151
|
Hara Y, Pickel VM. Preferential relocation of the N-methyl-D-aspartate receptor NR1 subunit in nucleus accumbens neurons that contain dopamine D1 receptors in rats showing an apomorphine-induced sensorimotor gating deficit. Neuroscience 2008; 154:965-77. [PMID: 18479834 PMCID: PMC2587121 DOI: 10.1016/j.neuroscience.2008.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 04/08/2008] [Indexed: 11/24/2022]
Abstract
Sensorimotor gating as measured by prepulse inhibition (PPI) to startle-evoking auditory stimulation (AS) is disrupted in schizophrenia and in rodents receiving systemic administration of apomorphine, a dopamine D1/D2 receptor agonist, or MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. The functional analogies and our prior results showing apomorphine- and AS-induced relocation of the dopamine D1 receptor (D1R) in the nucleus accumbens (Acb) shell suggest that apomorphine and AS may affect the subcellular distribution of the NMDA receptor NR1 subunit, a protein that forms protein-protein interactions with the D1R. We quantitatively compared the electron microscopic immunogold labeling for NR1 in dendritic profiles distinguished with respect to presence of D1R immunoreactivity and location in the Acb shell or core of rats receiving a single s.c. injection of vehicle (VEH) or apomorphine (APO) alone, or combined with AS (VEH+AS, APO+AS). The rats in the APO+AS group were previously shown to have PPI deficits, whereas the rats in the VEH+AS group had normal PPI. A significantly higher percentage of plasmalemmal and a lower percentage of cytoplasmic NR1 immunogold particles were seen in D1R-labeled dendritic spines in the Acb shell of the APO+AS group compared with all other groups. D1R-containing small dendrites in the Acb shell of the APO+AS group also showed a significantly higher density of plasmalemmal and a lower density of cytoplasmic NR1 immunogold particles compared with VEH or APO groups. In the Acb core, the APO+AS group had significantly fewer dendritic spines co-expressing NR1 and D1R compared with VEH or VEH+AS groups. These results, together with our earlier findings, suggest that NMDA receptors are preferentially mobilized in D1R-containing Acb neurons of rats showing apomorphine-induced disruption of PPI in a paradigm using acoustic stimulation.
Collapse
Affiliation(s)
- Y Hara
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street KB-410, New York, NY 10021, USA
| | | |
Collapse
|
152
|
Hallett PJ, Collins TL, Standaert DG, Dunah AW. Biochemical fractionation of brain tissue for studies of receptor distribution and trafficking. ACTA ACUST UNITED AC 2008; Chapter 1:Unit 1.16. [PMID: 18428670 DOI: 10.1002/0471142301.ns0116s42] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An important tool for studying the regulation of synapses is a rapid and reliable means of separating synaptic and intracellular proteins. This unit presents a technique for analysis of brain tissue which relies on differential centrifugation to separate proteins present at synaptic sites from those found in intracellular cytoplasmic and vesicular pools. The method is efficient in that only small amounts of tissue, such as might be obtained from a small region of a rodent brain, are required. It is reproducible and, in conjunction with immunoblot or immunoprecipitation techniques, can produce reliable quantitative data. The protocol will be of interest to those conducting a variety of different studies related to the localization and trafficking of brain receptors and signaling molecules.
Collapse
Affiliation(s)
- Penelope J Hallett
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | | |
Collapse
|
153
|
Gardoni F. MAGUK proteins: New targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol 2008; 585:147-52. [DOI: 10.1016/j.ejphar.2008.01.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/20/2007] [Accepted: 01/21/2008] [Indexed: 12/26/2022]
|
154
|
Xu J, Weerapura M, Ali MK, Jackson MF, Li H, Lei G, Xue S, Kwan CL, Manolson MF, Yang K, Macdonald JF, Yu XM. Control of excitatory synaptic transmission by C-terminal Src kinase. J Biol Chem 2008; 283:17503-14. [PMID: 18445593 DOI: 10.1074/jbc.m800917200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The induction of long-term potentiation at CA3-CA1 synapses is caused by an N-methyl-d-aspartate (NMDA) receptordependent accumulation of intracellular Ca(2+), followed by Src family kinase activation and a positive feedback enhancement of NMDA receptors (NMDARs). Nevertheless, the amplitude of baseline transmission remains remarkably constant even though low frequency stimulation is also associated with an NMDAR-dependent influx of Ca(2+) into dendritic spines. We show here that an interaction between C-terminal Src kinase (Csk) and NMDARs controls the Src-dependent regulation of NMDAR activity. Csk associates with the NMDAR signaling complex in the adult brain, inhibiting the Src-dependent potentiation of NMDARs in CA1 neurons and attenuating the Src-dependent induction of long-term potentiation. Csk associates directly with Src-phosphorylated NR2 subunits in vitro. An inhibitory antibody for Csk disrupts this physical association, potentiates NMDAR mediated excitatory postsynaptic currents, and induces long-term potentiation at CA3-CA1 synapses. Thus, Csk serves to maintain the constancy of baseline excitatory synaptic transmission by inhibiting Src kinase-dependent synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Jindong Xu
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Post-synaptic density-93 mediates tyrosine-phosphorylation of the N-methyl-D-aspartate receptors. Neuroscience 2008; 153:700-8. [PMID: 18423999 DOI: 10.1016/j.neuroscience.2008.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/04/2008] [Accepted: 03/02/2008] [Indexed: 11/21/2022]
Abstract
Src family protein kinases (SFKs) -mediated tyrosine-phosphorylation regulates N-methyl-D-aspartate (NMDA) receptor synaptic function. Some members of the membrane-associated guanylate kinase (MAGUK) family of proteins bind to both SFKs and NMDA receptors, but it is unclear whether the MAGUK family of proteins is required for SFKs-mediated tyrosine-phosphorylation of the NMDA receptors. Here, we showed by co-immunoprecipitation that post-synaptic density (PSD) -93, a member of the MAGUK family of proteins, interacts with the NMDA receptor subunits NR2A and NR2B as well as with Fyn, a member of the SFKs, in mouse cerebral cortex. Using a biochemical fractionation approach to isolate subcellular compartments revealed that the expression of Fyn, but not of other members of the SFKs (Lyn, Src, and Yes), was significantly decreased in synaptosomal membrane fractions derived from the cerebral cortex of PSD-93 knockout mice. Interestingly, we found that PSD-93 disruption causes reduction of tyrosine-phosphorylated NR2A and NR2B in the same fraction. Moreover, PSD-93 deletion markedly blocked the SFKs-mediated increase in tyrosine-phosphorylated NR2A and NR2B through the protein kinase C pathway after induction with 4-phorbol 12-myristate 13-acetate in cultured cortical neurons. Our findings indicate that PSD-93 appears to mediate tyrosine-phosphorylation of the NMDA receptors and synaptic localization of Fyn.
Collapse
|
156
|
Zeng C, Armando I, Luo Y, Eisner GM, Felder RA, Jose PA. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice. Am J Physiol Heart Circ Physiol 2008; 294:H551-69. [PMID: 18083900 PMCID: PMC4029502 DOI: 10.1152/ajpheart.01036.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3), and D(4)) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure.
Collapse
MESH Headings
- Animals
- Blood Pressure/genetics
- Blood Pressure/physiology
- Dopamine/physiology
- Hypertension/genetics
- Hypertension/physiopathology
- Mice
- Mice, Knockout
- Receptors, Dopamine/genetics
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/physiology
- Receptors, Dopamine D5/genetics
- Receptors, Dopamine D5/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City 400042, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
157
|
Impoverished rearing impairs working memory and metabotropic glutamate receptor 5 expression. Neuroreport 2008; 19:239-43. [DOI: 10.1097/wnr.0b013e3282f4aa15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
158
|
Kim J, Lee S, Park K, Hong I, Song B, Son G, Park H, Kim WR, Park E, Choe HK, Kim H, Lee C, Sun W, Kim K, Shin KS, Choi S. Amygdala depotentiation and fear extinction. Proc Natl Acad Sci U S A 2007; 104:20955-60. [PMID: 18165656 PMCID: PMC2409248 DOI: 10.1073/pnas.0710548105] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Indexed: 11/18/2022] Open
Abstract
Auditory fear memory is thought to be maintained by fear conditioning-induced potentiation of synaptic efficacy, which involves enhanced expression of surface AMPA receptor (AMPAR) at excitatory synapses in the lateral amygdala (LA). Depotentiation, reversal of conditioning-induced potentiation, has been proposed as a cellular mechanism for fear extinction; however, a direct link between depotentiation and extinction has not yet been tested. To address this issue, we applied both ex vivo and in vivo approaches to rats in which fear memory had been consolidated. A unique form of depotentiation reversed conditioning-induced potentiation at thalamic input synapses onto the LA (T-LA synapses) ex vivo. Extinction returned the enhanced T-LA synaptic efficacy observed in conditioned rats to baseline and occluded the depotentiation. Consistently, extinction reversed conditioning-induced enhancement of surface expression of AMPAR subunits in LA synaptosomal preparations. A GluR2-derived peptide that blocks regulated AMPAR endocytosis inhibited depotentiation, and microinjection of a cell-permeable form of the peptide into the LA attenuated extinction. Our results are consistent with the use of depotentiation to weaken potentiated synaptic inputs onto the LA during extinction and provide strong evidence that AMPAR removal at excitatory synapses in the LA underlies extinction.
