151
|
Farooqui AA, Horrocks LA. Brain phospholipases A2: a perspective on the history. Prostaglandins Leukot Essent Fatty Acids 2004; 71:161-9. [PMID: 15253885 DOI: 10.1016/j.plefa.2004.03.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 10/26/2022]
Abstract
The phospholipases A2 (PLA2) belong to a large family of enzymes involved in the generation of several second messengers that play an important role in signal transduction processes associated with normal brain function. The phospholipase A2 family includes secretory phospholipase A2, cytosolic phospholipase A2, calcium-independent phospholipase A2, plasmalogen-selective phospholipase A2 and many other enzymes with phospholipase A2 activity that have not been classified. Few attempts have been made purify and characterize the multiple forms of PLA2 and none have been fully characterized and cloned from brain tissue. A tight regulation of phospholipase A2 isozymes is necessary for maintaining physiological levels of free fatty acids including arachidonic acid and its metabolites in the various types of neural cells. Under normal conditions, phospholipase A2 isozymes may be involved in neurotransmitter release, long-term potentiation, growth and differentiation, and membrane repair. Under pathological conditions, high levels of lipid metabolites generated by phospholipase A2 are involved in neuroinflammation, oxidative stress, and neural cell injury.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Avenue, 465 Hamilton Hall, Columbus, OH 43210-1218, USA
| | | |
Collapse
|
152
|
Macchioni L, Corazzi L, Nardicchi V, Mannucci R, Arcuri C, Porcellati S, Sposini T, Donato R, Goracci G. Rat Brain Cortex Mitochondria Release Group II Secretory Phospholipase A2 under Reduced Membrane Potential. J Biol Chem 2004; 279:37860-9. [PMID: 15231825 DOI: 10.1074/jbc.m303855200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of brain mitochondrial phospholipase(s) A(2) (PLA(2)) might contribute to cell damage and be involved in neurodegeneration. Despite the potential importance of the phenomenon, the number, identities, and properties of these enzymes are still unknown. Here, we demonstrate that isolated mitochondria from rat brain cortex, incubated in the absence of respiratory substrates, release a Ca(2+)-dependent PLA(2) having biochemical properties characteristic to secreted PLA(2) (sPLA(2)) and immunoreacting with the antibody raised against recombinant type IIA sPLA(2) (sPLA(2)-IIA). Under identical conditions, no release of fumarase in the extramitochondrial medium was observed. The release of sPLA(2) from mitochondria decreases when mitochondria are incubated in the presence of respiratory substrates such as ADP, malate, and pyruvate, which causes an increase of transmembrane potential determined by cytofluorimetric analysis using DiOC(6)(3) as a probe. The treatment of mitochondria with the uncoupler carbonyl cyanide 3-chlorophenylhydrazone slightly enhances sPLA(2) release. The increase of sPLA(2) specific activity after removal of mitochondrial outer membrane indicates that the enzyme is associated with mitoplasts. The mitochondrial localization of the enzyme has been confirmed by electron microscopy in U-251 astrocytoma cells and by confocal laser microscopy in the same cells and in PC-12 cells, where the structurally similar isoform type V-sPLA(2) has mainly nuclear localization. In addition to sPLA(2), mitochondria contain another phospholipase A(2) that is Ca(2+)-independent and sensitive to bromoenol lactone, associated with the outer mitochondrial membrane. We hypothesize that, under reduced respiratory rate, brain mitochondria release sPLA(2)-IIA that might contribute to cell damage.
Collapse
Affiliation(s)
- Lara Macchioni
- Department of Internal Medicine, Division of Biochemistry, University of Perugia, I-06125 Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Knorth H, Dorfmüller P, Lebert R, Schmidt WE, Wittenberg RH, Heukamp M, Wiese M, Willburger RE. Participation of cyclooxygenase-1 in prostaglandin E2 release from synovitis tissue in primary osteoarthritis in vitro. Osteoarthritis Cartilage 2004; 12:658-66. [PMID: 15262246 DOI: 10.1016/j.joca.2004.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 05/03/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate the relative contribution of the cyclooxygenase (COX) isoenzymes COX-1 and COX-2 to prostaglandin E2 (PGE2) release from inflamed synovial tissue in N=10 patients with primary osteoarthritis (OA) in vitro and to determine possible effects of COX inhibitors on the gene expression of synovial COX-1 and COX-2. DESIGN The effects of a COX-unspecific nonsteroidal anti-inflammatory drug (NSAID; diclofenac), a selective COX-1 inhibitor (SC-560) and a selective COX-2 inhibitor (SC-58125) on PGE2 release from inflamed synovial tissue (0.1-10 microM, 3 and 6 h incubation time) were compared. Release of PGE2 into the incubation media was measured by means of the enzyme-linked immunosorbent assay. Expression of synovial COX-1/-2 was quantified by means of real-time reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS All agents inhibited synovial PGE2 release dose-dependently. Compared to short-term incubations, the inhibitory potency of diclofenac, SC-58125 and SC-560 was increased (0.1-10 microM) and decreased (0.1-1 microM), respectively, during 6 h: At 10 microM, SC-560 and SC-58125 had obviously lost their specificity for COX-1 and COX-2, respectively, indicated by a comparable inhibitory potency of the selective COX-1 inhibitor (86.6%) and the selective COX-2 inhibitor (96.6%) within identical tissue specimens. In contrast, at 1 microM, 83% and 62.8% inhibition was seen for diclofenac and SC-58125, respectively. SC-560 showed 30.6% inhibition (P<0.05). In contrast to synovial COX-1, RT-PCR revealed a significant induction of COX-2 through PGE2. CONCLUSIONS With respect to the concentrations studied, the data suggest that in inflamed synovial tissue in OA, up to 30% of PGE2 might be generated via the COX-1 pathway. In therapy of OA, the relative contribution of COX-1 in synovial inflammation should be considered, weighing the potency of COX-unspecific NSAID against the assumed superior gastrointestinal safety profile of selective COX-2 inhibitors.
Collapse
Affiliation(s)
- Holger Knorth
- Orthopaedic University Clinic of Bochum, Department of Rheumaorthopaedic Surgery at St Elisabeth Hospital, Bleichstr. 15, D-44787 Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
154
|
de Vroege R, van Oeveren W, van Klarenbosch J, Stooker W, Huybregts MAJM, Hack CE, van Barneveld L, Eijsman L, Wildevuur CRH. The impact of heparin-coated cardiopulmonary bypass circuits on pulmonary function and the release of inflammatory mediators. Anesth Analg 2004; 98:1586-1594. [PMID: 15155310 DOI: 10.1213/01.ane.0000114551.64123.79] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Reduction of the inflammatory reaction with the use of heparin coating has been found during and after cardiopulmonary bypass (CPB). The question remains whether this reduced reaction also decreases the magnitude of CPB-induced pulmonary dysfunction. We therefore evaluated the effects of a heparin-coated circuit versus a similar uncoated circuit on pulmonary indices as well as on inflammatory markers of complement activation (C3b/c), elastase-alpha(1)-antitrypsin complex, and secretory phospholipase A(2) (sPLA(2)) during and after CPB. Fifty-one patients were randomly assigned into two groups undergoing coronary artery bypass grafting with either a heparin-coated (Group 1) or an uncoated (Group 2) circuit. During CPB, a continuous positive airway pressure of 5 cm H(2)O and a fraction of inspired oxygen (FIO(2)) of 0.21 were maintained. Differences in favor of the coated circuit were found in pulmonary shunt fraction (P < 0.05), pulmonary vascular resistance index (P < 0.05), and PaO(2)/FIO(2) ratio (P < 0.05) after CPB and in the intensive care unit. During and after CPB, the coated group demonstrated lower levels of sPLA(2). After CPB, C3b/c and the elastase-alpha(1)-antitrypsin complex were significantly less in the coated group (P < 0.001). The coated circuit was associated with a reduced inflammatory response, decreased pulmonary vascular resistance index and pulmonary shunt fraction, and increased PaO(2)/FIO(2) ratio, suggesting that the coated circuit may have beneficial effects on pulmonary function. The correlation with sPLA(2), leukocyte activation, and postoperative leukocyte count suggests reduced activation of pulmonary capillary endothelial cells. IMPLICATIONS Heparin coating of the extracorporeal circuit reduces the inflammatory response during cardiopulmonary bypass. Analysis of indices of pulmonary function indicates that use of heparin coating may result in less impaired gas exchange.
Collapse
Affiliation(s)
- R de Vroege
- Departments of *Extracorporeal Circulation, ‡Anesthesiology, and §Cardiac Surgery, Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands; †Department of Biomaterials, University of Groningen, Groningen, The Netherlands; and ‖Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Farooqui AA, Antony P, Ong WY, Horrocks LA, Freysz L. Retinoic acid-mediated phospholipase A2 signaling in the nucleus. ACTA ACUST UNITED AC 2004; 45:179-95. [PMID: 15210303 DOI: 10.1016/j.brainresrev.2004.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
Retinoic acid modulates a wide variety of biological processes including proliferation, differentiation, and apoptosis. It interacts with specific receptors in the nucleus, the retinoic acid receptors (RARs). The molecular mechanism by which retinoic acid mediates cellular differentiation and growth suppression in neural cells remains unknown. However, retinoic acid-induced release of arachidonic acid and its metabolites may play an important role in cell proliferation, differentiation, and apoptosis. In brain tissue, arachidonic acid is mainly released by the action of phospholipase A2 (PLA2) and phospholipase C (PLC)/diacylglycerol lipase pathways. We have used the model of differentiation in LA-N-1 cells induced by retinoic acid. The treatment of LA-N-1 cells with retinoic acid produces an increase in phospholipase A2 activity in the nuclear fraction. The pan retinoic acid receptor antagonist, BMS493, can prevent this increase in phospholipase A2 activity. This suggests that retinoic acid-induced stimulation of phospholipase A2 activity is a retinoic acid receptor-mediated process. LA-N-1 cell nuclei also have phospholipase C and phospholipase D (PLD) activities that are stimulated by retinoic acid. Selective phospholipase C and phospholipase D inhibitors block the stimulation of phospholipase C and phospholipase D activities. Thus, both direct and indirect mechanisms of arachidonic acid release exist in LA-N-1 cell nuclei. Arachidonic acid and its metabolites markedly affect the neurite outgrowth and neurotransmitter release in cells of neuronal and glial origin. We propose that retinoic acid receptors coupled with phospholipases A2, C and D in the nuclear membrane play an important role in the redistribution of arachidonic acid in neuronal and non-nuclear neuronal membranes during differentiation and growth suppression. Abnormal retinoid metabolism may be involved in the downstream transcriptional regulation of phospholipase A2-mediated signal transduction in schizophrenia and Alzheimer disease (AD). The development of new retinoid analogs with diminished toxicity that can cross the blood-brain barrier without harm and can normalize phospholipase A2-mediated signaling will be important in developing pharmacological interventions for these neurological disorders.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
156
|
Choi YA, Lim HK, Kim JR, Lee CH, Kim YJ, Kang SS, Baek SH. Group IB secretory phospholipase A2 promotes matrix metalloproteinase-2-mediated cell migration via the phosphatidylinositol 3-kinase and Akt pathway. J Biol Chem 2004; 279:36579-85. [PMID: 15220345 DOI: 10.1074/jbc.m314235200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Secretory phospholipase A(2) (sPLA(2)), abundantly expressed in various cells including fibroblasts, is able to promote proliferation and migration. Degradation of collagenous extracellular matrix by matrix metalloproteinase (MMP) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, tumor invasion, and metastasis. Here we show that group IB PLA(2) increased pro-MMP-2 activation in NIH3T3 fibroblasts. MMP-2 activity was stimulated by group IB PLA(2) in a dose- and time-dependent manner. Consistent with MMP-2 activation, sPLA(2) decreased expression of type IV collagen. These effects are due to the reduction of tissue inhibitor of metalloproteinase-2 (TIMP-2) and the activation of the membrane type1-MMP (MT1-MMP). The decrease of TIMP-2 levels in conditioned media and the increase of MT1-MMP levels in plasma membrane were observed. In addition, treatment of cells with decanoyl Arg-Val-Lys-Arg-chloromethyl ketone, an inhibitor of pro-MT1-MMP, suppressed sPLA(2)-mediated MMP-2 activation, whereas treatment with bafilomycin A1, an inhibitor of H(+)-ATPase, sustained MMP-2 activation by sPLA(2). The involvement of phosphatidylinositol 3-kinase (PI3K) and Akt in the regulation of MMP-2 activity was further suggested by the findings that PI3K and Akt were phosphorylated by sPLA(2). Expression of p85alpha and Akt mutants, or pretreatment of cells with LY294002, a PI3K inhibitor, attenuated sPLA(2)-induced MMP-2 activation and migration. Taken together, these results suggest that sPLA(2) increases the pro-MMP-2 activation and migration of fibroblasts via the PI3K and Akt-dependent pathway. Because MMP-2 is an important factor directly involved in the control of cell migration and the turnover of extracellular matrix, our study may provide a mechanism for sPLA(2)-promoted fibroblasts migration.
