. The aim of this preliminary study was to determine the concentration and types of phthalates (dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dibutyl phthalate, bis (2-ethylhexyl) phthalate, di-n-octyl-phthalate) in beer packaged in aluminum cans, PET, and glass bottles. Ten aluminum-canned beers, sixteen PET-packaged, and eighteen glass-bottled beers were bought at a local food store and subjected to GC–MS analysis to quantify and qualify phthalates. The results indicate that PET-packaged beers can contain significant amounts of phthalates; in sample P10, the total sum of phthalates reached 219.82 µg/L. Especially high concentrations of dibutyl phthalate were found in all samples, but the highest concentration was detected in sample P13 at 92.17 µg/L. However, canned beers showed even higher levels of certain phthalates, such as bis (2-ethylhexyl) phthalate, which amounted to 326.81 µg/L in sample C1. In short, phthalates pose a serious health-concerning problem and should be regarded as such.
Collapse
|
173
|
Jia R, Han J, Liu X, Li K, Lai W, Bian L, Yan J, Xi Z. Exposure to Polypropylene Microplastics via Oral Ingestion Induces Colonic Apoptosis and Intestinal Barrier Damage through Oxidative Stress and Inflammation in Mice. TOXICS 2023; 11:127. [PMID: 36851002 PMCID: PMC9962291 DOI: 10.3390/toxics11020127] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 05/30/2023]
Abstract
Extensive environmental pollution by microplastics has increased the risk of human exposure to plastics. However, the biosafety of polypropylene microplastics (PP-MPs), especially of PP particles < 10 μm, in mammals has not been studied. Thus, here, we explored the mechanism of action and effect of exposure to small and large PP-MPs, via oral ingestion, on the mouse intestinal tract. Male C57BL/6 mice were administered PP suspensions (8 and 70 μm; 0.1, 1.0, and 10 mg/mL) for 28 days. PP-MP treatment resulted in inflammatory pathological damage, ultrastructural changes in intestinal epithelial cells, imbalance of the redox system, and inflammatory reactions in the colon. Additionally, we observed damage to the tight junctions of the colon and decreased intestinal mucus secretion and ion transporter expression. Further, the apoptotic rate of colonic cells significantly increased after PP-MP treatment. The expression of pro-inflammatory and pro-apoptosis proteins significantly increased in colon tissue, while the expression of anti-inflammatory and anti-apoptosis proteins significantly decreased. In summary, this study demonstrates that PP-MPs induce colonic apoptosis and intestinal barrier damage through oxidative stress and activation of the TLR4/NF-κB inflammatory signal pathway in mice, which provides new insights into the toxicity of MPs in mammals.
Collapse
Affiliation(s)
- Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jie Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
174
|
Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF, Bouwmeester H. Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. FRONTIERS IN TOXICOLOGY 2023; 5:1112212. [PMID: 36777263 PMCID: PMC9911716 DOI: 10.3389/ftox.2023.1112212] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Plastic particles in the nanometer range-called nanoplastics-are environmental contaminants with growing public health concern. As plastic particles are present in water, soil, air and food, human exposure via intestine and lung is unavoidable, but possible health effects are still to be elucidated. To better understand the Mode of Action of plastic particles, it is key to use experimental models that best reflect human physiology. Novel assessment methods like advanced cell models and several alternative approaches are currently used and developed in the scientific community. So far, the use of cancer cell line-based models is the standard approach regarding in vitro nanotoxicology. However, among the many advantages of the use of cancer cell lines, there are also disadvantages that might favor other approaches. In this review, we compare cell line-based models with stem cell-based in vitro models of the human intestine and lung. In the context of nanoplastics research, we highlight the advantages that come with the use of stem cells. Further, the specific challenges of testing nanoplastics in vitro are discussed. Although the use of stem cell-based models can be demanding, we conclude that, depending on the research question, stem cells in combination with advanced exposure strategies might be a more suitable approach than cancer cell lines when it comes to toxicological investigation of nanoplastics.
Collapse
Affiliation(s)
- Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Hugo Brouwer
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Germaine Aalderink
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Gerrit Bredeck
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Roel P. F. Schins
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Hans Bouwmeester,
| |
Collapse
|
175
|
Ziani K, Ioniță-Mîndrican CB, Mititelu M, Neacșu SM, Negrei C, Moroșan E, Drăgănescu D, Preda OT. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023; 15:617. [PMID: 36771324 PMCID: PMC9920460 DOI: 10.3390/nu15030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Microplastics are small plastic particles that come from the degradation of plastics, ubiquitous in nature and therefore affect both wildlife and humans. They have been detected in many marine species, but also in drinking water and in numerous foods, such as salt, honey and marine organisms. Exposure to microplastics can also occur through inhaled air. Data from animal studies have shown that once absorbed, plastic micro- and nanoparticles can distribute to the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys and even the brain (crosses the blood-brain barrier). In addition, microplastics are transport operators of persistent organic pollutants or heavy metals from invertebrate organisms to other higher trophic levels. After ingestion, the additives and monomers in their composition can interfere with important biological processes in the human body and can cause disruption of the endocrine, immune system; can have a negative impact on mobility, reproduction and development; and can cause carcinogenesis. The pandemic caused by COVID-19 has affected not only human health and national economies but also the environment, due to the large volume of waste in the form of discarded personal protective equipment. The remarkable increase in global use of face masks, which mainly contain polypropylene, and poor waste management have led to worsening microplastic pollution, and the long-term consequences can be extremely devastating if urgent action is not taken.