Collapse
Affiliation(s)
- Jeongyeon Kim
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sukwon Lee
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Kyungjoon Park
- Departments of Biology and Biological and Nanopharmaceutical Sciences, Kyunghee University, Seoul 130-701, Korea
| | - Ingie Hong
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Beomjong Song
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Gihoon Son
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Heewoo Park
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Woon Ryoung Kim
- Department of Anatomy, Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul 136-701, Korea; and
| | - Eunjin Park
- Department of Biological Sciences, College of Natural Sciences, Inha University, 253 Yong-Hyun Dong, Nam-Gu, Inchon 402-751, Korea
| | - Han Kyung Choe
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyun Kim
- Department of Anatomy, Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul 136-701, Korea; and
| | - Changjoong Lee
- Department of Biological Sciences, College of Natural Sciences, Inha University, 253 Yong-Hyun Dong, Nam-Gu, Inchon 402-751, Korea
| | - Woong Sun
- Department of Anatomy, Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul 136-701, Korea; and
| | - Kyungjin Kim
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ki Soon Shin
- Departments of Biology and Biological and Nanopharmaceutical Sciences, Kyunghee University, Seoul 130-701, Korea
| | - Sukwoo Choi
- *School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
159
|
Ahmed MR, Bychkov E, Gurevich VV, Benovic JL, Gurevich EV. Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J Neurochem 2007; 104:1622-36. [PMID: 17996024 DOI: 10.1111/j.1471-4159.2007.05104.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dysregulation of dopamine (DA) receptors is believed to underlie Parkinson's disease pathology and l-DOPA-induced motor complications. DA receptors are subject to regulation by G protein-coupled receptor kinases (GRKs) and arrestins. DA lesion with 6-hydroxydopamine caused multiple protein- and brain region-specific changes in the expression of GRKs. In the globus pallidus, all four GRK isoforms (GRK2, 3, 5, 6) were reduced in the lesioned hemisphere. In the caudal caudate-putamen (cCPu) three GRK isoforms (GRK2, 3, 6) were decreased by DA depletion. The decrease in GRK proteins in globus pallidus, but not cCPu, was mirrored by reduction in mRNA. GRK3 protein was reduced in the rostral caudate-putamen (rCPu), whereas other isoforms were either unchanged or up-regulated. GRK6 protein and mRNA were up-regulated in rCPu and nucleus accumbens. l-DOPA (25 mg/kg, twice daily for 10 days) failed to reverse changes caused by DA depletion, whereas D(2)/D(3) agonist pergolide (0.25 mg/kg daily for 10 days) restored normal levels of expression of GRK5 and 6. In rCPu, GRK2 protein was increased in most subcellular fractions by l-DOPA but not by DA depletion alone. Similarly, l-DOPA up-regulated arrestin3 in membrane fractions in both regions. GRK5 was down-regulated by l-DOPA in cCPu in the light membrane fraction, where this isoform is the most abundant. The data suggest that alterations in the expression and subcellular distribution of arrestins and GRKs contribute to pathophysiology of Parkinson's disease. Thus, these proteins may be targets for antiparkinsonian therapy.
Collapse
Affiliation(s)
- M Rafiuddin Ahmed
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
160
|
Jurd R, Thornton C, Wang J, Luong K, Phamluong K, Kharazia V, Gibb SL, Ron D. Mind bomb-2 is an E3 ligase that ubiquitinates the N-methyl-D-aspartate receptor NR2B subunit in a phosphorylation-dependent manner. J Biol Chem 2007; 283:301-310. [PMID: 17962190 DOI: 10.1074/jbc.m705580200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic plasticity. Post-translational modifications of NMDARs, such as phosphorylation, alter both the activity and trafficking properties of NMDARs. Ubiquitination is increasingly being recognized as another post-translational modification that can alter synaptic protein composition and function. We identified Mind bomb-2 as an E3 ubiquitin ligase that interacts with and ubiquitinates the NR2B subunit of the NMDAR in mammalian cells. The protein-protein interaction and the ubiquitination of the NR2B subunit were found to be enhanced in a Fyn phosphorylation-dependent manner. Immunocytochemical studies reveal that Mind bomb-2 is localized to postsynaptic sites and colocalizes with the NMDAR in apical dendrites of hippocampal neurons. Furthermore, we show that NMDAR activity is down-regulated by Mind bomb-2. These results identify a specific E3 ubiquitin ligase as a novel interactant with the NR2B subunit and suggest a possible mechanism for the regulation of NMDAR function involving both phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Rachel Jurd
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Claire Thornton
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Jun Wang
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Ken Luong
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Khanhky Phamluong
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Viktor Kharazia
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Stuart L Gibb
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Dorit Ron
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608.
| |
Collapse
|
161
|
Farchi N, Ofek K, Podoly E, Dong H, Xiang YY, Diamant S, Livnah O, Li J, Hochner B, Lu WY, Soreq H. Peripheral site acetylcholinesterase blockade induces RACK1-associated neuronal remodeling. NEURODEGENER DIS 2007; 4:171-84. [PMID: 17596712 DOI: 10.1159/000101842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Peripheral anionic site (PAS) blockade of acetylcholinesterase (AChE) notably affects neuronal activity and cyto-architecture, however, the mechanism(s) involved are incompletely understood. OBJECTIVE We wished to specify the PAS extracellular effects on specific AChE mRNA splice variants, delineate the consequent cellular remodeling events, and explore the inhibitory effects on interchanging RACK1 interactions. METHODS We exposed rat hippocampal cultured neurons to BW284C51, the peripheral anionic site inhibitor of AChE, and to the non-selective AChE active site inhibitor, physostigmine for studying the neuronal remodeling of AChE mRNA expression and trafficking. RESULTS BW284C51 induced overexpression of both AChE splice variants, yet promoted neuritic translocation of the normally rare AChE-R, and retraction of AChE-S mRNA in an antisense-suppressible manner. BW284C51 further caused modest decreases in the expression of the scaffold protein RACK1 (receptor for activated protein kinase betaII), followed by drastic neurite retraction of both RACK1 and the AChE homologue neuroligin1, but not the tubulin-associated MAP2 protein. Accompanying BW284C51 effects involved decreases in the Fyn kinase and membrane insertion of the glutamate receptor NR2B variant and impaired glutamatergic activities of treated cells. Intriguingly, molecular modeling suggested that direct, non-catalytic competition with Fyn binding by the RACK1-interacting AChE-R variant may be involved. CONCLUSIONS Our findings highlight complex neuronal AChE-R/RACK1 interactions and are compatible with the hypothesis that peripheral site AChE inhibitors induce RACK1-mediated neuronal remodeling, promoting suppressed glutamatergic neurotransmission.
Collapse
MESH Headings
- Acetylcholinesterase/genetics
- Acetylcholinesterase/metabolism
- Alternative Splicing
- Animals
- Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/pharmacology
- Cells, Cultured
- Cholinesterase Inhibitors/pharmacology
- Cricetinae
- Cricetulus
- Embryo, Mammalian
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Excitatory Postsynaptic Potentials/radiation effects
- Gene Expression Regulation, Enzymologic/drug effects
- Hippocampus/cytology
- Models, Molecular
- Nerve Tissue Proteins/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Physostigmine/pharmacology
- RNA, Messenger/biosynthesis
- Rats
- Receptors for Activated C Kinase
- Receptors, Cell Surface/metabolism
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Noa Farchi
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Tseng KY, Lewis BL, Lipska BK, O'Donnell P. Post-pubertal disruption of medial prefrontal cortical dopamine-glutamate interactions in a developmental animal model of schizophrenia. Biol Psychiatry 2007; 62:730-8. [PMID: 17207473 PMCID: PMC2204086 DOI: 10.1016/j.biopsych.2006.10.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 10/02/2006] [Accepted: 10/08/2006] [Indexed: 01/11/2023]
Abstract
BACKGROUND A neonatal ventral hippocampal lesion (NVHL) induces behavioral and physiological anomalies mimicking pathophysiological changes of schizophrenia. Because prefrontal cortical (PFC) pyramidal neurons recorded from adult NVHL rats exhibit abnormal responses to activation of the mesocortical dopaminergic (DA) system, we explored whether these changes are due to an altered DA modulation of pyramidal neurons. METHODS Whole-cell recordings were used to examine the effects of DA and glutamate agonists on cell excitability in brain slices obtained from pre- (postnatal day [PD] 28-35) and post-pubertal (PD > 61) sham and NVHL animals. RESULTS N-methyl d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methylisoxazole propionate (AMPA), and the D(1) agonist SKF38393 increased excitability of deep layer pyramidal neurons in a concentration-dependent manner. The opposite effect was observed with the D(2) agonist quinpirole. The effects of NMDA (but not AMPA) and SKF38393 on cell excitability were significantly higher in slices from NVHL animals, whereas quinpirole decrease of cell excitability was reduced. These differences were not observed in slices from pre-pubertal rats, suggesting that PFC DA and glutamatergic systems become altered after puberty in NVHL rats. CONCLUSIONS A disruption of PFC dopamine-glutamate interactions might emerge after puberty in brains with an early postnatal deficit in hippocampal inputs, and this disruption could contribute to the manifestation of schizophrenia-like symptoms.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Animals, Newborn
- Disease Models, Animal
- Dopamine/physiology
- Dopamine Agonists/pharmacology
- Electrophysiology
- Excitatory Amino Acid Agonists/pharmacology
- Female
- Glutamic Acid/physiology
- Hippocampus/injuries
- Hippocampus/physiology
- N-Methylaspartate/pharmacology
- Neurons/physiology
- Patch-Clamp Techniques
- Prefrontal Cortex/cytology
- Prefrontal Cortex/growth & development
- Prefrontal Cortex/metabolism
- Pregnancy
- Pyramidal Cells/drug effects
- Pyramidal Cells/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/physiology
- Schizophrenia/metabolism
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Collapse
Affiliation(s)
- Kuei-Yuan Tseng
- Center for Neuropharmacology & Neuroscience, Albany Medical College, Albany, New York, USA
| | | | | | | |
Collapse
|
163
|
Abstract
The neurotoxin 6-hydroxydopamine (6-OHDA) continues to constitute a valuable topical tool used chiefly in modeling Parkinson's disease in the rat. The classical method of intracerebral infusion of 6-OHDA involving a massive destruction of nigrostriatal dopaminergic neurons, is largely used to investigate motor and biochemical dysfunctions in Parkinson's disease. Subsequently, more subtle models of partial dopaminergic degeneration have been developed with the aim of revealing finer motor deficits. The present review will examine the main features of 6-OHDA models, namely the mechanisms of neurotoxin-induced neurodegeneration as well as several behavioural deficits and motor dysfunctions, including the priming model, modeled by this means. An overview of the most recent morphological and biochemical findings obtained with the 6-OHDA model will also be provided, particular attention being focused on the newly investigated intracellular mechanisms at the striatal level (e.g., A(2A) and NMDA receptors, PKA, CaMKII, ERK kinases, as well as immediate early genes, GAD67 and peptides). Thanks to studies performed in the 6-OHDA model, all these mechanisms have now been hypothesised to represent the site of pathological dysfunction at cellular level in Parkinson's disease.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | | | | |
Collapse
|
164
|
Poisik OV, Smith Y, Conn PJ. D1- and D2-like dopamine receptors regulate signaling properties of group I metabotropic glutamate receptors in the rat globus pallidus. Eur J Neurosci 2007; 26:852-62. [PMID: 17672856 DOI: 10.1111/j.1460-9568.2007.05710.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dopamine is essential to the proper functioning of basal ganglia (BG) because loss of dopaminergic input profoundly alters the activity of these nuclei. Experimental evidence suggests that multiple aspects of glutamatergic neurotransmission in the BG are altered with the loss of dopaminergic input. Using whole-cell patch-clamp recording in rat brain slices, we examined whether activity of dopamine receptors is necessary to maintain signaling properties of group I metabotropic glutamate receptor subtypes, mGluR1 and 5, in the rat globus pallidus (GP), one of the nuclei in the BG circuit. Dopaminergic depletion due to systemic treatment with reserpine caused a change in the signaling properties of group I mGluRs, where mGluR1 lost the ability to depolarize GP neurons, while mGluR5 gained such ability. Bath-application of dopamine or D1- and D2-like dopamine receptor agonists to slices from reserpinized rats partly reversed these effects and caused mGluR1 to gain back its ability to depolarize GP neurons. On the other hand, stimulation of either D1-like or D2-like dopamine receptors was sufficient to abolish the activating properties of mGluR5 acquired following reserpine treatment. Interestingly, inhibition of protein kinase A activity alone was sufficient to largely reverse plasticity in function of group I mGluRs that was induced by reserpine treatment. Our data reveal that specific roles of group I mGluRs in the GP depend on the activity of D1-like and D2-like dopamine receptors, further corroborating the importance of dopamine in maintaining proper glutamatergic neurotransmission in the BG.