Collapse
Affiliation(s)
- Young-Ae Choi
- Department of Biochemistry and Molecular Biology, Yeungnam University, 317-1 Daemyung 5-Dong, Nam-Gu, Daegu 705-717, South Korea
| | | | | | | | | | | | | |
Collapse
|
157
|
De S, Trigueros MA, Kalyvas A, David S. Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration. Mol Cell Neurosci 2004; 24:753-65. [PMID: 14664823 DOI: 10.1016/s1044-7431(03)00241-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) hydrolyzes phosphatidylcholine to lysophosphatidylcholine and arachidonic acid. The former can induce myelin breakdown and the latter, via eicosanoids, can stimulate inflammatory responses. Immunohistochemical analysis of secreted (sPLA(2)) and cytosolic (cPLA(2)) forms of the enzyme was assessed in the injured adult rat sciatic and optic nerves. sPLA(2) and cPLA(2) are expressed in the first 2 weeks in the injured sciatic nerve, which correlates with rapid Wallerian degeneration in peripheral nerves. In contrast, both forms of PLA(2) were not expressed in the optic nerve for the first 3 weeks after crush injury, which correlates with slow Wallerian degeneration in the central nervous system (CNS). In addition, PLA(2) is not expressed in the lesioned sciatic nerve of C57BL/Wld(s) mutant mice in which Wallerian degeneration is severely retarded. Blocking cPLA(2) in the transected sciatic nerve of C57BL/6 mice, which have a naturally occurring null mutation for the major from of sPLA(2), resulted in a marked slowing of myelin and axonal degradation and phagocytosis in the distal nerve segment. These results provide direct evidence of an important role for cPLA(2) in Wallerian degeneration.
Collapse
Affiliation(s)
- Susna De
- Centre for Research in Neuroscience, McGill University, Montreal General Hospital Research Institute, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | | | | | | |
Collapse
|
158
|
Liberty IF, Raichel L, Hazan-Eitan Z, Pessach I, Hadad N, Schlaeffer F, Levy R. Cytosolic phospholipase A2 is responsible for prostaglandin E2 and leukotriene B4 formation in phagocyte-like PLB-985 cells: studies of differentiated cPLA2-deficient PLB-985 cells. J Leukoc Biol 2004; 76:176-84. [PMID: 15123778 DOI: 10.1189/jlb.1003453] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Our previously established model of cytosolic phospholipase A(2) (cPLA(2))-deficient, differentiated PLB-985 cells (PLB-D cells) was used to determine the physiological role of cPLA(2) in eicosanoid production. Parent PLB-985 (PLB) cells and PLB-D cells were differentiated toward the monocyte or granulocyte lineages using 5 x 10(-)(8) M 1,25 dihydroxyvitamin D(3) or 1.25% dimethyl sulfoxide, respectively. Parent monocyte- or granulocyte-like PLB cells released prostaglandin E(2) (PGE(2)) when stimulated by ionomycin, A23187, opsonized zymosan, phorbol 12-myristate 13-acetate, or formyl-Met-Leu-Phe (fMLP), and monocyte- or granulocyte-like PLB-D cells did not release PGE(2) with any of the agonists. The kinetics of cPLA(2) translocation to nuclear fractions in monocyte-like PLB cells stimulated with fMLP or ionomycin was in correlation with the kinetics of PGE(2) production. Granulocyte-like PLB cells, but not granulocyte-like PLB-D cells, secreted leukotriene B(4) (LTB(4)) after stimulation with ionomycin or A23187. Preincubation of monocyte-like parent PLB cells with 100 ng/ml lipopolysaccharide (LPS) for 16 h enhanced stimulated PGE(2) production, which is in correlation with the increased levels of cPLA(2) detected in these cells. LPS preincubation was less potent in increasing PGE(2) and LTB(4) secretion and did not affect cPLA(2) expression in granulocyte-like PLB cells, which may be a result of their lower levels of surface LPS receptor expression. LPS had no effect on monocyte- or granulocyte-like PLB-D cells. The lack of eicosanoid formation in stimulated, differentiated cPLA(2)-deficient PLB cells indicates that cPLA(2) contributes to stimulated eicosanoid formation in monocyte- and granulocyte-like PLB cells.
Collapse
Affiliation(s)
- I Furstenberg Liberty
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | | | | | | | | | | | |
Collapse
|
159
|
Chioato L, Ward RJ. Mapping structural determinants of biological activities in snake venom phospholipases A2 by sequence analysis and site directed mutagenesis. Toxicon 2004; 42:869-83. [PMID: 15019488 DOI: 10.1016/j.toxicon.2003.11.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to their catalytic activity, snake venom phospholipases A2 (vPLA2) present remarkable diversity in their biological effects. Sequence alignment analyses of functionally related PLA2 are frequently used to predict the structural determinants of these effects, and the predictions are subsequently evaluated by site directed mutagenesis experiments and functional assays. In order to improve the predictive potential of computer-based analysis, a simple method for scanning amino acid variation analysis (SAVANA) has been developed and included in the analysis of the lysine 49 PLA2 myotoxins (Lys49-PLA2). The SAVANA analysis identified positions in the C-terminal loop region of the protein, which were not identified using previously available sequence analysis tools. Site directed mutagenesis experiments of bothropstoxin-I, a Lys49-PLA2 isolated from the venom of Bothrops jararacussu, reveals that these residues are exactly those involved in the determination of myotoxic and membrane damaging activities. The SAVANA method has been used to analyse presynaptic neurotoxic and anti-coagulant vPLA2s, and the predicted structural determinants of these activities are in excellent agreement with the available results of site directed mutagenesis experiments. The positions of residues involved in the myotoxic and neurotoxic determinants demonstrate significant overlap, suggesting that the multiple biological effects observed in many snake vPLA2s are a consequence of superposed structural determinants on the protein surface.
Collapse
Affiliation(s)
- Lucimara Chioato
- Department of Biochemistry and Immunology, FMRP-USP, Universidade de São Paulo, Brazil
| | | |
Collapse
|
160
|
Matsubara M, Masaki S, Ohmori K, Karasawa A, Hasegawa K. Differential regulation of IL-4 expression and degranulation by anti-allergic olopatadine in rat basophilic leukemia (RBL-2H3) cells. Biochem Pharmacol 2004; 67:1315-26. [PMID: 15013847 DOI: 10.1016/j.bcp.2003.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 12/01/2003] [Indexed: 10/26/2022]
Abstract
Olopatadine hydrochloride (olopatadine) is an anti-allergic drug that functions as a histamine H(1) antagonist and inhibits both mast cell degranulation and the release of arachidonic acid metabolites in various types of cells. In this study, we examined the ability of olopatadine to inhibit the expression of cytokine genes in vitro via high-affinity receptors for immunoglobulin E in mast cells, using a rat basophilic leukemia (RBL-2H3) cell line and an in vivo mouse model. Levels of gene expression in RBL-2H3 cells were determined by semi-quantitative RT-PCR, and serum interleukin-4 (IL-4) level in mice was quantified by ELISA. Olopatadine inhibited significantly the induction of IL-4 expression by mast cells both in vivo and in vitro. Olopatadine inhibited Ca(2+) influx through receptor-operated channels (ROC) without affecting Ca(2+) release from intracellular stores. Comparative analysis of olopatadine with other anti-allergic drugs and the ROC blocker SKF-96365 demonstrated that the potency of inhibition of Ca(2+) influx correlated with the degree of suppression of degranulation and arachidonic acid release. Inhibition of Ca(2+) influx decreased phosphorylation of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase, which participate in regulation of cytokine (e.g. IL-4) gene expression. However, the rank order of inhibition of Ca(2+) influx did not correspond to reduction of IL-4 expression, suggesting that an unknown mechanism(s) of action, in addition to inhibition of Ca(2+) influx, is involved in the expression of cytokines in mast cells.
Collapse
Affiliation(s)
- Masahiro Matsubara
- Pharmaceutical Research Institute, Kyowa Hakko Kogyo Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan.
| | | | | | | | | |
Collapse
|
161
|
Kalyvas A, David S. Cytosolic phospholipase A2 plays a key role in the pathogenesis of multiple sclerosis-like disease. Neuron 2004; 41:323-35. [PMID: 14766173 DOI: 10.1016/s0896-6273(04)00003-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Revised: 11/18/2003] [Accepted: 12/19/2003] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that results in motor and sensory deficits. Although MS and its animal model, experimental autoimmune encephalomyelitis (EAE), are thought to be T cell-mediated diseases, the mechanisms underlying the lesions in the CNS are not fully understood. We propose that a strong candidate as a central mediator in evoking the complex pathological changes seen in MS and EAE is the enzyme cytosolic phospholipase A2 (cPLA2). One of the metabolic products of this enzyme is pro-inflammatory, while the other induces myelin breakdown, demyelination, and chemokine/cytokine expression. We provide evidence that cPLA2 is highly expressed in EAE lesions and show that blocking this enzyme leads to a remarkable reduction in the onset and progression of EAE.
