151
|
El-Rashid M, Nguyen-Ngo D, Minhas N, Meijles DN, Li J, Ghimire K, Julovi S, Rogers NM. Repurposing of metformin and colchicine reveals differential modulation of acute and chronic kidney injury. Sci Rep 2020; 10:21968. [PMID: 33319836 PMCID: PMC7738483 DOI: 10.1038/s41598-020-78936-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is a major health problem affecting millions of patients globally. There is no effective treatment for AKI and new therapies are urgently needed. Novel drug development, testing and progression to clinical trials is overwhelmingly expensive. Drug repurposing is a more cost-effective measure. We identified 2 commonly used drugs (colchicine and metformin) that alter inflammatory cell function and signalling pathways characteristic of AKI, and tested them in models of acute and chronic kidney injury to assess therapeutic benefit. We assessed the renoprotective effects of colchicine or metformin in C57BL/6 mice challenged with renal ischemia reperfusion injury (IRI), treated before or after injury. All animals underwent analysis of renal function and biomolecular phenotyping at 24 h, 48 h and 4 weeks after injury. Murine renal tubular epithelial cells were studied in response to in vitro mimics of IRI. Pre-emptive treatment with colchicine or metformin protected against AKI, with lower serum creatinine, improved histological changes and decreased TUNEL staining. Pro-inflammatory cytokine profile and multiple markers of oxidative stress were not substantially different between groups. Metformin augmented expression of multiple autophagic proteins which was reversed by the addition of hydroxychloroquine. Colchicine led to an increase in inflammatory cells within the renal parenchyma. Chronic exposure after acute injury to either therapeutic agent in the context of reduced renal mass did not mitigate the development of fibrosis, with colchicine significantly worsening an ischemic phenotype. These data indicate that colchicine and metformin affect acute and chronic kidney injury differently. This has significant implications for potential drug repurposing, as baseline renal disease must be considered when selecting medication.
Collapse
Affiliation(s)
- Maryam El-Rashid
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Danny Nguyen-Ngo
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Nikita Minhas
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Kedar Ghimire
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Sohel Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia. .,Westmead Clinical Medical School, University of Sydney, Camperdown, NSW, Australia. .,Renal Division, Westmead Hospital, Sydney, NSW, Australia. .,Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
152
|
Tubular mitochondrial AKT1 is activated during ischemia reperfusion injury and has a critical role in predisposition to chronic kidney disease. Kidney Int 2020; 99:870-884. [PMID: 33316281 DOI: 10.1016/j.kint.2020.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022]
Abstract
Kidney tubular dysfunction contributes to acute kidney injury and to the transition to chronic kidney disease. Although tubular mitochondria have been implicated in the pathophysiology of kidney failure, the mechanisms are not yet clear. Here, we demonstrated that ischemia-reperfusion injury induced acute translocation and activation of mitochondrial protein kinase B (also known as AKT1) in the kidney tubules. We hypothesized that mitochondrial AKT1 signaling protects against the development of acute kidney injury and subsequent chronic kidney disease. To test this prediction, we generated two novel kidney tubule-specific transgenic mouse strains with inducible expression of mitochondria-targeted dominant negative AKT1 or constitutively active AKT1, using a Cre-Lox strategy. Inhibition of mitochondrial AKT1 in mitochondria-targeted dominant negative AKT1 mice aggravated azotemia, tubular injuries, kidney fibrosis, glomerulosclerosis, and negatively impacted survival after ischemia-reperfusion injury. Conversely, enhancing tubular mitochondrial AKT1 signaling in mitochondria-targeted constitutively active AKT1 mice attenuated kidney injuries, protected kidney function, and significantly improved survival after ischemia-reperfusion injury (76.9% vs. 20.8%, respectively). Uncoupled mitochondrial respiration and increased oxidative stress was found in the kidney tubules when mitochondria AKT1 was inhibited, supporting the role of mitochondrial dysfunction in the pathophysiology of kidney failure. Thus, our studies suggest tubular mitochondrial AKT1 signaling could be a novel target to develop new strategies for better prevention and treatment of kidney injury.
Collapse
|
153
|
Galeno JG, França LFDC, da Silva FRP, Alves EHP, Di Lenardo D, Nascimento HMS, Cardoso Guimarães Vasconcelos AC, Carneiro Gomes PR, Dias de Souza Filho M, Caetano VDS, de Oliveira AP, de Alencar MVOB, Barbosa ALDR, Medeiros JVR, Fahimipou F, Barros SP, Alves Diniz IM, Vasconcelos DFP. Renal alterations caused by ligature-induced periodontitis persist after ligature removal in rats. J Periodontal Res 2020; 56:306-313. [PMID: 33296521 DOI: 10.1111/jre.12822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis may crosstalk with renal diseases, yet that remains unclear. We investigated whether the renal alterations caused by induced periodontitis are reversible after removal of the ligatures in experimental ligature-induced periodontitis. MATERIAL AND METHODS Twenty-four female rats were divided into three groups: control (without periodontitis), periodontitis (20 days of ligature-induced periodontitis), and P20-20 (20 days of ligature-induced periodontitis and 20 days after ligature removal). The following periodontal parameters were assessed: gingival bleeding index, probing pocket depth, myeloperoxidase activity, and alveolar bone height. For renal tissues, histopathology, malonaldehyde (MDA) levels, glutathione (GSH) content, and renal weight were evaluated. In the blood, creatinine, uric acid, albumin, total cholesterol, total protein, and glucose levels were assessed. Total protein and creatinine levels in urine were also investigated. RESULTS Rat renal tissues did not demonstrate reversal of periodontitis-related changes in the P20-20 group in terms of MDA, GSH, and histopathological evaluations when compared to the periodontitis group. Accordingly, only total cholesterol levels were reversible in the P20-20. CONCLUSION Renal alterations caused by ligature-induced periodontitis persisted even after removal of ligatures in rats.
Collapse
Affiliation(s)
- Juliana Gomes Galeno
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | - Luiz Felipe de Carvalho França
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | - Felipe Rodolfo Pereira da Silva
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | - Even Herlany Pereira Alves
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | - David Di Lenardo
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | - Hélio Mateus Silva Nascimento
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | - Any Carolina Cardoso Guimarães Vasconcelos
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil.,Medicine School, Education Institute of Parnaiba Valley (IESVAP - AFYA), Parnaiba, Brazil
| | - Paulo Roberto Carneiro Gomes
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | - Manoel Dias de Souza Filho
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | - Vinícius da Silva Caetano
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | - Ana Patrícia de Oliveira
- Laboratory of Experimental Physiopharmacology (LAFFEX), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | | | - André Luiz Dos Reis Barbosa
- Laboratory of Experimental Physiopharmacology (LAFFEX), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | - Jand-Venes Rolim Medeiros
- Laboratory of Experimental Physiopharmacology (LAFFEX), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, Brazil
| | - Farahnaz Fahimipou
- Center for Oral and Systemic Diseases, Department of Periodontology, UNC School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Silvana Pereira Barros
- Center for Oral and Systemic Diseases, Department of Periodontology, UNC School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | |
Collapse
|
154
|
Clark AJ, Parikh SM. Targeting energy pathways in kidney disease: the roles of sirtuins, AMPK, and PGC1α. Kidney Int 2020; 99:828-840. [PMID: 33307105 DOI: 10.1016/j.kint.2020.09.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022]
Abstract
The kidney has extraordinary metabolic demands to sustain the active transport of solutes that is critical to renal filtration and clearance. Mitochondrial health is vital to meet those demands and maintain renal fitness. Decades of studies have linked poor mitochondrial health to kidney disease. Key regulators of mitochondrial health-adenosine monophosphate kinase, sirtuins, and peroxisome proliferator-activated receptor γ coactivator-1α-have all been shown to play significant roles in renal resilience against disease. This review will summarize the latest research into the activities of those regulators and evaluate the roles and therapeutic potential of targeting those regulators in acute kidney injury, glomerular kidney disease, and renal fibrosis.
