151
|
Leung CY, Weitz JS. Not by (Good) Microbes Alone: Towards Immunocommensal Therapies. Trends Microbiol 2019; 27:294-302. [DOI: 10.1016/j.tim.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/02/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022]
|
152
|
Little SV, Bryan LK, Hillhouse AE, Cohen ND, Lawhon SD. Characterization of agr Groups of Staphylococcus pseudintermedius Isolates from Dogs in Texas. mSphere 2019; 4:e00033-19. [PMID: 30918056 PMCID: PMC6437270 DOI: 10.1128/msphere.00033-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus pseudintermedius is an important canine pathogen implicated in an increasing number of human infections. Along with rising levels of methicillin and multidrug resistance, staphylococcal biofilms are a complicating factor for treatment and contribute to device, implant, and surgical infections. Staphylococcal virulence, including biofilm formation, is regulated in part by the quorum sensing accessory gene regulator system (agr). The signal molecule for agr, known as the autoinducing peptide molecule, contains polymorphisms that result in the formation of distinct groups. In S. pseudintermedius, 4 groups (i.e., groups I, II, III, and IV) have been identified but not comprehensively examined for associations with infection type, virulence factor carriage, or phylogenetic relationships-all of which have been found to be significant in S. aureus In this study, 160 clinical canine isolates from Texas, including isolates from healthy dogs (n = 40) and 3 different infection groups (pyoderma, urinary tract, and surgical, n = 40 each), were sequenced. The agr group, biofilm-producing capabilities, toxin gene carriage, antimicrobial resistance, and sequence type (ST) were identified for all isolates. While no significant associations were discovered among the clinical infection types and agr groups, agr II isolates were significantly less common than any other group in diseased dogs. Furthermore, agr II isolates were less likely than other agr groups to be multidrug resistant and to carry toxin genes expA and sec-canine Fifty-two (33%) of the 160 isolates were methicillin resistant, and the main sequence types (ST64, ST68, ST71, ST84, ST150, and ST155) of methicillin-resistant strains of S. pseudintermedius (MRSP) were identified for the geographic region.IMPORTANCEStaphylococcus pseudintermedius is an important disease-causing bacterium in dogs and is recognized as a growing threat to human health. Due to increasing multidrug resistance, discovery of alternative methods for treatment of these infections is vital. Interference with one target for alternative treatment, the quorum sensing system agr, has demonstrated clinical improvement of infections in S. aureus animal models. In this study, we sequenced and characterized 160 clinical S. pseudintermedius isolates and their agr systems in order to increase understanding of the epidemiology of the agr group and clarify its associations with types of infection and antimicrobial resistance. We found that isolates with agr type II were significantly less common than other agr types in diseased dogs. This provides valuable information to veterinary clinical microbiologists and clinicians, especially as less research has been performed on infection associations of agr and its therapeutic potential in S. pseudintermedius than in S. aureus.
Collapse
Affiliation(s)
- Sara V Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Laura K Bryan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Andrew E Hillhouse
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
- Texas A&M Institute for Genome Sciences and Society, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
153
|
Abstract
There are a plethora of probiotic formulae that supposedly benefit human health on the market. However, the scientific underpinnings of the claimed benefits have remained poorly established. Scientific evidence is now increasingly being provided that explains those benefits, for example, by immune-stimulatory effects or inter-bacterial competition between beneficial and pathogenic bacteria. In our recent study (Piewngam et al. Nature 2018), we show that Bacillus colonization of the human intestine is negatively correlated with that of the human pathogen, Staphylococcus aureus. This type of colonization resistance is achieved by secretion of a class of lipopeptides by Bacillus species that inhibits S. aureus quorum-sensing signaling, which we found is crucial for S. aureus intestinal colonization. Here, we discuss what these findings imply for the general role of S. aureus intestinal colonization, the role of quorum-sensing in that process, and potential alternative ways to control S. aureus infection.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA,CONTACT Michael Otto Pathogen Molecular Genetics Section, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, 50 South Drive, Bethesda, MD 20814
| |
Collapse
|
154
|
Paguigan ND, Rivera-Chávez J, Stempin JJ, Augustinović M, Noras AI, Raja HA, Todd DA, Triplett KD, Day C, Figueroa M, Hall PR, Cech NB, Oberlies NH. Prenylated Diresorcinols Inhibit Bacterial Quorum Sensing. JOURNAL OF NATURAL PRODUCTS 2019; 82:550-558. [PMID: 30730742 DOI: 10.1021/acs.jnatprod.8b00925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Current treatment options for bacterial infections are dependent on antibiotics that inhibit microbial growth and viability. These approaches result in the evolution of drug-resistant strains of bacteria. An anti-infective strategy that is less likely to lead to the development of resistance is the disruption of quorum sensing mechanisms, which are involved in promoting virulence. The goal of this study was to identify fungal metabolites effective as quorum sensing inhibitors. Three new prenylated diresorcinols (1-3), along with two known compounds, (4 R) -regiolone and decarboxycitrinone, were isolated from a freshwater fungus (Helotiales sp.) from North Carolina. Their structures were assigned on the basis of HRESIMS and NMR experiments. The structure of compound 1 was confirmed via X-ray diffraction analysis, and its absolute configuration was established by TDDFT-ECD and optical rotation calculations. Compounds 1-3 suppressed quorum sensing in a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA), with IC50 values ranging from 0.3 to 12.5 μM. These compounds represent potential leads in the development of antivirulence therapeutics.
Collapse
Affiliation(s)
- Noemi D Paguigan
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - José Rivera-Chávez
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Justin J Stempin
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Mario Augustinović
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Aleksandra I Noras
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Daniel A Todd
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Kathleen D Triplett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Cynthia Day
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27109 , United States
| | - Mario Figueroa
- Facultad de Química , Universidad Nacional Autónoma de México , Ciudad de México 04510 , México
| | - Pamela R Hall
- Department of Pharmaceutical Sciences, College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Nadja B Cech
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| |
Collapse
|
155
|
Commensal Staphylococci Influence Staphylococcus aureus Skin Colonization and Disease. Trends Microbiol 2019; 27:497-507. [PMID: 30846311 DOI: 10.1016/j.tim.2019.01.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Commensal organisms that constitute the skin microbiota play a pivotal role in the orchestration of cutaneous homeostasis and immune competence. This balance can be promptly offset by the expansion of the opportunistic pathogen Staphylococcus aureus, which is responsible for the majority of bacterial skin infections. S. aureus carriage is also known to be a precondition for its transmission and pathogenesis. Recent reports suggest that skin-dwelling coagulase-negative staphylococci (CoNS) can prime the skin immune system to limit the colonization potential of invaders, and they can directly compete through production of antimicrobial molecules or through signaling antagonism. We review recent advances in these CoNS colonization resistance mechanisms, which may serve to aid development of pharmacologic and probiotic intervention strategies to limit S. aureus skin colonization and disease.
Collapse
|
156
|
Abstract
Staphylococcus aureus is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.