Collapse
Affiliation(s)
- Athena Kalyvas
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| | | |
Collapse
|
162
|
van Rossum GSAT, Drummen GPC, Verkleij AJ, Post JA, Boonstra J. Activation of cytosolic phospholipase A2 in Her14 fibroblasts by hydrogen peroxide: a p42/44MAPK-dependent and phosphorylation-independent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:183-95. [PMID: 15164766 DOI: 10.1016/j.bbalip.2003.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 12/03/2003] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in the pathogenesis of diseases as well as various normal cellular processes. It has been suggested that ROS function as mediators of signal transduction, given that they can mimic growth factor-induced signaling. The ROS H2O2 has been reported to activate phospholipase A2 (PLA2) and, therefore, we investigated if and through which pathway ROS activate cytosolic PLA2 (cPLA2) in Her14 fibroblasts. cPLA2 was activated concentration-dependently by H2O2 in a transient manner. In addition, the lipophilic cumene hydroperoxide was shown to induce cPLA2 activity in the same manner. H2O2-induced cPLA2 activity in Her14 cells was partially phosphorylation-dependent, which was mediated through the Raf-MEK-p42/44(MAPK) pathway and occurred partially through a phosphorylation-independent mechanism. ROS can lead to changes in the (micro) viscosity of membranes due to the presence oxidized lipids, thereby increasing the substrate availability for cPLA2. In support of this, treatment of Her14 cells with H2O2 induced lipid peroxidation time-dependently as determined from degradation of lipid arachidonate and linoleate and the formation of aldehydic degradation products. Furthermore, H2O2 induced translocation of cPLA2 to the membrane fraction in a calcium-independent fashion, with a concomitant increase in cPLA2 activity. Collectively, the results suggest that oxidative stress-induced cPLA2 activity is partially phosphorylation-dependent and is further increased due to increased substrate availability by the action of ROS on membranes.
Collapse
Affiliation(s)
- Gerda S A T van Rossum
- Department of Molecular Cell Biology, Institute and Graduate School of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
163
|
Goff AK. Steroid hormone modulation of prostaglandin secretion in the ruminant endometrium during the estrous cycle. Biol Reprod 2004; 71:11-6. [PMID: 14973258 DOI: 10.1095/biolreprod.103.025890] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Prostaglandins, produced from membrane phospholipids by the action of phospholipase A2, cyclooxygenase, and specific prostaglandin synthases, are important regulators of ovulation, luteolysis, implantation, and parturition in reproductive tissues. Destruction of the corpus luteum at the end of the estrous cycle in nonpregnant animals is brought about by the pulsatile secretion of prostaglandin F(2alpha) (PGF(2alpha)) from the endometrium. It has been known for many years that progesterone, estradiol, and oxytocin are the hormones responsible for luteolysis. To achieve luteolysis, two independent processes have to be coordinated; the first is an increase in the prostaglandin synthetic capability of the endometrium and the second is an increase in oxytocin receptor number. Although progesterone and estradiol can modulate the expression of the enzymes involved in prostaglandin synthesis, the primary reason for the initiation of luteolysis is the increase in oxytocin receptor on the endometrial epithelial cells. Results of many in vivo studies have shown that progesterone and estradiol are required for luteolysis, but it is still not fully understood exactly how these steroid hormones act. The purpose of this article is to review the recent data related to how progesterone and estradiol could regulate (initiate and then turn off) the uterine pulsatile secretion of PGF(2alpha) observed at luteolysis.
Collapse
Affiliation(s)
- Alan K Goff
- Centre de Recherche en Reproduction Animale, Faculte de medecine veterinaire, Universite de Montreal, St-Hyacinthe, Quebec, Canada J2S 7C6.
| |
Collapse
|
164
|
Lindstrom T, Bennett P. Transcriptional regulation of genes for enzymes of the prostaglandin biosynthetic pathway. Prostaglandins Leukot Essent Fatty Acids 2004; 70:115-35. [PMID: 14683688 DOI: 10.1016/j.plefa.2003.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous studies over the years have demonstrated changes in prostaglandin (PG) levels in intrauterine tissues in association with labour, and PG administration has long been used to induce delivery. While it is now widely accepted that PGs play a major role in human parturition, the complex regulation of their levels is still being elucidated, with the focus on the transcriptional control of the enzymes responsible for the various steps in PG biosynthesis and catabolism.
Collapse
Affiliation(s)
- Tamsin Lindstrom
- Faculty of Medicine, Institute of Reproductive and Developmental Biology, Parturition Research Group, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
165
|
Abstract
Mammalian cells contain several structurally different phospholipase (PLA2) enzymes that exhibit distinct localisation, function and mechanisms of regulation. PLA2 isozymes have been postulated to play significant roles in the parturition process. Both secretory and cytosolic PLA2 isozymes have been identified in human gestational tissues, and there is differential expression of these PLA2 isozymes in human fetal membranes and placenta obtained at preterm and term. The aims of this commentary are: (1) to review recent data concerning the expression, role and regulation of PLA2 isozymes in human gestational tissues; and (2) to present novel data demonstrating the regulation of PLA2 isozymes in human gestational tissues by nuclear factor-kappa B (NF-kappaB) and peroxisome proliferator-activated receptor (PPAR)-g.
Collapse
Affiliation(s)
- M Lappas
- Mercy Perinatal Research Center, Mercy Hospital for Women, 126 Clarendon Street, East Melbourne 3002, Australia.
| | | |
Collapse
|
166
|
Abstract
Phospholipase A2 (PLA2) belongs to a family of enzymes that catalyze the cleavage of fatty acids from the sn-2 position of phospholipids. There are more than 19 different isoforms of PLA2 in the mammalian system, but recent studies have focused on three major groups, namely, the group IV cytosolic PLA2, the group II secretory PLA2 (sPLA2), and the group VI Ca(2+)-independent PLA2. These PLA2s are involved in a complex network of signaling pathways that link receptor agonists, oxidative agents, and proinflammatory cytokines to the release of arachidonic acid (AA) and the synthesis of eicosanoids. PLA2s acting on membrane phospholipids have been implicated in intracellular membrane trafficking, differentiation, proliferation, and apoptotic processes. All major groups of PLA2 are present in the central nervous system (CNS). Therefore, this review is focused on PLA2 and AA release in neural cells, especially in astrocytes and neurons. In addition, because many neurodegenerative diseases are associated with increased oxidative and inflammatory responses, an attempt was made to include studies on PLA2 in cerebral ischemia, Alzheimer's disease, and neuronal injury due to excitotoxic agents. Information from these studies has provided clear evidence for the important role of PLA2 in regulating physiological and pathological functions in the CNS.
Collapse
Affiliation(s)
- Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
167
|
Leistad L, Feuerherm AJ, Ostensen M, Faxvaag A, Johansen B. Presence of secretory group IIa and V phospholipase A2 and cytosolic group IVα phospholipase A2 in chondrocytes from patients with rheumatoid arthritis. ACTA ACUST UNITED AC 2004; 42:602-10. [PMID: 15259375 DOI: 10.1515/cclm.2004.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractBoth secretory and cytosolic phospholipase A
Collapse
Affiliation(s)
- Lilian Leistad
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
168
|
Kolko M, Christoffersen NR, Barreiro SG, Bazan NG. Expression and location of mRNAs encoding multiple forms of secretory phospholipase A2 in the rat retina. J Neurosci Res 2004; 77:517-24. [PMID: 15264221 DOI: 10.1002/jnr.20187] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Low-molecular-weight secretory phospholipases A(2) (sPLA(2)s) are a subgroup of PLA(2)s, which are secreted, bind to receptors, and may act as intercellular signaling modulators. At least 10 different groups have been characterized in mammals, and there is expanding evidence of the significance of sPLA(2)s in neuronal signaling and survival [Kolko et al. (1996) J. Biol. Chem. 271: 32722-32728]. To date, no retinal sPLA(2)s have been cloned or characterized. We evaluated the existence and abundance of sPLA(2) subtypes in rat retina and explored their possible involvement in light-induced retinal damage. We designed primers to identify the sPLA(2)s in rat retina, based on known sequences of sPLA(2)-specific mRNAs in other tissues. RNA was isolated from rat retina, and cDNA was produced and used for PCR cloning to identify the novel subtypes of sPLA(2). Our study revealed the presence of mRNAs encoding sPLA(2)-IB, -X, -V, -IIE, -IIA, and -IIF in the retina, and quantification by real-time PCR revealed different abundances of the sPLA(2)s. We showed a time-dependent gene induction of sPLA(2)-X, -IB, and -V in light-induced retinal damage. We further explored the location of sPLA(2)-IB by in situ hybridization and immunohistochemistry. This study is the first to reveal the presence, abundance, and induction of mRNAs encoding sPLA(2)s in rat retina. We suggest that these enzymes are themselves intercellular signaling modulators of retinal cell function and perhaps also of retinal degeneration.
Collapse
Affiliation(s)
- Miriam Kolko
- Neuroscience Center of Excellence and Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
169
|
Hiramatsu T, Sonoda H, Takanezawa Y, Morikawa R, Ishida M, Kasahara K, Sanai Y, Taguchi R, Aoki J, Arai H. Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase A1s, mPA-PLA1alpha and mPA-PLA1beta. J Biol Chem 2003; 278:49438-47. [PMID: 12963729 DOI: 10.1074/jbc.m213018200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have identified a novel phospholipase A1, named mPA-PLA1beta, which is specifically expressed in human testis and characterized it biochemically together with previously identified mPA-PLA1alpha. The sequence of mPAPLA1beta encodes a 460-amino acid protein containing a lipase domain with significant homology to the previously identified phosphatidic acid (PA)-selective PLA1, mPA-PLA1alpha. mPA-PLA1beta contains a short lid and deleted beta9 loop, which are characteristics of PLA1 molecules in the lipase family, and is a member of a subfamily in the lipase family that includes mPA-PLA1alpha and phosphatidylserine-specific PLA1. Both mPA-PLA1beta and mPA-PLA1alpha recombinant proteins exhibited PA-specific PLA1 activity and were vanadate-sensitive. When mPAPLA1beta-expressing cells were treated with bacterial phospholipase D, the cells produced lysophosphatidic acid (LPA). In both mPA-PLA1alpha and beta-expressing cells, most of the PA generated by the phospholipase D (PLD) treatment was converted to LPA, whereas in control cells it was converted to diacylglycerol. When expressed in HeLa cells most mPA-PLA1alpha protein was recovered from the cell supernatant. By contrast, mPA-PLA1beta was recovered almost exclusively from cells. Consistent with this observation, we found that mPA-PLA1beta has higher affinity to heparin than mPA-PLA1alpha. We also found that the membrane-associated mPA-PLA1s were insoluble in solubilization by 1% Triton X-100 and were detected in Triton X-100-insoluble buoyant fractions of sucrose gradients. The present study raises the possibility that production of LPA by mPA-PLA1alpha and -beta occurs on detergent-resistant membrane domains of the cells where they compete with lipid phosphate phosphatase for PA.