Collapse
Affiliation(s)
- Khaled Ziani
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | | | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Elena Moroșan
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Doina Drăgănescu
- Department of Pharmaceutical Physics and Informatics, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Olivia-Teodora Preda
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| |
Collapse
|
176
|
Feng Q, An C, Chen Z, Wang Z. New Perspective on the Mobilization of Microplastics through Capillary Fringe Fluctuation in a Tidal Aquifer Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:929-938. [PMID: 36603902 DOI: 10.1021/acs.est.2c04686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The presence of plastic fragments in the environment is a growing global concern. In this study, we explored the effects of dynamic fluctuations of capillary fringe on the transport of microplastics (MPs) in the substrate combining various environmental and MP properties. Both experimental and Hydrus-2D modeling results confirmed that increasing cycles of water table fluctuation led to the rise of capillary fringe. An increase in the cycles of water table fluctuations did not significantly change the overall MP retention percentages in 0.5 mm substrate but altered the MP distribution along the column. In 1 and 2 mm substrate, the increase in cycle numbers enhanced the MP transport from substrate to the water below. In terms of the size of the MPs, more 20-25 μm polyethylene (PE2) were retained in the substrate compared to 4-6 μm polyethylene (PE1) under the same number of fluctuation cycles. High-density polytetrafluoroethylene (PTFE, 5-6 μm) exhibited higher retention percentages compared to PE1 particles. Ultraviolet aging for 60 days enhanced PE1 transport along the column, while 60 days of seawater aging did not affect PE1 transport greatly. For PTFE, ultraviolet and seawater aging enhanced its retention in the substrate. The retention percentages of both PE1 and PTFE in the column increased with the elevated ionic strength and the decrease of fluctuation velocity. This work highlights that capillary fringe fluctuation can serve as a pathway to relocate MPs to the tidal aquifer.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| |
Collapse
|
177
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Roy PD. Microplastic diagnostics in humans: "The 3Ps" Progress, problems, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159164. [PMID: 36195147 DOI: 10.1016/j.scitotenv.2022.159164] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 05/27/2023]
Abstract
The growing global concern about human exposure to microplastics necessitates research into their occurrence, fate, and effects. Recent advancements in analytical methods have fostered research and improved understanding of microplastics in a variety of human tissue and biological samples, including blood, liver, lung, placenta, kidney, spleen, sputum, and feces, etc. Given the rapid expansion of this research topic, it is imperative to assess and introduce them to a broader audience. This article for the first time conducts a systematic review of the literature on microplastics in human biological samples, their objectives, current efforts, and key findings. This review offers an in-depth analysis of the research approaches employed, spanning from sampling to detection to quantification of microplastics, as well as an overview of their occurrence and characteristics to understand the level of microplastic exposure in the human body. It also provides a detailed analysis of existing contamination control procedures and attempts to build consistent cross-contamination prevention measures. Finally, we provide the reader with the guidelines on current microplastic research strategies, highlighting future directions. Overall, this synthesis will assist researchers in developing a multifaceted understanding of contemporary microplastic investigations in human biological samples.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - V C Shruti
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510 Ciudad de México, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510 Ciudad de México, Mexico
| |
Collapse
|
178
|
Sewwandi M, Wijesekara H, Rajapaksha AU, Soysa S, Vithanage M. Microplastics and plastics-associated contaminants in food and beverages; Global trends, concentrations, and human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120747. [PMID: 36442819 DOI: 10.1016/j.envpol.2022.120747] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Microplastics has become a global concern due to their ubiquitous presence which poses unavoidable human exposure risks. Geographical distribution and yearly trends of research on microplastics, food, and beverages do not exist. Thus, no overall account is available regarding the presence of microplastics and plastics-associated contaminants in food and beverages. Hence, this attempt is to review the geographical distribution of studies through a brief bibliometric analysis and the plastics-associated contaminants including plasticizers and microplastics in food and beverages. Estimated microplastic consumption has been listed for the pool of publications reviewed here. Further, this review discusses the ingestion potency of micropollutants associated with microplastics, possible health impacts, and existing challenges. Global trend in research exponentially increased after 2018 and China is leading. Studies on microplastics were limited to a few beverages and food; milk, beer, tea, refreshing drinks, salt, sugar, honey, etc., whereas seafood and drinking water have been extensively studied. Publications on plastic-additives were reported in two ways; migration of plastic-additives from packaging by leaching and the presence of plastic-additives in food and beverages. Bisphenol A and bis(2-Ethylhexyl) phthalate were the most frequently reported both in food and beverages. Exposure of packaging material to high temperatures predominantly involves plastic-additive contamination in food and beverages. Microplastics-bound micropollutants can also be ingested through food and beverages; however, a lack of knowledge exists. The complex matrix of food or beverages and the absence of standard procedures for analysis of microplastics and micropollutants exist as challenges. More investigations on the presence of microplastics and plastic-additives in food and beverage are urgent needs to a better assessment of potential human exposure and human health risk.
Collapse
Affiliation(s)
- Madushika Sewwandi
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, 70140, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Sasimali Soysa
- Department of Physical Sciences and Technology, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, 70140, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia.
| |
Collapse
|
179
|
Wang X, Ren XM, He H, Li F, Liu K, Zhao F, Hu H, Zhang P, Huang B, Pan X. Cytotoxicity and pro-inflammatory effect of polystyrene nano-plastic and micro-plastic on RAW264.7 cells. Toxicology 2023; 484:153391. [PMID: 36503103 DOI: 10.1016/j.tox.2022.153391] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Numerous studies have shown that exposure to micro- or nano-plastics led to the cell viability and function of macrophages in the intestine tissue might be one possible mechanism. This study investigated the cytotoxicity and pro-inflammatory effect of 80 nm polystyrene-nano-plastic (PS-NP) and 3 µm PS-micro-plastic (PS-MP) on mouse macrophages RAW264.7 cells. Our results showed that exposure to PS-NP or PS-MP induced apoptosis of cells at 5 or 10 μg/mL, respectively. Besides, PS-NP enhanced the secretion of inflammatory cytokines (Tumor necrosis factor-α, Interleukin-6 and Interleukin-10) with the lowest effective concentration (LOEC) of 1, 0.01, and 0.01 μg/mL, respectively. PS-MP enhanced secretion of TNF-α and IL-10 with the LOEC of 1 and 0.01 μg/mL, respectively. We further studied the possible mechanisms of the effects of PS-NP or PS-MP on RAW264.7 cells. We found they might cause cytotoxicity and inflammatory effects by producing reactive oxygen species and nitric oxide in the cells. Accordingly, our results demonstrated that PS-NP and PS-MP had cytotoxicity and pro-inflammatory effect on macrophages, which might further lead to intestinal inflammation. Moreover, we revealed that the PS-NP had more potent adverse impacts on macrophages than PS-MP.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiao-Min Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fenqing Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huixiang Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Pingping Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| |
Collapse
|
180
|
Zhu L, Zhu J, Zuo R, Xu Q, Qian Y, An L. Identification of microplastics in human placenta using laser direct infrared spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159060. [PMID: 36174702 DOI: 10.1016/j.scitotenv.2022.159060] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are ubiquitous in the environment, including in food and drinking water. Consequently, there is growing concern about the human health risks associated with microplastic exposure through diet. However, the occurrence of microplastics in the human body, particularly in mothers and fetuses, is incompletely understood because of the limited amount of data on their presence in the body and the human placenta. This study evaluated the presence and characteristics of microplastics in 17 placentas using laser direct infrared (LD-IR) spectroscopy. Microplastics were detected in all placenta samples, with an average abundance of 2.70 ± 2.65 particles/g and a range of 0.28 to 9.55 particles/g. Among these microplastics, 11 polymer types were identified. The microplastics were mainly composed of polyvinyl chloride (PVC, 43.27 %), polypropylene (PP, 14.55 %), and polybutylene succinate (PBS, 10.90 %). The sizes of these microplastics ranged from 20.34 to 307.29 μm, and most (80.29 %) were smaller than 100 μm. Most of the smaller microplastics were fragments, but fibers dominated the larger microplastics (200-307.29 μm). Interestingly, the majority of PVC and PP were smaller than 200 μm. This study provides a clearer understanding of the shape, size, and nature of microplastics in the human placenta. Importantly, these data also provide crucial information for performing risk assessments of the exposure of fetuses to microplastics in the future.