Collapse
|
157
|
Fleitas Martínez O, Rigueiras PO, Pires ÁDS, Porto WF, Silva ON, de la Fuente-Nunez C, Franco OL. Interference With Quorum-Sensing Signal Biosynthesis as a Promising Therapeutic Strategy Against Multidrug-Resistant Pathogens. Front Cell Infect Microbiol 2019; 8:444. [PMID: 30805311 PMCID: PMC6371041 DOI: 10.3389/fcimb.2018.00444] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Faced with the global health threat of increasing resistance to antibiotics, researchers are exploring interventions that target bacterial virulence factors. Quorum sensing is a particularly attractive target because several bacterial virulence factors are controlled by this mechanism. Furthermore, attacking the quorum-sensing signaling network is less likely to select for resistant strains than using conventional antibiotics. Strategies that focus on the inhibition of quorum-sensing signal production are especially attractive because the enzymes involved are expressed in bacterial cells but are not present in their mammalian counterparts. We review here various approaches that are being taken to interfere with quorum-sensing signal production via the inhibition of autoinducer-2 synthesis, PQS synthesis, peptide autoinducer synthesis, and N-acyl-homoserine lactone synthesis. We expect these approaches will lead to the discovery of new quorum-sensing inhibitors that can help to stem the tide of antibiotic resistance.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Pietra Orlandi Rigueiras
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Állan da Silva Pires
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - William Farias Porto
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Porto Reports, Brasília, Brazil
| | - Osmar Nascimento Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States.,The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, United States
| | - Octavio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
158
|
Affiliation(s)
- Lin-Lin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| |
Collapse
|
159
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
160
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
161
|
Greenberg M, Kuo D, Jankowsky E, Long L, Hager C, Bandi K, Ma D, Manoharan D, Shoham Y, Harte W, Ghannoum MA, Shoham M. Small-molecule AgrA inhibitors F12 and F19 act as antivirulence agents against Gram-positive pathogens. Sci Rep 2018; 8:14578. [PMID: 30275455 PMCID: PMC6167350 DOI: 10.1038/s41598-018-32829-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/17/2018] [Indexed: 01/20/2023] Open
Abstract
Small-molecule antivirulence agents represent a promising alternative or adjuvant to antibiotics. These compounds disarm pathogens of disease-causing toxins without killing them, thereby diminishing survival pressure to develop resistance. Here we show that the small-molecule antivirulence agents F12 and F19 block staphylococcal transcription factor AgrA from binding to its promoter. Consequently, toxin expression is inhibited, thus preventing host cell damage by Gram-positive pathogens. Broad spectrum efficacy against Gram-positive pathogens is due to the existence of AgrA homologs in many Gram-positive bacteria. F12 is more efficacious in vitro and F19 works better in vivo. In a murine MRSA bacteremia/sepsis model, F19 treatment alone resulted in 100% survival while untreated animals had 70% mortality. Furthermore, F19 enhances antibiotic efficacy in vivo. Notably, in a murine MRSA wound infection model, combination of F19 with antibiotics resulted in bacterial load reduction. Thus, F19 could be used alone or in combination with antibiotics to prevent and treat infections of Gram-positive pathogens.
Collapse
Affiliation(s)
- Michael Greenberg
- Department of Biochemistrty, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - David Kuo
- Department of Biochemistrty, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Eckhard Jankowsky
- Center for RNA and Therapeutics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lisa Long
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Chris Hager
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kiran Bandi
- Department of Biochemistrty, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Danyang Ma
- Department of Biochemistrty, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Divya Manoharan
- Department of Biochemistrty, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | - William Harte
- Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Menachem Shoham
- Department of Biochemistrty, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Q2 Pharma, Ltd., Haifa, Israel.
| |
Collapse
|
162
|
Yehuda A, Slamti L, Bochnik-Tamir R, Malach E, Lereclus D, Hayouka Z. Turning off Bacillus cereus quorum sensing system with peptidic analogs. Chem Commun (Camb) 2018; 54:9777-9780. [PMID: 30105347 DOI: 10.1039/c8cc05496g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We explored quenching of the PlcR-PapR quorum-sensing system in Bacillus cereus. We generated PapR7-peptidic derivatives that inhibit this system and thus the production of virulence factors, reflected by a loss in hemolytic activity, without affecting bacterial growth. To our knowledge, these peptides represent the first potent synthetic inhibitors of quorum-sensing in B. cereus.
Collapse
Affiliation(s)
- Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | | | | | | | | | | |
Collapse
|
163
|
Rezzoagli C, Wilson D, Weigert M, Wyder S, Kümmerli R. Probing the evolutionary robustness of two repurposed drugs targeting iron uptake in Pseudomonas aeruginosa. Evol Med Public Health 2018; 2018:246-259. [PMID: 30455950 PMCID: PMC6234326 DOI: 10.1093/emph/eoy026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
LAY SUMMARY We probed the evolutionary robustness of two antivirulence drugs, gallium and flucytosine, targeting the iron-scavenging pyoverdine in the opportunistic pathogen Pseudomonas aeruginosa. Using an experimental evolution approach in human serum, we showed that antivirulence treatments are not evolutionarily robust per se, but vary in their propensity to select for resistance. BACKGROUND AND OBJECTIVES Treatments that inhibit the expression or functioning of bacterial virulence factors hold great promise to be both effective and exert weaker selection for resistance than conventional antibiotics. However, the evolutionary robustness argument, based on the idea that antivirulence treatments disarm rather than kill pathogens, is controversial. Here, we probe the evolutionary robustness of two repurposed drugs, gallium and flucytosine, targeting the iron-scavenging pyoverdine of the opportunistic human pathogen Pseudomonas aeruginosa. METHODOLOGY We subjected replicated cultures of bacteria to two concentrations of each drug for 20 consecutive days in human serum as an ex vivo infection model. We screened evolved populations and clones for resistance phenotypes, including the restoration of growth and pyoverdine production, and the evolution of iron uptake by-passing mechanisms. We whole-genome sequenced evolved clones to identify the genetic basis of resistance. RESULTS We found that mutants resistant against antivirulence treatments readily arose, but their selective spreading varied between treatments. Flucytosine resistance quickly spread in all populations due to disruptive mutations in upp, a gene encoding an enzyme required for flucytosine activation. Conversely, resistance against gallium arose only sporadically, and was based on mutations in transcriptional regulators, upregulating pyocyanin production, a redox-active molecule promoting siderophore-independent iron acquisition. The spread of gallium resistance was presumably hampered because pyocyanin-mediated iron delivery benefits resistant and susceptible cells alike. CONCLUSIONS AND IMPLICATIONS Our work highlights that antivirulence treatments are not evolutionarily robust per se. Instead, evolutionary robustness is a relative measure, with specific treatments occupying different positions on a continuous scale.
Collapse
Affiliation(s)
- Chiara Rezzoagli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - David Wilson
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michael Weigert
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Stefan Wyder
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
164
|
Mooney JA, Pridgen EM, Manasherob R, Suh G, Blackwell HE, Barron AE, Bollyky PL, Goodman SB, Amanatullah DF. Periprosthetic bacterial biofilm and quorum sensing. J Orthop Res 2018; 36:2331-2339. [PMID: 29663554 DOI: 10.1002/jor.24019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/04/2018] [Indexed: 02/04/2023]
Abstract
Periprosthetic joint infection (PJI) is a common complication after total joint arthroplasty leading to severe morbidity and mortality. With an aging population and increasing prevalence of total joint replacement procedures, the burden of PJI will be felt not only by individual patients, but in increased healthcare costs. Current treatment of PJI is inadequate resulting in incredibly high failure rates. This is believed to be largely mediated by the presence of bacterial biofilms. These polymicrobial bacterial colonies form within secreted extracellular matrices, adhering to the implant surface and local tissue. The biofilm architecture is believed to play a complex and critical role in a variety of bacterial processes including nutrient supplementation, metabolism, waste management, and antibiotic and immune resistance. The establishment of these biofilms relies heavily on the quorum sensing communication systems utilized by bacteria. Early stage research into disrupting bacterial communication by targeting quorum sensing show promise for future clinical applications. However, prevention of the biofilm formation via early forced induction of the biofilm forming process remains yet unexplored. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2331-2339, 2018.