Collapse
Affiliation(s)
- Tatsufumi Hiramatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Puxeddu E, Mitsutake N, Knauf JA, Moretti S, Kim HW, Seta KA, Brockman D, Myatt L, Millhorn DE, Fagin JA. Microsomal Prostaglandin E2 Synthase-1 Is Induced by Conditional Expression of RET/PTC in Thyroid PCCL3 Cells through the Activation of the MEK-ERK Pathway. J Biol Chem 2003; 278:52131-8. [PMID: 14555660 DOI: 10.1074/jbc.m306003200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RET/PTC rearrangements are believed to be tumor-initiating events in papillary thyroid carcinomas. We identified microsomal prostaglandin E2 synthase-1 (mPGES-1) as a RET/PTC-inducible gene through subtraction hybridization cloning and expression profiling with custom microarrays. The inducible prostaglandin E2 (PGE2) biosynthetic enzymes cyclooxygenase-2 (COX-2) and mPGES-1 are up-regulated in many cancers. COX-2 is overexpressed in thyroid malignancies compared with benign nodules and normal thyroid tissues. Eicosanoids may promote tumorigenesis through effects on tumor cell growth, immune surveillance, and angiogenesis. Conditional RET/PTC1 or RET/PTC3 expression in PCCL3 thyroid cells markedly induced mPGES-1 and COX-2. PGE2 was the principal prostanoid and up-regulated (by approximately 60-fold), whereas hydroxyeicosatetraenoic acid metabolites were decreased, consistent with shunting of prostanoid biosynthesis toward PGE2 by coactivation of the two enzymes. RET/PTC activated mPGES-1 gene transcription. Based on experiments with kinase inhibitors, with PCCL3 cell lines with doxycycline-inducible expression of RET/PTC mutants with substitutions of critical tyrosine residues in the kinase domain, and lines with inducible expression of activated mutants of H-RAS and MEK1, RET/PTC was found to regulate mPGES-1 through Shc-RAS-MEK-ERK. These data show a direct relationship between activation of a tyrosine kinase receptor oncogene and regulation of PGE2 biosynthesis. As enzymes involved in prostanoid biosynthesis can be targeted with pharmacological inhibitors, these findings may have therapeutic implications.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Cell Line
- Chromatography, High Pressure Liquid
- Culture Media, Conditioned/pharmacology
- Cyclooxygenase 2
- Dinoprostone/metabolism
- Disease Progression
- Dose-Response Relationship, Drug
- Eicosanoids/metabolism
- Gene Library
- Humans
- Hydroxyeicosatetraenoic Acids/metabolism
- Intramolecular Oxidoreductases/metabolism
- Isoenzymes/metabolism
- Membrane Proteins
- Mutation
- Nucleic Acid Hybridization
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- Prostaglandin-E Synthases
- Prostaglandin-Endoperoxide Synthases/metabolism
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-ret
- RNA, Messenger/metabolism
- Rats
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Time Factors
- Transcription, Genetic
- Transcriptional Activation
- Tyrosine/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Efisio Puxeddu
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Dubouix A, Campanac C, Fauvel J, Simon MF, Salles JP, Roques C, Chap H, Marty N. Bactericidal properties of group IIa secreted phospholipase A2 against Pseudomonas aeruginosa clinical isolates. J Med Microbiol 2003; 52:1039-1045. [PMID: 14614061 DOI: 10.1099/jmm.0.05303-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been shown that human group IIa secreted phospholipase A(2) (sPLA(2)), found at high levels in inflammatory fluids, displays direct bactericidal properties against Gram-positive bacteria, while activity against Gram-negative bacteria requires the complement system or additional co-factors produced by neutrophils. Pseudomonas aeruginosa, an increasingly prevalent opportunistic human pathogen, is the most common Gram-negative rod found in cystic fibrosis lung infections, where it is associated with an inflammatory environment. Because murine intestinal group II sPLA(2) produced by Paneth cells has been shown to be directly bactericidal against Gram-negative bacteria, IIa sPLA(2) activity against P. aeruginosa clinical isolates was evaluated and provides the first evidence that the enzyme can be fully bactericidal in a concentration- and time-dependent manner against Gram-negative rods. Furthermore, it was demonstrated that these bactericidal properties were unaffected by high protein and salt concentrations, as observed in cystic fibrosis secretions, and that bacterial killing paralleled phospholipid hydrolysis. Finally, no cytotoxicity was observed when IIa sPLA(2) was incubated with human pulmonary cells, highlighting its potential use to synergize bactericidal antibiotics by promoting sublethal alterations of the bacterial cell wall.
Collapse
Affiliation(s)
- Anne Dubouix
- INSERM CPTP-U563, CHU Purpan, 1 Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France 2,4Laboratoire de Bactériologie-Hygiène2 and INSERM U5834, CHU Rangueil, 1 Avenue Jean Poulhes, TSA 50032, 31059 Toulouse Cedex 9, France 3Laboratoire de Microbiologie, Faculté de Pharmacie, 27 Chemin des Maraîchers, 31400 Toulouse, France
| | - Catherine Campanac
- INSERM CPTP-U563, CHU Purpan, 1 Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France 2,4Laboratoire de Bactériologie-Hygiène2 and INSERM U5834, CHU Rangueil, 1 Avenue Jean Poulhes, TSA 50032, 31059 Toulouse Cedex 9, France 3Laboratoire de Microbiologie, Faculté de Pharmacie, 27 Chemin des Maraîchers, 31400 Toulouse, France
| | - Josette Fauvel
- INSERM CPTP-U563, CHU Purpan, 1 Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France 2,4Laboratoire de Bactériologie-Hygiène2 and INSERM U5834, CHU Rangueil, 1 Avenue Jean Poulhes, TSA 50032, 31059 Toulouse Cedex 9, France 3Laboratoire de Microbiologie, Faculté de Pharmacie, 27 Chemin des Maraîchers, 31400 Toulouse, France
| | - Marie-Françoise Simon
- INSERM CPTP-U563, CHU Purpan, 1 Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France 2,4Laboratoire de Bactériologie-Hygiène2 and INSERM U5834, CHU Rangueil, 1 Avenue Jean Poulhes, TSA 50032, 31059 Toulouse Cedex 9, France 3Laboratoire de Microbiologie, Faculté de Pharmacie, 27 Chemin des Maraîchers, 31400 Toulouse, France
| | - Jean-Pierre Salles
- INSERM CPTP-U563, CHU Purpan, 1 Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France 2,4Laboratoire de Bactériologie-Hygiène2 and INSERM U5834, CHU Rangueil, 1 Avenue Jean Poulhes, TSA 50032, 31059 Toulouse Cedex 9, France 3Laboratoire de Microbiologie, Faculté de Pharmacie, 27 Chemin des Maraîchers, 31400 Toulouse, France
| | - Christine Roques
- INSERM CPTP-U563, CHU Purpan, 1 Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France 2,4Laboratoire de Bactériologie-Hygiène2 and INSERM U5834, CHU Rangueil, 1 Avenue Jean Poulhes, TSA 50032, 31059 Toulouse Cedex 9, France 3Laboratoire de Microbiologie, Faculté de Pharmacie, 27 Chemin des Maraîchers, 31400 Toulouse, France
| | - Hugues Chap
- INSERM CPTP-U563, CHU Purpan, 1 Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France 2,4Laboratoire de Bactériologie-Hygiène2 and INSERM U5834, CHU Rangueil, 1 Avenue Jean Poulhes, TSA 50032, 31059 Toulouse Cedex 9, France 3Laboratoire de Microbiologie, Faculté de Pharmacie, 27 Chemin des Maraîchers, 31400 Toulouse, France
| | - Nicole Marty
- INSERM CPTP-U563, CHU Purpan, 1 Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France 2,4Laboratoire de Bactériologie-Hygiène2 and INSERM U5834, CHU Rangueil, 1 Avenue Jean Poulhes, TSA 50032, 31059 Toulouse Cedex 9, France 3Laboratoire de Microbiologie, Faculté de Pharmacie, 27 Chemin des Maraîchers, 31400 Toulouse, France
| |
Collapse
|
172
|
Boilard E, Bourgoin SG, Bernatchez C, Surette ME. Identification of an autoantigen on the surface of apoptotic human T cells as a new protein interacting with inflammatory group IIA phospholipase A2. Blood 2003; 102:2901-9. [PMID: 12829607 DOI: 10.1182/blood-2002-12-3702] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the most studied secreted phospholipases A2 (sPLA2), the group IIA sPLA2, is found at high levels in inflammatory fluids of patients with autoimmune diseases. A characteristic of group IIA sPLA2 is its preference for negatively charged phospholipids, which become exposed on the extracellular leaflet of apoptotic cell membranes. We recently showed that low molecular weight heparan sulfate proteoglycans (HSPGs) and uncharacterized detergent-insoluble binding site(s) contribute to the enhanced binding of human group IIA PLA2 (hGIIA) to apoptotic human T cells. Using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry we now identify vimentin as the major HSPG-independent binding protein of hGIIA on apoptotic primary T lymphocytes. Vimentin is partially exposed on the surface of apoptotic T cells and binds hGIIA via its rod domain in a calcium-independent manner. Studies with hGIIA mutants showed that specific motifs in the interfacial binding surface are involved in the interaction with vimentin. The sPLA2 inhibitor LY311727, but not heparin, inhibited this interaction. In contrast, heparin but not LY311727 abrogated the binding of hGIIA to cellular HSPGs. Importantly, vimentin does not inhibit the catalytic activity of hGIIA. Altogether, the results show that vimentin, in conjunction with HSPGs, contributes to the enhanced binding of hGIIA to apoptotic T cells.
Collapse
Affiliation(s)
- Eric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, QC G1V 4G2, Canada
| | | | | | | |
Collapse
|
173
|
Ryu Y, Oh Y, Yoon J, Cho W, Baek K. Molecular characterization of a gene encoding the Drosophila melanogaster phospholipase A2. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:206-10. [PMID: 12932833 DOI: 10.1016/s0167-4781(03)00143-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A gene encoding Drosophila melanogaster secretory phospholipase A2 (sPLA2) has been cloned and characterized(.) The coding region of the sPLA2 gene was interrupted by a short intron, and codes for a signal peptide of 18 amino acids, followed by a mature protein of 168 amino acids, containing the structural features of group III sPLA2. From a Northern blot analysis, about a 1.0-kb Drosophila sPLA2 transcript was found to be expressed throughout its development and in both the adult bodies and heads. The recombinant Drosophila sPLA2 expressed and purified in Escherichia coli was found to be Ca(+2)-dependent and maximally active at pH 5.
Collapse
Affiliation(s)
- Yoonseok Ryu
- Institute of Life Sciences and Resources, and Graduate School of Biotechnology, Kyung Hee University, Yongin 449-701, South Korea
| | | | | | | | | |
Collapse
|
174
|
Yedgar S, Krimsky M, Schwob O. Protection of cell membrane from exogenous PLA2 and related inflammatory stimuli by membrane-anchored lipid conjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 525:97-101. [PMID: 12751744 DOI: 10.1007/978-1-4419-9194-2_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Saul Yedgar
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
175
|
Kurrasch-Orbaugh DM, Parrish JC, Watts VJ, Nichols DE. A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases. J Neurochem 2003; 86:980-91. [PMID: 12887695 DOI: 10.1046/j.1471-4159.2003.01921.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies in our laboratory have shown that in NIH3T3-5HT2A cells, 5-HT-induced AA release is PLA2-coupled and independent of 5-HT2A receptor-mediated PLC activation. Although 5-HT2A receptor-mediated PLC activation is known to be Galphaq-coupled, much less is understood about 5-HT2A receptor-mediated PLA2 activation. Therefore, the studies presented here were aimed at elucidating the signal transduction pathway linking stimulation of the 5-HT2A receptor to PLA2 activation. By employing various selective inhibitors, toxins, and antagonistic peptide constructs, we propose that the 5-HT2A receptor can couple to PLA2 activation through two parallel signaling cascades. Initial experiments were designed to examine the role of pertussis toxin-sensitive G proteins, namely Galphai/o, as well as pertussis toxin-insensitive G proteins, namely Galpha12/13, in 5-HT-induced AA release. Furthermore, inactivation of both Gbetagamma heterodimers and Rho proteins resulted in decreased agonist-induced AA release, without having any effect on PLC-IP accumulation. We also demonstrated 5-HT2A receptor-mediated phosphorylation of ERK1,2 and p38. Moreover, pretreatment with selective ERK1,2 and p38 inhibitors resulted in decreased 5-HT-induced AA release. Taken together, these results suggest that the 5-HT2A receptor expressed in NIH3T3 cells can couple to PLA2 activation though a complex signaling mechanism involving both Galphai/o-associated Gbetagamma-mediated ERK1,2 activation and Galpha12/13-coupled, Rho-mediated p38 activation.