Collapse
Affiliation(s)
- Amanda J Clark
- Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Samir M Parikh
- Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
155
|
Legouis D, Faivre A, Cippà PE, de Seigneux S. Renal gluconeogenesis: an underestimated role of the kidney in systemic glucose metabolism. Nephrol Dial Transplant 2020; 37:1417-1425. [PMID: 33247734 DOI: 10.1093/ndt/gfaa302] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Glucose levels are tightly regulated at all times. Gluconeogenesis is the metabolic pathway dedicated to glucose synthesis from non-hexose precursors. Gluconeogenesis is critical for glucose homoeostasis, particularly during fasting or stress conditions. The renal contribution to systemic gluconeogenesis is increasingly recognized. During the post-absorptive phase, the kidney accounts for ∼40% of endogenous gluconeogenesis, occurring mainly in the kidney proximal tubule. The main substrate for renal gluconeogenesis is lactate and the process is regulated by insulin and cellular glucose levels, but also by acidosis and stress hormones. The kidney thus plays an important role in the maintenance of glucose and lactate homoeostasis during stress conditions. The impact of acute and chronic kidney disease and proximal tubular injury on gluconeogenesis is not well studied. Recent evidence shows that in both experimental and clinical acute kidney injury, impaired renal gluconeogenesis could significantly participate in systemic metabolic disturbance and thus alter the prognosis. This review summarizes the biochemistry of gluconeogenesis, the current knowledge of kidney gluconeogenesis, its modifications in kidney disease and the clinical relevance of this fundamental biological process in human biology.
Collapse
Affiliation(s)
- David Legouis
- Department of Acute Medicine, Division of Intensive Care, University Hospitals of Geneva, Geneva, Switzerland.,Department of Medicine, Laboratory of Nephrology, University Hospitals of Geneva, Geneva, Switzerland.,Department of Cell Physiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Faivre
- Department of Medicine, Laboratory of Nephrology, University Hospitals of Geneva, Geneva, Switzerland.,Department of Cell Physiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pietro E Cippà
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sophie de Seigneux
- Department of Medicine, Laboratory of Nephrology, University Hospitals of Geneva, Geneva, Switzerland.,Department of Cell Physiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Medicine, Division of Nephrology, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
156
|
Mihevc M, Petreski T, Maver U, Bevc S. Renal proximal tubular epithelial cells: review of isolation, characterization, and culturing techniques. Mol Biol Rep 2020; 47:9865-9882. [PMID: 33170426 DOI: 10.1007/s11033-020-05977-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
The kidney is a complex organ, comprised primarily of glomerular, tubular, mesangial, and endothelial cells, and podocytes. The fact that renal cells are terminally differentiated at 34 weeks of gestation is the main obstacle in regeneration and treatment of acute kidney injury or chronic kidney disease. Furthermore, the number of chronic kidney disease patients is ever increasing and with it the medical community should aim to improve existing and develop new methods of renal replacement therapy. On the other hand, as polypharmacy is on the rise, thought should be given into developing new ways of testing drug safety. A possible way to tackle these issues is with isolation and culture of renal cells. Several protocols are currently described to isolate the desired cells, of which the most isolated are the proximal tubular epithelial cells. They play a major role in water homeostasis, acid-base control, reabsorption of compounds, and secretion of xenobiotics and endogenous metabolites. When exposed to ischemic, toxic, septic, or obstructive conditions their death results in what we clinically perceive as acute kidney injury. Additionally, due to renal cells' limited regenerative potential, the profibrotic environment inevitably leads to chronic kidney disease. In this review we will focus on human proximal tubular epithelial cells. We will cover human kidney culture models, cell sources, isolation, culture, immortalization, and characterization subdivided into morphological, phenotypical, and functional characterization.
Collapse
Affiliation(s)
- Matic Mihevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
| | - Tadej Petreski
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
157
|
Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, Zhang A. Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol 2020; 319:F1105-F1116. [PMID: 33073587 DOI: 10.1152/ajprenal.00285.2020] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) has been widely recognized as an important risk factor for the occurrence and development of chronic kidney disease (CKD). Even milder AKI has adverse consequences and could progress to renal fibrosis, which is the ultimate common pathway for various terminal kidney diseases. Thus, it is urgent to develop a strategy to hinder the transition from AKI to CKD. Some mechanisms of the AKI-to-CKD transition have been revealed, such as nephron loss, cell cycle arrest, persistent inflammation, endothelial injury with vascular rarefaction, and epigenetic changes. Previous studies have elucidated the pivotal role of mitochondria in acute injuries and demonstrated that the fitness of this organelle is a major determinant in both the pathogenesis and recovery of organ function. Recent research has suggested that damage to mitochondrial function in early AKI is a crucial factor leading to tubular injury and persistent renal insufficiency. Dysregulation of mitochondrial homeostasis, alterations in bioenergetics, and organelle stress cross talk contribute to the AKI-to-CKD transition. In this review, we focus on the pathophysiology of mitochondria in renal recovery after AKI and progression to CKD, confirming that targeting mitochondria represents a potentially effective therapeutic strategy for the progression of AKI to CKD.