Collapse
Affiliation(s)
- Jake A Mooney
- Stanford University, School of Medicine, Stanford, California
| | - Eric M Pridgen
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Manasherob
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Broadway Street, Redwood City, Stanford 94063, California
| | - Gina Suh
- Department of Medicine, Stanford School of Medicine, Stanford, California
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Broadway Street, Redwood City, Stanford 94063, California
| | - Derek F Amanatullah
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Broadway Street, Redwood City, Stanford 94063, California
| |
Collapse
|
165
|
Graf A, Lewis RJ, Fuchs S, Pagels M, Engelmann S, Riedel K, Pané-Farré J. The hidden lipoproteome of Staphylococcus aureus. Int J Med Microbiol 2018; 308:569-581. [PMID: 29454809 DOI: 10.1016/j.ijmm.2018.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 01/27/2018] [Indexed: 01/11/2023] Open
Abstract
Lipoproteins are attached to the outer leaflet of the membrane by a di- or tri-acylglyceryl moiety and are thus positioned in the membrane-cell wall interface. Consequently, lipoproteins are involved in many surface associated functions, including cell wall synthesis, electron transport, uptake of nutrients, surface stress response, signal transduction, and they represent a reservoir of bacterial virulence factors. Inspection of 123 annotated Staphylococcus aureus genome sequences in the public domain revealed that this organism devotes about 2-3% of its coding capacity to lipoproteins, corresponding to about 70 lipoproteins per genome. 60 of these lipoproteins were identified in 95% of the genomes analyzed, which thus constitute the core lipoproteome of S. aureus. 30% of the conserved staphylococcal lipoproteins are substrate-binding proteins of ABC transporters with roles in nutrient transport. With a few exceptions, much less is known about the function of the remaining lipoproteins, representing a large gap in our knowledge of this functionally important group of proteins. Here, we summarize current knowledge, and integrate information from genetic context analysis, expression and regulatory data, domain architecture, sequence and structural information, and phylogenetic distribution to provide potential starting points for experimental evaluation of the biological function of the poorly or uncharacterized lipoproteome of S. aureus.
Collapse
Affiliation(s)
- Anica Graf
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institut (RKI), Burgstr. 37, 38855 Wernigerode, Germany
| | - Martin Pagels
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Susanne Engelmann
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Inhoffenstraße 7, 38124 Braunschweig, Germany; Institute for Microbiology, Department of Microbial Proteomics, Technical University Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Jan Pané-Farré
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany.
| |
Collapse
|
166
|
Haque S, Ahmad F, Dar SA, Jawed A, Mandal RK, Wahid M, Lohani M, Khan S, Singh V, Akhter N. Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microb Pathog 2018; 121:293-302. [PMID: 29857121 DOI: 10.1016/j.micpath.2018.05.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
Quorum sensing (QS) is a complex bacterial intercellular communication system. It is mediated by molecules called auto-inducers (AIs) and allows coordinated responses to a variety of environmental signals by inducing alterations in gene expression. Communication through QS can tremendously stimulate the pathogenicity and virulence via multiple mechanisms in pathogenic bacteria. The present review explores the major types of multitudinous QS systems known in Gram-positive and Gram-negative bacteria and their roles in bacterial pathogenesis and drug resistance. Because bacterial resistance to antibiotics is increasingly becoming a significant clinical challenge to human health; alternate strategies to combat drug resistance are warranted. Targeting bacterial pathogenicity by interruptions in QS using natural QS inhibitors and synthetic quorum-quenching analogs are being increasingly considered for development of next generation antimicrobials. The review highlights the recent advancements in discovery of promising new QS modulators and their efficiency in controlling infections caused by multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia.
| | - Faraz Ahmad
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohtashim Lohani
- Department of Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Saif Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering & Technology, Lucknow, 226021, Uttar Pradesh, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| |
Collapse
|
167
|
Premnath P, Reck M, Wittstein K, Stadler M, Wagner-Döbler I. Screening for inhibitors of mutacin synthesis in Streptococcus mutans using fluorescent reporter strains. BMC Microbiol 2018; 18:24. [PMID: 29580208 PMCID: PMC5870221 DOI: 10.1186/s12866-018-1170-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/20/2018] [Indexed: 01/22/2023] Open
Abstract
Background Within the polymicrobial dental plaque biofilm, bacteria kill competitors by excreting mixtures of bacteriocins, resulting in improved fitness and survival. Inhibiting their bacteriocin synthesis might therefore be a useful strategy to eliminate specific pathogens. We used Streptococcus mutans, a highly acidogenic inhabitant of dental plaque, as a model and searched for natural products that reduced mutacin synthesis. To this end we fused the promoter of mutacin VI to the GFP+ gene and integrated the construct into the genome of S. mutans UA159 by single homologous recombination. Results The resulting reporter strain 423p - gfp + was used to screen 297 secondary metabolites from different sources, mainly myxobacteria and fungi, for their ability to reduce the fluorescence of the fully induced reporter strain by > 50% while growth was almost unaffected (> 90% of control). Seven compounds with different chemical structures and different modes of action were identified. Erinacine C was subsequently validated and shown to inhibit transcription of all three mutacins of S. mutans. The areas of the inhibition zones of the sensor strains S. sanguinis and Lactococcus lactis were reduced by 35% to 61% in comparison to controls in the presence of erinacine C, demonstrating that the amount of active mutacins in the culture supernatants of S. mutans was reduced. Erinacines are cyathane diterpenes that were extracted from cultures of the edible mushroom Hericium erinaceus. They have anti-inflammatory, antimicrobial and neuroprotective effects. For erinacine C, a new biological activity was found here. Conclusions We demonstrate the successful development of a whole-cell fluorescent reporter for the screening of natural compounds and report that erinacine C suppresses mutacin synthesis in S. mutans without affecting cell viability. Electronic supplementary material The online version of this article (10.1186/s12866-018-1170-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyanka Premnath
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Michael Reck
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Kathrin Wittstein
- Helmholtz-Center for Infection Research, Department of Microbial Drugs, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Helmholtz-Center for Infection Research, Department of Microbial Drugs, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| |
Collapse
|
168
|
Abstract
Antibiotics have saved millions of lives over the past decades. However, the accumulation of so many antibiotic resistance genes by some clinically relevant pathogens has begun to lead to untreatable infections worldwide. The current antibiotic resistance crisis will require greater efforts by governments and the scientific community to increase the research and development of new antibacterial drugs with new mechanisms of action. A major challenge is the identification of novel microbial targets, essential for in vivo growth or pathogenicity, whose inhibitors can overcome the currently circulating resistome of human pathogens. In this article, we focus on the potential high value of bacterial transcriptional regulators as targets for the development of new antibiotics, discussing in depth the molecular role of these regulatory proteins in bacterial physiology and pathogenesis. Recent advances in the search for novel compounds that inhibit the biological activity of relevant transcriptional regulators in pathogenic bacteria are reviewed.
Collapse
|
169
|
Vaishampayan A, de Jong A, Wight DJ, Kok J, Grohmann E. A Novel Antimicrobial Coating Represses Biofilm and Virulence-Related Genes in Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2018; 9:221. [PMID: 29497410 PMCID: PMC5818464 DOI: 10.3389/fmicb.2018.00221] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become an important cause of hospital-acquired infections worldwide. It is one of the most threatening pathogens due to its multi-drug resistance and strong biofilm-forming capacity. Thus, there is an urgent need for novel alternative strategies to combat bacterial infections. Recently, we demonstrated that a novel antimicrobial surface coating, AGXX®, consisting of micro-galvanic elements of the two noble metals, silver and ruthenium, surface-conditioned with ascorbic acid, efficiently inhibits MRSA growth. In this study, we demonstrated that the antimicrobial coating caused a significant reduction in biofilm formation (46%) of the clinical MRSA isolate, S. aureus 04-02981. To understand the molecular mechanism of the antimicrobial coating, we exposed S. aureus 04-02981 for different time-periods to the coating and investigated its molecular response via next-generation RNA-sequencing. A conventional antimicrobial silver coating served as a control. RNA-sequencing demonstrated down-regulation of many biofilm-associated genes and of genes related to virulence of S. aureus. The antimicrobial substance also down-regulated the two-component quorum-sensing system agr suggesting that it might interfere with quorum-sensing while diminishing biofilm formation in S. aureus 04-02981.