Collapse
Affiliation(s)
- Deborah M Kurrasch-Orbaugh
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
176
|
Sandercock DA, Mitchell MA. Myopathy in broiler chickens: a role for Ca(2+)-activated phospholipase A2? Poult Sci 2003; 82:1307-12. [PMID: 12943302 DOI: 10.1093/ps/82.8.1307] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of Ca(2+)-dependent phospholipase A2 (PLA2) in the mechanism of skeletal muscle damage in broiler chickens was examined in vitro using a novel, synthetic, PLA2-specific inhibitor Ro31-499/001 (Ro31). Muscle damage was assessed by measurement of creatine kinase (CK) efflux from isolated muscles into the incubation medium. Treatment with the specific Ca(2+)-ionophore 4-Br-A23187 (5 microM) caused a 72% elevation (P<0.05) in muscle 45Ca2+ accumulation, which was associated with a marked increase (P<0.001) in muscle CK efflux (7.6-fold). Incubation with Ro31 (50 microM) reduced (P<0.001) CK efflux from muscles treated with ionophore (45%) but was without effect on 45Ca accumulation. Treatment with the Na+ ionophore monensin (100 microM) induced 55% (P< 0.05) elevation in 45Ca2+ accumulation with a concomitant 2.5-fold increase (P<0.001) in CK loss. Muscles incubated with monensin in the presence of Ro31 exhibited a 49% reduction (P<0.001) in CK leakage but showed no change in 45Ca2+ uptake. The results indicate that increasing external Ca2+ entry, directly or indirectly, and elevation of intracellular Ca2+, significantly alters sarcolemmal integrity resulting in increased CK efflux from broiler skeletal muscle. This process is, at least in part, dependent upon activation of PLA2 activity and thus inhibitable by Ro31. It is further proposed that muscle damage in poultry induced by a range of stresses, and insults may also be mediated by a Ro31 sensitive, PLA2-dependent component. The findings have implications for strategies to reduce or prevent myopathies in poultry affecting bird welfare and product quality.
Collapse
Affiliation(s)
- D A Sandercock
- Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, United Kingdom.
| | | |
Collapse
|
177
|
Balboa MA, Pérez R, Balsinde J. Amplification mechanisms of inflammation: paracrine stimulation of arachidonic acid mobilization by secreted phospholipase A2 is regulated by cytosolic phospholipase A2-derived hydroperoxyeicosatetraenoic acid. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:989-94. [PMID: 12847271 DOI: 10.4049/jimmunol.171.2.989] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In macrophages and other major immunoinflammatory cells, two phospholipase A(2) (PLA(2)) enzymes act in concert to mobilize arachidonic acid (AA) for immediate PG synthesis, namely group IV cytosolic phospholipase A(2) (cPLA(2)) and a secreted phospholipase A(2) (sPLA(2)). In this study, the molecular mechanism underlying cross-talk between the two PLA(2)s during paracrine signaling has been investigated. U937 macrophage-like cells respond to Con A by releasing AA in a cPLA(2)-dependent manner, and addition of exogenous group V sPLA(2) to the activated cells increases the release. This sPLA(2) effect is abolished if the cells are pretreated with cPLA(2) inhibitors, but is restored by adding exogenous free AA. Inhibitors of cyclooxygenase and 5-lipoxygenase have no effect on the response to sPLA(2). In contrast, ebselen strongly blocks it. Reconstitution experiments conducted in pyrrophenone-treated cells to abolish cPLA(2) activity reveal that 12- and 15-hydroperoxyeicosatetraenoic acid (HPETE) are able to restore the sPLA(2) response to levels found in cells displaying normal cPLA(2) activity. Moreover, 12- and 15-HPETE are able to enhance sPLA(2) activity in vitro, using a natural membrane assay. Neither of these effects is mimicked by 12- or 15-hydroxyeicosatetraenoic acid, indicating that the hydroperoxy group of HPETE is responsible for its biological activity. Collectively, these results establish a role for 12/15-HPETE as an endogenous activator of sPLA(2)-mediated phospholipolysis during paracrine stimulation of macrophages and identify the mechanism that connects sPLA(2) with cPLA(2) for a full AA mobilization response.
Collapse
Affiliation(s)
- María A Balboa
- Institute of Molecular Biology and Genetics, University of Valladolid School of Medicine, Valladolid, Spain
| | | | | |
Collapse
|
178
|
Abstract
Several new PLA(2)s have been identified based on their nucleotide gene sequences. They were classified mainly into three groups: cytosolic PLA(2) (cPLA(2)), secretary PLA(2) (sPLA(2)), and intracellular PLA(2) (iPLA(2)). They differ from each other in terms of substrate specificity, Ca(2+) requirement and lipid modification. The questions that still remain to be addressed are the subcellular localization and differential regulation of the isoforms in various cell types and under different physiological conditions. It is required to identify the downstream events that occur upon PLA(2) activation, particularly target protein or metabolic pathway for liberated arachidonic acid or other fatty acids. Understanding the same will greatly help in the development of potent and specific pharmacological modulators that can be used for basic research and clinical applications. The information of the human and other genomes of PLA(2)s, combined with the use of proteomics and genetically manipulated mouse models of different diseases, will illuminate us about the specific and potentially overlapping roles of individual phospholipases as mediators of physiological and pathological processes. Hopefully, such understanding will enable the development of specific agents aimed at decreasing the potential contribution of individual secretary phospholipases to vascular diseases. The signaling cascades involved in the activation of cPLA(2) by mitogen activated protein kinases (MAPKs) is now evident. It has been demonstrated that p44 MAPK phosphorylates cPLA(2) and increases its activity in cells and tissues. The phosphorylation of cPLA(2) at ser505 occurs before the increase in intracellular Ca(2+) that facilitate the binding of the lipid binding domain of cPLA(2) to phospholipids, promoting its translocation to cellular membranes and AA release. Recently, a negative feed back loop for cPLA(2) activation by MAPK has been proposed. If PLA(2) activation in a given model depends on PKC, PKA, cAMP, or MAPK then inhibition of these phosphorylating enzymes may alter activities of PLA(2) isoforms during cellular injury. Understanding the signaling pathways involved in the activation/deactivation of PLA(2) during cellular injury will point to key events that can be used to prevent the cellular injury. Furthermore, to date, there is limited information available regarding the regulation of iPLA(2) or sPLA(2) by these pathways.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
179
|
Kantarci A, Van Dyke TE. Lipoxins in chronic inflammation. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:4-12. [PMID: 12764016 DOI: 10.1177/154411130301400102] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The discovery of endogenous molecules involved in counterregulation of inflammatory responses that may lead to tissue injury provides an opportunity to explore new therapeutic approaches based on manipulation of new pathways. Natural counterregulatory pathways may reduce the possibility of unwanted toxic side-effects. Lipoxins are trihydroxytetraene-containing eicosanoids that are generated within the vascular lumen during platelet-leukocyte interactions and at mucosal surfaces via leukocyte-epithelial cell interactions. During cell-cell interactions, transcellular biosynthetic pathways are the major lipoxin biosynthetic routes, and thus, in humans, lipoxins are formed in vivo during multicellular responses, such as inflammation and asthma. This branch of the eicosanoid cascade generates specific tetraene-containing products that serve as "stop signals" for neutrophils that regulate key steps in leukocyte trafficking and prevent neutrophil-mediated tissue injury. These novel anti-inflammatory lipid mediators also appear to facilitate the resolution of the acute inflammatory response. In this review, recent findings and new concepts pertaining to the generation of lipoxins and their impact on the resolution of acute inflammation, and organ protection from leukocyte-mediated injury, are presented. The parallels and possible associations with periodontal diseases are discussed.
Collapse
Affiliation(s)
- Alpdogan Kantarci
- Boston University Goldman School of Dental Medicine, Department of Periodontology and Oral Biology, 100 East Newton Street G-05, Boston, MA 02118, USA
| | | |
Collapse
|
180
|
Boilard E, Bourgoin SG, Bernatchez C, Poubelle PE, Surette ME. Interaction of low molecular weight group IIA phospholipase A2 with apoptotic human T cells: role of heparan sulfate proteoglycans. FASEB J 2003; 17:1068-80. [PMID: 12773489 DOI: 10.1096/fj.02-0938com] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human group IIA phospholipase A2 (hIIA PLA2) is a 14 kDa secreted enzyme associated with inflammatory diseases. A newly discovered property of hIIA PLA2 is the binding affinity for the heparan sulfate proteoglycan (HSPG) glypican-1. In this study, the binding of hIIA PLA2 to apoptotic human T cells was investigated. Little or no exogenous hIIA PLA2 bound to CD3-activated T cells but significant binding was measured on activated T cells induced to undergo apoptosis by anti-CD95. Binding to early apoptotic T cells was greater than to late apoptotic cells. The addition of heparin and the hydrolysis of HSPG by heparinase III only partially inhibited hIIA PLA2 binding to apoptotic cells, suggesting an interaction with both HSPG and other binding protein(s). Two low molecular weight HSPG were coimmunoprecipitated with hIIA PLA2 from apoptotic T cells, but not from living cells. Treatment of CD95-stimulated T cells with hIIA PLA2 resulted in the release of arachidonic acid but not oleic acid from cells and this release was blocked by heparin and heparinase III. Altogether, these results suggest a role for hIIA PLA2 in the release of arachidonic acid from apoptotic cells through interactions with HSPG and its potential implication in the progression of inflammatory diseases.