Collapse
Affiliation(s)
- Olga V Poisik
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
165
|
Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 2007; 8:413-26. [PMID: 17514195 DOI: 10.1038/nrn2153] [Citation(s) in RCA: 864] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The number and subunit composition of synaptic N-methyl-D-aspartate receptors (NMDARs) are not static, but change in a cell- and synapse-specific manner during development and in response to neuronal activity and sensory experience. Neuronal activity drives not only NMDAR synaptic targeting and incorporation, but also receptor retrieval, differential sorting into the endosomal-lysosomal pathway and lateral diffusion between synaptic and extrasynaptic sites. An emerging concept is that activity-dependent, bidirectional regulation of NMDAR trafficking provides a dynamic and potentially powerful mechanism for the regulation of synaptic efficacy and remodelling, which, if dysregulated, can contribute to neuropsychiatric disorders such as cocaine addiction, Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- C Geoffrey Lau
- Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
166
|
Cornejo BJ, Mesches MH, Coultrap S, Browning MD, Benke TA. A single episode of neonatal seizures permanently alters glutamatergic synapses. Ann Neurol 2007; 61:411-26. [PMID: 17323345 DOI: 10.1002/ana.21071] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The contribution of seizures to cognitive changes remains controversial. We tested the hypothesis that a single episode of neonatal seizures (sNS) on rat postnatal day (P) 7 permanently impairs hippocampal-dependent function in mature (P60) rats because of long-lasting changes at the synaptic level. METHODS sNS was induced with subcutaneously injected kainate on P7. Learning, memory, mossy fiber sprouting, spine density, hippocampal synaptic plasticity, and glutamate receptor expression and subcellular distribution were measured at P60. RESULTS sNS selectively impaired working memory in a hippocampal-dependent radial arm water-maze task without inducing mossy fiber sprouting or altering spine density. sNS impaired CA1 hippocampal long-term potentiation and enhanced long-term depression. Subcellular fractionation and cross-linking, used to determine whether glutamate receptor trafficking underlies the alterations of memory and synaptic plasticity, demonstrated that sNS induced a selective reduction in the membrane pool of glutamate receptor 1 subunits. sNS induced a decrease in the total amount of N-methyl-D-aspartate receptor 2A and an increase in the primary subsynaptic scaffold, PSD-95. INTERPRETATION These molecular consequences are consistent with the alterations in plasticity and memory caused by sNS at the synaptic level. Our data demonstrate the cognitive impact of sNS and associate memory deficits with specific alterations in glutamatergic synaptic function.
Collapse
Affiliation(s)
- Brandon J Cornejo
- Department of Pharmacology, University of Colorado, School of Medicine, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
167
|
Yoon DY, Rippel CA, Kobets AJ, Morris CM, Lee JE, Williams PN, Bridges DD, Vandenbergh DJ, Shugart YY, Singer HS. Dopaminergic polymorphisms in Tourette syndrome: association with the DAT gene (SLC6A3). Am J Med Genet B Neuropsychiatr Genet 2007; 144B:605-10. [PMID: 17171650 DOI: 10.1002/ajmg.b.30466] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tourette syndrome (TS) is a chronic neuropsychiatric disorder characterized by involuntary motor and phonic tics. The pattern of inheritance and associated genetic abnormality has yet to be fully characterized. A dopaminergic abnormality in this disorder is supported by response to specific therapies, nuclear imaging, and postmortem studies. In this protocol, dopaminergic polymorphisms were examined for associations with TS and attention-deficit hyperactivity disorder (ADHD). Polymorphisms investigated included the dopamine transporter (DAT1 DdeI and DAT1 VNTR), dopamine receptor (D4 Upstream Repeat and D4 VNTR), dopamine converting enzyme (dopamine beta-hydroxylase), and the acid phosphatase locus 1 (ACP1) gene. DNA was obtained from 266 TS individuals +/- ADHD and 236 controls that were ethnicity-matched. A significant association, using a genotype-based association analysis, was identified for the TS-total and TS-only versus control groups for the DAT1 DdeI polymorphism (AG vs. AA, P = 0.004 and P = 0.01, respectively). Population structure, estimated by the genotyping of 27 informative SNP markers, identified 3 subgroups. A statistical re-evaluation of the DAT1 DdeI polymorphism following population stratification confirmed the association for the TS-total and TS-only groups, but the degree of significance was reduced (P = 0.017 and P = 0.016, respectively). This study has identified a significant association between the presence of TS and a DAT polymorphism. Since abnormalities of the dopamine transporter have been hypothesized in the pathophysiology of TS, it is possible that this could be a functional allele associated with clinical expression.
Collapse
Affiliation(s)
- Dustin Y Yoon
- Department of Neurology, Johns Hopkins University School of Medicine, Harriet Lane Children's Health Building, Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Smith DB, Udeigwe LC, Rubin J. Physical interactions between D1 and NMDA receptors as a possible inhibitory mechanism to avoid excessive NMDA currents. BMC Neurosci 2007. [PMCID: PMC4435664 DOI: 10.1186/1471-2202-8-s2-p111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
169
|
Yang ZJ, Torbey M, Li X, Bernardy J, Golden WC, Martin LJ, Koehler RC. Dopamine receptor modulation of hypoxic-ischemic neuronal injury in striatum of newborn piglets. J Cereb Blood Flow Metab 2007; 27:1339-51. [PMID: 17213860 PMCID: PMC2084487 DOI: 10.1038/sj.jcbfm.9600440] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dopamine receptors regulate glutamatergic neurotransmission and Na(+),K(+)-ATPase via protein kinase A (PKA) and dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32)-dependent signaling. Consequently, dopamine receptor activation may modulate neonatal hypoxic-ischemic (H-I) neuronal damage in the selectively vulnerable putamen enriched with dopaminergic receptors. Piglets subjected to two durations of hypoxia followed by asphyxic cardiac arrest were treated with a D1-like (SCH23390) or D2-like (sulpiride) receptor antagonist. At 4 days of recovery from less severe H-I, the remaining viable neurons in putamen were 60% of control, but nearly completely salvaged by pretreatment with SCH23390 or sulpiride. After more severe H-I in which only 18% of neurons were viable, partial neuroprotection was seen with SCH23390 pretreatment (50%) and posttreatment (39%) and with sulpiride pretreatment (35%), but not with sulpiride posttreatment (24%). Dopamine was significantly elevated in microdialysis samples from putamen during asphyxia and the first 15 mins of reoxygenation. Pretreatment with SCH23390 or sulpiride largely attenuated the increased nitrotyrosine and the decreased Na(+),K(+)-ATPase activity that occurred at 3 h after severe H-I. Pretreatment with SCH23390, but not sulpiride, also attenuated H-I-induced increases in PKA-dependent phosphorylation of Thr34 on DARPP-32, Ser943 on the alpha subunit of Na(+),K(+)-ATPase, and Ser897 of the N-methyl-D-aspartate (NMDA) receptor NR1 subunit. These findings indicate that D1 and D2 dopamine receptor activation contribute to neuronal death in newborn putamen after H-I in association with increased protein nitration and decreased Na(+),K(+)-ATPase activity. Furthermore, mechanisms of D1 receptor toxicity may involve DARPP-32-dependent phosphorylation of NMDA receptor NR1 and Na(+),K(+)-ATPase.
Collapse
Affiliation(s)
- Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | |
Collapse
|
170
|
Magnusson KR, Scruggs B, Zhao X, Hammersmark R. Age-related declines in a two-day reference memory task are associated with changes in NMDA receptor subunits in mice. BMC Neurosci 2007; 8:43. [PMID: 17587455 PMCID: PMC1919384 DOI: 10.1186/1471-2202-8-43] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 06/22/2007] [Indexed: 11/23/2022] Open
Abstract
Background C57BL/6 mice show a relationship during aging between NMDA receptor expression and spatial reference memory performance in a 12-day task. The present study was designed to determine if age-related deficits could be detected with a shorter testing protocol and whether these deficits showed a relationship with NMDA receptors. Mice were trained in a reference memory task for two days in a Morris water maze. Cued testing was performed either after or prior to reference memory testing. Crude synaptosomes were prepared from prefrontal/frontal cortex and hippocampus of the mice that underwent reference memory testing first. NMDA receptor subunit and syntaxin proteins were analyzed with Western blotting. Results Young mice showed significant improvement in probe and place learning when reference memory testing was done prior to cued testing. A significant decrease in performance was seen between 3 and 26 months of age with the two-day reference task, regardless of whether cued testing was performed before or after reference memory testing. There was a significant decline in the protein expression of the ε2 and ζ1 subunits of the NMDA receptor and syntaxin in prefrontal/frontal cortex. The subunit changes showed a significant correlation with both place and probe trial performance. Conclusion The presence of an age-related decline in performance of the reference memory task regardless of when the cued trials were performed suggests that the deficits were due to factors that were unique to the spatial reference memory task. These results also suggest that declines in specific NMDA receptor subunits in the synaptic pool of prefrontal/frontal brain regions contributed to these age-related problems with performing a spatial reference memory task.