Collapse
Affiliation(s)
- Ankita Vaishampayan
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, Berlin, Germany
| | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Darren J. Wight
- Institute of Virology, Free University of Berlin, Berlin, Germany
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, Berlin, Germany
- Division of Infectious Diseases, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
170
|
Tan L, Li SR, Jiang B, Hu XM, Li S. Therapeutic Targeting of the Staphylococcus aureus Accessory Gene Regulator ( agr) System. Front Microbiol 2018; 9:55. [PMID: 29422887 PMCID: PMC5789755 DOI: 10.3389/fmicb.2018.00055] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/10/2018] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus can cause numerous different diseases, which has been attributed to its large repertoire of virulence factors, many of which are under the control of the accessory gene regulator (agr) quorum sensing system. Under conditions of high cell density, agr increases the production of many virulence factors, decreases expression of several colonization factors, and is intimately associated with the pathogenesis and biofilm formation of S. aureus. This review summarizes our current understanding of the molecular mechanisms underlying agr quorum sensing and the regulation of agr expression. The discussion also examines subgroups of agr and their association with different diseases, and concludes with an analysis of strategies for designing drugs and vaccines that target agr to combat S. aureus infections.
Collapse
Affiliation(s)
- Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Si Rui Li
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Bei Jiang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xiao Mei Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
171
|
Targeting Virulence in Staphylococcus aureus by Chemical Inhibition of the Accessory Gene Regulator System In Vivo. mSphere 2018; 3:mSphere00500-17. [PMID: 29359191 PMCID: PMC5770542 DOI: 10.1128/msphere.00500-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) presents one of the most serious health concerns worldwide. The WHO labeled it as a “high-priority” pathogen in 2017, also citing the more recently emerged vancomycin-intermediate and -resistant strains. Methicillin-resistant Staphylococcus aureus (MRSA) presents one of the most serious health concerns worldwide. The WHO labeled it as a “high-priority” pathogen in 2017, also citing the more recently emerged vancomycin-intermediate and -resistant strains. With the spread of antibiotic resistance due in large part to the selective pressure exerted by conventional antibiotics, the use of antivirulence strategies has been recurrently proposed as a promising therapeutic approach. In MRSA, virulence is chiefly controlled by quorum sensing (QS); inhibitors of QS are called quorum quenchers (QQ). In S. aureus, the majority of QS components are coded for by the accessory gene regulator (Agr) system. Although much work has been done to develop QQs against MRSA, only a few studies have progressed to in vivo models. Those studies include both prophylactic and curative models of infection as well as combination treatments with antibiotic. For most, high efficacy is seen at attenuating MRSA virulence and pathogenicity, with some studies showing effects such as synergy with antibiotics and antibiotic resensitization. This minireview aims to summarize and derive conclusions from the literature on the in vivo efficacy of QQ agents in MRSA infection models. In vitro data are also summarized to provide sufficient background on the hits discussed. On the whole, the reported in vivo effects of the reviewed QQs against MRSA represent positive progress at this early stage in drug development. Follow-up studies that thoroughly examine in vitro and in vivo activity are needed to propel the field forward and set the stage for lead optimization.
Collapse
|
172
|
Jones D, Meijer EFJ, Blatter C, Liao S, Pereira ER, Bouta EM, Jung K, Chin SM, Huang P, Munn LL, Vakoc BJ, Otto M, Padera TP. Methicillin-resistant Staphylococcus aureus causes sustained collecting lymphatic vessel dysfunction. Sci Transl Med 2018; 10:eaam7964. [PMID: 29343625 PMCID: PMC5953194 DOI: 10.1126/scitranslmed.aam7964] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/20/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of morbidity and mortality worldwide and is a frequent cause of skin and soft tissue infections (SSTIs). Lymphedema-fluid accumulation in tissue caused by impaired lymphatic vessel function-is a strong risk factor for SSTIs. SSTIs also frequently recur in patients and sometimes lead to acquired lymphedema. However, the mechanism of how SSTIs can be both the consequence and the cause of lymphatic vessel dysfunction is not known. Intravital imaging in mice revealed an acute reduction in both lymphatic vessel contractility and lymph flow after localized MRSA infection. Moreover, chronic lymphatic impairment is observed long after MRSA is cleared and inflammation is resolved. Associated with decreased collecting lymphatic vessel function was the loss and disorganization of lymphatic muscle cells (LMCs), which are critical for lymphatic contraction. In vitro, incubation with MRSA-conditioned supernatant led to LMC death. Proteomic analysis identified several accessory gene regulator (agr)-controlled MRSA exotoxins that contribute to LMC death. Infection with agr mutant MRSA resulted in sustained lymphatic function compared to animals infected with wild-type MRSA. Our findings suggest that agr is a promising target to preserve lymphatic vessel function and promote immunity during SSTIs.
Collapse
Affiliation(s)
- Dennis Jones
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Eelco F J Meijer
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Cedric Blatter
- Harvard Medical School, Boston, MA 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shan Liao
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
| | - Ethel R Pereira
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Echoe M Bouta
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Keehoon Jung
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Shan Min Chin
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Peigen Huang
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Lance L Munn
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin J Vakoc
- Harvard Medical School, Boston, MA 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael Otto
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA.
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
173
|
Quave CL, Horswill AR. Identification of Staphylococcal Quorum Sensing Inhibitors by Quantification of õ-Hemolysin with High Performance Liquid Chromatography. Methods Mol Biol 2018; 1673:363-370. [PMID: 29130186 DOI: 10.1007/978-1-4939-7309-5_27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quorum sensing plays a major role in regulation of virulence factor production by staphylococci. Chemical inhibitors that block this process and prevent the production of exotoxins and exoenzymes could have medical utility for infection prophylaxis and therapy. Here, we describe a high performance liquid chromatography method amenable to medium throughput screening for staphylococcal quorum sensing inhibitors by quantification of õ-hemolysin, a direct protein output of this system.
Collapse
Affiliation(s)
- Cassandra L Quave
- Department of Dermatology, Emory University School of Medicine, 615 Michael St., Whitehead 105L, Atlanta, GA, 30322, USA.
- Center for the Study of Human Health, Emory University College of Arts and Sciences, 550 Asbury Circle, Candler Library 107, Atlanta, GA, 30322, USA.
| | - Alexander R Horswill
- Department of Immunology and Microbiology, The University of Colorado School of Medicine, Mail Stop 8333, Research Complex 1 North, 12800 E. 19th Ave., Rm. P18-9101, Aurora, CO, 80045, USA
| |
Collapse
|
174
|
Kane TL, Carothers KE, Lee SW. Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics. Curr Drug Targets 2018; 19:111-127. [PMID: 27894236 PMCID: PMC5957279 DOI: 10.2174/1389450117666161128123536] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Staphylococcus aureus is a major bacterial pathogen capable of causing a range of infections in humans from gastrointestinal disease, skin and soft tissue infections, to severe outcomes such as sepsis. Staphylococcal infections in humans can be frequent and recurring, with treatments becoming less effective due to the growing persistence of antibiotic resistant S. aureus strains. Due to the prevalence of antibiotic resistance, and the current limitations on antibiotic development, an active and highly promising avenue of research has been to develop strategies to specifically inhibit the activity of virulence factors produced S. aureus as an alternative means to treat disease. OBJECTIVE In this review we specifically highlight several major virulence factors produced by S. aureus for which recent advances in antivirulence approaches may hold promise as an alternative means to treating diseases caused by this pathogen. Strategies to inhibit virulence factors can range from small molecule inhibitors, to antibodies, to mutant and toxoid forms of the virulence proteins. CONCLUSION The major prevalence of antibiotic resistant strains of S. aureus combined with the lack of new antibiotic discoveries highlight the need for vigorous research into alternative strategies to combat diseases caused by this highly successful pathogen. Current efforts to develop specific antivirulence strategies, vaccine approaches, and alternative therapies for treating severe disease caused by S. aureus have the potential to stem the tide against the limitations that we face in the post-antibiotic era.