Collapse
Affiliation(s)
- Long Zhu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingying Zhu
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Qiujin Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanhua Qian
- Wuxi No.5 Affiliated Hospital of Jiangnan University, Wuxi 214011, China; Wuxi Center for Disease Control and Prevention, Wuxi 214023, China.
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
181
|
Li Y, Lu Q, Xing Y, Liu K, Ling W, Yang J, Yang Q, Wu T, Zhang J, Pei Z, Gao Z, Li X, Yang F, Ma H, Liu K, Zhao D. Review of research on migration, distribution, biological effects, and analytical methods of microfibers in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158922. [PMID: 36155038 DOI: 10.1016/j.scitotenv.2022.158922] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Microplastics have been proven to be one of the critical environmental pollution issues. Moreover, microfibers, the most prominent form of microplastics in the environment, have likewise attracted the attention of various countries. With the increase in global population and industrialization, the production and use of fibers continue to increase yearly. As a result, a large number of microfibers are formed. If fiber products are not used or handled correctly, it will cause direct/indirect severe microfiber environmental pollution. Microfibers will be further broken into smaller fiber fragments when they enter the natural environment. Presently, researchers have conducted extensive research in the identification of microfibers, laying the foundation for further resourcefulness research. This work used bibliometric analysis to review the microfiber contamination researches systematically. First, the primary sources of microfibers and the influencing factors are analyzed. We aim to summarize the influence of the clothing fiber preparation and care processes on microfiber formation. Then, this work elaborated on the migration in/between water, atmosphere, and terrestrial environments. We also discussed the effects of microfiber on ecosystems. Finally, microfibers' current and foreseeable effective treatment, disposal, and resource utilization methods were explained. This paper will provide a structured reference for future microfiber research.
Collapse
Affiliation(s)
- Yifei Li
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingbin Lu
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Kai Liu
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Wei Ling
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jian Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.
| | - Qizhen Yang
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Tianqi Wu
- Human Resources Department, Yangquan Power Supply Company of State Grid Shanxi Electric Power Company, Yangquan 045000, Shanxi, China
| | - Jiafu Zhang
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Zengxin Pei
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Ziyuan Gao
- State Key Laboratory of Iron and Steel Industry Environmental Protection, No. 33, Xitucheng Road, Haidian District, Beijing 100088, China
| | - Xiaoyan Li
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Fan Yang
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Hongjie Ma
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Kehan Liu
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Ding Zhao
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| |
Collapse
|
182
|
Masud RI, Suman KH, Tasnim S, Begum MS, Sikder MH, Uddin MJ, Haque MN. A review on enhanced microplastics derived from biomedical waste during the COVID-19 pandemic with its toxicity, health risks, and biomarkers. ENVIRONMENTAL RESEARCH 2023; 216:114434. [PMID: 36209789 PMCID: PMC9536876 DOI: 10.1016/j.envres.2022.114434] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 05/29/2023]
Abstract
The COVID-19 pandemic led to the explosion of biomedical waste, a global challenge to public health and the environment. Biomedical waste comprising plastic can convert into microplastics (MPs, < 5 mm) by sunlight, wave, oxidative and thermal processes, and biodegradation. MPs with additives and contaminants such as metals are also hazardous to many aquatic and terrestrial organisms, including humans. Bioaccumulation of MPs in organisms often transfers across the trophic level in the global food web. Thus, this article aims to provide a literature review on the source, quantity, and fate of biomedical waste, along with the recent surge of MPs and their adverse impact on aquatic and terrestrial organisms. MPs intake (ingestion, inhalation, and dermal contact) in humans causing various chronic diseases involving multiple organs in digestive, respiratory, and reproductive systems are surveyed, which have been reviewed barely. There is an urgent need to control and manage biomedical waste to shrink MPs pollution for reducing environmental and human health risks.
Collapse
Affiliation(s)
- Rony Ibne Masud
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Kamrul Hassan Suman
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Department of Fisheries, Ministry of Fisheries & Livestock, Dhaka, 1000, Bangladesh
| | - Shadia Tasnim
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Most Shirina Begum
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Md Niamul Haque
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Department of Marine Science, College of Natural Sciences & Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
183
|
Nguyen LH, Nguyen BS, Le DT, Alomar TS, AlMasoud N, Ghotekar S, Oza R, Raizada P, Singh P, Nguyen VH. A concept for the biotechnological minimizing of emerging plastics, micro- and nano-plastics pollutants from the environment: A review. ENVIRONMENTAL RESEARCH 2023; 216:114342. [PMID: 36181894 DOI: 10.1016/j.envres.2022.114342] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Plastics, micro- and nano-plastics pollution are undoubtedly a severe and crucial ecological threat due to the durability of plastics and their destructive impacts on humans and wildlife. Most scientific investigations have addressed the classification, types, distribution, ingestion, fate, impacts, degradation, and various adverse effect of plastics. Heretofore, scanty reports have addressed implementing strategies for the remediation and mitigation of plastics. Therefore, in this paper, we review the current studies on the degradation of plastics, micro- and nano-plastics aided by microorganisms, and explore the relevant degradation properties and mechanisms. Diverse microorganisms are classified, such as bacteria, fungi, algae, cyanobacteria, wax worms, and enzymes that can decompose various plastics. Furthermore, bio-degradation is influenced by microbial features and environmental parameters; therefore, the ecological factors affecting plastic degradation and the resulting degradation consequences are discussed. In addition, the mechanisms underlying microbial-mediated plastic degradation are carefully studied. Finally, upcoming research directions and prospects for plastics degradation employing microorganisms are addressed. This review covers a comprehensive overview of the microorganism-assisted degradation of plastics, micro- and nano-plastics, and serves as a resource for future research into sustainable plastics pollution management methods.
Collapse
Affiliation(s)
- Lan Huong Nguyen
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Ba-Son Nguyen
- Department of Renewable Energy, HCMC University of Technology and Education, Ho Chi Minh City, 700000, Viet Nam
| | - Duy-Tien Le
- Faculty of Pharmacy, Lac Hong University, Dong Nai Province, Viet Nam.