Collapse
Affiliation(s)
- Kathy R Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
- Department of Biological Sciences, University of Idaho, College of Science, Moscow, ID, 83844, USA
- Behavioral testing performed at: Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Program in Molecular, Cellular, and Integrative Neurosciences and Department of Psychology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brandi Scruggs
- Behavioral testing performed at: Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Program in Molecular, Cellular, and Integrative Neurosciences and Department of Psychology, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Psychology, Worcester State College, Worcester, MA 01602-2597, USA
| | - Xue Zhao
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
- Department of Biological Sciences, University of Idaho, College of Science, Moscow, ID, 83844, USA
| | - Rebecca Hammersmark
- Department of Biological Sciences, University of Idaho, College of Science, Moscow, ID, 83844, USA
| |
Collapse
|
171
|
Large CH. Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs? J Psychopharmacol 2007; 21:283-301. [PMID: 17591656 DOI: 10.1177/0269881107077712] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists, such as ketamine and phencyclidine, induce perceptual abnormalities, psychosis-like symptoms, and mood changes in healthy humans and patients with schizophrenia. The similarity between NMDA receptor antagonist-induced psychosis and schizophrenia has led to the widespread use of the drugs to provide models to aid the development of novel treatments for the disorder. This review investigates the predictive validity of NMDA receptor antagonist models based on a range of novel treatments that have now reached clinical trials. Furthermore, it considers the extent to which the different hypotheses that have been proposed to account for the psychotomimetic effects of NMDA receptor antagonist have been validated by the results of these trials. Finally, the review discusses some of the caveats associated with use of the models and some suggestions as to how a greater use of translational markers might ensure progress in understanding the relationship between the models and schizophrenia.
Collapse
Affiliation(s)
- Charles H Large
- Psychiatry CEDD, GlaxoSmithKline, Via Fleming 4, 37135 Verona, Italy.
| |
Collapse
|
172
|
Tseng KY, Snyder-Keller A, O’Donnell P. Dopaminergic modulation of striatal plateau depolarizations in corticostriatal organotypic cocultures. Psychopharmacology (Berl) 2007; 191:627-40. [PMID: 16758237 PMCID: PMC2213368 DOI: 10.1007/s00213-006-0439-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 05/08/2006] [Indexed: 11/29/2022]
Abstract
RATIONALE It has been proposed that dopamine (DA) sustains up states in striatal medium spiny neurons (MSN). Testing this hypothesis requires an in vitro preparation, but up states are typically only observed in vivo. OBJECTIVES In this study, we used corticostriatal organotypic cocultures, a preparation in which up states have been previously observed, to test the DA control of cortically-driven plateau depolarizations. RESULTS After 7-21 days in vitro in serum-free conditions, plateau depolarizations resembling up states were only observed in cultures with a critical extent of striatal DA innervation. These plateaus were completely blocked by the non-NMDA antagonist CNQX and significantly shortened by the NMDA antagonist APV or the D(1) antagonist SCH23390. Intracellular interruption of Ca(++) or protein-kinase A (PKA) signaling also eliminated the plateaus. The D(2) antagonist eticlopride failed to disrupt the plateaus, but significantly increased MSN excitability. CONCLUSIONS These results suggest that coincident activation of corticostriatal glutamatergic and mesostriatal DA transmission may set ensembles of MSN into prolonged depolarizations through a D(1) enhancement of striatal NMDA function in a Ca(++) and PKA-dependent manner.
Collapse
Affiliation(s)
- Kuei Y. Tseng
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave (MC-136), Albany, NY 12208, USA
| | | | - Patricio O’Donnell
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave (MC-136), Albany, NY 12208, USA,e-mail:
| |
Collapse
|
173
|
Wang JQ, Liu X, Zhang G, Parelkar NK, Arora A, Haines M, Fibuch EE, Mao L. Phosphorylation of glutamate receptors: a potential mechanism for the regulation of receptor function and psychostimulant action. J Neurosci Res 2007; 84:1621-9. [PMID: 16983660 DOI: 10.1002/jnr.21050] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ionotropic glutamate receptors, N-methyl-d-aspartate receptors (NMDARs) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs), are densely distributed in the mammalian brain and actively regulate a variety of cellular activities. Expression and function of these receptors are also under a tight regulation by many molecular mechanisms. Protein phosphorylation represents one of the important mechanisms for the posttranslational modulation of these receptors. Constitutive and regulatory phosphorylation occurs at distinct sites (serine, threonine, or tyrosine) on the intracellular C-terminal domain of almost all subunits capable of assembling a functional channel. Several key protein kinases, such as protein kinase A, protein kinase C, Ca(2+)/calmodulin-dependent protein kinases, and tyrosine kinases are involved in the site-specific catalyzation and regulation of NMDAR and AMPAR phosphorylation. Through the phosphorylation mechanism, these protein kinases as well as protein phosphatases control biochemical properties (biosynthesis, delivery, and subunit assembling), subcellular distribution, and interactions of these receptors with various synaptic proteins, which ultimately modify the efficacy and strength of excitatory synapses containing NMDARs and AMPARs and many forms of synaptic plasticity. Emerging evidence shows that psychostimulants (cocaine and amphetamine) are among effective agents that profoundly alter the phosphorylation status of both receptors in striatal neurons in vivo. Thus, psychostimulants may modulate NMDAR and AMPAR function through the phosphorylation mechanism to shape the excitatory synaptic plasticity related to additive properties of drugs of abuse.
Collapse
Affiliation(s)
- John Q Wang
- Department of Basic Medical Science, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Davis EJH, Coyne C, McNeill TH. Intrastriatal dopamine D1 antagonism dampens neural plasticity in response to motor cortex lesion. Neuroscience 2007; 146:784-91. [PMID: 17331653 PMCID: PMC1955381 DOI: 10.1016/j.neuroscience.2007.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/10/2007] [Accepted: 01/23/2007] [Indexed: 11/24/2022]
Abstract
Motor cortex lesions in rats partially denervate the striatum, producing behavioral deficits and inducing reactive neuroplasticity. Plastic responses include changes in growth-associated protein marker expression and anatomical restructuring. Corticostriatal plasticity is dependent on dopamine at the striatal target, where D1 receptor signaling reinforces behaviorally relevant neural activity. To determine whether striatal dopamine D1 receptor signaling is important for the growth-associated protein responses and behavioral recovery that follow unilateral motor cortex aspiration, the dopamine D1 receptor antagonist SCH23390 was intrastriatally infused in cortically lesioned animals. After a cortical aspiration lesion in Long Evans rats, the growth-associated proteins SCG10 and GAP-43 were upregulated in the cortex contralateral to the lesion at 30 days post-lesion. However, continuous unilateral intrastriatal infusion of SCH23390 prevented this aspiration-induced upregulation. Furthermore, lesioned rats demonstrated spontaneous sensorimotor improvement, in terms of limb-use symmetry, about 1 month post-lesion. This improvement was prevented with chronic intrastriatal SCH23390 infusion. The D1 receptor influence may be important to normalize corticostriatal activity (and observable behavior), either in a long-term manner or temporarily until other more permanent means of synaptic regulation, such as sprouting or synaptogenesis, may be implemented.
Collapse
Affiliation(s)
- E J H Davis
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
175
|
Mauceri D, Gardoni F, Marcello E, Di Luca M. Dual role of CaMKII-dependent SAP97 phosphorylation in mediating trafficking and insertion of NMDA receptor subunit NR2A. J Neurochem 2007; 100:1032-46. [PMID: 17156128 DOI: 10.1111/j.1471-4159.2006.04267.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synapse Associated Protein 97 (SAP97), a member of membrane-associated guanylate kinase (MAGUK) protein family, has been involved in the correct targeting and clustering of ionotropic glutamate receptors (iGluRs) at postsynaptic sites. Calcium/calmodulin kinase II (CaMKII) phosphorylates SAP97 on two major sites in vivo; one located in the N-terminal domain (Ser39) and the other in the first postsynaptic density disc large ZO1 (PDZ) domain (Ser232). CaMKII-mediated phosphorylation of SAP97-Ser39 is necessary and sufficient to drive SAP97 to the postsynaptic compartment in cultured hippocampal neurons. CaMKII-dependent phosphorylation of Ser232 disrupts SAP97 interaction with NR2A subunit, thereby regulating synaptic targeting of this NMDA receptor subunit. Here we show by means of phospho-specific antibodies that SAP97-Ser39 phosphorylation represents the driving force to release SAP97/NR2A complex from the endoplasmic reticulum. Ser39 phosphorylation does not interfere with SAP97 capability to bind NR2A. On the contrary, SAP97-Ser232 phosphorylation occurs within the postsynaptic compartment and is responsible for both the disruption of NR2A/SAP97 complex and, consequently, for NR2A insertion in the postsynaptic membrane. Thus, CaMKII-dependent phosphorylation of SAP97 in different time frames and locations within the neurons controls both NR2A trafficking and insertion.
Collapse
Affiliation(s)
- D Mauceri
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
176
|
Abstract
Apolipoprotein E (APOE) is a cholesterol transport protein and an isoform-specific major risk factor for neurodegenerative diseases. The lipoprotein receptors that bind APOE have recently been recognized as pivotal components of the neuronal signalling machinery. The interaction between APOE receptors and one of their ligands, reelin, allows them to function directly as signal transduction receptors at the plasma membrane to control not only neuronal positioning during brain development, but also synaptic plasticity in the adult brain. Here, we review the molecular mechanisms through which APOE, cholesterol, reelin and APOE receptors control synaptic functions that are essential for cognition, learning, memory, behaviour and neuronal survival.
Collapse
Affiliation(s)
- Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texus 75390, USA.
| | | |
Collapse
|
177
|
Ba M, Kong M, Ma G, Yang H, Lu G, Chen S, Liu Z. Cellular and behavioral effects of 5-HT1A receptor agonist 8-OH-DPAT in a rat model of levodopa-induced motor complications. Brain Res 2006; 1127:177-84. [PMID: 17113046 DOI: 10.1016/j.brainres.2006.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/09/2006] [Accepted: 10/14/2006] [Indexed: 10/23/2022]
Abstract
5-HT1A autoreceptor stimulation can act to attenuate supraphysiological swings in extracellular dopamine levels following long-term levodopa treatment and may be useful in the treatment and prevention of the motor complications. The purpose of this study was to investigate cellular and behavioral effects of 5-HT1A receptor agonist 8-OH-DPAT in a rat model of levodopa-induced motor complications. Two sets of experiments were performed. First, animals were treated with levodopa (50 mg/kg with benserazide 12.5 mg/kg, twice daily), intraperitoneally (i.p.) for 22 days. On day 23, animals received either 8-OH-DPAT (1 mg/kg, i.p.) or 8-OH-DPAT plus WAY-100635 (0.1 mg/kg, i.p) or vehicle with each levodopa dose. In the second set, animals were treated either with levodopa (50 mg/kg, i.p.) plus 8-OH-DPAT (1 mg/kg, i.p.) or levodopa (50 mg/kg, i.p.) plus vehicle, administered twice daily for 22 consecutive days. Our study showed that 8-OH-DPAT plus levodopa both prolonged the duration of the motor response and reduced peak turning. 8-OH-DPAT plus levodopa also decreased the frequency of failures to levodopa. Co-administration of WAY-100635, a 5-HT1A receptor antagonist, with 8-OH-DPAT eliminated the effect of 8-OH-DPAT on motor complications indicating that the observed 8-OH-DPAT responses were probably mediated at the 5-HT1A autoreceptor. Moreover, 8-OH-DPAT plus levodopa significantly reduced hyperphosphorylation of GluR1 at serine 845, which was closely associated with levodopa-induced motor complications.