Collapse
Affiliation(s)
- Trevor L. Kane
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn E. Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
175
|
Paharik AE, Parlet CP, Chung N, Todd DA, Rodriguez EI, Van Dyke MJ, Cech NB, Horswill AR. Coagulase-Negative Staphylococcal Strain Prevents Staphylococcus aureus Colonization and Skin Infection by Blocking Quorum Sensing. Cell Host Microbe 2017; 22:746-756.e5. [PMID: 29199097 PMCID: PMC5897044 DOI: 10.1016/j.chom.2017.11.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/26/2017] [Accepted: 10/31/2017] [Indexed: 01/28/2023]
Abstract
Coagulase-negative staphylococci (CoNS) and Staphylococcus aureus are part of the natural flora of humans and other mammals. We found that spent media from the CoNS species Staphylococcus caprae can inhibit agr-mediated quorum sensing by all classes of S. aureus. A biochemical assessment of the inhibitory activity suggested that the S. caprae autoinducing peptide (AIP) was responsible, and mass spectrometric analysis identified the S. caprae AIP as an eight-residue peptide (YSTCSYYF). Using a murine model of intradermal MRSA infection, the therapeutic efficacy of synthetic S. caprae AIP was evident by a dramatic reduction in both dermonecrotic injury and cutaneous bacterial burden relative to controls. Competition experiments between S. caprae and MRSA demonstrated a significant reduction in MRSA burden using murine models of both skin colonization and intradermal infection. Our findings indicate that important interactions occur between commensals that can impact disease outcomes and potentially shape the composition of the natural flora.
Collapse
Affiliation(s)
- Alexandra E Paharik
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Corey P Parlet
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Nadjali Chung
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Daniel A Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Emilio I Rodriguez
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael J Van Dyke
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Nadja B Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Alexander R Horswill
- Department of Veterans Affairs Denver Health Care System, Denver, CO, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
176
|
Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis 2017; 75:ftx005. [PMID: 28104617 DOI: 10.1093/femspd/ftx005] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an eminent human pathogen that can colonize the human host and cause severe life-threatening illnesses. This bacterium can reside in and infect a wide range of host tissues, ranging from superficial surfaces like the skin to deeper tissues such as in the gastrointestinal tract, heart and bones. Due to its multifaceted lifestyle, S. aureus uses complex regulatory networks to sense diverse signals that enable it to adapt to different environments and modulate virulence. In this minireview, we explore well-characterized environmental and host cues that S. aureus responds to and describe how this pathogen modulates virulence in response to these signals. Lastly, we highlight therapeutic approaches undertaken by several groups to inhibit both signaling and the cognate regulators that sense and transmit these signals downstream.
Collapse
Affiliation(s)
- Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Lamia Harper
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, NY 10016 USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
177
|
Vermote A, Van Calenbergh S. Small-Molecule Potentiators for Conventional Antibiotics against Staphylococcus aureus. ACS Infect Dis 2017; 3:780-796. [PMID: 28889735 DOI: 10.1021/acsinfecdis.7b00084] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimicrobial resistance constitutes a global health problem, while the discovery and development of novel antibiotics is stagnating. Methicillin-resistant Staphylococcus aureus, responsible for the establishment of recalcitrant, biofilm-related infections, is a well-known and notorious example of a highly resistant micro-organism. Since resistance development is unavoidable with conventional antibiotics that target bacterial viability, it is vital to develop alternative treatment options on top. Strategies aimed at more subtle manipulation of bacterial behavior have recently attracted attention. Here, we provide a literature overview of several small-molecule potentiators for antibiotics, identified for the treatment of Staphylococcus aureus infection. Typically, these potentiators are not bactericidal by themselves and function by reversing resistance mechanisms, by attenuating Staphylococcus aureus virulence, and/or by interfering with quorum sensing.
Collapse
Affiliation(s)
- Arno Vermote
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
178
|
Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen 2017; 25:912-922. [PMID: 29315980 PMCID: PMC5854537 DOI: 10.1111/wrr.12607] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Probiotics are beneficial microorganisms, known to exert numerous positive effects on human health, primarily in the battle against pathogens. Probiotics have been associated with improved healing of intestinal ulcers, and healing of infected cutaneous wounds. This article reviews the latest findings on probiotics related to their pro-healing properties on gut epithelium and skin. Proven mechanisms by which probiotic bacteria exert their beneficial effects include direct killing of pathogens, competitive displacement of pathogenic bacteria, reinforcement of epithelial barrier, induction of fibroblasts, and epithelial cells' migration and function. Beneficial immunomodulatory effects of probiotics relate to modulation and activation of intraepithelial lymphocytes, natural killer cells, and macrophages through induced production of cytokines. Systemic effects of beneficial bacteria and link between gut microbiota, immune system, and cutaneous health through gut-brain-skin axes are discussed as well. In light of growing antibiotic resistance of pathogens, antibiotic use is becoming less effective in treating cutaneous and systemic infections. This review points to a new perspective and therapeutic potential of beneficial probiotic species as a safe alternative approach for treatment of patients affected by wound healing disorders and cutaneous infections.
Collapse
Affiliation(s)
- Jovanka Lukic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Vivien Chen
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Ivana Strahinic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Jelena Begovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Hadar Lev-Tov
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Stephen C Davis
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Marjana Tomic-Canic
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Irena Pastar
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| |
Collapse
|
179
|
Duval M, Cossart P. Small bacterial and phagic proteins: an updated view on a rapidly moving field. Curr Opin Microbiol 2017; 39:81-88. [PMID: 29111488 DOI: 10.1016/j.mib.2017.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/17/2017] [Indexed: 01/21/2023]
Abstract
Small proteins, that is, polypeptides of 50 amino acids (aa) or less, are increasingly recognized as important regulators in bacteria. Secreted or not, their small size make them versatile proteins, involved in a wide range of processes. They may allow bacteria to sense and to respond to stresses, to send signals and communicate, and to modulate infections. Bacteriophages also produce small proteins to influence lysogeny/lysis decisions. In this review, we update the present view on small proteins functions, and discuss their possible applications.
Collapse
Affiliation(s)
- Mélodie Duval
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France; Institut National de la Recherche Agronomique, Unité Sous Contrat 2020, Paris F-75015, France.
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France; Institut National de la Recherche Agronomique, Unité Sous Contrat 2020, Paris F-75015, France.
| |
Collapse
|
180
|
Gless BH, Peng P, Pedersen KD, Gotfredsen CH, Ingmer H, Olsen CA. Structure-Activity Relationship Study Based on Autoinducing Peptide (AIP) from Dog Pathogen S. schleiferi. Org Lett 2017; 19:5276-5279. [PMID: 28952740 DOI: 10.1021/acs.orglett.7b02550] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, an effective protocol for solid-phase synthesis of peptide thiolactones by concomitant ring closure and cleavage from the solid support is reported. The strategy was applied for mapping the importance of the structural features in S. schleiferi AIP (5) by performing an alanine scan and truncation of this natural compound. This furnished some of the most potent inhibitors of accessory gene regulator (agr)-I in the human pathogen S. aureus reported to date.
Collapse
Affiliation(s)
- Bengt H Gless
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Pai Peng
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , DK-1870 Frederiksberg C, Denmark
| | - Katja D Pedersen
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, Kgs. Lyngby DK-2800, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , DK-1870 Frederiksberg C, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
181
|
Dehydrosqualene Desaturase as a Novel Target for Anti-Virulence Therapy against Staphylococcus aureus. mBio 2017; 8:mBio.01224-17. [PMID: 28874472 PMCID: PMC5587911 DOI: 10.1128/mbio.01224-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), is a life-threatening pathogen in hospital- and community-acquired infections. The golden-colored carotenoid pigment of S. aureus, staphyloxanthin, contributes to the resistance to reactive oxygen species (ROS) and host neutrophil-based killing. Here, we describe a novel inhibitor (NP16) of S. aureus pigment production that reduces the survival of S. aureus under oxidative stress conditions. Carotenoid components analysis, enzyme inhibition, and crtN mutational studies indicated that the molecular target of NP16 is dehydrosqualene desaturase (CrtN). S. aureus treated with NP16 showed increased susceptibility to human neutrophil killing and to innate immune clearance in a mouse infection model. Our study validates CrtN as a novel druggable target in S. aureus and presents a potent and effective lead compound for the development of virulence factor-based therapy against S. aureus. S. aureus staphyloxanthin contributes substantially to pathogenesis by interfering with host immune clearance mechanisms, but it has little impact on ex vivo survival of the bacterium. Agents blocking staphyloxanthin production may discourage the establishment and maintenance of bacterial infection without exerting selective pressure for antimicrobial resistance. Our newly discovered CrtN inhibitor, NP16, may offer an effective strategy for combating S. aureus infections.