Collapse
Affiliation(s)
- Mingzhu Jiang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Lei
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yifan Xie
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
158
|
Shirakawa K, Sano M. Sodium-Glucose Co-Transporter 2 Inhibitors Correct Metabolic Maladaptation of Proximal Tubular Epithelial Cells in High-Glucose Conditions. Int J Mol Sci 2020; 21:ijms21207676. [PMID: 33081406 PMCID: PMC7589591 DOI: 10.3390/ijms21207676] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023] Open
Abstract
Glucose filtered in the glomerulus is actively reabsorbed by sodium-glucose co-transporter 2 (SGLT2) in proximal tubular epithelial cells (PTEC) and passively returned to the blood via glucose transporter 2 (GLUT2). Healthy PTEC rely primarily on fatty acid beta-oxidation (FAO) for energy. In phase III trials, SGLT2 inhibitors improved outcomes in diabetic kidney disease (DKD). Tubulointerstitial renal fibrosis due to altered metabolic reprogramming of PTEC might be at the root of the pathogenesis of DKD. Here, we investigated the molecular mechanism of SGLT2 inhibitors’ renoprotective effect by examining transcriptional activity of Spp1, which encodes osteopontin, a key mediator of tubulointerstitial renal fibrosis. With primary cultured PTEC from Spp1-enhanced green fluorescent protein knock-in mice, we proved that in high-glucose conditions, increased SGLT2- and GLUT-mediated glucose uptake is causatively involved in aberrant activation of the glycolytic pathway in PTEC, thereby increasing mitochondrial reactive oxygen species (ROS) formation and transcriptional activation of Spp1. FAO activation did not play a direct role in these processes, but elevated expression of a tubular-specific enzyme, myo-inositol oxygenase, was at least partly involved. Notably, canagliflozin blocked overexpression of myo-inositol oxygenase. In conclusion, SGLT2 inhibitors exerted renoprotective effects by inhibiting aberrant glycolytic metabolism and mitochondrial ROS formation in PTEC in high-glucose conditions.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
159
|
Yamamoto S, Yamamoto M, Nakamura J, Mii A, Yamamoto S, Takahashi M, Kaneko K, Uchino E, Sato Y, Fukuma S, Imamura H, Matsuda M, Yanagita M. Spatiotemporal ATP Dynamics during AKI Predict Renal Prognosis. J Am Soc Nephrol 2020; 31:2855-2869. [PMID: 33046532 DOI: 10.1681/asn.2020050580] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Depletion of ATP in renal tubular cells plays the central role in the pathogenesis of kidney diseases. Nevertheless, inability to visualize spatiotemporal in vivo ATP distribution and dynamics has hindered further analysis. METHODS A novel mouse line systemically expressing an ATP biosensor (an ATP synthase subunit and two fluorophores) revealed spatiotemporal ATP dynamics at single-cell resolution during warm and cold ischemic reperfusion (IR) with two-photon microscopy. This experimental system enabled quantification of fibrosis 2 weeks after IR and assessment of the relationship between the ATP recovery in acute phase and fibrosis in chronic phase. RESULTS Upon ischemia induction, the ATP levels of proximal tubule (PT) cells decreased to the nadir within a few minutes, whereas those of distal tubule (DT) cells decreased gradually up to 1 hour. Upon reperfusion, the recovery rate of ATP in PTs was slower with longer ischemia. In stark contrast, ATP in DTs was quickly rebounded irrespective of ischemia duration. Morphologic changes of mitochondria in the acute phase support the observation of different ATP dynamics in the two segments. Furthermore, slow and incomplete ATP recovery of PTs in the acute phase inversely correlated with fibrosis in the chronic phase. Ischemia under conditions of hypothermia resulted in more rapid and complete ATP recovery with less fibrosis, providing a proof of concept for use of hypothermia to protect kidney tissues. CONCLUSIONS Visualizing spatiotemporal ATP dynamics during IR injury revealed higher sensitivity of PT cells to ischemia compared with DT cells in terms of energy metabolism. The ATP dynamics of PTs in AKI might provide prognostic information.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masamichi Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Advanced Scientific Research Leaders Development Unit, Gunma University Graduate School of Medicine, Maebashi, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Jin Nakamura
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko Mii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigenori Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Takahashi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiichi Kaneko
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Uchino
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shingo Fukuma
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan .,Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| |
Collapse
|
160
|
Bhatia D, Capili A, Choi ME. Mitochondrial dysfunction in kidney injury, inflammation, and disease: Potential therapeutic approaches. Kidney Res Clin Pract 2020; 39:244-258. [PMID: 32868492 PMCID: PMC7530368 DOI: 10.23876/j.krcp.20.082] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are energy-producing organelles that not only satisfy the high metabolic demands of the kidney but sense and respond to kidney injury-induced oxidative stress and inflammation. Kidneys are rich in mitochondria. Mitochondrial dysfunction plays a critical role in the progression of acute kidney injury and chronic kidney disease. Mitochondrial responses to specific stimuli are highly regulated and synergistically modulated by tightly interconnected processes, including mitochondrial dynamics (fission, fusion) and mitophagy. The counterbalance between these processes is essential in maintaining a healthy network of mitochondria. Recent literature suggests that alterations in mitochondrial dynamics are implicated in kidney injury and the progression of kidney diseases. A decrease in mitochondrial fusion promotes fission-induced mitochondrial fragmentation, but a reduction in mitochondrial fission produces excessive mitochondrial elongation. The removal of dysfunctional mitochondria by mitophagy is crucial for their quality control. Defective mitochondrial function disrupts cellular redox potential and can cause cell death. Mitochondrial DNA derived from damaged cells also act as damage-associated molecular patterns to recruit immune cells and the inflammatory response can further exaggerate kidney injury. This review provides a comprehensive overview of the role of mitochondrial dysfunction in acute kidney injury and chronic kidney disease. We discuss the processes that control mitochondrial stress responses to kidney injury and review recent advances in understanding the role of mitochondrial dysfunction in inflammation and tissue damage through the use of different experimental models of kidney disease. We also describe potential mitochondria-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Allyson Capili
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Mary E. Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
- Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
161
|
Hypoxia-mediated regulation of mitochondrial transcription factors in renal epithelial cells: implications for hypertensive renal physiology. Hypertens Res 2020; 44:154-167. [PMID: 32917968 DOI: 10.1038/s41440-020-00539-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Kidneys have a high resting metabolic rate and low partial pressure of oxygen due to enhanced mitochondrial oxygen consumption and ATP production needed for active solute transport. Heightened mitochondrial activity leads to progressively increasing hypoxia from the renal cortex to the renal medulla. Renal hypoxia is prominent in hypertensive rats due to increased sodium reabsorption within the nephrons, which demands higher energy production by oxidative phosphorylation (OXPHOS). Consequently, spontaneously hypertensive rats (SHR) display greater oxygen deficiency (hypoxia) than normotensive Wistar Kyoto rats (WKY). Here, we sought to investigate the expression of key proteins for mitochondrial biogenesis in SHR and WKY, and study the regulation of mitochondrial transcription factors (mtTFs) under in vitro hypoxic conditions in renal epithelial cells. We report that renal expressions of hypoxia-inducible factor-1-alpha (HIF-1α), peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α), mtTFs, and OXPHOS proteins are elevated in SHR compared to WKY. In addition, our experiments in cultured kidney cells demonstrate that acute hypoxia augments the expression of these genes. Furthermore, we show that the transcripts of HIF-1α and mtTFs are positively correlated in various human tissues. We reveal, for the first time to our knowledge, that HIF-1α transactivates mtTF genes by direct interaction with their promoters in rat kidney epithelial cells (NRK-52E) under acute hypoxia. Concomitant increases in the mitochondrial DNA and RNA, and OXPHOS proteins are observed. Taken together, this study suggests that hypoxia within the renal epithelial cells may enhance mitochondrial function to meet the energy demand in proximal tubular cells during prehypertensive stages in kidneys of young SHR.
Collapse
|
162
|
Takemura K, Nishi H, Inagi R. Mitochondrial Dysfunction in Kidney Disease and Uremic Sarcopenia. Front Physiol 2020; 11:565023. [PMID: 33013483 PMCID: PMC7500155 DOI: 10.3389/fphys.2020.565023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, there has been an increased focus on the influences of mitochondrial dysfunction on various pathologies. Mitochondria are major intracellular organelles with a variety of critical roles, such as adenosine triphosphate production, metabolic modulation, generation of reactive oxygen species, maintenance of intracellular calcium homeostasis, and the regulation of apoptosis. Moreover, mitochondria are attracting attention as a therapeutic target in several diseases. Additionally, a lot of existing agents have been found to have pharmacological effects on mitochondria. This review provides an overview of the mitochondrial change in the kidney and skeletal muscle, which is often complicated with sarcopenia and chronic kidney disease (CKD). Furthermore, the pharmacological effects of therapeutics for CKD on mitochondria are explored.