Collapse
MESH Headings
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- 8-Hydroxy-2-(di-n-propylamino)tetralin/therapeutic use
- Animals
- Antiparkinson Agents/adverse effects
- Antiparkinson Agents/antagonists & inhibitors
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Benserazide/pharmacology
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Disease Models, Animal
- Drug Interactions/physiology
- Dyskinesia, Drug-Induced/drug therapy
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/physiopathology
- Female
- Levodopa/adverse effects
- Levodopa/antagonists & inhibitors
- Phosphorylation/drug effects
- Piperazines/pharmacology
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Serotonin/metabolism
- Serotonin 5-HT1 Receptor Agonists
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Serotonin Receptor Agonists/therapeutic use
- Synapses/drug effects
- Synapses/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Treatment Outcome
Collapse
Affiliation(s)
- Maowen Ba
- Department of Neurology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China
| | | | | | | | | | | | | |
Collapse
|
178
|
Ba M, Kong M, Yang H, Ma G, Lu G, Chen S, Liu Z. Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-dopa-treated rats. Neurochem Res 2006; 31:1337-47. [PMID: 17053970 DOI: 10.1007/s11064-006-9177-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
Recent evidence has linked striatal amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor function to the adverse effects of long-term dopaminergic treatment in Parkinson's disease. The phosphorylation of AMPA subunit, GluR1, reflects AMPA receptor activity. To determine whether serine phosphorylation of GluR1 subunit by activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) contributes to the process, we examined the effects of unilateral nigrostriatal depletion with 6-hydroxydopamine and subsequent L: -dopa treatment on motor responses and phosphorylation states. Three weeks of L: -dopa administration to rats shortened the duration of the rotational response. We found a significant reduction in the abundance of both phosphorylated GluR1 at serine-831 site (pGluR1S831) and GluR1 in the cell plasma membrane of lesioned striatum. Chronic treatment of lesioned rats with L: -dopa markedly upregulated the phosphorylation of GluR1 in lesioned striatum with a concomitant normalization of the plasma membrane GluR1 abundance, which lasted at least 1 day after withdrawal of chronic L: -dopa treatment. Our immunostaining data showed that these changes were confined to parvalbumin-positive neurons where GluR1 subunits are exclusively expressed. Both the altered motor response duration and the degree of pGluR1S831 were attenuated by the intrastriatal administration of CaMKII inhibitor KN-93. These findings suggest that activation of CaMKII contributes to both development and maintenance of motor response duration alterations, through a mechanism that involves an increase in pGluR1S831 within parvalbumin-positive neurons.
Collapse
Affiliation(s)
- Maowen Ba
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
179
|
Lapish CC, Seamans JK, Chandler LJ. Glutamate-dopamine cotransmission and reward processing in addiction. Alcohol Clin Exp Res 2006; 30:1451-65. [PMID: 16930207 DOI: 10.1111/j.1530-0277.2006.00176.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While Dale's principle of "one neuron, one neurotransmitter" has undergone revisions to incorporate evidence of the corelease of atypical neurotransmitters such as neuropeptides, the corelease of classical neurotransmitters has only recently been realized. Surprisingly, numerous studies now indicate that the corelease of neurotransmitters in the mammalian central nervous system is not an obscure and rare phenomenon but is widespread and involves most classical neurotransmitters systems. However, the suggestion that glutamate can be coreleased with dopamine (DA) has remained controversial. Furthermore, glutamate-DA cotransmission has not yet been seriously considered in the context of the neurocircuitry of addiction. If glutamate is in fact coreleased with DA as some evidence now suggests, this may have significant implications for advancing our understanding of the interactive role that these 2 neurotransmitters play in cognitive and reward processes. In this commentary, we review the evidence for and against glutamate as a cotransmitter and discuss the potential role of glutamate-DA corelease in addiction. In particular, we describe a recently proposed model in which coreleased glutamate transmits a temporally precise prediction error signal of reward described by Schultz et al., whereas the function of coreleased DA is to exert prolonged modulatory influences on neuronal activity. In addition, we suggest that as alcohol consumption transitions from recreational use to addiction, there is a corresponding transition in the reward valence signal from better than predicted to worse than predicted.
Collapse
Affiliation(s)
- Christopher C Lapish
- Department of Neurosciences and the Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
180
|
Lui PW, Yeung CW, Yung WH, Shi Y, Chen LW, Chan YS, Yung KKL. Ablation of gene expression of N-methyl-D-aspartate receptor one by antisense oligonucleotides in striatal neurons in culture. Neurosignals 2006; 14:303-16. [PMID: 16772733 DOI: 10.1159/000093045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 02/28/2006] [Indexed: 11/19/2022] Open
Abstract
In the present study, a twenty-mer antisense oligonucleotide specific for N-methyl-D-aspartate receptor one (ANR1) was applied to striatal neurons in primary cell culture. The ANR1 was found to be specific and nontoxic. Significant reductions in expression of NR1 mRNA and proteins were resulted after a single dose of ANR1 transcripts. Interestingly, there were reductions in total NR1 proteins but two phosphorylated forms of NR1 proteins at serine 896 and 897 residues were not reduced. There was also no change in the pattern of distribution of NR1 immunoreactivity in the striatal neurons. In addition, significant reductions of NMDA-mediated peak inward current were found after application of a higher concentration of ANR1 (20-100 microM) by patch clamp recordings. The present results indicate that ANR1 is a useful agent in reducing NMDA receptor functions. The present data thus provide detailed cellular and molecular mechanisms to explain our previous findings of amelioration of motor symptoms in a rat model of Parkinson's disease. More importantly, application of ANR1 was also found to display neuroprotective effects of striatal neurons against NMDA-induced excitotoxic cell death. The findings have implications in development of new approach in prevention of cell death in neurodegenerative diseases and new treatments for these diseases.
Collapse
Affiliation(s)
- P W Lui
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, PR China
| | | | | | | | | | | | | |
Collapse
|
181
|
Ohkuma S, Katsura M, Shibasaki M, Tsujimura A, Hirouchi M. Expression of beta-adrenergic receptor up-regulation is mediated by two different processes. Brain Res 2006; 1112:114-25. [PMID: 16920085 DOI: 10.1016/j.brainres.2006.06.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/29/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Mechanisms of up-regulation of beta-adrenergic receptors (beta-ARs) induced by sustained exposure to 10(-8) M nadolol, a non-selective beta-AR antagonist, were examined using mouse cerebrocortical neurons. Nadolol dose- and time-dependently increased [3H]CGP-12177 bindings to the particulate fractions. This increase occurred 6 h and attained its plateau 12 h after the exposure, whereas beta1- and beta2-AR mRNA significantly increased 24 h and attained their plateaus 3 days after the exposure. Scatchard analysis revealed that the increased bindings were due to increase of receptor density. The [3H]CGP-12177 bindings to beta1- and beta2-ARs increased both 12 h and 5 days after the exposure. Although cycloheximide (CHX) decreased the bindings with or without nadolol, the extent of increase of the bindings induced by nadolol was not affected by CHX. Actinomycin D (AD) with nadolol showed no affects on the bindings 12 h after nadolol exposure, while AD treated 6 h after nadolol exposure significantly reduced the bindings 48 h after nadolol exposure. During 24 h after nadolol exposure, the increase in proteins of beta1- and beta2-ARs in the neuronal membrane was due to the increased receptor protein translocation from cytosol to membrane. These results indicate that the up-regulation of beta-ARs induced by nadolol is mediated by, at least, two different processes, one is increase in translocation of receptor proteins from cytosol to membrane with no changes in synthesis of receptor proteins and their mRNA and another is dependent on receptor protein synthesis with increased synthesis of their mRNA.
Collapse
Affiliation(s)
- Seitaro Ohkuma
- Department of Pharmacology, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | | | | | | | | |
Collapse
|
182
|
Ko SW, Jia Y, Xu H, Yim SJ, Jang DH, Lee YS, Zhao MG, Toyoda H, Wu LJ, Chatila T, Kaang BK, Zhuo M. Evidence for a role of CaMKIV in the development of opioid analgesic tolerance. Eur J Neurosci 2006; 23:2158-68. [PMID: 16630062 DOI: 10.1111/j.1460-9568.2006.04748.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
cAMP response-element binding protein (CREB), a transcription factor involved in learning, memory and drug addiction, is phosphorylated by calcium-calmodulin-dependent protein kinase IV (CaMKIV). Here, we show that CaMKIV-knockout (KO) mice developed less analgesic tolerance after chronic morphine administration with no alteration in physical dependence or acute morphine-induced analgesia. The increase in phosphorylated CREB expression observed in wild-type mice after chronic morphine was absent in CaMKIV-KO mice, while there was no difference in the expression or phosphorylation of the micro-opioid receptor between groups. Morphine-treated CaMKIV-KO mice showed less G-protein uncoupling from the micro-opioid receptor than did wild-type mice, while uncoupling was similar in control wild-type and KO mice. In addition, morphine reduced inhibitory transmission to a greater degree in CaMKIV-KO mice than in controls after chronic morphine exposure. Our results provide novel evidence for the role of CaMKIV in the development of opioid analgesic tolerance but not physical dependence.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Animals
- Animals, Newborn
- Behavior, Animal
- Blotting, Western/methods
- Calcium-Calmodulin-Dependent Protein Kinase Type 4
- Calcium-Calmodulin-Dependent Protein Kinases/deficiency
- Calcium-Calmodulin-Dependent Protein Kinases/physiology
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Tolerance
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Exploratory Behavior/physiology
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacokinetics
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Membrane Potentials/radiation effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/administration & dosage
- Neurons/drug effects
- Neurons/physiology
- Neurons/radiation effects
- Pain Measurement/methods
- Patch-Clamp Techniques/methods
- Radioligand Assay/methods
- Spinal Cord/cytology
- Sulfur Isotopes/pharmacokinetics
- Time Factors
Collapse
Affiliation(s)
- Shanelle W Ko
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, 1 King's College Circle, Medical Sciences Building Rm3342, Toronto, Canada, M5S 1A8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
The number and outcomes of reciprocal interactions between dopamine (DA) D1 receptors and N-methyl-D-aspartate (NMDA)-type glutamate receptors continue to increase. Recent studies have demonstrated close physical interactions in which activation of one receptor affects the function of the other. In one physical interaction, the activation of NMDA receptors alters the topography and movement of D1 receptors by trapping them in dendritic spines and thus altering their distribution. In a second physical interaction, D1 and subunits of NMDA receptors form heterodimers, which are translocated from the cell interior to the surface. Finally, a third physical interaction posits that the C terminus of D1 receptors makes contact with subunits of the NMDA receptor. These physical interactions can attenuate or potentiate receptor function. In contrast, the more traditional interactions mediated by second messengers generally cause NMDA receptor function to be potentiated through the activation of D1 receptors and the cAMP-PKA-DARPP-32 [adenosine 3',5'-monophosphate (cAMP)-protein kinase A-cAMP-regulated phosphoprotein of 32 kD] or PKC (protein kinase C) cascades. Together, these mechanisms provide a basis for understanding the increasing complexity of D1-NMDA receptor interactions and their importance in physiological and pathological processes.