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science, University of Mumbai, Silvassa, 396 230, Dadra and Nagar Haveli (UT), India.
| | - Rajeshwari Oza
- Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, 422 605, Maharashtra, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Chengalpattu District, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
184
|
Tsou TY, Lee SH, Kuo TH, Chien CC, Chen HC, Cheng TJ. Distribution and toxicity of submicron plastic particles in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104038. [PMID: 36528214 DOI: 10.1016/j.etap.2022.104038] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Although microplastics (MPs) have become a global issue, the biodistribution and toxicities of MPs were still unclear. In this study, c57BL/6 mice were treated with submicron-sized MPs labeled with Nile red fluorescence by oral gavage three times a week for four consecutive weeks. Flow cytometry and microscopy technique were used to examine the concentration and distribution of MPs in various tissues and biofluids. The oxidative stress and inflammation were assessed via liquid chromatography-mass spectrometry and enzyme-linked immunosorbent assay, respectively. Submicron-sized MP signals were found in the intestines, liver, spleen, kidney, lungs, blood, and urine of mice after MP exposure. Increased oxidative stress in mouse urine and elevated inflammatory cytokines in mouse kidney were also recorded. In conclusion, flow cytometry is a useful tool for examining the number concentrations of MPs. Increased oxidative stress and inflammation after MP treatment indicates that the toxicity of MP warrants further investigation.
Collapse
Affiliation(s)
- Tsung-Yen Tsou
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsuan Kuo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chu-Chun Chien
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
185
|
Liu S, Guo J, Liu X, Yang R, Wang H, Sun Y, Chen B, Dong R. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158699. [PMID: 36108868 DOI: 10.1016/j.scitotenv.2022.158699] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Pregnancy and infancy are sensitive windows for environmental exposures. However, no study has investigated the presence of microplastics (MPs) in mother-infant pairs, and the exposure sources. Therefore, we aim to assess MPs exposure in placenta, meconium, infant feces, breast milk and infant formula samples, and assess the potential sources of pregnancy and lactational exposure to MPs. A total of 18 mother-infant pairs were recruited, and placentas and meconium samples were collected. Infant feces, breast milk and infant formula samples were collected at 6 months of age. We also collected data on plastic use and feeding habits through two questionnaires to determine the source of exposure. We used an Agilent 8700 laser infrared imaging spectrometer to analyze samples. Sixteen types of MPs were identified, and polyamide (PA) and polyurethane (PU) were dominant. >74 % of the MPs found were 20-50 μm in size. The water intake and usage of scrub cleanser or toothpaste may be exposure sources of pregnant women. The breastfeeding and usage of feeding bottles and plastic toys may be exposure sources for infants. Given the lack of relevant studies, our results highlight the need of investigating the contribution of plastic products to the MPs exposure during the lactational period.
Collapse
Affiliation(s)
- Shaojie Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Jialin Guo
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.
| | - Xinyuan Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Ruoru Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Hangwei Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Yongyun Sun
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Bo Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; Institute of Nutrition, Fudan University, Shanghai 200032, China.
| | - Ruihua Dong
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; Institute of Nutrition, Fudan University, Shanghai 200032, China.
| |
Collapse
|
186
|
Ramsperger AFRM, Bergamaschi E, Panizzolo M, Fenoglio I, Barbero F, Peters R, Undas A, Purker S, Giese B, Lalyer CR, Tamargo A, Moreno-Arribas MV, Grossart HP, Kühnel D, Dietrich J, Paulsen F, Afanou AK, Zienolddiny-Narui S, Eriksen Hammer S, Kringlen Ervik T, Graff P, Brinchmann BC, Nordby KC, Wallin H, Nassi M, Benetti F, Zanella M, Brehm J, Kress H, Löder MGJ, Laforsch C. Nano- and microplastics: a comprehensive review on their exposure routes, translocation, and fate in humans. NANOIMPACT 2023; 29:100441. [PMID: 36427812 DOI: 10.1016/j.impact.2022.100441] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Contamination of the environment with nano-and microplastic particles (NMPs) and its putative adverse effects on organisms, ecosystems, and human health is gaining increasing scientific and public attention. Various studies show that NMPs occur abundantly within the environment, leading to a high likelihood of human exposure to NMPs. Here, different exposure scenarios can occur. The most notable exposure routes of NMPs into the human body are via the airways and gastrointestinal tract (GIT) through inhalation or ingestion, but also via the skin due to the use of personal care products (PCPs) containing NMPs. Once NMPs have entered the human body, it is possible that they are translocated from the exposed organ to other body compartments. In our review article, we combine the current knowledge on the (1) exposure routes of NMPs to humans with the basic understanding of the potential (2) translocation mechanisms into human tissues and, consequently, their (3) fate within the human body. Regarding the (1) exposure routes, we reviewed the current knowledge on the occurrence of NMPs in food, beverages, personal care products and the air (focusing on indoors and workplaces) and found that the studies suggest an abundant presence of MPs within the exposure scenarios. The overall abundance of MPs in exposure matrices relevant to humans highlights the importance of understanding whether NMPs have the potential for tissue translocation. Therefore, we describe the current knowledge on the potential (2) translocation pathways of NMPs from the skin, GIT and respiratory systems to other body compartments. Here, particular attention was paid to how likely NMPs can translocate from the primary exposed organs to secondary organs due to naturally occurring defence mechanisms against tissue translocation. Based on the current understanding, we conclude that a dermal translocation of NMPs is rather unlikely. In contrast, small MPs and NPs can generally translocate from the GIT and respiratory system to other tissues. Thus, we reviewed the existing literature on the (3) fate of NMPs within the human body. Based on the current knowledge of the contamination of human exposure routes and the potential translocation mechanisms, we critically discuss the size of the detected particles reported in the fate studies. In some cases, the particles detected in human tissue samples exceed the size of a particle to overcome biological barriers allowing particle translocation into tissues. Therefore, we emphasize the importance of critically reading and discussing the presented results of NMP in human tissue samples.