Collapse
Affiliation(s)
- Koji Takemura
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
163
|
Morita M, Kanasaki K. Sodium-glucose cotransporter-2 inhibitors for diabetic kidney disease: Targeting Warburg effects in proximal tubular cells. DIABETES & METABOLISM 2020; 46:353-361. [PMID: 32891754 DOI: 10.1016/j.diabet.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022]
Abstract
Inhibitors of sodium-glucose cotransporter 2 (SGLT2) have undoubtedly shifted the paradigm for diabetes medicine and research and, especially, diabetic kidney disease (DKD). The pharmacological action of SGLT2 inhibitors is simply the release of glucose into urine; however, precisely how SGLT2 inhibitors contribute to the health of those with diabetes has still not been completely elucidated. Towards this end, the present review provides a novel insight into the action of SGLT2 inhibitors by highlighting a neglected fuel-burning system found in proximal tubular cells-'glycolysis'. In addition, exploring the details of the molecular mechanisms and clinical biomarkers of the organ protection conferred by SGLT2 inhibitors is now required to prepare for the next stage of clinical diabetes medicine-the 'post-SGLT2 inhibitor era'.
Collapse
Affiliation(s)
- Miwa Morita
- Department of Internal Medicine 1, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Keizo Kanasaki
- Department of Internal Medicine 1, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| |
Collapse
|
164
|
Lin PH, Duann P. Dyslipidemia in Kidney Disorders: Perspectives on Mitochondria Homeostasis and Therapeutic Opportunities. Front Physiol 2020; 11:1050. [PMID: 33013450 PMCID: PMC7494972 DOI: 10.3389/fphys.2020.01050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
To excrete body nitrogen waste and regulate electrolyte and fluid balance, the kidney has developed into an energy factory with only second to the heart in mitochondrial content in the body to meet the high-energy demand and regulate homeostasis. Energy supply from the renal mitochondria majorly depends on lipid metabolism, with programed enzyme systems in fatty acid β-oxidation and Krebs cycle. Renal mitochondria integrate several metabolic pathways, including AMPK/PGC-1α, PPARs, and CD36 signaling to maintain energy homeostasis for dynamic and static requirements. The pathobiology of several kidney disorders, including diabetic nephropathy, acute and chronic kidney injuries, has been primarily linked to impaired mitochondrial bioenergetics. Such homeostatic disruption in turn stimulates a pathological adaptation, with mitochondrial enzyme system reprograming possibly leading to dyslipidemia. However, this alteration, while rescuing oncotic pressure deficit secondary to albuminuria and dissipating edematous disorder, also imposes an ominous lipotoxic consequence. Reprograming of lipid metabolism in kidney injury is essential to preserve the integrity of kidney mitochondria, thereby preventing massive collateral damage including excessive autophagy and chronic inflammation. Here, we review dyslipidemia in kidney disorders and the most recent advances on targeting mitochondrial energy metabolism as a therapeutic strategy to restrict renal lipotoxicity, achieve salutary anti-edematous effects, and restore mitochondrial homeostasis.
Collapse
Affiliation(s)
- Pei-Hui Lin
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Pu Duann
- Research and Development, Salem Veteran Affairs Medical Center, Salem, VA, United States
| |
Collapse
|
165
|
Atif M, Mohr A, Conti F, Scatton O, Gorochov G, Miyara M. Metabolic Optimisation of Regulatory T Cells in Transplantation. Front Immunol 2020; 11:2005. [PMID: 33013855 PMCID: PMC7495149 DOI: 10.3389/fimmu.2020.02005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T (Treg) cells expressing the FOXP3 transcription factor are presently under investigation by many teams globally as a cellular therapy to induce tolerance in transplantation. This is primarily due to their immunosuppressive and homeostatic functions. Depending on the type of allograft, Treg cells will need to infiltrate and function in metabolically diverse microenvironments. This means that any resident and circulating Treg cells need to differentially adapt to counter acute or chronic allograft rejection. However, the links between Treg cell metabolism and function are still not entirely delineated. Current data suggest that Treg cells and their effector counterparts have different metabolite dependencies and metabolic programs. These properties could be exploited to optimize intragraft Treg cell function. In this review, we discuss the current paradigms regarding Treg cell metabolism and outline critical intracellular axes that link metabolism and function. Finally, we discuss how this knowledge could be clinically translated for the benefit of transplant patients.
Collapse
Affiliation(s)
- Mo Atif
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Centre for Liver and Gastrointestinal Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Audrey Mohr
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Filomena Conti
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Olivier Scatton
- Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Guy Gorochov
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Makoto Miyara
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| |
Collapse
|
166
|
Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch 2020; 472:1345-1370. [PMID: 32144488 PMCID: PMC7483786 DOI: 10.1007/s00424-020-02361-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The kidneys filter large amounts of glucose. To prevent the loss of this valuable fuel, the tubular system of the kidney, particularly the proximal tubule, has been programmed to reabsorb all filtered glucose. The machinery involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane and the facilitative glucose transporter GLUT2 on the basolateral membrane. The proximal tubule also generates new glucose, particularly in the post-absorptive phase but also to enhance bicarbonate formation and maintain acid-base balance. The glucose reabsorbed or formed by the proximal tubule is primarily taken up into peritubular capillaries and returned to the systemic circulation or provided as an energy source to further distal tubular segments that take up glucose by basolateral GLUT1. Recent studies provided insights on the coordination of renal glucose reabsorption, formation, and usage. Moreover, a better understanding of renal glucose transport in disease states is emerging. This includes the kidney in diabetes mellitus, when renal glucose retention becomes maladaptive and contributes to hyperglycemia. Furthermore, enhanced glucose reabsorption is coupled to sodium retention through the sodium-glucose cotransporter SGLT2, which induces secondary deleterious effects. As a consequence, SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing. Recent studies discovered unique roles for SGLT1 with implications in acute kidney injury and glucose sensing at the macula densa. This review discusses established and emerging concepts of renal glucose transport, and outlines the need for a better understanding of renal glucose handling in health and disease.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
167
|
Legouis D, Ricksten SE, Faivre A, Verissimo T, Gariani K, Verney C, Galichon P, Berchtold L, Feraille E, Fernandez M, Placier S, Koppitch K, Hertig A, Martin PY, Naesens M, Pugin J, McMahon AP, Cippà PE, de Seigneux S. Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nat Metab 2020; 2:732-743. [PMID: 32694833 DOI: 10.1038/s42255-020-0238-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/11/2020] [Indexed: 01/16/2023]
Abstract
Acute kidney injury (AKI) is strongly associated with mortality, independently of its cause. The kidney contributes to up to 40% of systemic glucose production by gluconeogenesis during fasting and under stress conditions. Whether kidney gluconeogenesis is impaired during AKI and how this might influence systemic metabolism remain unknown. Here we show that glucose production and lactate clearance are impaired during human and experimental AKI by using renal arteriovenous catheterization in patients, lactate tolerance testing in mice and glucose isotope labelling in rats. Single-cell transcriptomics reveal that gluconeogenesis is impaired in proximal tubule cells during AKI. In a retrospective cohort of critically ill patients, we demonstrate that altered glucose metabolism during AKI is a major determinant of systemic glucose and lactate levels and is strongly associated with mortality. Thiamine supplementation increases lactate clearance without modifying renal function in mice with AKI, enhances glucose production by renal tubular cells ex vivo and is associated with reduced mortality and improvement of the metabolic pattern in a retrospective cohort of critically ill patients with AKI. This study highlights an unappreciated systemic role of renal glucose and lactate metabolism under stress conditions, delineates general mechanisms of AKI-associated mortality and introduces a potential intervention targeting metabolism for a highly prevalent clinical condition with limited therapeutic options.