Collapse
Affiliation(s)
- Carlos Cepeda
- Mental Retardation Research Center, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
184
|
Wang X, Wang F, Arterburn L, Wollmann R, Ma J. The interaction between cytoplasmic prion protein and the hydrophobic lipid core of membrane correlates with neurotoxicity. J Biol Chem 2006; 281:13559-13565. [PMID: 16537534 DOI: 10.1074/jbc.m512306200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion protein (PrP), normally a cell surface protein, has been detected in the cytosol of a subset of neurons. The appearance of PrP in the cytosol could result from either retro-translocation of misfolded PrP from the endoplasmic reticulum (ER) or impaired import of PrP into the ER. Transgenic mice expressing cytoplasmic PrP (cyPrP) developed neurodegeneration in cerebellar granular neurons, although no detectable pathology was observed in other brain regions. In order to understand why granular neurons in the cerebellum were most susceptible to cyPrP-induced degeneration, we investigated the subcellular localization of cyPrP. Interestingly, we found that cyPrP is membrane-bound. In transfected cells, it binds to the ER and plasma/endocytic vesicular membranes. In transgenic mice, it is associated with synaptic and microsomal membranes. Furthermore, the cerebellar neurodegeneration in transgenic mice correlates with the interaction between cyPrP and the hydrophobic lipid core of the membrane but not with either the aggregation status or the dosage of cyPrP. These results suggest that lipid membrane perturbation could be a cellular mechanism for cyPrP-induced neurotoxicity and explain the seemingly conflicting results concerning cyPrP.
Collapse
Affiliation(s)
- Xinhe Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Fei Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Linnea Arterburn
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Robert Wollmann
- Department of Pathology, University of Chicago, Chicago, Illinois 60637
| | - Jiyan Ma
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
185
|
Isosaka T, Hattori K, Yagi T. NMDA-receptor proteins are upregulated in the hippocampus of postnatal heterozygous reeler mice. Brain Res 2006; 1073-1074:11-9. [PMID: 16438943 DOI: 10.1016/j.brainres.2005.12.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 11/18/2005] [Accepted: 12/11/2005] [Indexed: 12/26/2022]
Abstract
Reelin is a large glycoprotein that is secreted into the extracellular matrix. In the embryonic brain, the binding of Reelin to its receptors ApoER2 and VLDLR induces subcellular events that include the activation Fyn tyrosine kinase, and plays a crucial role in cortical formation. Reelin signaling is also involved in postnatal brain functions such as dendrite development and synaptic plasticity. However, the molecular events involved in Reelin signaling in the postnatal brain remain to be elucidated. Here, we evaluated the proteins downstream of Reelin signaling by comparing the tyrosine-phosphorylated proteins in the postnatal hippocampus of heterozygous and homozygous reeler and wild-type mice, by Western blot analyses. We found that the levels of several phosphoproteins were highest in the hippocampus of the heterozygous reeler mice. The most prominent increase was of two 180-kDa phosphoproteins, which were identified as the NR2A and NR2B subunits of NMDA-R. The amounts of these proteins also increased in the hippocampus of heterozygous reeler mice. However, the mRNA levels of the NMDA-R subunits, determined by quantitative RT-PCR, were the same as in wild-type mice. We also found that the increase in NR2A and NR2B proteins in heterozygous reeler was dependent on Fyn, because this change was absent in heterozygous reeler/homozygous Fyn-deficient double-mutant mice. Thus, the NMDA-R protein level is regulated by the Reelin protein level in a Fyn-dependent manner in the mouse brain.
Collapse
Affiliation(s)
- Tomoko Isosaka
- KOKORO Biology Group, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | | | | |
Collapse
|
186
|
Zmarowski A, Sarter M, Bruno JP. NMDA and dopamine interactions in the nucleus accumbens modulate cortical acetylcholine release. Eur J Neurosci 2006; 22:1731-40. [PMID: 16197513 DOI: 10.1111/j.1460-9568.2005.04333.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nucleus accumbens (NAC) plays a key role in directing appropriate motor output following the presentation of behaviorally relevant stimuli. As such, we postulate that accumbens efferents also participate in the modulation of neuronal circuits regulating attentional processes directed toward the identification and selection of these stimuli. In this study, N-methyl-d-aspartate (NMDA) and D1 ligands were perfused into the shell region of the NAC of awake rats. Cortical cholinergic transmission, a mediator of attentional processes, was measured via microdialysis probes inserted into the prefrontal cortex (PFC). NMDA perfusions (150 or 250 microm) into NAC resulted in significant increases in acetylcholine (ACh) efflux in PFC (150-200% above baseline levels). Co-administration of the D1 antagonist SCH-23390 (150 microm) markedly attenuated (by approx. 70%) ACh efflux following perfusions of 150 microm NMDA but not following 250 microm NMDA, suggesting that D1 receptor activity contributes to the ability of the lower but not the higher concentration of NMDA to increase cortical ACh release. Collectively, these data reveal a positive modulation of NMDA receptors by D1 receptors in NAC that is expressed trans-synaptically at the level of cortical transmission. This modulation may underlie the coordinated linking of attentional processes and motor output following exposure to salient and behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Amy Zmarowski
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
187
|
Fiorentini C, Rizzetti MC, Busi C, Bontempi S, Collo G, Spano P, Missale C. Loss of Synaptic D1 Dopamine/N-Methyl-d-aspartate Glutamate Receptor Complexes in l-DOPA-Induced Dyskinesia in the Rat. Mol Pharmacol 2005; 69:805-12. [PMID: 16365282 DOI: 10.1124/mol.105.016667] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate-mediated mechanisms are related to the motor complications of L-DOPA therapy in Parkinson's disease (PD). In striatal postsynaptic densities (PSD), the dopamine D1 receptor (D1R) is part of an oligomeric complex with the glutamate N-methyl-D-aspartate receptor (NMDAR), determining the strength of corticostriatal transmission. We studied D1R/NMDAR complex alterations induced by L-DOPA in the 6-hydroxydopamine-lesioned rat model of PD. L-DOPA-treated hemiparkinsonian rats were determined to be dyskinetic or nondyskinetic based on behavioral testing. D1R/NMDAR assemblies containing NR1-C2 and NR2B subunits were decreased in the PSD of lesioned striatum. Short-term L-DOPA administration improved akinesia and restored the synaptic abundance of D1R, NR1-C2 and NR2B. Prolonged L-DOPA treatment also normalized synaptic D1R/NMDAR complexes in nondyskinetic rats, but remarkably reduced them in the dyskinetic group without changing their interaction. This decrease involved NR1-C2, NR1-C2', NR2A, and NR2B subunits. The composition of residual synaptic D1R/NMDAR complexes in dyskinetic rats may thus be different from that observed in lesioned rats, suggesting that expression of different motor dysfunctions might be related to the receptor profile at corticostriatal synapses. The levels of D1R/NMDAR complexes were unchanged in total striatal membrane proteins, suggesting that the decrease of these species in the PSD is likely to reflect an altered receptor trafficking. In human embryonic kidney 293 cells expressing the D1R/NMDAR, complex costimulation of both D1R and NMDAR, but not individual receptor activation, promoted internalization, suggesting that development of dyskinesias might be related to agonist-mediated down-regulation of the D1R/NMDAR complex at corticostriatal synapses.
Collapse
MESH Headings
- Animals
- Antiparkinson Agents/toxicity
- Cells, Cultured
- Corpus Striatum/chemistry
- Corpus Striatum/metabolism
- Dyskinesia, Drug-Induced/metabolism
- Humans
- Levodopa/toxicity
- Male
- Oxidopamine
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/complications
- Protein Subunits/analysis
- Protein Subunits/metabolism
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/analysis
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, N-Methyl-D-Aspartate/analysis
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synapses/chemistry
- Synapses/metabolism
- Transfection
Collapse
Affiliation(s)
- Chiara Fiorentini
- Division of Pharmacology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
188
|
Yang CR, Chen L. Targeting prefrontal cortical dopamine D1 and N-methyl-D-aspartate receptor interactions in schizophrenia treatment. Neuroscientist 2005; 11:452-70. [PMID: 16151046 DOI: 10.1177/1073858405279692] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The prefrontal cortex plays a principal role in higher cognition and particularly in the fast online manipulation of appropriate information to guide forthcoming behavior. Dysfunction of this process represents a main feature in the pathophysiology of schizophrenia. Both dopamine D1 and N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex play a critical role in synaptic plasticity, memory mechanisms, and cognition. Recent data have shown that D1 and NMDA receptors interact bidirectionally and may greatly influence the output of the prefrontal cortex. Hypofunction of these receptor systems in the prefrontal cortex is found in schizophrenia. This review attempts to summarize some of the latest findings on the cellular mechanisms that underlie D1-NMDA receptor interactions. These findings have provided potential therapeutic strategies that aim to functionally up-regulate D1 and/or NMDA receptor safely via selective activation of D1 receptors or coagonist activation of NMDA receptors through blockade of the glycine transporter-1.