Collapse
|
182
|
Leung C, Weitz JS. Modeling the synergistic elimination of bacteria by phage and the innate immune system. J Theor Biol 2017; 429:241-252. [DOI: 10.1016/j.jtbi.2017.06.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 04/01/2017] [Accepted: 06/27/2017] [Indexed: 01/21/2023]
|
183
|
Ford CA, Cassat JE. Advances in the local and targeted delivery of anti-infective agents for management of osteomyelitis. Expert Rev Anti Infect Ther 2017; 15:851-860. [PMID: 28837368 DOI: 10.1080/14787210.2017.1372192] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Osteomyelitis, a common and debilitating invasive infection of bone, is a frequent complication following orthopedic surgery and causes pathologic destruction of skeletal tissues. Bone destruction during osteomyelitis results in necrotic tissue, which is poorly penetrated by antibiotics and can serve as a nidus for relapsing infection. Osteomyelitis therefore frequently necessitates surgical debridement procedures, which provide a unique opportunity for targeted delivery of antimicrobial and adjunctive therapies. Areas covered: Following surgical debridement, tissue voids require implanted materials to facilitate the healing process. Antibiotic-loaded, non-biodegradable implants have been the standard of care. However, a new generation of biodegradable, osteoconductive materials are being developed. Additionally, in the face of widespread antimicrobial resistance, alternative therapies to traditional antibiotic regimens are being investigated, including bone targeting compounds, antimicrobial surface modifications of orthopedic implants, and anti-virulence strategies. Expert commentary: Recent advances in biodegradable drug delivery scaffolds make this technology an attractive alternative to traditional techniques for orthopedic infection that require secondary operations for removal. Advances in novel treatment methods are expanding the arsenal of viable antimicrobial treatment strategies in the face of widespread drug resistance. Despite a need for large scale clinical investigations, these strategies offer hope for future treatment of this difficult invasive disease.
Collapse
Affiliation(s)
- Caleb A Ford
- a Department of Biomedical Engineering , Vanderbilt University School of Engineering, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - James E Cassat
- b Departments of Pediatrics, Pathology, Microbiology, and Immunology, and Biomedical Engineering , Vanderbilt University Medical Center , Nashville , TN , USA
| |
Collapse
|
184
|
A broad range quorum sensing inhibitor working through sRNA inhibition. Sci Rep 2017; 7:9857. [PMID: 28851971 PMCID: PMC5575346 DOI: 10.1038/s41598-017-09886-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/21/2017] [Indexed: 11/15/2022] Open
Abstract
For the last decade, chemical control of bacterial virulence has received considerable attention. Ajoene, a sulfur-rich molecule from garlic has been shown to reduce expression of key quorum sensing regulated virulence factors in the opportunistic pathogen Pseudomonas aeruginosa. Here we show that the repressing effect of ajoene on quorum sensing occurs by inhibition of small regulatory RNAs (sRNA) in P. aeruginosa as well as in Staphylococcus aureus, another important human pathogen that employs quorum sensing to control virulence gene expression. Using various reporter constructs, we found that ajoene lowered expression of the sRNAs RsmY and RsmZ in P. aeruginosa and the small dual-function regulatory RNA, RNAIII in S. aureus, that controls expression of key virulence factors. We confirmed the modulation of RNAIII by RNA sequencing and found that the expression of many QS regulated genes encoding virulence factors such as hemolysins and proteases were lowered in the presence of ajoene in S. aureus. Importantly, our findings show that sRNAs across bacterial species potentially may qualify as targets of anti-virulence therapy and that ajoene could be a lead structure in search of broad-spectrum compounds transcending the Gram negative-positive borderline.
Collapse
|
185
|
Signal Biosynthesis Inhibition with Ambuic Acid as a Strategy To Target Antibiotic-Resistant Infections. Antimicrob Agents Chemother 2017; 61:AAC.00263-17. [PMID: 28607020 DOI: 10.1128/aac.00263-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/03/2017] [Indexed: 01/17/2023] Open
Abstract
There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant Staphylococcus aureus (MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC50] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity in vivo Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of S. aureus and Staphylococcus epidermidis and single strains of Enterococcus faecalis, Listeria monocytogenes, Staphylococcus saprophyticus, and Staphylococcus lugdunensis By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics.
Collapse
|
186
|
Balamurugan P, Praveen Krishna V, Bharath D, Lavanya R, Vairaprakash P, Adline Princy S. Staphylococcus aureus Quorum Regulator SarA Targeted Compound, 2-[(Methylamino)methyl]phenol Inhibits Biofilm and Down-Regulates Virulence Genes. Front Microbiol 2017; 8:1290. [PMID: 28744275 PMCID: PMC5504099 DOI: 10.3389/fmicb.2017.01290] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a widely acknowledged Gram-positive pathogen for forming biofilm and virulence gene expressions by quorum sensing (QS), a cell to cell communication process. The quorum regulator SarA of S. aureus up-regulates the expression of many virulence factors including biofilm formation to mediate pathogenesis and evasion of the host immune system in the late phases of growth. Thus, inhibiting the production or blocking SarA protein might influence the down-regulation of biofilm and virulence factors. In this context, here we have synthesized 2-[(Methylamino)methyl]phenol, which was specifically targeted toward the quorum regulator SarA through in silico approach in our previous study. The molecule has been evaluated in vitro to validate its antibiofilm activity against clinical S. aureus strains. In addition, antivirulence properties of the inhibitor were confirmed with the observation of a significant reduction in the expression of representative virulence genes like fnbA, hla and hld that are governed under S. aureus QS. Interestingly, the SarA targeted inhibitor showed negligible antimicrobial activity and markedly reduced the minimum inhibitory concentration of conventional antibiotics when used in combination making it a more attractive lead for further clinical tests.
Collapse
Affiliation(s)
- P Balamurugan
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - V Praveen Krishna
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - D Bharath
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - Raajaraam Lavanya
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - Pothiappan Vairaprakash
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
187
|
Abstract
The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host.
Collapse
|
188
|
Guerra FE, Borgogna TR, Patel DM, Sward EW, Voyich JM. Epic Immune Battles of History: Neutrophils vs. Staphylococcus aureus. Front Cell Infect Microbiol 2017; 7:286. [PMID: 28713774 PMCID: PMC5491559 DOI: 10.3389/fcimb.2017.00286] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood and the first line of defense after bacteria have breached the epithelial barriers. After migration to a site of infection, neutrophils engage and expose invading microorganisms to antimicrobial peptides and proteins, as well as reactive oxygen species, as part of their bactericidal arsenal. Ideally, neutrophils ingest bacteria to prevent damage to surrounding cells and tissues, kill invading microorganisms with antimicrobial mechanisms, undergo programmed cell death to minimize inflammation, and are cleared away by macrophages. Staphylococcus aureus (S. aureus) is a prevalent Gram-positive bacterium that is a common commensal and causes a wide range of diseases from skin infections to endocarditis. Since its discovery, S. aureus has been a formidable neutrophil foe that has challenged the efficacy of this professional assassin. Indeed, proper clearance of S. aureus by neutrophils is essential to positive infection outcome, and S. aureus has developed mechanisms to evade neutrophil killing. Herein, we will review mechanisms used by S. aureus to modulate and evade neutrophil bactericidal mechanisms including priming, activation, chemotaxis, production of reactive oxygen species, and resolution of infection. We will also highlight how S. aureus uses sensory/regulatory systems to tailor production of virulence factors specifically to the triggering signal, e.g., neutrophils and defensins. To conclude, we will provide an overview of therapeutic approaches that may potentially enhance neutrophil antimicrobial functions.