Collapse
Affiliation(s)
- Eric Boilard
- Pilot Therapeutics Inc., 2000 Daniel Island Dr., Suite 440, Charleston, SC 29492, USA.
| | | | | | | | | |
Collapse
|
181
|
Kuwata H, Yamamoto S, Nakatani Y, Murakami M, Kudo I. Type IIA secretory PLA2-mediated delayed PGE2 biosynthesis is regulated by the products of the cytosolic PLA2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 507:9-13. [PMID: 12664557 DOI: 10.1007/978-1-4615-0193-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Hiroshi Kuwata
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
182
|
Burgermeister E, Endl J, Scheuer WV. Activation of cytosolic phospholipase A2 in human T-lymphocytes involves inhibitor-kappaB and mitogen-activated protein kinases. Eur J Pharmacol 2003; 466:169-80. [PMID: 12679154 DOI: 10.1016/s0014-2999(03)01492-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The group IV 85 kDa cytosolic phospholipase A(2) regulates many aspects of innate immunity. However, the function of this enzyme in T-cells remains controversial. We show here that human peripheral blood lymphocytes and Jurkat cells express cytosolic phospholipase A(2) and produce prostaglandin A(2) and leukotriene B(4). Selective inhibitors of this enzyme suppressed Ca(2+)-ionophore-, mitogen- and T-cell receptor-mediated expression of interleukin-2 at the level of transcription from the promoter. Activation of mitogen-activated protein kinases (MAPK), degradation of inhibitor-kappaBalpha and transactivation by nuclear factor-kappaB (NFkappaB) were impaired as was the antigen-, lectin- and interleukin-2-driven proliferation of T-cells in vitro. Ligands of peroxisome proliferator-activated receptor-gamma (PPARgamma) induced rapid phosphorylation of MAPK in human monocytic but not in Jurkat cells. These data indicated that in T-cells, eicosanoids generated upon signal-activated cytosolic phospholipase A(2) promote NFkappaB-dependent interleukin-2 transcription via a PPARgamma-independent mechanism involving the MAPK-pathway.
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Biological Regulation, The Weizmann Institute of Science, I-76100 Rehovot, Israel
| | | | | |
Collapse
|
183
|
Mulherkar R, Kirtane BM, Ramchandani A, Mansukhani NP, Kannan S, Naresh KN. Expression of enhancing factor/phospholipase A2 in skin results in abnormal epidermis and increased sensitivity to chemical carcinogenesis. Oncogene 2003; 22:1936-44. [PMID: 12673199 DOI: 10.1038/sj.onc.1206229] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enhancing factor (EF), a growth factor modulator, is the mouse homologue of human secretory group II phospholipase A(2). EF exhibits growth-promoting activity in vitro, in the presence of epidermal growth factor, and also brings about phenotypic transformation of normal cells. In order to ascertain the role of EF in vivo, a human keratin-14 promoter was used to drive the expression of EF ectopically to squamous epithelial cells. The founder mouse and its progeny showed abnormal whiskers and a scaly, beaded tail. In these mice, keratinization pattern of the epidermis was disturbed and parakeratosis and acanthosis were noted. The transgenic mice, TgK14-EF, expressed EF in the suprabasal layers of tail epidermis as well as in the epithelial cells of hair follicle and sebaceous glands of skin. Expression of EF along with hyperplasia was also observed in other squamous epithelia such as buccal mucosa, tongue and oesophagus. TgK14-EF mice homozygous for the transgene showed delayed and scanty hair growth although the mice were healthy and fertile. The hemizygous TgK14-EF mice were sensitive to a two-stage chemical carcinogenesis and developed a higher number of papillomas than their normal littermates over the course of the experiment. The conversion rate of papilloma to carcinoma was two fold higher in the transgenic mice.
Collapse
Affiliation(s)
- Rita Mulherkar
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, India.
| | | | | | | | | | | |
Collapse
|
184
|
Ivanov AI, Kulchitsky VA, Romanovsky AA. Role for the cholecystokinin-A receptor in fever: a study of a mutant rat strain and a pharmacological analysis. J Physiol 2003; 547:941-9. [PMID: 12562931 PMCID: PMC2342735 DOI: 10.1113/jphysiol.2002.033183] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Accepted: 01/06/2003] [Indexed: 11/08/2022] Open
Abstract
The involvement of the cholecystokinin (CCK)-A receptor in fever was studied. The polyphasic febrile responses to lipopolysaccharide (LPS; 10 microg kg-1, I.V.) were compared between wild-type Long-Evans (LE) rats and the CCK-A-receptor-deficient Otsuka LE Tokushima Fatty (OLETF) rats. The response of the wild-type rats was biphasic, which is typical for LE rats. Phases 1 and 2 of the response of the OLETF rats were similar to those of the LE rats, but the OLETF rats also developed a robust phase 3. This late enhancement of the febrile response could reflect either the absence of the A receptor per se or a secondary trait of the mutant strain. To distinguish between these possibilities, we conducted a pharmacological analysis. We studied whether the normally low phase 3 of LE rats can be enhanced by a CCK-A-receptor antagonist, sodium lorglumide (4.3 microg kg-1 min-1, 120 min, I.V.), and whether the normally high phase 3 of Wistar rats can be attenuated by a CCK-A receptor agonist, sulphated CCK-8 (up to 0.17 microg kg-1 min-1, 120 min, I.V.). The dose of sodium lorglumide used was sufficient to increase food intake (to block satiety), but it did not affect the fever response. In both febrile and afebrile rats, CCK-8 induced dose-dependent skin vasodilatation and decreased body temperature, but it failed to produce any effects specific for phase 3. We conclude that the exaggeration of phase 3 in OLETF rats reflects a secondary trait of this strain and not the lack of the CCK-A receptor per se. None of the three known phases of the febrile response of rats to LPS requires the CCK-A receptor.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Trauma Research, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | | | | |
Collapse
|
185
|
Hansford KA, Reid RC, Clark CI, Tyndall JDA, Whitehouse MW, Guthrie T, McGeary RP, Schafer K, Martin JL, Fairlie DP. D-Tyrosine as a chiral precusor to potent inhibitors of human nonpancreatic secretory phospholipase A2 (IIa) with antiinflammatory activity. Chembiochem 2003; 4:181-5. [PMID: 12616631 DOI: 10.1002/cbic.200390029] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Few reported inhibitors of secretory phospholipase A(2) enzymes truly inhibit the IIa human isoform (hnpsPLA(2)-IIa) noncovalently at submicromolar concentrations. Herein, the simple chiral precursor D-tyrosine was derivatised to give a series of potent new inhibitors of hnpsPLA(2)-IIa. A 2.2-A crystal structure shows an inhibitor bound in the active site of the enzyme, chelated to a Ca(2+) ion through carboxylate and amide oxygen atoms, H-bonded through an amide NH group to His48, with multiple hydrophobic contacts and a T-shaped aromatic-group-His6 interaction. Antiinflammatory activity is also demonstrated for two compounds administered orally to rats.
Collapse
Affiliation(s)
- Karl A Hansford
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland Brisbane, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Colarow L, Turini M, Teneberg S, Berger A. Characterization and biological activity of gangliosides in buffalo milk. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1631:94-106. [PMID: 12573454 DOI: 10.1016/s1388-1981(02)00360-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gangliosides (GS) were evaluated in Swiss cow's milk (SCM), Italian buffalo milk (IBM) and its serum, Pakistan buffalo colostrum (PBC), Pakistan buffalo mature milk (PBM), and Pakistan buffalo milk from rice-growing areas (PBR). Dairy GS were obtained from the Folch's upper (hydrophilic) and lower (lipophilic) extraction phases, respectively, and determined as lipid-bound sialic acid (LBSA) by colorimetry. Molar ratios of LBSA in the hydro- and lipophilic GS fractions were 52:48 to 79:21. Mature buffalo milk types had 40-100% more LBSA in the lipophilic GS fraction compared to SCM. Liquid PBC was higher in LBSA (24 nmol/g) compared to mature milk types (8-11 nmol/g). Thin-layer chromatography (TLC) and scanning densitometry showed distinct profiles of hydrophilic and lipophilic GS fractions. Lipophilic GS (but importantly not hydrophilic GS) from IBM and its serum decreased prostaglandin series 2 production by 75-80% in cultured human colonic epithelial cells exposed to tumor necrosis factor alpha (TNFalpha). Hydrophilic GD(3) and lipophilic GM(3) selectively bound rotavirus particles prepared from a rhesus strain and its mutant. A GS fraction in IBM showed a GM(1)-specific binding to cholera toxin subunit B (CTB). IBM serum (IBMS) was a rich source of LBSA (420 nmol/g proteins). In summary, improved methodology led to increased LBSA recovery and isolation of additional and bioactive milk GS. Human and Italian buffalo milk had similar CTB binding, and both had increased polysialo-GS compared to cows milk. The toxin binding properties of buffalo milk GS, and the anti-inflammatory activity of the lipophilized GS fraction could be important for developing innovative food applications, as well as the subject of future research.
Collapse
Affiliation(s)
- Ladislas Colarow
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 26, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
187
|
Kuroda E, Yamashita U. Mechanisms of enhanced macrophage-mediated prostaglandin E2 production and its suppressive role in Th1 activation in Th2-dominant BALB/c mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:757-64. [PMID: 12517938 DOI: 10.4049/jimmunol.170.2.757] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGE(2) has been known to suppress Th1 responses. We studied the difference in strains of mice in PGE(2) production by macrophages and its relation to Th1 activation. Macrophages from BALB/c mice produced greater amounts of PGE(2) than those from any other strains of mice, including C57BL/6, after LPS stimulation. In accordance with the amount of PGE(2) produced, macrophage-derived IL-12 and T cell-derived IFN-gamma production were more strongly suppressed in BALB/c macrophages than in C57BL/6 macrophages. When macrophages were treated with indomethacin or EP4 antagonist, Th1 cytokines were more markedly increased in cells from BALB/c mice than in those from C57BL/6 mice. Although cyclooxygenase-2 was expressed similarly after LPS stimulation in these mouse strains, the release of arachidonic acid and the expression of type V secretory phospholipase A(2) mRNA were greater in BALB/c macrophages. However, exogenous addition of arachidonic acid did not reverse the lower production of PGE(2) by C57BL/6 macrophages. The expression of microsomal PGE synthase, a final enzyme of PGE(2) synthesis, was also greater in BALB/c macrophages. These results indicate that the greater production of PGE(2) by macrophages, which is regulated by secretory phospholipase A(2) and microsomal PGE synthase but not by cyclooxygenase-2, is related to the suppression of Th1 cytokine production in BALB/c mice.