Collapse
Affiliation(s)
- Charles R Yang
- Neuroscience Discovery, Eli Lilly & Co., Indianapolis, Indiana 46285-0510, USA.
| | | |
Collapse
|
189
|
Prybylowski K, Chang K, Sans N, Kan L, Vicini S, Wenthold RJ. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 2005; 47:845-57. [PMID: 16157279 PMCID: PMC1350965 DOI: 10.1016/j.neuron.2005.08.016] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 04/29/2005] [Accepted: 08/09/2005] [Indexed: 11/29/2022]
Abstract
The NMDA receptor (NMDAR) is a component of excitatory synapses and a key participant in synaptic plasticity. We investigated the role of two domains in the C terminus of the NR2B subunit--the PDZ binding domain and the clathrin adaptor protein (AP-2) binding motif--in the synaptic localization of NMDA receptors. NR2B subunits lacking functional PDZ binding are excluded from the synapse. Mutations in the AP-2 binding motif, YEKL, significantly increase the number of synaptic receptors and allow the synaptic localization of NR2B subunits lacking PDZ binding. Peptides corresponding to YEKL increase the synaptic response within minutes. In contrast, the NR2A subunit localizes to the synapse in the absence of PDZ binding and is not altered by mutations in its motif corresponding to YEKL of NR2B. This study identifies a dynamic regulation of synaptic NR2B-containing NMDARs through PDZ protein-mediated stabilization and AP-2-mediated internalization that is modulated by phosphorylation by Fyn kinase.
Collapse
Affiliation(s)
- Kate Prybylowski
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, Room 4148/Bldg. 50, National Institutes of Health, Bethesda Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
190
|
Ferré S, Borycz J, Goldberg SR, Hope BT, Morales M, Lluis C, Franco R, Ciruela F, Cunha R. ROLE OF ADENOSINE IN THE CONTROL OF HOMOSYNAPTIC PLASTICITY IN STRIATAL EXCITATORY SYNAPSES. J Integr Neurosci 2005; 4:445-64. [PMID: 16385640 DOI: 10.1142/s0219635205000987] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 09/01/2005] [Indexed: 01/08/2023] Open
Abstract
Long-lasting, activity-dependent changes in synaptic efficacy at excitatory synapses are critical for experience-dependent synaptic plasticity. Synaptic plasticity at excitatory synapses is determined both presynaptically by changes in the probability of neurotransmitter release, and postsynaptically by changes in the availability of functional postsynaptic glutamate receptors. Two kinds of synaptic plasticity have been described. In homosynaptic or Hebbian plasticity, the events responsible for synaptic strengthening occur at the same synapse as is being strengthened. Homosynaptic plasticity is activity-dependent and associative, because it associates the firing of a postsynaptic neuron with that of the presynaptic neuron. Heterosynaptic plasticity, on the other hand, is activity-independent and the synaptic strength is modified as a result of the firing of a third, modulatory neuron. It has been suggested that long-term changes in synaptic strength, which are associated with gene transcription, can only be induced with the involvement of heterosynaptic plasticity. The neuromodulator adenosine plays an elaborated pre- and postsynaptic control of glutamatergic neurotransmission. This paper reviews the evidence suggesting that in some striatal excitatory synapses, adenosine can provide the heterosynaptic-like modulation essential for stabilizing homosynaptic plasticity without the need of a "third, modulatory neuron".
Collapse
Affiliation(s)
- Sergi Ferré
- National Institute on Drug Abuse, IRP, NIH, DHHS, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Goebel SM, Alvestad RM, Coultrap SJ, Browning MD. Tyrosine phosphorylation of the N-methyl-d-aspartate receptor is enhanced in synaptic membrane fractions of the adult rat hippocampus. ACTA ACUST UNITED AC 2005; 142:65-79. [PMID: 16257472 DOI: 10.1016/j.molbrainres.2005.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 09/01/2005] [Accepted: 09/18/2005] [Indexed: 11/30/2022]
Abstract
Hippocampal N-methyl-D-aspartate receptors (NMDARs) contribute to the expression of certain types of synaptic plasticity, such as long-term potentiation (LTP). It is well documented that tyrosine kinases increase NMDAR phosphorylation and potentiate NMDAR function. However, it is unclear how these phosphorylation changes result in enhanced NMDAR activity. We previously reported that NMDAR surface expression can be increased by LTP-inducing stimulation via tyrosine kinase-dependent mechanisms in the adult hippocampus [D.R. Grosshans, D.A. Clayton, S.J. Coultrap, M.D. Browning, Nat. Neurosci., 5 (2002) 27-33]. We therefore hypothesized that tyrosine phosphorylation of the NMDAR may enhance the trafficking of the receptor to the synaptic membrane. Here, we show that the stoichiometry of NR2A and NR2B tyrosine phosphorylation is significantly higher in synaptosomal membranes than intracellular microsomal/light membranes. Interestingly, NR2B tyrosine-1472, but not NR1 serine-896 or -897, phosphorylation is significantly higher in synaptosomal membranes than intracellular microsomal/light membranes. Furthermore, treatment of hippocampal slices with either a tyrosine phosphatase inhibitor or a tyrosine kinase inhibitor alters NMDAR tyrosine phosphorylation and produces a corresponding change in the concentration of NMDARs in the synaptosomal membrane fraction. Taken together, these data support the hypothesis that tyrosine phosphorylation may enhance NMDAR activity by increasing the number of NMDARs at the synaptic membrane.
Collapse
Affiliation(s)
- Susan M Goebel
- Neuroscience Program, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
192
|
Hara Y, Pickel VM. Overlapping intracellular and differential synaptic distributions of dopamine D1 and glutamate N-methyl-D-aspartate receptors in rat nucleus accumbens. J Comp Neurol 2005; 492:442-55. [PMID: 16228995 PMCID: PMC2605084 DOI: 10.1002/cne.20740] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dopamine D1 receptor (D1R) in the nucleus accumbens (Acb) shell is highly implicated in psychostimulant-evoked locomotor activity and reward, whereas the D1R in the Acb core is more crucial for appetitive instrumental learning. These behavioral effects depend in part on interactions involving glutamatergic N-methyl-D-aspartate (NMDA) receptors, whose essential NR1 subunit has physical associations with the D1R. To determine the relevant sites for D1R activation and interactions involving NMDA receptors, we examined the electron microscopic immunolabeling of D1R and NR1 C-terminal peptides in rat Acb shell and core. In each Acb subdivision, the D1Rs were located principally on extrasynaptic plasma membranes of dendritic shafts and spines and more rarely were associated with cytoplasmic endomembranes. Many D1R-labeled somata and dendrites also contained NR1 immunoreactivity. In comparison with D1R, NR1 immunoreactivity was more often seen in the cytoplasm and near asymmetric synapses on somatodendritic profiles. In these profiles, notable overlapping distributions of D1R and NR1 occurred near endomembranes. The exclusively D1R- or D1R- and NR1-containing dendrites were most prevalent in the Acb shell, but were also present in the Acb core. In each region, NR1 was also detected in axon terminals without D1R, which formed excitatory-type synapses with D1R-labeled dendrites. These results provide ultrastructural evidence that D1Rs in the Acb have subcellular distributions supporting, 1) intracellular cotrafficking with NR1 and 2) modulation of the postsynaptic excitability in spiny neurons affected by presynaptic NMDA receptor activation. The region-specific differences in receptor distributions suggest a major, but not exclusive, involvement of Acb D1R in reward-related processing.
Collapse
Affiliation(s)
- Yuko Hara
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
193
|
Sanchez-Perez A, Llansola M, Cauli O, Felipo V. Modulation of NMDA receptors in the cerebellum. II. Signaling pathways and physiological modulators regulating NMDA receptor function. THE CEREBELLUM 2005; 4:162-70. [PMID: 16147948 DOI: 10.1080/14734220510008003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
NMDA receptors in cerebellum have specific characteristics that make their function and modulation different from those of NMDA receptors in other brain areas. The properties of the NMDA receptor that modulate its function: Subunit composition, post-translational modifications and synaptic localization are summarized in an accompanying article. In this review we summarize how different signaling molecules modulate the function of NMDA receptors. The function of the receptors is modulated by the co-agonists glycine and serine and this modulation is different in cerebellum than in other areas. The NMDA receptor also has binding sites for polyamines that regulate its function. Other signaling molecules that modulate NMDA receptors function are: cAMP, neurotrophic factors such as BDNF, FGF-2 or neuregulins. These and other molecules allow an interplay between NMDA receptors and other receptors for neurotransmitters that may in this way modulate NMDA receptor function. This has been reported, for example, for metabotropic glutamate receptors. The expression and function of NMDA receptor is also modulated by synaptic activity, allowing an adaptation of the receptors function to the external inputs. NMDA receptors modulate important cerebral processes. NMDA receptors in different brain areas seem to modulate different processes. Cerebellar NMDA receptors play a special role in the modulation of motor learning and coordination. This is also briefly reviewed.
Collapse
Affiliation(s)
- Ana Sanchez-Perez
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Fundación Valenciana de Investigaciones Biomedicas, Valencia, Spain
| | | | | | | |
Collapse
|
194
|
Laruelle M, Frankle WG, Narendran R, Kegeles LS, Abi-Dargham A. Mechanism of action of antipsychotic drugs: from dopamine D(2) receptor antagonism to glutamate NMDA facilitation. Clin Ther 2005; 27 Suppl A:S16-24. [PMID: 16198197 DOI: 10.1016/j.clinthera.2005.07.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2005] [Indexed: 02/08/2023]
Abstract
BACKGROUND The fundamental pathologic processes associated with schizophrenia remain uncertain. OBJECTIVE The goal of this article was to review imaging evidence suggesting that schizophrenia is associated with excessive stimulation of D(2) receptors, as well as imaging experiments supporting the hypothesis that this dysregulation might be secondary to N- methyl-d-aspartate (NMDA) dysfunction. CONCLUSIONS Recent imaging data support the association of schizophrenia with a dopamine endophenotype involving excessive subcortical dopamine function. Animal and imaging data are consistent with the idea that this abnormality might be secondary to a synaptic disconnectivity involving the prefrontal cortex, which is well modeled by NMDA antagonist administration. In turn, this dopamine dysregulation might worsen synaptic connectivity and NMDA function. Thus, both glutamate/dopamine and dopamine/glutamate interactions may be relevant to schizophrenia pathophysiology and treatment. A deficit in glutamate transmission may lead to the dopamine endophenotype associated with this illness, and dopamine alterations in turn might exacerbate glutamate transmission deficits. The view that NMDA alterations are primary and dopamine alterations are secondary is probably oversimplistic, as both sets of abnormalities reinforce each other. A consequence of this general model is that direct intervention to support NMDA function might be beneficial as an augmentation strategy for the treatment of schizophrenia. Thus, it is proposed that schizophrenia is associated with strongly interconnected abnormalities of glutamate and dopamine transmission: NMDA hypofunction in the prefrontal cortex and its connections might generate a pattern of dysregulation of dopamine systems that, in turn, further weakens NMDA-mediated connectivity and plasticity.