Collapse
Affiliation(s)
- Fermin E Guerra
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Timothy R Borgogna
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Delisha M Patel
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Eli W Sward
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| |
Collapse
|
189
|
Tsuchikama K, Shimamoto Y, Anami Y. Truncated Autoinducing Peptide Conjugates Selectively Recognize and Kill Staphylococcus aureus. ACS Infect Dis 2017; 3:406-410. [PMID: 28155275 DOI: 10.1021/acsinfecdis.7b00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The accessory gene regulator (agr) of Staphylococcus aureus coordinates various pathogenic events and is recognized as a promising therapeutic target for virulence control. S. aureus utilizes autoinducing peptides (AIPs), cyclic-peptide signaling molecules, to mediate the agr system. Despite the high potency of synthetic AIP analogues in agr inhibition, the potential of AIP molecules as a delivery vehicle for antibacterial agents remains unexplored. Herein, we report that truncated AIP scaffolds can be fused with fluorophore and cytotoxic photosensitizer molecules without compromising their high agr inhibitory activity, binding affinity to the receptor AgrC, or cell specificity. Strikingly, a photosensitizer-AIP conjugate exhibited 16-fold greater efficacy in a S. aureus cell-killing assay than a nontargeting analogue. These findings highlight the potential of truncated AIP conjugates as useful chemical tools for in-depth biological studies and as effective anti-S. aureus agents.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown
Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, Texas 77054, United States
| | - Yasuhiro Shimamoto
- Texas Therapeutics Institute, The Brown
Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, Texas 77054, United States
| | - Yasuaki Anami
- Texas Therapeutics Institute, The Brown
Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, Texas 77054, United States
| |
Collapse
|
190
|
Kim MK, Zhao A, Wang A, Brown ZZ, Muir TW, Stone HA, Bassler BL. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nat Microbiol 2017; 2:17080. [PMID: 28530651 PMCID: PMC5526357 DOI: 10.1038/nmicrobiol.2017.80] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/13/2017] [Indexed: 12/21/2022]
Abstract
Bacteria use a process called quorum sensing to communicate and orchestrate collective behaviours, including virulence factor secretion and biofilm formation. Quorum sensing relies on the production, release, accumulation and population-wide detection of signal molecules called autoinducers. Here, we develop concepts to coat surfaces with quorum-sensing-manipulation molecules as a method to control collective behaviours. We probe this strategy using Staphylococcus aureus. Pro- and anti-quorum-sensing molecules can be covalently attached to surfaces using click chemistry, where they retain their abilities to influence bacterial behaviours. We investigate key features of the compounds, linkers and surfaces necessary to appropriately position molecules to interact with cognate receptors and the ability of modified surfaces to resist long-term storage, repeated infections, host plasma components and flow-generated stresses. Our studies highlight how this surface approach can be used to make colonization-resistant materials against S. aureus and other pathogens and how the approach can be adapted to promote beneficial behaviours of bacteria on surfaces.
Collapse
Affiliation(s)
| | - Aishan Zhao
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Ashley Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Zachary Z. Brown
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
191
|
Meir O, Zaknoon F, Cogan U, Mor A. A broad-spectrum bactericidal lipopeptide with anti-biofilm properties. Sci Rep 2017; 7:2198. [PMID: 28526864 PMCID: PMC5438364 DOI: 10.1038/s41598-017-02373-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/10/2017] [Indexed: 11/30/2022] Open
Abstract
Previous studies of the oligoacyllysyl (OAK) series acyl-lysyl-lysyl-aminoacyl-lysine-amide, suggested their utility towards generating robust linear lipopeptide-like alternatives to antibiotics, although to date, none exhibited potent broad-spectrum bactericidal activity. To follow up on this premise, we produced a new analog (C14KKc12K) and investigated its properties in various media. Mechanistic studies suggest that C14KKc12K uses a non-specific membrane-disruptive mode of action for rapidly reducing viability of Gram-negative bacteria (GNB) similarly to polymyxin B (PMB), a cyclic lipopeptide used as last resort antibiotic. Indeed, C14KKc12K displayed similar affinity for lipopolysaccharides and induced cell permeabilization associated with rapid massive membrane depolarization. Unlike PMB however, C14KKc12K was also bactericidal to Gram-positive bacteria (GPB) at or near the minimal inhibitory concentration (MIC), as assessed against a multispecies panel of >50 strains, displaying MIC50 at 3 and 6 µM, respectively for GPB and GNB. C14KKc12K retained activity in human saliva, reducing the viability of cultivable oral microflora by >99% within two minutes of exposure, albeit at higher concentrations, which, nonetheless, were similar to the commercial gold standard, chlorhexidine. This equipotent bactericidal activity was also observed in pre-formed biofilms of Streptococcus mutans, a major periodontal pathogen. Such compounds therefore, may be useful for eradication of challenging poly-microbial infections.
Collapse
Affiliation(s)
- Ohad Meir
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Fadia Zaknoon
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Uri Cogan
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Amram Mor
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
192
|
Pietrocola G, Nobile G, Rindi S, Speziale P. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases. Front Cell Infect Microbiol 2017; 7:166. [PMID: 28529927 PMCID: PMC5418230 DOI: 10.3389/fcimb.2017.00166] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/18/2017] [Indexed: 01/29/2023] Open
Abstract
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Giulia Nobile
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Simonetta Rindi
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Pietro Speziale
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| |
Collapse
|
193
|
Ali L, Goraya MU, Arafat Y, Ajmal M, Chen JL, Yu D. Molecular Mechanism of Quorum-Sensing in Enterococcus faecalis: Its Role in Virulence and Therapeutic Approaches. Int J Mol Sci 2017; 18:ijms18050960. [PMID: 28467378 PMCID: PMC5454873 DOI: 10.3390/ijms18050960] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
Quorum-sensing systems control major virulence determinants in Enterococcusfaecalis, which causes nosocomial infections. The E. faecalis quorum-sensing systems include several virulence factors that are regulated by the cytolysin operon, which encodes the cytolysin toxin. In addition, the E. faecalis Fsr regulator system controls the expression of gelatinase, serine protease, and enterocin O16. The cytolysin and Fsr virulence factor systems are linked to enterococcal diseases that affect the health of humans and other host models. Therefore, there is substantial interest in understanding and targeting these regulatory pathways to develop novel therapies for enterococcal infection control. Quorum-sensing inhibitors could be potential therapeutic agents for attenuating the pathogenic effects of E. faecalis. Here, we discuss the regulation of cytolysin, the LuxS system, and the Fsr system, their role in E. faecalis-mediated infections, and possible therapeutic approaches to prevent E. faecalis infection.
Collapse
Affiliation(s)
- Liaqat Ali
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan.
| | - Mohsan Ullah Goraya
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yasir Arafat
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Ajmal
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan.