Collapse
Affiliation(s)
- David Legouis
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland.
- Division of Intensive Care, University Hospital of Geneva, Geneva, Switzerland.
| | - Sven-Erick Ricksten
- Department of Anaesthesiology, Intensive Care Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Faivre
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
| | - Thomas Verissimo
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
| | - Karim Gariani
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Charles Verney
- French National Institute of Health and Medical Research UMR_S1155, Rare and Common Kidney Diseases, Matrix Remodeling and Repair; AP-HP, Tenon Hospital, Renal Intensive Care Unit, Sorbonne Université, Paris, France
| | - Pierre Galichon
- French National Institute of Health and Medical Research UMR_S1155, Rare and Common Kidney Diseases, Matrix Remodeling and Repair; AP-HP, Tenon Hospital, Renal Intensive Care Unit, Sorbonne Université, Paris, France
| | - Lena Berchtold
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
- Service of Nephrology, University Hospitals of Leuven, Leuven, Belgium
| | - Eric Feraille
- Department of Cell Biology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Marylise Fernandez
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
| | - Sandrine Placier
- French National Institute of Health and Medical Research UMR_S1155, Rare and Common Kidney Diseases, Matrix Remodeling and Repair; AP-HP, Tenon Hospital, Renal Intensive Care Unit, Sorbonne Université, Paris, France
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Alexandre Hertig
- French National Institute of Health and Medical Research UMR_S1155, Rare and Common Kidney Diseases, Matrix Remodeling and Repair; AP-HP, Tenon Hospital, Renal Intensive Care Unit, Sorbonne Université, Paris, France
| | - Pierre-Yves Martin
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Maarten Naesens
- Service of Nephrology, University Hospitals of Leuven, Leuven, Belgium
| | - Jérôme Pugin
- Division of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Pietro E Cippà
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
168
|
Martins JR, Haenni D, Bugarski M, Figurek A, Hall AM. Quantitative intravital Ca2+ imaging maps single cell behavior to kidney tubular structure. Am J Physiol Renal Physiol 2020; 319:F245-F255. [DOI: 10.1152/ajprenal.00052.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ca2+ is an important second messenger that translates extracellular stimuli into intracellular responses. Although there has been significant progress in understanding Ca2+ dynamics in organs such as the brain, the nature of Ca2+ signals in the kidney is still poorly understood. Here, we show that by using a genetically expressed highly sensitive reporter (GCaMP6s), it is possible to perform imaging of Ca2+ signals at high resolution in the mouse kidney in vivo. Moreover, by applying machine learning-based automated analysis using a Ca2+-independent signal, quantitative data can be extracted in an unbiased manner. By projecting the resulting data onto the structure of the kidney, we show that different tubular segments display highly distinct spatiotemporal patterns of Ca2+ signals. Furthermore, we provide evidence that Ca2+ activity in the proximal tubule decreases with increasing distance from the glomerulus. Finally, we demonstrate that substantial changes in intracellular Ca2+ can be detected in proximal tubules in a cisplatin model of acute kidney injury, which can be linked to alterations in cell structure and transport function. In summary, we describe a powerful new tool to investigate how single cell behavior is integrated with whole organ structure and function and how it is altered in disease states relevant to humans.
Collapse
Affiliation(s)
| | - Dominik Haenni
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
169
|
Tammaro A, Kers J, Scantlebery AML, Florquin S. Metabolic Flexibility and Innate Immunity in Renal Ischemia Reperfusion Injury: The Fine Balance Between Adaptive Repair and Tissue Degeneration. Front Immunol 2020; 11:1346. [PMID: 32733450 PMCID: PMC7358591 DOI: 10.3389/fimmu.2020.01346] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI), a common event after renal transplantation, causes acute kidney injury (AKI), increases the risk of delayed graft function (DGF), primes the donor kidney for rejection, and contributes to the long-term risk of graft loss. In the last decade, epidemiological studies have linked even mild episodes of AKI to chronic kidney disease (CKD) progression, and innate immunity seems to play a crucial role. The ischemic insult triggers an acute inflammatory reaction that is elicited by Pattern Recognition Receptors (PRRs), expressed on both infiltrating immune cells as well as tubular epithelial cells (TECs). Among the PRRs, Toll-like receptors (TLRs), their synergistic receptors, Nod-like receptors (NLRs), and the inflammasomes, play a pivotal role in shaping inflammation and TEC repair, in response to renal IRI. These receptors represent promising targets to modulate the extent of inflammation, but also function as gatekeepers of tissue repair, protecting against AKI-to-CKD progression. Despite the important considerations on timely use of therapeutics, in the context of IRI, treatment options are limited by a lack of understanding of the intra- and intercellular mechanisms associated with the activation of innate immune receptors and their impact on adaptive tubular repair. Accumulating evidence suggests that TEC-associated innate immunity shapes the tubular response to stress through the regulation of immunometabolism. Engagement of innate immune receptors provides TECs with the metabolic flexibility necessary for their plasticity during injury and repair. This could significantly affect pathogenic processes within TECs, such as cell death, mitochondrial damage, senescence, and pro-fibrotic cytokine secretion, well-known to exacerbate inflammation and fibrosis. This article provides an overview of the past 5 years of research on the role of innate immunity in experimental and human IRI, with a focus on the cascade of events activated by hypoxic damage in TECs: from programmed cell death (PCD) and mitochondrial dysfunction-mediated metabolic rewiring of TECs to maladaptive repair and progression to fibrosis. Finally, we will discuss the important crosstalk between metabolism and innate immunity observed in TECs and their therapeutic potential in both experimental and clinical research.