Collapse
Affiliation(s)
- Anja F R M Ramsperger
- Animal Ecology I & BayCEER, University of Bayreuth, Bayreuth, Germany; Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Turin, Italy
| | | | - Ruud Peters
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Anna Undas
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Sebastian Purker
- Institute of Safety and Risk Sciences (ISR), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bernd Giese
- Institute of Safety and Risk Sciences (ISR), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Carina R Lalyer
- Institute of Safety and Risk Sciences (ISR), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, Madrid, Spain
| | | | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | - Pål Graff
- National Institute of Occupational Health, Oslo, Norway
| | - Bendik C Brinchmann
- National Institute of Occupational Health, Oslo, Norway; Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway
| | | | | | | | - Julian Brehm
- Animal Ecology I & BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Martin G J Löder
- Animal Ecology I & BayCEER, University of Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
187
|
Angnunavuri PN, Attiogbe F, Mensah B. Particulate plastics in drinking water and potential human health effects: Current knowledge for management of freshwater plastic materials in Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120714. [PMID: 36423889 DOI: 10.1016/j.envpol.2022.120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Plastic materials have contributed to the release of environmentally relevant particulate plastics which can be found almost everywhere and may be present in drinking water. Human exposure to these materials is diverse and our understanding of their internalization in the human body is incipient. This review discusses the state of knowledge of particulate plastics exposure in drinking water and the potential risks of adverse health in the human body. Particulate plastics have problematized water systems worldwide, and about 4,000,000 fine plastics may be ingested from drinking water annually by an individual. Testing methods for these materials in environmental media are presently inconsistent and standard protocols do not exist. Their potential ecotoxicological consequences are recognised to be linked to their physicochemical diversity, biological transpositions, and cytological tolerance in living organisms. It is observed that toxicological endpoints are varied and lack properly defined modes of action. In particular, fine particulate plastics have been observed to translocate into body tissues and cells where they are capable of provoking endocrine disruption, genetic mutations, and cancer responses. We propose a reclassification of particulate plastics to cater for their biological deposition and attributable risks of adverse health. Environmental management of particulate plastics in many developing countries is weak and their potential releases into drinking water have received limited research. Given that large populations are exposed to fresh surface water and plastic packaged drinking water worldwide, and that the risk assessment pathways are unvalidated at the moment, we argue for developing countries to increase their capacity for the environmental monitoring and circular management of plastic materials. Large-scale epidemiological cohort studies and surrogate assessment pathways are also recommended to provide a better understanding of the hazard characterization of particulate plastics exposure.
Collapse
Affiliation(s)
- Prosper Naah Angnunavuri
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana.
| | - Francis Attiogbe
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana
| | - Bismark Mensah
- School of Engineering, Department of Materials Engineering, University of Ghana, Legon, Ghana
| |
Collapse
|
188
|
Kuttykattil A, Raju S, Vanka KS, Bhagwat G, Carbery M, Vincent SGT, Raja S, Palanisami T. Consuming microplastics? Investigation of commercial salts as a source of microplastics (MPs) in diet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:930-942. [PMID: 35907067 PMCID: PMC9813175 DOI: 10.1007/s11356-022-22101-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The omnipresence of microplastics (MPs) in marine and terrestrial environments as a pollutant of concern is well established and widely discussed in the literature. However, studies on MP contamination in commercial food sources like salts from the terrestrial environment are scarce. Thus, this is the first study to investigate various varieties of Australian commercial salts (both terrestrial and marine salts) as a source of MPs in the human diet, and the first to detect MPs in black salt. Using Nile red dye, the MPs were detected and counted under light microscopy, further characterised using attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) and scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS). Of all the 90 suspected particles, 78.8% were identified as MPs with a size ranging between 23.2 µm and 3.9 mm. The fibres and fragments constituted 75.78% and 24.22% respectively. Among the tested samples, Himalayan pink salt (coarse) from terrestrial sources was found to have the highest MP load, i.e. 174.04 ± 25.05 (SD) particle/kg, followed by black salt at 157.41 ± 23.13 particle/kg. The average concentration of detected MPs in Australian commercial salts is 85.19 ± 63.04 (SD) per kg. Polyamide (33.8%) and polyurethane (30.98%) were the dominant MP types. Considering the maximum recommended (World Health Organization) salt uptake by adults daily at 5 g, we interpret that an average person living in Australia may be ingesting approximately 155.47 MPs/year from salt uptake. Overall, MP contamination was higher in terrestrial salts (such as black and Himalayan salt) than the marine salt. In conclusion, we highlight those commercial salts used in our daily lives serve as sources of MPs in the diet, with unknown effects on human health.
Collapse
Affiliation(s)
- Aswin Kuttykattil
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterial (GICAN), The University of Newcastle, Callaghan, Newcastle, NSW, 2308, Australia
| | - Subash Raju
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterial (GICAN), The University of Newcastle, Callaghan, Newcastle, NSW, 2308, Australia
| | - Kanth Swaroop Vanka
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterial (GICAN), The University of Newcastle, Callaghan, Newcastle, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Geetika Bhagwat
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterial (GICAN), The University of Newcastle, Callaghan, Newcastle, NSW, 2308, Australia
| | - Maddison Carbery
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterial (GICAN), The University of Newcastle, Callaghan, Newcastle, NSW, 2308, Australia
| | - Salom Gnana Thanga Vincent
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterial (GICAN), The University of Newcastle, Callaghan, Newcastle, NSW, 2308, Australia
- Department of Environmental Sciences, University of Kerala, Kerala, India
| | - Sudhakaran Raja
- Aquaculture Biotechnology Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Thava Palanisami
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterial (GICAN), The University of Newcastle, Callaghan, Newcastle, NSW, 2308, Australia.
| |
Collapse
|
189
|
Keawchouy S, Na-Phatthalung W, Keaonaborn D, Jaichuedee J, Musikavong C, Sinyoung S. Enhanced coagulation process for removing dissolved organic matter, microplastics, and silver nanoparticles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:1084-1098. [PMID: 36580059 DOI: 10.1080/10934529.2022.2155419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Dissolved organic carbon (DOC), microplastics (MPs), and silver nanoparticles (AgNPs) in water are of major concern because of their direct and indirect toxic effects on aquatic organisms and human exposure via water. This work investigated the effect of poly aluminum chloride (PACl) coagulation for reducing DOC, MPs, and AgNPs. This work used water from a canal in Thailand with a DOC of 5.2 mg/L in the experiment. AgNPs of 5-20 mg/L were added to canal water to create synthetic water for the PACl coagulation. Polyethylene and polypropylene (PP) type MPs were identified in the raw water with Fourier transform infrared spectroscopy. Coagulation with 15 mg/L of PACl performed better in the PP removal. The PACl coagulation at dosages of 15, 40, and 70 mg/L removed DOC by 16-20%, 44-52%, and 46-63% and AgNPs by 34-90%, 53-93%, and 81-95%, respectively. The presence of AgNPs at high levels could inhibit the efficiency of DOC reduction by the PACl coagulation. The FESEM identified the adsorption of silver-containing nanoparticles onto the flocs with increased dosages of PACl. So, PACl is a coagulant in the removal of AgNPs that can reduce health hazards and eco-toxicological risks in water sources due to the release of silver.