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| | - Daojin Yu
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
194
|
Kratochvil MJ, Yang T, Blackwell HE, Lynn DM. Nonwoven Polymer Nanofiber Coatings That Inhibit Quorum Sensing in Staphylococcus aureus: Toward New Nonbactericidal Approaches to Infection Control. ACS Infect Dis 2017; 3:271-280. [PMID: 28118541 PMCID: PMC5392134 DOI: 10.1021/acsinfecdis.6b00173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the fabrication and biological evaluation of nonwoven polymer nanofiber coatings that inhibit quorum sensing (QS) and virulence in the human pathogen Staphylococcus aureus. Our results demonstrate that macrocyclic peptide 1, a potent and synthetic nonbactericidal quorum sensing inhibitor (QSI) in S. aureus, can be loaded into degradable polymer nanofibers by electrospinning and that this approach can deposit QSI-loaded nanofiber coatings onto model nonwoven mesh substrates. The QSI was released over ∼3 weeks when these materials were incubated in physiological buffer, retained its biological activity, and strongly inhibited agr-based QS in a GFP reporter strain of S. aureus for at least 14 days without promoting cell death. These materials also inhibited production of hemolysins, a QS-controlled virulence phenotype, and reduced the lysis of erythrocytes when placed in contact with wild-type S. aureus growing on surfaces. This approach is modular and can be used with many different polymers, active agents, and processing parameters to fabricate nanofiber coatings on surfaces important in healthcare contexts. S. aureus is one of the most common causative agents of bacterial infections in humans, and strains of this pathogen have developed significant resistance to conventional antibiotics. The QSI-based strategies reported here thus provide springboards for the development of new anti-infective materials and novel treatment strategies that target virulence as opposed to growth in S. aureus. This approach also provides porous scaffolds for cell culture that could prove useful in future studies on the influence of QS modulation on the development and structure of bacterial communities.
Collapse
Affiliation(s)
- Michael J. Kratochvil
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Tian Yang
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Helen E. Blackwell
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - David M. Lynn
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin–Madison, Madison, Wisconsin 53706
| |
Collapse
|
195
|
VLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation. Sci Rep 2017; 7:637. [PMID: 28377579 PMCID: PMC5429642 DOI: 10.1038/s41598-017-00753-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) and mounting antibiotic resistance requires innovative treatment strategies. S. aureus uses secreted cyclic autoinducing peptides (AIPs) and the accessory gene regulator (agr) operon to coordinate expression of virulence factors required for invasive infection. Of the four agr alleles (agr types I-IV and corresponding AIPs1-4), agr type I isolates are most frequently associated with invasive infection. Cyclization via a thiolactone bond is essential for AIP function; therefore, recognition of the cyclic form of AIP1 may be necessary for antibody-mediated neutralization. However, the small sizes of AIPs and labile thiolactone bond have hindered vaccine development. To overcome this, we used a virus-like particle (VLP) vaccine platform (PP7) for conformationally-restricted presentation of a modified AIP1 amino acid sequence (AIP1S). Vaccination with PP7-AIP1S elicited AIP1-specific antibodies and limited agr-activation in vivo. Importantly, in a murine SSTI challenge model with a highly virulent agr type I S. aureus isolate, PP7-AIP1S vaccination reduced pathogenesis and increased bacterial clearance compared to controls, demonstrating vaccine efficacy. Given the contribution of MRSA agr type I isolates to human disease, vaccine targeting of AIP1-regulated virulence could have a major clinical impact in the fight against antibiotic resistance.
Collapse
|
196
|
Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16:457-471. [PMID: 28337021 DOI: 10.1038/nrd.2017.23] [Citation(s) in RCA: 470] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways - the target of traditional antibiotics - intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.
Collapse
Affiliation(s)
- Seth W Dickey
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland 20814, USA
| |
Collapse
|
197
|
Shoham M, Greenberg M. Preventing the spread of infectious diseases: antivirulents versus antibiotics. Future Microbiol 2017; 12:365-368. [PMID: 28339290 DOI: 10.2217/fmb-2017-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Menachem Shoham
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael Greenberg
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
198
|
Fontaine BM, Nelson K, Lyles JT, Jariwala PB, García-Rodriguez JM, Quave CL, Weinert EE. Identification of Ellagic Acid Rhamnoside as a Bioactive Component of a Complex Botanical Extract with Anti-biofilm Activity. Front Microbiol 2017; 8:496. [PMID: 28386254 PMCID: PMC5362615 DOI: 10.3389/fmicb.2017.00496] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is a leading cause of hospital-acquired infections. It is listed among the top "serious threats" to human health in the USA, due in large part to rising rates of resistance. Many S. aureus infections are recalcitrant to antibiotic therapy due to their ability to form a biofilm, which acts not only as a physical barrier to antibiotics and the immune system, but results in differences in metabolism that further restricts antibiotic efficacy. Development of a modular strategy to synthesize a library of phenolic glycosides allowed for bioactivity testing and identification of anti-biofilm compounds within an extract of the elmleaf blackberry (Rubus ulmifolius). Two ellagic acid (EA) derivatives, EA xyloside and EA rhamnoside, have been identified as components of the Rubus extract. In addition, EA rhamnoside has been identified as an inhibitor of biofilm formation, with activity comparable to the complex extract 220D-F2 (composed of a mixture of EA glycosides), and confirmed by confocal laser scanning microscopy analyses.
Collapse
Affiliation(s)
| | - Kate Nelson
- Department of Dermatology, Emory University School of Medicine Atlanta, GA, USA
| | - James T Lyles
- Center for the Study of Human Health, Emory University Atlanta, GA, USA
| | - Parth B Jariwala
- Department of Chemistry, Emory UniversityAtlanta, GA, USA; Center for the Study of Human Health, Emory UniversityAtlanta, GA, USA
| | | | - Cassandra L Quave
- Department of Dermatology, Emory University School of MedicineAtlanta, GA, USA; Center for the Study of Human Health, Emory UniversityAtlanta, GA, USA
| | | |
Collapse
|
199
|
Affiliation(s)
- Mirella Luciani
- a Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale ," Teramo , Italy
| | - Luigi Iannetti
- a Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale ," Teramo , Italy
| |
Collapse
|
200
|
Muhs A, Lyles JT, Parlet CP, Nelson K, Kavanaugh JS, Horswill AR, Quave CL. Virulence Inhibitors from Brazilian Peppertree Block Quorum Sensing and Abate Dermonecrosis in Skin Infection Models. Sci Rep 2017; 7:42275. [PMID: 28186134 PMCID: PMC5301492 DOI: 10.1038/srep42275] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/09/2017] [Indexed: 01/06/2023] Open
Abstract
Widespread antibiotic resistance is on the rise and current therapies are becoming increasingly limited in both scope and efficacy. Methicillin-resistant Staphylococcus aureus (MRSA) represents a major contributor to this trend. Quorum sensing controlled virulence factors include secreted toxins responsible for extensive damage to host tissues and evasion of the immune system response; they are major contributors to morbidity and mortality. Investigation of botanical folk medicines for wounds and infections led us to study Schinus terebinthifolia (Brazilian Peppertree) as a potential source of virulence inhibitors. Here, we report the inhibitory activity of a flavone rich extract "430D-F5" against all S. aureus accessory gene regulator (agr) alleles in the absence of growth inhibition. Evidence for this activity is supported by its agr-quenching activity (IC50 2-32 μg mL-1) in transcriptional reporters, direct protein outputs (α-hemolysin and δ-toxin), and an in vivo skin challenge model. Importantly, 430D-F5 was well tolerated by human keratinocytes in cell culture and mouse skin in vivo; it also demonstrated significant reduction in dermonecrosis following skin challenge with a virulent strain of MRSA. This study provides an explanation for the anti-infective activity of peppertree remedies and yields insight into the potential utility of non-biocide virulence inhibitors in treating skin infections.
Collapse
Affiliation(s)
- Amelia Muhs
- Center for the Study of Human Health, Emory University, 550 Asbury Circle, Candler Library 107E, Atlanta, Georgia, USA
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 550 Asbury Circle, Candler Library 107E, Atlanta, Georgia, USA
| | - Corey P. Parlet
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kate Nelson
- Department of Dermatology, Emory University School of Medicine, 615 Michael St., Rm 105L WhiteheadBldg, Atlanta, GA, USA
| | - Jeffery S. Kavanaugh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Alexander R. Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 550 Asbury Circle, Candler Library 107E, Atlanta, Georgia, USA
- Department of Dermatology, Emory University School of Medicine, 615 Michael St., Rm 105L WhiteheadBldg, Atlanta, GA, USA
| |
Collapse
|