Collapse
Affiliation(s)
- Alessandra Tammaro
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.,Biomolecular Systems Analytics, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Angelique M L Scantlebery
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
170
|
Srivastava SP, Goodwin JE, Kanasaki K, Koya D. Metabolic reprogramming by N-acetyl-seryl-aspartyl-lysyl-proline protects against diabetic kidney disease. Br J Pharmacol 2020; 177:3691-3711. [PMID: 32352559 DOI: 10.1111/bph.15087] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 03/14/2020] [Accepted: 04/09/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE ACE inhibitors (ACEIs) and AT1 receptor antagonists (ARBs) are first-line drugs that are believed to reduce the progression of end-stage renal disease in diabetic patients. Differences in the effects of ACEIs and ARBs are not well studied and the mechanisms responsible are not well understood. EXPERIMENTAL APPROACH Male diabetic CD-1 mice were treated with ACEI, ARB, N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), ACEI + AcSDKP, ARB + AcSDKP, glycolysis inhibitors or non-treatment. Moreover, prolyl oligopeptidase inhibitor (POPi)-injected male diabetic C57Bl6 mice were treated with ACEI, AcSDKP and ARB or non-treatment. Western blot and immunofluorescent staining were used to examine key enzymes and regulators of central metabolism. KEY RESULTS The antifibrotic action of ACEI imidapril is due to an AcSDKP-mediated antifibrotic mechanism, which reprograms the central metabolism including restoring SIRT3 protein and mitochondrial fatty acid oxidation and suppression of abnormal glucose metabolism in the diabetic kidney. Moreover, the POPi S17092 significantly blocked the AcSDKP synthesis, accelerated kidney fibrosis and disrupted the central metabolism. ACEI partly restored the kidney fibrosis and elevated the AcSDKP level, whereas the ARB (TA-606) did not show such effects in the POPi-injected mice. ACE inhibition and AcSDKP suppressed defective metabolism-linked mesenchymal transformations and reduced collagen-I and fibronectin accumulation in the diabetic kidneys. CONCLUSION AND IMPLICATIONS The study envisages that AcSDKP is the endogenous antifibrotic mediator that controls the metabolic switch between glucose and fatty acid metabolism and that suppression of AcSDKP leads to disruption of kidney cell metabolism and activates mesenchymal transformations leading to severe fibrosis in the diabetic kidney.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Division of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Keizo Kanasaki
- Division of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Daisuke Koya
- Division of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
171
|
Li Y, Nourbakhsh N, Pham H, Tham R, Zuckerman JE, Singh P. Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F229-F244. [PMID: 32538150 DOI: 10.1152/ajprenal.00390.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sepsis-associated acute kidney injury (s-AKI) has a staggering impact in patients and lacks any treatment. Incomplete understanding of the pathogenesis of s-AKI is a major barrier to the development of effective therapies. We address the gaps in knowledge regarding renal oxygenation, tubular metabolism, and mitochondrial function in the pathogenesis of s-AKI using the cecal ligation and puncture (CLP) model in mice. At 24 h after CLP, renal oxygen delivery was reduced; however, fractional oxygen extraction was unchanged, suggesting inefficient renal oxygen utilization despite decreased glomerular filtration rate and filtered load. To investigate the underlying mechanisms, we examined temporal changes in mitochondrial function and metabolism at 4 and 24 h after CLP. At 4 h after CLP, markers of mitochondrial content and biogenesis were increased in CLP kidneys, but mitochondrial oxygen consumption rates were suppressed in proximal tubules. Interestingly, at 24 h, proximal tubular mitochondria displayed high respiratory capacity, but with decreased mitochondrial content, biogenesis, fusion, and ATP levels in CLP kidneys, suggesting decreased ATP synthesis efficiency. We further investigated metabolic reprogramming after CLP and observed reduced expression of fatty acid oxidation enzymes but increased expression of glycolytic enzymes at 24 h. However, assessment of functional glycolysis revealed lower glycolytic capacity, glycolytic reserve, and compensatory glycolysis in CLP proximal tubules, which may explain their susceptibility to injury. In conclusion, we demonstrated significant alterations in renal oxygenation, tubular mitochondrial function, and metabolic reprogramming in s-AKI, which may play an important role in the progression of injury and recovery from AKI in sepsis.
Collapse
Affiliation(s)
- Ying Li
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Noureddin Nourbakhsh
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Division of Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, California
| | - Hai Pham
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rick Tham
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jonathan E Zuckerman
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California
| | - Prabhleen Singh
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
172
|
Lovisa S, Fletcher-Sananikone E, Sugimoto H, Hensel J, Lahiri S, Hertig A, Taduri G, Lawson E, Dewar R, Revuelta I, Kato N, Wu CJ, Bassett RL, Putluri N, Zeisberg M, Zeisberg EM, LeBleu VS, Kalluri R. Endothelial-to-mesenchymal transition compromises vascular integrity to induce Myc-mediated metabolic reprogramming in kidney fibrosis. Sci Signal 2020; 13:13/635/eaaz2597. [PMID: 32518142 DOI: 10.1126/scisignal.aaz2597] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a cellular transdifferentiation program in which endothelial cells partially lose their endothelial identity and acquire mesenchymal-like features. Renal capillary endothelial cells can undergo EndMT in association with persistent damage of the renal parenchyma. The functional consequence(s) of EndMT in kidney fibrosis remains unexplored. Here, we studied the effect of Twist or Snail deficiency in endothelial cells on EndMT in kidney fibrosis. Conditional deletion of Twist1 (which encodes Twist) or Snai1 (which encodes Snail) in VE-cadherin+ or Tie1+ endothelial cells inhibited the emergence of EndMT and improved kidney fibrosis in two different kidney injury/fibrosis mouse models. Suppression of EndMT limited peritubular vascular leakage, reduced tissue hypoxia, and preserved tubular epithelial health and function. Hypoxia, which was exacerbated by EndMT, resulted in increased Myc abundance in tubular epithelial cells, enhanced glycolysis, and suppression of fatty acid oxidation. Pharmacological suppression or epithelial-specific genetic ablation of Myc in tubular epithelial cells ameliorated fibrosis and restored renal parenchymal function and metabolic homeostasis. Together, these findings demonstrate a functional role for EndMT in the response to kidney capillary endothelial injury and highlight the contribution of endothelial-epithelial cross-talk in the development of kidney fibrosis with a potential for therapeutic intervention.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Eliot Fletcher-Sananikone
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Hensel
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sharmistha Lahiri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alexandre Hertig
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Gangadhar Taduri
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Erica Lawson
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rajan Dewar
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ignacio Revuelta
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Noritoshi Kato
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Roland L Bassett
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen 37075, Germany
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA. .,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
173
|
Deletion of VDAC1 Hinders Recovery of Mitochondrial and Renal Functions After Acute Kidney Injury. Biomolecules 2020; 10:biom10040585. [PMID: 32290153 PMCID: PMC7226369 DOI: 10.3390/biom10040585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) constitute major transporters mediating bidirectional movement of solutes between cytoplasm and mitochondria. We aimed to determine if VDAC1 plays a role in recovery of mitochondrial and kidney functions after ischemia-induced acute kidney injury (AKI). Kidney function decreased after ischemia and recovered in wild-type (WT), but not in VDAC1-deficient mice. Mitochondrial maximum respiration, activities of respiratory complexes and FoF1-ATPase, and ATP content in renal cortex decreased after ischemia and recovered in WT mice. VDAC1 deletion reduced respiration and ATP content in non-injured kidneys. Further, VDAC1 deletion blocked return of activities of respiratory complexes and FoF1-ATPase, and recovery of respiration and ATP content after ischemia. Deletion of VDAC1 exacerbated ischemia-induced mitochondrial fission, but did not aggravate morphological damage to proximal tubules after ischemia. However, VDAC1 deficiency impaired recovery of kidney morphology and increased renal interstitial collagen accumulation. Thus, our data show a novel role for VDAC1 in regulating renal mitochondrial dynamics and recovery of mitochondrial function and ATP levels after AKI. We conclude that the presence of VDAC1 (1) stimulates capacity of renal mitochondria for respiration and ATP production, (2) reduces mitochondrial fission, (3) promotes recovery of mitochondrial function and dynamics, renal morphology, and kidney functions, and (4) increases survival after AKI.