Collapse
Affiliation(s)
- Suthiwan Keawchouy
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Warangkana Na-Phatthalung
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Dararat Keaonaborn
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Juthamas Jaichuedee
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| | - Suthatip Sinyoung
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
190
|
Islam MR, Ruponti SA, Rakib MA, Nguyen HQ, Mourshed M. Current scenario and challenges of plastic pollution in Bangladesh: a focus on farmlands and terrestrial ecosystems. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2022; 17:66. [PMID: 36589210 PMCID: PMC9793393 DOI: 10.1007/s11783-023-1666-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 05/29/2023]
Abstract
Plastic is considered one of the most indispensable commodities in our daily life. At the end of life, the huge ever-growing pile of plastic waste (PW) causes serious concerns for our environment, including agricultural farmlands, groundwater quality, marine and land ecosystems, food toxicity and human health hazards. Lack of proper infrastructure, financial backup, and technological advancement turn this hazardous waste plastic management into a serious threat to developing countries, especially for Bangladesh. A comprehensive review of PW generation and its consequences on environment in both global and Bangladesh contexts is presented. The dispersion routes of PW from different sources in different forms (microplastic, macroplastic, nanoplastic) and its adverse effect on agriculture, marine life and terrestrial ecosystems are illustrated in this work. The key challenges to mitigate PW pollution and tackle down the climate change issue is discussed in this work. Moreover, way forward toward the design and implementation of proper PW management strategies are highlighted in this study.
Collapse
Affiliation(s)
- Md. Raihanul Islam
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Sumaiya Akter Ruponti
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Abdur Rakib
- Department of Microbiology, Faculty of Biological Science and Technology, Jashore University of Science of Technology, Jashore, 7408 Bangladesh
| | - Huy Quoc Nguyen
- Faculty of Heat and Refrigeration Engineering, The University of Danang—University of Science and Technology, Danang, 550000 Vietnam
| | - Monjur Mourshed
- Mechanical and Automotive Engineering, School of Engineering, RMIT University, Bundoora, Victoria 3083 Australia
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology (RUET), Rajshahi, 6204 Bangladesh
| |
Collapse
|
191
|
Praveena SM, Shamsul Ariffin NI, Nafisyah AL. Microplastics in Malaysian bottled water brands: Occurrence and potential human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120494. [PMID: 36279991 DOI: 10.1016/j.envpol.2022.120494] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The World Health Organization noted that there is a growing need to determine the occurrence of microplastics in bottled water and its potential risks to human health. Thus, present study analyzes microplastics in eight major bottled water brands available in Malaysia and estimates the potential human exposure. Membrane filtration method followed by visual and polymer identifications were utilized to identify microplastics particles in these eight major bottled water brands. Microplastic concentrations in bottled water samples ranged from 8 to 22 particles/L, with an average of 11.7 ± 4.6 particles/L. Particle sizes ranging between 100 and 300 μm were dominant and accounted for approximately 31% in these bottled water brands. Fragments were the most identified microplastics in bottled water with transparent color being the most prevalent. The polyethylene terephthalate (PET) and polypropylene (PP) polymer types found in this study are consistent with prior results in that microplastics in bottled water are mainly derived from packaging materials and bottle caps. The Estimated Dietary Intake (EDI) for adults was between 0.068 and 0.19 particle/kg/day, while the EDI for children was between 0.089 and 0.25 particle/kg/day. Although consumption of bottled water was estimated to have low EDI values, the potential risks to human health should be heeded due to the presence of numerous plastic additives and residual monomers in these particles, which have the potential to increase inflammatory reactions and cytotoxicity in human body. Future studies should concentrate on understanding microplastics particles less than 1.5 μm and other associated factors (bottled material quality, consumption behaviour, bottled water storage conditions, and the frequency of bottle opening and closing) to further understand the effects of these microplastics particles on human toxicological aspects.
Collapse
Affiliation(s)
- Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| | - Nur Izzati Shamsul Ariffin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Ayu Lana Nafisyah
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya, 60115, Indonesia
| |
Collapse
|
192
|
Liu Q, Chen Y, Chen Z, Yang F, Xie Y, Yao W. Current status of microplastics and nanoplastics removal methods: Summary, comparison and prospect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157991. [PMID: 35964738 DOI: 10.1016/j.scitotenv.2022.157991] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In modern society, plastics also play an indispensable role in people's lives due to their various excellent properties. However, when these plastic products are discarded after being used, after being subjected to external influences, they will continue to be worn, damaged and degraded into micro- and nano-scale plastics, which are microplastics and nanoplastics (M/NPs). Although people's attention has been paid to M/NPs at present, the focus is still mainly on the detection and hazard of M/NPs, and how to remove M/NPs is relatively less popular. This review was written in order to draw the attention of more researchers to remove M/NPs. This review first briefly introduces the research background of M/NPs, and also shows the main analytical methods currently used for qualitative and quantitative M/NPs. Then, most of the current literature on the removal of M/NPs was collected, and they were classified, summarized, and introduced according to the classification of physical, physicochemical, and biological methods. The advantages and disadvantages of various methods are summarized, and they are also compared, which can help more researchers choose the appropriate method for research. In addition, the application scenarios of these methods are briefly introduced. Finally, some future research directions are proposed for the current research status of M/NPs removal. It is hoped that this will further promote the development on the method of removing M/NPs.
Collapse
Affiliation(s)
- Qingrun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yulun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Zhe Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
193
|
Semmouri I, Vercauteren M, Van Acker E, Pequeur E, Asselman J, Janssen C. Presence of microplastics in drinking water from different freshwater sources in Flanders (Belgium), an urbanized region in Europe. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00091-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractMicroplastics (MPs) are emerging contaminants of concern in aquatic ecosystems. Up to now, only a few studies about MP contamination in drinking water have been published. In this study, we analysed drinking water originating from ground water, surface water and treated sewage water for the presence of MPs, collected in different drinking water treatment plants (DWTP, n = 9) and water taps (TW, n = 9) in the geographic region of Flanders (Belgium). We report measured microplastic concentrations, size distributions, and polymer types using μFTIR spectroscopy in the range of 25–1000 μm. The MPs’ abundances in the DWTP and TW samples were on average 0.02 ± 0.03 MPs L− 1 and 0.01 ± 0.02 MPs L− 1, respectively. We did not find significant differences comparing the obtained MP concentrations according to the origin of the water. Polypropylene (PP) and polyethylene terephthalate (PET) were the most common polymer types detected in the samples. Next, based on several theoretical assumptions, we extrapolated the measured MP concentrations in our samples to cover the full theoretical MP size range (1–5000 μm) to obtain estimates of the actual MP contamination levels. The rescaled particle concentrations (1 μm – 5000 mm) were on average 5.59 MPs L− 1 and 3.76 MPs L− 1 for the DWTP and TW samples, respectively. Based on a standard consumption of two liters of drinking water per day in combination with the measured concentration in this study, Flemish people consume 0.02 MPs per capita per day via drinking water. These findings contribute in our understanding of the microplastic pollution of drinking water, which is of concern due to the potential uptake of MPs in the human body.