Collapse
MESH Headings
- Animals
- Arachidonic Acid/metabolism
- Autocrine Communication/immunology
- Cells, Cultured
- Cyclooxygenase 2
- Cytokines/antagonists & inhibitors
- Cytokines/biosynthesis
- Dinoprostone/biosynthesis
- Dinoprostone/metabolism
- Dinoprostone/physiology
- Female
- Group II Phospholipases A2
- Immunosuppressive Agents/pharmacology
- Isoenzymes/biosynthesis
- Lymphocyte Activation/immunology
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred A
- Mice, Inbred AKR
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred DBA
- Paracrine Communication/immunology
- Phospholipases A/biosynthesis
- Prostaglandin H2
- Prostaglandin-Endoperoxide Synthases/biosynthesis
- Prostaglandins H/metabolism
- Species Specificity
- Th1 Cells/immunology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Etsushi Kuroda
- Department of Immunology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan.
| | | |
Collapse
|
188
|
Fatima S, Yaghini FA, Ahmed A, Khandekar Z, Malik KU. CaM kinase IIalpha mediates norepinephrine-induced translocation of cytosolic phospholipase A2 to the nuclear envelope. J Cell Sci 2003; 116:353-65. [PMID: 12482921 DOI: 10.1242/jcs.00242] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several growth factors, hormones and neurotransmitters, including norepinephrine, increase cellular calcium levels, promoting the translocation of cytosolic phospholipase A(2) to the nuclear envelope. This study was conducted to investigate the contributions of the calcium-binding protein calmodulin and of calcium-calmodulin-dependent protein kinase II to cytosolic phospholipase A(2) translocation to the nuclear envelope elicited by norepinephrine in rabbit aortic smooth-muscle cells. Norepinephrine caused cytosolic phospholipase A(2) accumulation around the nuclear envelope as determined from its immunofluorescence; cytosolic phospholipase A(2) translocation was blocked by inhibitors of calmodulin and calcium-calmodulin-dependent protein kinase II or calcium-calmodulin-dependent protein kinase IIalpha antisense oligonucleotide. Calmodulin and calcium-calmodulin-dependent protein kinase II inhibitors did not prevent cytosolic calcium increase but attenuated cytosolic phospholipase A(2) phosphorylation caused by norepinephrine or ionomycin. In vascular smooth-muscle cells reversibly permeabilized with beta-escin and treated with alkaline phosphatase, norepinephrine failed to cause cytosolic phospholipase A(2) phosphorylation and translocation to the nuclear envelope; these effects of norepinephrine were minimized by the phosphatase inhibitor okadaic acid. Recombinant cytosolic phospholipase A(2) phosphorylated by purified calcium-calmodulin-dependent protein kinase II, but not unphosphorylated or dephosphorylated cytosolic phospholipase A(2), introduced into permeabilized vascular smooth-muscle cells in the absence of calcium accumulated around the nuclear envelope. These data suggest that norepinephrine-induced translocation of cytosolic phospholipase A(2) to the nuclear envelope is mediated by its phosphorylation by calcium-calmodulin-dependent protein kinase II and that calcium alone is insufficient for cytosolic phospholipase A(2) translocation to the nuclear envelope in rabbit vascular smooth-muscle cells.
Collapse
Affiliation(s)
- Soghra Fatima
- Department of Pharmacology and Centers for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Center for Health Sciences, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
189
|
Singer AG, Ghomashchi F, Le Calvez C, Bollinger J, Bezzine S, Rouault M, Sadilek M, Nguyen E, Lazdunski M, Lambeau G, Gelb MH. Interfacial kinetic and binding properties of the complete set of human and mouse groups I, II, V, X, and XII secreted phospholipases A2. J Biol Chem 2002; 277:48535-49. [PMID: 12359733 DOI: 10.1074/jbc.m205855200] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the full set of human and mouse groups I, II, V, X, and XII secreted phospholipases A(2) (sPLA(2)s) in Escherichia coli and insect cells has provided pure recombinant enzymes for detailed comparative interfacial kinetic and binding studies. The set of mammalian sPLA(2)s display dramatically different sensitivity to dithiothreitol. The specific activity for the hydrolysis of vesicles of differing phospholipid composition by these enzymes varies by up to 4 orders of magnitude, and yet all enzymes display similar catalytic site specificity toward phospholipids with different polar head groups. Discrimination between sn-2 polyunsaturated versus saturated fatty acyl chains is <6-fold. These enzymes display apparent dissociation constants for activation by calcium in the 1-225 microm range, depending on the phospholipid substrate. Analysis of the inhibition by a set of 12 active site-directed, competitive inhibitors reveals a large variation in the potency among the mammalian sPLA(2)s, with Me-Indoxam being the most generally potent sPLA(2) inhibitor. A dramatic correlation exists between the ability of the sPLA(2)s to hydrolyze phosphatidylcholine-rich vesicles efficiently in vitro and the ability to release arachidonic acid when added exogenously to mammalian cells; the group V and X sPLA(2)s are uniquely efficient in this regard.
Collapse
Affiliation(s)
- Alan G Singer
- Department of Chemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
Neuroinflammation is now recognized as a prominent feature in Alzheimer's pathology and a potential target for therapy aimed at treatment and prevention of disease. This review provides a synopsis of current information about cellular and molecular mediators involved in Alzheimer's neuroinflammation as well as interactions between these mediators that influence pathology. Anti-inflammatory therapies, particularly nonsteroidal anti-inflammatory drugs, are considered from experimental and clinical perspectives and potential mechanisms underlying their apparent benefits are discussed. Finally, possible protective effects of the inflammatory response in Alzheimer's are described. Taken all together, evidence presented in this review suggests a scheme for Alzheimer's pathogenesis, with neuroinflammation playing a crucial role influencing and linking beta-amyloid deposition to neuronal damage and clinical disease.
Collapse
Affiliation(s)
- Amy H Moore
- Department of Neurobiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | | |
Collapse
|
191
|
Antonio V, Brouillet A, Janvier B, Monne C, Bereziat G, Andreani M, Raymondjean M. Transcriptional regulation of the rat type IIA phospholipase A2 gene by cAMP and interleukin-1beta in vascular smooth muscle cells: interplay of the CCAAT/enhancer binding protein (C/EBP), nuclear factor-kappaB and Ets transcription factors. Biochem J 2002; 368:415-24. [PMID: 12188923 PMCID: PMC1223003 DOI: 10.1042/bj20020658] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2002] [Revised: 08/14/2002] [Accepted: 08/21/2002] [Indexed: 11/17/2022]
Abstract
The abundant secretion of type IIA secreted phospholipase A(2) (sPLA(2)) is a major feature of the inflammatory process of atherosclerosis. sPLA(2) is crucial for the development of inflammation, as it catalyses the production of lipid mediators and induces the proliferation of smooth muscle cells. We have analysed the activation of sPLA(2) transcription by cAMP and interleukin-1beta (IL-1beta), and shown that the 500 bp region upstream of the transcription start site of the rat sPLA(2) gene is implicated in activation by synergistically acting cAMP and IL-1beta. We transiently transfected and stimulated rat smooth muscle cells in primary culture and measured the promoter activities of serial and site-directed deletion mutants of sPLA(2)-luciferase constructs. A distal region, between -488 and -157 bp, bearing a CAAT/enhancer binding protein (C/EBP)-responsive element (-242 to -223) was sufficient for cAMP/protein kinase A-mediated sPLA(2) promoter activation. We find evidence for the first time that activation of the sPLA(2) promoter by IL-1beta requires activation of an Ets-responsive element in the -184 to -180 region of the distal promoter via the Ras pathway and a nuclear factor-kappaB site at positions -141 to -131 of the proximal promoter. We also used electrophoretic mobility shift assays to identify five binding sites for the Sp1 factor; a specific inhibitor of Sp1, mithramycin A, showed that this factor is crucial for the basal activity of the sPLA(2) promoter.
Collapse
MESH Headings
- Animals
- Arteriosclerosis/genetics
- Base Sequence
- Binding Sites
- CCAAT-Enhancer-Binding Proteins/metabolism
- CHO Cells
- Cells, Cultured
- Cricetinae
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Gene Expression Regulation, Enzymologic
- Group II Phospholipases A2
- Humans
- Interleukin-1/metabolism
- Interleukin-1/pharmacology
- Male
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- NF-kappa B/metabolism
- Phospholipases A/drug effects
- Phospholipases A/genetics
- Phospholipases A/metabolism
- Phospholipases A2
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- Rats
- Rats, Wistar
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Valérie Antonio
- UMR Physiologie et Physiopathologie, Université Pierre et Marie Curie, Case courrier 256, Bâtiment A, 5ème étage, 7 quai St Bernard, 75252 Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
192
|
Bezzine S, Bollinger JG, Singer AG, Veatch SL, Keller SL, Gelb MH. On the Binding Preference of Human Groups IIA and X Phospholipases A2 for Membranes with Anionic Phospholipids. J Biol Chem 2002; 277:48523-34. [PMID: 12244093 DOI: 10.1074/jbc.m203137200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammals contain 9-10 secreted phospholipases A(2) (sPLA(2)s) that display widely different affinities for membranes, depending on the phospholipid composition. The much higher enzymatic activity of human group X sPLA(2) (hGX) compared with human group IIA sPLA(2) (hGIIA) on phosphatidylcholine (PC)-rich vesicles is due in large part to the higher affinity of the former enzyme for such vesicles; this result also holds when vesicles contain cholesterol and sphingomyelin. The inclusion of anionic phosphatidylserine in PC vesicles dramatically enhances interfacial binding and catalysis of hGIIA but not of hGX. This is the result of the large number of lysine and arginine residues scattered over the entire surface of hGIIA, which cause the enzyme to form a supramolecular aggregate with multiple vesicles. Thus, high affinity binding of hGIIA to anionic vesicles is a complex process and cannot be attributed to a few basic residues on its interfacial binding surface, as is also evident from mutagenesis studies. The main reason hGIIA binds poorly to PC-rich vesicles is that it lacks a tryptophan residue on its interfacial binding surface, a residue that contributes to the high affinity binding of hGX to PC-rich vesicles. Results show that the lag in the onset of hydrolysis of PC vesicles by hGIIA is due in part to the poor affinity of this enzyme for these vesicles. Binding affinity of hGIIA, hGX, and their mutants to PC-rich vesicles is well correlated to the ability of these enzymes to act on the PC-rich outer plasma membrane of mammalian cells.
Collapse
Affiliation(s)
- Sofiane Bezzine
- Department of Chemistry, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | |
Collapse
|
193
|
Sanchez T, Moreno JJ. Calcium-independent phospholipase A2 through arachidonic acid mobilization is involved in Caco-2 cell growth. J Cell Physiol 2002; 193:293-8. [PMID: 12384982 DOI: 10.1002/jcp.10162] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several studies indicate that phospholipase A(2) (PLA(2)) expression and/or activation account for the high levels of arachidonic acid (AA) detected in cancer and, together with the elevated expression of cyclooxygenase-2, lead to cell proliferation and tumor formation. Using Caco-2 cells, a human colorectal carcinoma cell, we studied the role of high-molecular-weight PLA(2)s, cytosolic PLA(2) (cPLA(2)), and calcium-independent PLA(2) (iPLA(2)) in the AA cascade and in cell growth. Treatment with an antisense oligonucleotide against cPLA(2)alpha decreased [(3)H]AA release induced by ionophore A23187 or by a phorbol ester but did not affect the release of [(3)H]AA, [(3)H]thymidine incorporation, or Caco-2 growth induced by fetal calf serum (FCS). However, these parameters were significantly modified by iPLA(2) inhibitors and by an antisense oligonucleotide against iPLA(2)beta. Our results show that iPLA(2) was involved in AA release and the subsequent prostaglandin production induced by serum. Moreover, these data indicate that iPLA(2) may be involved in the signaling pathways involved in the control of Caco-2 proliferation.