Collapse
|
174
|
Jang HS, Noh MR, Kim J, Padanilam BJ. Defective Mitochondrial Fatty Acid Oxidation and Lipotoxicity in Kidney Diseases. Front Med (Lausanne) 2020; 7:65. [PMID: 32226789 PMCID: PMC7080698 DOI: 10.3389/fmed.2020.00065] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
The kidney is a highly metabolic organ and uses high levels of ATP to maintain electrolyte and acid-base homeostasis and reabsorb nutrients. Energy depletion is a critical factor in development and progression of various kidney diseases including acute kidney injury (AKI), chronic kidney disease (CKD), and diabetic and glomerular nephropathy. Mitochondrial fatty acid β-oxidation (FAO) serves as the preferred source of ATP in the kidney and its dysfunction results in ATP depletion and lipotoxicity to elicit tubular injury and inflammation and subsequent fibrosis progression. This review explores the current state of knowledge on the role of mitochondrial FAO dysfunction in the pathophysiology of kidney diseases including AKI and CKD and prospective views on developing therapeutic interventions based on mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mi Ra Noh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anatomy, Jeju National University School of Medicine, Jeju, South Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
175
|
Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 2020; 16:317-336. [PMID: 32152499 DOI: 10.1038/s41581-020-0256-y] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
Kidney size and glomerular filtration rate (GFR) often increase with the onset of diabetes, and elevated GFR is a risk factor for the development of diabetic kidney disease. Hyperfiltration mainly occurs in response to signals passed from the tubule to the glomerulus: high levels of glucose in the glomerular filtrate drive increased reabsorption of glucose and sodium by the sodium-glucose cotransporters SGLT2 and SGLT1 in the proximal tubule. Passive reabsorption of chloride and water also increases. The overall capacity for proximal reabsorption is augmented by growth of the proximal tubule, which (alongside sodium-glucose cotransport) further limits urinary glucose loss. Hyperreabsorption of sodium and chloride induces tubuloglomerular feedback from the macula densa to increase GFR. In addition, sodium-glucose cotransport by SGLT1 on macula densa cells triggers the production of nitric oxide, which also contributes to glomerular hyperfiltration. Although hyperfiltration restores sodium and chloride excretion it imposes added physical stress on the filtration barrier and increases the oxygen demand to drive reabsorption. Tubular growth is associated with the development of a senescence-like molecular signature that sets the stage for inflammation and fibrosis. SGLT2 inhibitors attenuate the proximal reabsorption of sodium and glucose, normalize tubuloglomerular feedback signals and mitigate hyperfiltration. This tubule-centred model of diabetic kidney physiology predicts the salutary effect of SGLT2 inhibitors on hard renal outcomes, as shown in large-scale clinical trials.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA. .,Department of Pharmacology, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| | - Scott C Thomson
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
176
|
Nespoux J, Patel R, Zhang H, Huang W, Freeman B, Sanders PW, Kim YC, Vallon V. Gene knockout of the Na +-glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol 2020; 318:F1100-F1112. [PMID: 32116018 DOI: 10.1152/ajprenal.00607.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the early proximal tubule, Na+-glucose cotransporter 2 (SGLT2) mediates the bulk of renal glucose reabsorption. Gene deletion in mice (Sglt2-/-) was used to determine the role of SGLT2 in acute kidney injury induced by bilateral ischemia-reperfusion (IR). In Sglt2-/- and littermate wild-type mice, plasma creatinine increased similarly on day 1 after IR. This was associated with an equal increase in both genotypes in the urinary kidney injury molecule-1-to-creatinine ratio, a tubular injury marker, and similarly reduced urine osmolality and increased plasma osmolality, indicating impaired urine concentration. In both IR groups, FITC-sinistrin glomerular filtration rate was equally reduced on day 14, and plasma creatinine was similarly and incompletely restored on day 23. In Sglt2-/- mice subjected to IR, fractional urinary glucose excretion was increased on day 1 but reduced and associated with normal renal Na+-glucose cotransporter 1 (Sglt1) mRNA expression on day 23, suggesting temporary SGLT1 suppression. In wild-type mice subjected to IR, renal Sglt1 mRNA was likewise normal on day 23, whereas Sglt2 mRNA was reduced by 57%. In both genotypes, IR equally reduced urine osmolality and renal mRNA expression of the Na+-K+-2Cl- cotransporter and renin on day 23, suggesting thick ascending limb dysfunction, and similarly increased renal mRNA expression of markers of injury, inflammation, oxidative stress, and fibrosis (kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, transforming growth factor-β1, NADPH oxidase-2, and collagen type 1). This was associated with equal increases in kidney histological damage scores and similar degree of capillary loss in both genotypes. The data indicate that genetic deletion of SGLT2 did not protect the kidneys in the initial injury phase or the subsequent recovery phase in a mouse model of IR-induced acute kidney injury.
Collapse
Affiliation(s)
- Josselin Nespoux
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Haiyan Zhang
- Department of Pathology, University of California, San Diego, California
| | - Winnie Huang
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Paul W Sanders
- Departments of Medicine, Cell, and Developmental and Integrative Biology, University of Alabama at Birmingham, and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Young Chul Kim
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Volker Vallon
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California.,Department of Pharmacology, University of California, San Diego, California
| |
Collapse
|
177
|
Simic P, Kim W, Zhou W, Pierce KA, Chang W, Sykes DB, Aziz NB, Elmariah S, Ngo D, Pajevic PD, Govea N, Kestenbaum BR, de Boer IH, Cheng Z, Christov M, Chun J, Leaf DE, Waikar SS, Tager AM, Gerszten RE, Thadhani RI, Clish CB, Jüppner H, Wein MN, Rhee EP. Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. J Clin Invest 2020; 130:1513-1526. [PMID: 32065590 PMCID: PMC7269595 DOI: 10.1172/jci131190] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that controls blood phosphate levels by increasing renal phosphate excretion and reducing 1,25-dihydroxyvitamin D3 [1,25(OH)2D] production. Disorders of FGF23 homeostasis are associated with significant morbidity and mortality, but a fundamental understanding of what regulates FGF23 production is lacking. Because the kidney is the major end organ of FGF23 action, we hypothesized that it releases a factor that regulates FGF23 synthesis. Using aptamer-based proteomics and liquid chromatography-mass spectrometry-based (LC-MS-based) metabolomics, we profiled more than 1600 molecules in renal venous plasma obtained from human subjects. Renal vein glycerol-3-phosphate (G-3-P) had the strongest correlation with circulating FGF23. In mice, exogenous G-3-P stimulated bone and bone marrow FGF23 production through local G-3-P acyltransferase-mediated (GPAT-mediated) lysophosphatidic acid (LPA) synthesis. Further, the stimulatory effect of G-3-P and LPA on FGF23 required LPA receptor 1 (LPAR1). Acute kidney injury (AKI), which increases FGF23 levels, rapidly increased circulating G-3-P in humans and mice, and the effect of AKI on FGF23 was abrogated by GPAT inhibition or Lpar1 deletion. Together, our findings establish a role for kidney-derived G-3-P in mineral metabolism and outline potential targets to modulate FGF23 production during kidney injury.