Collapse
|
194
|
Lin Q, Zhao S, Pang L, Sun C, Chen L, Li F. Potential risk of microplastics in processed foods: Preliminary risk assessment concerning polymer types, abundance, and human exposure of microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114260. [PMID: 36343455 DOI: 10.1016/j.ecoenv.2022.114260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of microplastics (MPs) has been widely reported in human foodstuffs, and their potential negative effects on human health have been brought into focus. Processed foods are more susceptible to MPs as contamination can be introduced during processing and packaging. However, the risk posed by MPs in processed foods remained unclear. This work aims to critically review the available data for MPs in 11 types of possessed foods and to conduct a preliminary risk assessment of MPs in processed foods. For a comprehensive evaluation, three indicators were selected and determined, namely chemical risk, pollution load, and estimated daily intake (EDI). Our results suggest that nori has the highest chemical risk, followed by canned fish, beverages, table salt, and other food items. In the case of pollution load, nori and milk fall into the risk category of Ⅳ and Ⅲ respectively. Table salts, bottled water, and sugar exhibited lower MPs pollution load (risk category of Ⅱ), whereas the pollution loads of other foods were calculated to be category Ⅰ. Moreover, a correlation between the pollution load of sea salts and MPs pollution level in ambient seawater was found. Regarding EDI of MPs from different processed foods, MPs intakes through bottled water (14.3 ± 3.4 n kg-1 d-1) and milk (6.6 ± 2.4 n kg-1 d-1) are significantly higher than that of the other foods (< 1 n kg-1 d-1). The probabilistic estimation of MPs daily intake indicated that children (19.7 n kg-1 d-1) are at a higher health risk than adults (female: 17.6 n kg-1 d-1, male: 12.6 n kg-1 d-1). Nevertheless, the exposure dose used in toxicological studies was about 10 times higher than the MPs intake via processed foods. Therefore, we argued that MPs in processed foods only carry limited risk. Overall, this study would provide the basis for risk management of MPs in processed food products.
Collapse
Affiliation(s)
- Qianhui Lin
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shasha Zhao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lihua Pang
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Lingyun Chen
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
195
|
Udovicki B, Andjelkovic M, Cirkovic-Velickovic T, Rajkovic A. Microplastics in food: scoping review on health effects, occurrence, and human exposure. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00093-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractWith most of the plastics ever produced now being waste, slowly degrading and fragmenting in the environment, microplastics (MPs) have become an emerging concern regarding their presence in food and influence on human health. While many studies on marine ecotoxicology and the occurrence of MPs in fish and shellfish exist, research on the occurrence of MPs in other foods and their effect on human health is still in early-stage, but the attention is increasing. This review aimed to provide relevant information on the possible health effect of ingested MPs, the occurrence, and levels of MPs contamination in various foods and estimated exposure to MPs through food. Potential toxic consequences from exposure to MPs through food can arise from MPs themselves, diffused monomers and additives but also from sorbed contaminants or microorganisms that colonise MPs. Recent publications have confirmed widespread contamination of our food with MPs including basic and life-essential constituents such as water and salt providing the basis for chronic exposure. Available exposure assessments indicate that we ingest up to several hundred thousand MPs particles yearly.
Collapse
|
196
|
Amereh F, Amjadi N, Mohseni-Bandpei A, Isazadeh S, Mehrabi Y, Eslami A, Naeiji Z, Rafiee M. Placental plastics in young women from general population correlate with reduced foetal growth in IUGR pregnancies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120174. [PMID: 36113646 DOI: 10.1016/j.envpol.2022.120174] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Constant exposure to plastics particulates has raised concerns against human health, particularly when it comes to birth outcomes. The present study explores the first appraisal of plastic particles in fresh human placenta and its association with foetal growth in neonates. Specifically, 43 pregnant women from general population were selected and their placentas were analyzed by digital microscopy and Raman microspectroscopy for microplastics (MPs <5 mm). We used regression analysis to estimate associations between MPs count in placenta and neonatal anthropometric measurements. MPs were found in all (13 out of 13) intrauterine growth restriction (IUGR) pregnancies and their average abundance ranged from 2 to 38 particles per placenta, but were less than limit of detection (LOD) in normal pregnancies except three out of 30 subjects. This study is one of very few that detected MPs in human placenta in which particles <10 μm were the most abundant in both IUGR and normal pregnancies, accounting for up to 64%. Fragments clearly prevailed at normal pregnancies and fragments together with fibers predominated at IUGR placentas. Despite four different polymers forming the MPs being identified, the majority of MPs comprised of PE (polyethylene) and PS (polystyrene). Inverse associations between MPs exposure and birth outcomes were observed in terms of birth weight (r = - 0.82, p < 0.001), length (r = - 0.56, p < 0.001), head circumference (r = - 0.50, p = 0.001), and 1-min Apgar score (r = - 0.75, p < 0.001) among those with IUGR, compared to those that were nominated as normal pregnancies. While it seems plastic particles may affect placental-foetal interrelationship, the pattern of associations between their content in placenta and birth outcomes, however, shows evidence of a nonlinear or nonmonotonic dose response possibly through perturbation of gas and nutrients exchange which is worth future investigation.