Collapse
Affiliation(s)
- Marc Laruelle
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
195
|
Abstract
It has become increasingly apparent that Parkinson's disease involves many transmitter systems other than dopamine. This nondopaminergic involvement impacts on the generation of symptoms, on the neurodegenerative process, but, most tellingly, in the generation of side effects of current treatments, in particular, levodopa-induced dyskinesia (LID). Such mechanisms contribute not only to the expression of LID once it has been established but also to the mechanisms responsible for the development, or priming, of the dyskinetic state and the subsequent maintenance of the brain in that primed state. Within the basal ganglia, abnormalities in different nondopaminergic components of the circuitry have been defined in LID. In particular, a role for enhanced inhibition of basal ganglia outputs by the GABAergic direct pathway has been suggested as a basic mechanism generating LID. We speculate that the external globus pallidus and subthalamic nucleus may play distinct roles in different forms of dyskinesia, e.g., chorea/dystonia; peak/diphasic/off. At the cellular level, an appreciation of abnormal signaling by, among others, glutamatergic (NMDA and AMPA receptors in particular), alpha2 adrenergic, serotonergic (5HT), cannabinoid and opioid mechanisms in both priming and expression of LID has begun to emerge over the last decade. This is being consolidated, though in many cases questions remain regarding the specific sites of such abnormality within the circuitry. Very recently, at the molecular level, mechanisms controlling neurotransmitter release and impacting on the ability of neurons to maintain particular forms of firing patterning and synchronization, e.g., SV2A, have been identified. This increased understanding has already delivered and will continue to define novel approaches to treatment that target both pre- and postsynaptic signaling molecules throughout the basal ganglia circuitry.
Collapse
Affiliation(s)
- Jonathan M Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
196
|
Nanitsos EK, Nguyen KTD, St'astný F, Balcar VJ. Glutamatergic hypothesis of schizophrenia: involvement of Na+/K+-dependent glutamate transport. J Biomed Sci 2005; 12:975-84. [PMID: 16228297 DOI: 10.1007/s11373-005-9015-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 07/27/2005] [Indexed: 11/25/2022] Open
Abstract
Hypothetical model based on deficient glutamatergic neurotransmission caused by hyperactive glutamate transport in astrocytes surrounding excitatory synapses in the prefrontal cortex is examined in relation to the aetiology of schizophrenia. The model is consistent with actions of neuroleptics, such as clozapine, in animal experiments and it is strongly supported by recent findings of increased expression of glutamate transporter GLT in prefrontal cortex of patients with schizophrenia. It is proposed that mechanisms regulating glutamate transport be investigated as potential targets for novel classes of neuroactive compounds with neuroleptic characteristics. Development of new efficient techniques designed specifically for the purpose of studying rapid activity-dependent translocation of glutamate transporters and associated molecules such as Na+, K+-ATPase is essential and should be encouraged.
Collapse
Affiliation(s)
- Ellas K Nanitsos
- Anatomy and Histology, Institute for Biomedical Research and School of Medical Sciences, The University of Sydney, Anderson Stuart Building F 13, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
197
|
Llansola M, Sanchez-Perez A, Cauli O, Felipo V. Modulation of NMDA receptors in the cerebellum. 1. Properties of the NMDA receptor that modulate its function. THE CEREBELLUM 2005; 4:154-61. [PMID: 16147947 DOI: 10.1080/14734220510007996] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
NMDA receptors modulate important cerebral processes such as synaptic plasticity, long-term potentiation, learning and memory, etc. NMDA receptors in cerebellum have specific characteristics that make their function and modulation different from those of NMDA receptors in other brain areas. In this and the accompanying review we summarize the information available on the modulation of NMDA receptors in cerebellum. We review the properties of the NMDA receptor that modulate its function: subunit composition, post-translational modifications and synaptic localization. NMDA receptors are heteromeric ligand-gated ion channels assembled from two families of subunits, NR1 and NR2. There are at least eight splicing variant isoforms of the NR1 subunit and four types of NR2 subunits: NR2A, NR2B, NR2C and NR2D. NMDA receptors with different subunit composition or different splice variants of NR1 subunit have different properties. The expression of the different subunits and splicing variants varies during development. Two special characteristics of NMDA receptors in cerebellum that do not occur in other brain areas are the enrichment in the NR2C subunit and in the splice variant NR1b. As a consequence of these and other factors the pharmacology of NMDA receptors is also different in cerebellum than in other brain areas. The function and localization of NMDA receptors is also modulated by postranslational modifications including phosphorylation, glycosylation and nytrosylation. NMDA receptors are phosphorylated in serines of both NR1 and NR2 subunits and in tyrosines of NR2 subunits. Another factor modulating NMDA receptors function is the synaptic localization. The trafficking and clustering of NMDA receptors is modulated by phosphorylation and by interaction with other proteins. The signaling pathways and physiological modulators regulating NMDA receptor function as well as the role of these receptors in motor learning and coordination are reviewed in an accompanying article.
Collapse
Affiliation(s)
- Marta Llansola
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Fundación Valenciana de Investigaciones Biomedicas, Valencia, Spain
| | | | | | | |
Collapse
|
198
|
Zhao MG, Toyoda H, Lee YS, Wu LJ, Ko SW, Zhang XH, Jia Y, Shum F, Xu H, Li BM, Kaang BK, Zhuo M. Roles of NMDA NR2B Subtype Receptor in Prefrontal Long-Term Potentiation and Contextual Fear Memory. Neuron 2005; 47:859-72. [PMID: 16157280 DOI: 10.1016/j.neuron.2005.08.014] [Citation(s) in RCA: 393] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 06/17/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
Cortical plasticity is thought to be important for the establishment, consolidation, and retrieval of permanent memory. Hippocampal long-term potentiation (LTP), a cellular mechanism of learning and memory, requires the activation of glutamate N-methyl-D-aspartate (NMDA) receptors. In particular, it has been suggested that NR2A-containing NMDA receptors are involved in LTP induction, whereas NR2B-containing receptors are involved in LTD induction in the hippocampus. However, LTP in the prefrontal cortex is less well characterized than in the hippocampus. Here we report that the activation of the NR2B and NR2A subunits of the NMDA receptor is critical for the induction of cingulate LTP, regardless of the induction protocol. Furthermore, pharmacological or genetic blockade of the NR2B subunit in the cingulate cortex impaired the formation of early contextual fear memory. Our results demonstrate that the NR2B subunit of the NMDA receptor in the prefrontal cortex is critically involved in both LTP and contextual memory.
Collapse
Affiliation(s)
- Ming-Gao Zhao
- Laboratory of Higher Brain Functions, Institute of Neurobiology, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Large CH, Webster EL, Goff DC. The potential role of lamotrigine in schizophrenia. Psychopharmacology (Berl) 2005; 181:415-36. [PMID: 16001126 DOI: 10.1007/s00213-005-0020-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 03/29/2005] [Indexed: 12/16/2022]
Abstract
RATIONALE Atypical antipsychotic drugs are the drugs of choice for the treatment of schizophrenia. However, despite advances, no treatments have been established for patients who fail to improve with the most effective of these, clozapine. The inhibition of dopamine transmission through blockade of dopamine D2 receptors is considered to be essential for antipsychotic efficacy, but it is postulated that modulation of glutamate transmission may be equally important. In support of this, symptoms similar to schizophrenia can be induced in healthy volunteers using N-methyl-D-aspartate (NMDA) antagonist drugs that are also known to enhance glutamate transmission. Furthermore, lamotrigine, which can modulate glutamate release, may add to or synergise with atypical antipsychotic drugs, some of which may themselves modulate glutamate transmission. OBJECTIVES We examine the evidence for the efficacy of lamotrigine. We consider how this fits with a glutamate neuron dysregulation hypothesis of the disorder. We discuss mechanisms by which lamotrigine might influence neuronal activity and glutamate transmission, and possible ways in which the drug might interact with antipsychotic medications. RESULTS Data from four clinical studies support the efficacy of adjunctive lamotrigine in the treatment of schizophrenia. In addition, and consistent with a glutamate neuron dysregulation hypothesis of schizophrenia, lamotrigine can prevent the psychotic symptoms or behavioural disruption induced by NMDA receptor antagonists in healthy volunteers or rodents. CONCLUSIONS The efficacy of lamotrigine is most likely explained within the framework of a glutamate neuron dysregulation hypothesis, and may arise primarily through the drugs ability to influence glutamate transmission and neural activity in the cortex. The drug is likely to act through inhibition of voltage-gated sodium channels, though other molecular interactions cannot be ruled out. Lamotrigine may add to or synergise with some atypical antipsychotic drugs acting on glutamate transmission; alternatively, they may act independently on glutamate and dopamine systems to bring about a combined therapeutic effect. We propose new strategies for the treatment of schizophrenia using a combination of anti-dopaminergic and anti-glutamatergic drugs.
Collapse
Affiliation(s)
- Charles H Large
- Department of Neuropharmacology, Psychiatry CEDD, GlaxoSmithKline SpA, Via Fleming 4, 37135, Verona, Italy.
| | | | | |
Collapse
|
200
|
Abi-Dargham A, Laruelle M. Mechanisms of action of second generation antipsychotic drugs in schizophrenia: insights from brain imaging studies. Eur Psychiatry 2005; 20:15-27. [PMID: 15642439 DOI: 10.1016/j.eurpsy.2004.11.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Multiple lines of evidence including recent imaging studies suggest that schizophrenia is associated with an imbalance of the dopaminergic system, entailing hyperstimulation of striatal dopamine (DA) D2 receptors and understimulation of cortical DA D1 receptors. This DA endophenotype presumably emerges from the background of a more general synaptic dysconnectivity, involving alterations in N-methyl-d-aspartate (NMDA) and glutamatergic (GLU) functions. Equally important is the fact that this DA dysregulation might further impair NMDA transmission. The first generation antipsychotic (FGA) drugs are characterized by high affinity to and generally high occupancy of D2 receptors. The efficacy of FGAs is limited by a high incidence of extrapyramidal side-effects (EPS). Second generation antipsychotic (SGA) drugs display reduced EPS liability and modest but clinically significant enhanced therapeutic efficacy. Compared to FGAs, the improved therapeutic action of SGAs probably derives from a more moderate D2 receptor blockade. We will review the effects of SGAs on other neurotransmitter systems and conclude by highlighting the importance of therapeutic strategies aimed at directly increasing prefrontal DA, D1 receptor transmission or NMDA transmission to enhance the therapeutic effect of moderate D2 receptor antagonism.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Department of Psychiatry, New York State Psychiatric Institute, Unit 31, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA.
| | | |
Collapse
|