Collapse
Affiliation(s)
- Teresa Sanchez
- Department of Physiology, Faculty of Pharmacy, Barcelona University, Barcelona, Spain
| | | |
Collapse
|
194
|
Han SJ, Ko HM, Choi JH, Seo KH, Lee HS, Choi EK, Choi IW, Lee HK, Im SY. Molecular mechanisms for lipopolysaccharide-induced biphasic activation of nuclear factor-kappa B (NF-kappa B). J Biol Chem 2002; 277:44715-21. [PMID: 12235132 DOI: 10.1074/jbc.m202524200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear factor-kappaB (NF-kappaB) is an important transcription factor necessary for initiating and sustaining inflammatory and immune reactions. The inducers of NF-kappaB are well characterized, but the molecular mechanisms underlying multiple in vivo NF-kappaB activation processes are poorly understood. The injection of lipopolysaccharide resulted in a biphasic activation of NF-kappaB during the 18-h observation period in various organs of mice. The early and late phases of NF-kappaB activation occurred at 0.5-2 h and 8-12 h, respectively. Platelet-activating factor, which is released in response to lipopolysaccharide injection, was responsible for the activation of the early phase of NF-kappaB. The early NF-kappaB activity led to the induction of proinflammatory cytokines, tumor necrosis factor (TNF), and interleukin (IL)-1beta, which are known to be efficient inducers of NF-kappaB. Using the TNF knockout and IL-1 receptor knockout mice, we found that TNF and IL-1beta had a role in the second phase activation of NF-kappaB. These cytokines did promote the synthesis of platelet-activating factor, which in turn induced the secondary activation of NF-kappaB. These observations describe a novel autoregulatory molecular mechanism for the biphasic activation of NF-kappaB.
Collapse
Affiliation(s)
- Su-Ji Han
- Department of Biological Sciences, College of Natural Sciences, The Institute of Basic Sciences, Chonnam National University, Kwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Taylor AL, Hewett SJ. Potassium-evoked glutamate release liberates arachidonic acid from cortical neurons. J Biol Chem 2002; 277:43881-7. [PMID: 12235140 DOI: 10.1074/jbc.m205872200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain cells in situ contain low concentrations of free polyunsaturated fatty acids such as arachidonic acid (AA) that are released following pathological insults. As a large rise in extracellular [K(+)] accompanies cerebral ischemia, we explored whether this was a stimulus for cellular AA release employing a murine mixed cortical cell culture preparation radiolabeled with AA. Elevating the [K(+)](o) from 5 to 52 mm induced a time-dependent increase in [(3)H]AA release, which reached a plateau after 15 min. Removal of [Ca(2+)](o) or addition of CdCl(2) (100 microm) diminished the net high K(+)-induced AA release, as did treatment of the cultures with tetanus toxin (300 ng/ml) to block endogenous neurotransmitter release. Pharmacological antagonism of both ionotropic and metabotropic glutamate receptors completely prevented high K(+)-evoked AA release, indicating that glutamate was the neurotransmitter in question. Addition of exogenous glutamate mimicked precisely the characteristics of AA release that followed increases in [K(+)](o). Finally, glutamate and AA were released solely from neurons as tetanus toxin did not cleave astrocytic synaptobrevin-2, nor was AA released from pure astrocyte cultures using the same stimuli that were effective in mixed cultures. Taken in toto, our data are consistent with the following scenario: high [K(+)](o) depolarizes neurons, causing an influx of Ca(2+) via voltage-gated Ca(2+) channels. This Ca(2+) influx stimulates the release of glutamate into the synaptic cleft, where it activates postsynaptic glutamate receptors. Events likely converge on the activation of a phospholipase A(2) family member and possibly the enzymes diacylglycerol and monoacylglycerol lipases to yield free AA.
Collapse
Affiliation(s)
- Ava L Taylor
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington 06030-3401, USA
| | | |
Collapse
|
196
|
Ivanov AI, Pero RS, Scheck AC, Romanovsky AA. Prostaglandin E(2)-synthesizing enzymes in fever: differential transcriptional regulation. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1104-17. [PMID: 12376404 DOI: 10.1152/ajpregu.00347.2002] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The febrile response to lipopolysaccharide (LPS) consists of three phases (phases I-III), all requiring de novo synthesis of prostaglandin (PG) E(2). The major mechanism for activation of PGE(2)-synthesizing enzymes is transcriptional upregulation. The triphasic febrile response of Wistar-Kyoto rats to intravenous LPS (50 microg/kg) was studied. Using real-time RT-PCR, the expression of seven PGE(2)-synthesizing enzymes in the LPS-processing organs (liver and lungs) and the brain "febrigenic center" (hypothalamus) was quantified. Phase I involved transcriptional upregulation of the functionally coupled cyclooxygenase (COX)-2 and microsomal (m) PGE synthase (PGES) in the liver and lungs. Phase II entailed robust upregulation of all enzymes of the major inflammatory pathway, i.e., secretory (s) phospholipase (PL) A(2)-IIA --> COX-2 --> mPGES, in both the periphery and brain. Phase III was accompanied by the induction of cytosolic (c) PLA(2)-alpha in the hypothalamus, further upregulation of sPLA(2)-IIA and mPGES in the hypothalamus and liver, and a decrease in the expression of COX-1 and COX-2 in all tissues studied. Neither sPLA(2)-V nor cPGES was induced by LPS. The high magnitude of upregulation of mPGES and sPLA(2)-IIA (1,257-fold and 133-fold, respectively) makes these enzymes attractive targets for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Trauma Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | | | | | | |
Collapse
|
197
|
Baker PRS, Owen JS, Nixon AB, Thomas LN, Wooten R, Daniel LW, O'Flaherty JT, Wykle RL. Regulation of platelet-activating factor synthesis in human neutrophils by MAP kinases. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:175-84. [PMID: 12379481 DOI: 10.1016/s0167-4889(02)00314-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human neutrophils (PMN) are potentially a major source of platelet-activating factor (PAF) produced during inflammatory responses. The stimulated synthesis of PAF in PMN is carried out by a phospholipid remodeling pathway involving three enzymes: acetyl-CoA:lyso-PAF acetyltransferase (acetyltransferase), type IV phospholipase A(2) (cPLA(2)) and CoA-independent transacylase (CoA-IT). However, the coordinated actions and the regulatory mechanisms of these enzymes in PAF synthesis are poorly defined. A23187 has been widely used to activate the remodeling pathway, but it has not been shown how closely its actions mimic those of physiological stimuli. Here we address this important problem and compare responses of the three remodeling enzymes and PAF synthesis by intact cells. In both A23187- and N-formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated PMN, acetyltransferase activation is blocked by SB 203580, a p38 MAP kinase inhibitor, but not by PD 98059, which blocks activation of the ERKs. In contrast, either agent attenuated cPLA(2) activation. Correlating with these results, SB 203580 decreased stimulated PAF formation by 60%, whereas PD 98059 had little effect. However, the combination of both inhibitors decreased PAF formation to control levels. Although a role for CoA-IT in PAF synthesis is recognized, we did not detect activation of the enzyme in stimulated PMN. CoA-IT thus appears to exhibit full activity in resting as well as stimulated cells. We conclude that the calcium ionophore A23187 and the receptor agonist fMLP both act through common pathways to stimulate PAF synthesis, with p38 MAP kinase regulating acetyltransferase and supplementing ERK activation of cPLA(2).
Collapse
Affiliation(s)
- Paul R S Baker
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1016, USA
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Ottolenghi A, Rowland JT. Phospholipase and lysophospholipase activity of rat eosinophil leukocytes. Arch Biochem Biophys 2002; 406:190-202. [PMID: 12361707 DOI: 10.1016/s0003-9861(02)00433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown the high lysophospholipase activity of rat eosinophilic leukocytes and used this enzyme to measure the rise in eosinophilic population of peripheral tissues caused by parasitic infections. This report details the methods and results of an investigation showing the presence in the same cells of high phospholipase (PLA) activity. Unfractionated and metrizamide-purified peritoneal eosinophil preparations were assayed using a mixed micelle substrate (6/15 mM lecithin/Triton X-100) at experimentally determined pH (6.4) and ionic strength (I=0.2) optima: the attendant reaction products included free fatty acids and organic P in a 2/1 molar proportion with a correspondent loss in the initial phospholipid concentration. The organic P fragment was further characterized as GPC (glycerylphosphorylcholine) by quantitative precipitation and acid hydrolysis. Estimates of PLA activity averaged 5 micromol/h/10(6) unfractionated eosinophils and metrizamide-purified eosinophil preparations. Paired tests for PLA and LysoPLA on unfractionated and enriched cell preparations, cytosolic extracts, and chromatographic fractions yielded similar activity ratios, supporting the inference of a close association of the two activities which could also be confirmed for the major tissues of eosinophil production and distribution.
Collapse
Affiliation(s)
- Athos Ottolenghi
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
199
|
Zhao S, Du XY, Chen JS, Zhou YC, Song JG. Secretory Phospholipase A2 Inhibits Epidermal Growth Factor-Induced Receptor Activation. Exp Cell Res 2002; 279:354-64. [PMID: 12243760 DOI: 10.1006/excr.2002.5622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secretory phospholipase A(2) (sPLA(2)) plays important roles in mediating various cellular processes, including cell proliferation, differentiation, apoptosis, and inflammatory response. In this study, we demonstrated that a basic sPLA(2) inhibits epidermal growth factor (EGF)-induced EGF receptor activation, as determined by autophosphorylation of EGF receptor, EGF-activated phospholipase D (PLD) activity, and phospholipase C-gamma(1) (PLC-gamma(1)) tyrosine phosphorylation in a human epidermoid carcinoma cell line, A-431. Treatment of cells with exogenous neutral sphingomyelinase (SMase) or a cell permeable ceramide analog, C(2)-ceramide, also caused similar inhibitory effects on EGF-induced activation of EGF receptor, tyrosine phosphorylation of PLC-gamma(1), and the activation of PLD. sPLA(2)-induced inhibition of EGF receptor was associated with arachidonic acid release, which was followed by an increase in intracellular ceramide formation. Both sPLA(2) and exogenous C(2)-ceramide are able to inhibit the proliferation of A-431. The data presented indicate for the first time that sPLA(2) downregulates the EGF receptor-mediated intracellular signal transduction that may be mediated by arachidonic acid and/or ceramide.
Collapse
Affiliation(s)
- Sheng Zhao
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Box 25, 320 Yue-Yang Road, Shanghai, 200031, Peoples' Republic of China
| | | | | | | | | |
Collapse
|
200
|
Petković M, Müller J, Müller M, Schiller J, Arnold K, Arnhold J. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for monitoring the digestion of phosphatidylcholine by pancreatic phospholipase A(2). Anal Biochem 2002; 308:61-70. [PMID: 12234464 DOI: 10.1016/s0003-2697(02)00236-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Different methods were established for monitoring the phospholipase A(2)(PLA(2)) activity but all of them are rather cumbersome and time consuming. In this paper we have investigated the suitability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the determination of the PLA(2) activity. Phosphatidylcholine (PC) was digested with pancreatic PLA(2) under different conditions, i.e., various Ca(2+), PC, and PLA(2) concentrations. The digestion products were analyzed by MALDI-TOF MS and the concentration of lysophosphatidylcholine (LPC)-generated upon PLA(2) digestion-was determined by the application of an internal standard (known concentration) and by a comparison of their signal-to-noise ratios. The results clearly demonstrate that the LPC concentration determined from the MALDI-TOF mass spectra correlates directly with the activity of the applied enzyme. Additionally, LPC concentration increased with an increase in Ca(2+), as well as in the PC concentration. A single MALDI-TOF mass spectrum provides immediate information on the digestion products as well as on the residual substrate without requirements for any previous derivatization. MALDI-TOF MS can be easily and simply applied for monitoring the PLA(2) activity and we assume that this method might also be useful for other types of phospholipases.
Collapse
Affiliation(s)
- Marijana Petković
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|