Collapse
Affiliation(s)
- Fatemeh Amereh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nooshin Amjadi
- Maternal Fetal Medicine, Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anoushiravan Mohseni-Bandpei
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Isazadeh
- Process and Engineering Manager, Municipal Water Contract Operations Business, Veolia North America, USA
| | - Yadollah Mehrabi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akbar Eslami
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Naeiji
- Department of Gynecology and Obstetrics, School of Medicine Mahdieh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafiee
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
197
|
Sun W, Jin C, Bai Y, Ma R, Deng Y, Gao Y, Pan G, Yang Z, Yan L. Blood uptake and urine excretion of nano- and micro-plastics after a single exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157639. [PMID: 35905964 DOI: 10.1016/j.scitotenv.2022.157639] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Nano- and micro-plastic (NMP) pollution has emerged as a global issue; however, uptake in the blood is controversial. Also, there is no evidence that NMPs are excreted via urine. This study was designed to clarify the time course of NMPs absorption in blood and the excretion in urine. Male mice received a single administration of fluorescent polystyrene (PS) beads (100-nm and 3-μm) via tail vein injection, gavage, or pulmonary perfusion. Blood and urine samples were measured 0.5, 1, 2, and 4 h after exposure by confocal laser scanning microscope (CLSM). Transmission electron microscopy (TEM) was performed to corroborate the findings. Fluorescence particles were detected in both blood and urine from the 100-nm and 3-μm PS-treated groups after exposure. In the 3-μm PS treated group, particles with corresponding diameters were detected after intravenous injection and pulmonary perfusion, and particles with a diameter <3 μm were detected in blood samples after gavage. The fluorescent signal in urine was particularly weak and the size was <3 μm. Significant time course changes in fluorescence intensity were demonstrated in blood and urine (P < 0.05) after intravenous injection and pulmonary perfusion in the 100-nm PS-treated group. By contrast, significant changes were detected in the urine (P < 0.05), but not the blood, after gavage. TEM confirmed the presence of particles with corresponding diameters in blood samples; however, the excretion in urine was difficult to confirm for nano-plastics (NPs) and micro-plastics (MPs) because all particles with diameters of approximately 100 nm and 3 μm had irregular shapes and no clear boundaries. Our findings revealed that both NPs and MPs enter the blood circulation through digestive and respiratory pathways. Both 100-nm and 3-μm NMPs may be excreted through urine, but further evidence is needed. The physical and chemical properties of MPs may be impacted by digestive processes in vivo.
Collapse
Affiliation(s)
- Wei Sun
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Yinglong Bai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Ruixue Ma
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Yuan Deng
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Yuan Gao
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Guowei Pan
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Zuosen Yang
- Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China; Institute of Chronic Diseases, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, People's Republic of China
| | - Lingjun Yan
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|
198
|
Liu Y, Shi Q, Liu X, Wang L, He Y, Tang J. Perfluorooctane sulfonate (PFOS) enhanced polystyrene particles uptake by human colon adenocarcinoma Caco-2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157640. [PMID: 35907536 DOI: 10.1016/j.scitotenv.2022.157640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
As microplastics and nanoplastics (MNPs) are widely distributed in the environment and can be transferred to human body through food chain, their potential impact on human health is of great concern. Perfluorooctane sulfonate (PFOS) is persistent, bioaccumulative and can be adsorbed by MNPs. However, there are few studies on the combined human health effects of MNPs with PFOS. In this study, the effects of polystyrene (PS) particles and PFOS on human colon adenocarcinoma cell Caco-2 were investigated in vitro to explore the combined toxicity from cellular level, and the toxic mechanism was further illustrated. Results showed that the presence of PFOS significantly increased the cell uptake of PS nanoparticles by >30 %, which is related to variations of the surface properties of PS particles, including the decrease of hydration kinetic diameter, the rise of surface potential and the adsorption of hydrophobic PFOS molecules. The toxic effect of PFOS was weakened in the presence of PS particles under low PFOS concentration (10 μg/mL), which is because the bioavailability of PFOS was reduced after adsorption. PS particles with small particle size (20 nm) showed higher cell uptake and ROS production, while PS particles with large particle size (1 μm) led to higher lipid oxidation degree and related membrane damage as well as mitochondrial stress. This study provides the first evaluation of combined toxicity of MNPs and PFOS on human intestinal cells, in order to support the risk assessment of combined pollution of MNPs and PFOS on human health.
Collapse
Affiliation(s)
- Yaxuan Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qingying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
199
|
Pérez-Guevara F, Roy PD, Elizalde-Martínez I, Kutralam-Muniasamy G, Shruti VC. Human exposure to microplastics from urban decentralized pay-to-fetch drinking-water refill kiosks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157722. [PMID: 35914603 DOI: 10.1016/j.scitotenv.2022.157722] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Microplastics in the human diet have become a worldwide concern. To date, microplastics in urban drinking water supplies, such as decentralized drinking-water refill kiosks, have not been studied and are a pressing concern since they are so closely tied to human life and have a significant influence on health. This study evaluated the occurrence and characteristics of microplastics in 63 drinking water samples collected from decentralized refill kiosks in the Mexico City metropolitan area. All of the sampled drinking water contained microplastics in concentrations ranging from 11 to 860 microplastics L-1. The detected microplastics were mostly fiber (65 %), followed by fragment (28 %), and film (7 %). They were mainly composed of polyethylene terephthalate, polyamides, vinyl polymers, polyacetal, and cellophane in sizes ranging from 20 μm to 5 mm, with 75 % of them accounting for sizes <300 μm. SEM-EDX analysis revealed weathered microplastics, biota adherence, and the presence of inorganic elements on the surface of microplastics. We estimate that Mexico City residents inadvertently ingest 42 microplastics L-1, with an annual exposure of around 1.47 × 104 microplastics per adult and 6.73 × 103 microplastics per child. Therefore, future research is needed to strengthen drinking water refill kiosk guidelines and standards for better microplastic management. This study serves as a wake-up call to many developing countries that use similar urban water systems, drawing their attention to global microplastic contamination of drinking water.
Collapse
Affiliation(s)
- Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510 Ciudad de México, Mexico
| | - I Elizalde-Martínez
- Instituto Politécnico Nacional (IPN), Centro Mexicano para la Producción más Limpia (CMP+L), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340 México City, Mexico
| | - Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - V C Shruti
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510 Ciudad de México, Mexico.
| |
Collapse
|
200
|
A Survey on Detection of Plastic-Related Chemicals in Beer Packaged in PET Using FT-IR Technology. BEVERAGES 2022. [DOI: 10.3390/beverages8040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The emerging consciousness on nano- and microplastics in our environment raises questions on how to reduce and minimize its influence on human health. PET (polyethylene terephthalate) packaging is gaining popularity, and many traditional products end up in such packaging (vinegar, wine, beer). Currently, it is very hard to quantify the number of particles and their exact composition, but semi-quantitative techniques such as FT-IR (Fourier Transform Infrared Spectrophotometry) can give us an insight into the chemical composition of plastic bits in foods and beverages. Nowadays, beer is packed in PET packaging, since it provides a cheaper packaging material compared to glass and since it is safe to use at public manifestations, contrary to glass bottles, while providing a reasonable barrier for gas permeation (O2 and CO2). The aim of this paper was to provide a short overview of FT-IR-detected compounds in PET-packaged beer samples. The results indicate that many compounds can be found in beer, but those that were most commonly found in our research were β-cyclodextrin and L(-)-glyceraldehyde unnatural forms, two compounds designated as plastic-related compounds.
Collapse
|