Collapse
Affiliation(s)
- Petra Simic
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wondong Kim
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wen Zhou
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kerry A Pierce
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Wenhan Chang
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, UCSF, San Francisco, California, USA
| | | | | | - Sammy Elmariah
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Debby Ngo
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Paola Divieti Pajevic
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Nicolas Govea
- Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bryan R Kestenbaum
- Kidney Research Institute, University of Washington Medicine and Northwest Kidney Centers, Seattle, Washington, USA
| | - Ian H de Boer
- Kidney Research Institute, University of Washington Medicine and Northwest Kidney Centers, Seattle, Washington, USA
| | - Zhiqiang Cheng
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, UCSF, San Francisco, California, USA
| | - Marta Christov
- Department of Medicine, New York Medical College, Touro College, Valhalla, New York, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - David E Leaf
- Division of Renal (Kidney) Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sushrut S Waikar
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Robert E Gerszten
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA.,Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Clary B Clish
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Harald Jüppner
- Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Pediatric Nephrology and Hypertension Program, Mass General for Children, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marc N Wein
- Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eugene P Rhee
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
178
|
Johnsen M, Kubacki T, Yeroslaviz A, Späth MR, Mörsdorf J, Göbel H, Bohl K, Ignarski M, Meharg C, Habermann B, Altmüller J, Beyer A, Benzing T, Schermer B, Burst V, Müller RU. The Integrated RNA Landscape of Renal Preconditioning against Ischemia-Reperfusion Injury. J Am Soc Nephrol 2020; 31:716-730. [PMID: 32111728 DOI: 10.1681/asn.2019050534] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance. METHODS To identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury. RESULTS The gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI. CONCLUSIONS This comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).
Collapse
Affiliation(s)
- Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Martin Richard Späth
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jannis Mörsdorf
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit
| | - Katrin Bohl
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Caroline Meharg
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Bianca Habermann
- Development Biology Institute of Marseille, Aix-Marseille University, CNRS, Marseille, France
| | | | - Andreas Beyer
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany;
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; .,Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
179
|
Mitophagy in Acute Kidney Injury and Kidney Repair. Cells 2020; 9:cells9020338. [PMID: 32024113 PMCID: PMC7072358 DOI: 10.3390/cells9020338] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a major kidney disease characterized by rapid decline of renal function. Besides its acute consequence of high mortality, AKI has recently been recognized as an independent risk factor for chronic kidney disease (CKD). Maladaptive or incomplete repair of renal tubules after severe or episodic AKI leads to renal fibrosis and, eventually, CKD. Recent studies highlight a key role of mitochondrial pathology in AKI development and abnormal kidney repair after AKI. As such, timely elimination of damaged mitochondria in renal tubular cells represents an important quality control mechanism for cell homeostasis and survival during kidney injury and repair. Mitophagy is a selective form of autophagy that selectively removes redundant or damaged mitochondria. Here, we summarize our recent understanding on the molecular mechanisms of mitophagy, discuss the role of mitophagy in AKI development and kidney repair after AKI, and present future research directions and therapeutic potential.
Collapse
|
180
|
Shen Y, Jiang L, Wen P, Ye Y, Zhang Y, Ding H, Luo J, Xu L, Zen K, Zhou Y, Yang J. Tubule-derived lactate is required for fibroblast activation in acute kidney injury. Am J Physiol Renal Physiol 2020; 318:F689-F701. [PMID: 31928224 DOI: 10.1152/ajprenal.00229.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a highly prevalent medical syndrome associated with high mortality and morbidity. Several types of cells, including epithelial cells, vascular endothelial cells, pericytes, and macrophages, participate in the development of AKI. Recently, renal fibroblasts were found to play an important role in the regulation of tubular injury, repair, and recovery after AKI. However, the mechanisms underlying fibroblast activation and proliferation during the progression of AKI remain unclear. In the present study, we found many activated myofibroblasts located in the renal interstitium with an abundance of extracellular matrix deposition following folic acid-induced AKI. The proliferative pattern of tubular epithelial cells and interstitial cells following acute injury was different, indicating that the proliferation of fibroblasts followed the proliferation of tubular epithelial cells. Furthermore, we observed that proliferative tubular epithelial cells preferred aerobic glycolysis as the dominating metabolic pathway in the progression of AKI. Lactate generated from injured tubules was taken up by interstitial fibroblasts in the later stages of AKI, which induced fibroblast activation and proliferation in vitro. Early inhibition of lactate production in tubules by glycolytic inhibitors suppressed fibroblast activation after folic acid-induced injury. Collectively, these results support the important role of fibroblasts in the development of AKI and suggest that lactate produced by glycolysis in tubular epithelial cells is a novel regulator of fibroblast activation and proliferation.
Collapse
Affiliation(s)
- Yan Shen
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lei Jiang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wen
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinyin Ye
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yu Zhang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Ding
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Luo
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingling Xu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Advanced Institute of Life Sciences, Nanjing, Jiangsu, China
| | - Yang Zhou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
181
|
Cargill K, Sims-Lucas S. Metabolic requirements of the nephron. Pediatr Nephrol 2020; 35:1-8. [PMID: 30554363 DOI: 10.1007/s00467-018-4157-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
Abstract
The mammalian kidney is a complex organ that has several metabolically active cell types to aid in waste filtration, salt-water balance, and electrolyte homeostasis in the body. These functions are done primarily through the nephron, which relies on strict regulation of various metabolic pathways. Any deviations in the metabolic profile of nephrons or their precursor cells called nephron progenitors can lead to renal pathologies and abnormal development. Metabolism encompasses the mechanisms by which cells generate intermediate molecules and energy in the form of adenosine triphosphate (ATP). ATP is required by all cells and is mainly generated through glycolysis, fatty acid oxidation, and oxidative phosphorylation. During kidney development, self-renewing or proliferating cells rely on glycolysis to a greater extent than the other metabolic pathways to supply energy, replenish reducing equivalents, and generate nucleotides. However, terminally differentiated cell types rely more heavily on fatty acid oxidation and oxidative phosphorylation performed in the mitochondria to fulfill energy requirements. Further, the mature nephron is comprised of distinct segments and each segment utilizes metabolic pathways to varying degrees depending on the specific function. This review will focus on major metabolic processes performed by the nephron during health and disease.
Collapse
Affiliation(s)
- Kasey Cargill
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA.,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sunder Sims-Lucas
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA. .,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
182
|
Zhao L, Han F, Wang J, Chen J. Current understanding of the administration of mesenchymal stem cells in acute kidney injury to chronic kidney disease transition: a review with a focus on preclinical models. Stem Cell Res Ther 2019; 10:385. [PMID: 31843011 PMCID: PMC6916462 DOI: 10.1186/s13287-019-1507-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/03/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Incomplete recovery from acute kidney injury (AKI) can result in long-term functional deficits and has been recognized as a major contributor to chronic kidney disease (CKD), which is termed the AKI-CKD transition. Currently, an effective intervention for this disorder is still lacking. Principally, therapeutic strategies targeting the AKI-CKD transition can be divided into those reducing the severity of AKI or promoting the regenerative process towards beneficially adaptive repair pathways. Considering the fact that mesenchymal stem cells (MSCs) have the potential to address both aspects, therapeutic regimens based on MSCs have a promising future. In light of this information, we focus on the currently available evidence associated with MSC therapy involved in the treatment of the AKI-CKD transition and the underlying mechanisms. All of these discussions will contribute to the establishment of a reliable therapeutic strategy for patients with this problem, who can be easily ignored by physicians, and will lead to a better clinical outcome for them.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Junni Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
183
|
Kim K, Moon H, Lee YH, Seo JW, Kim YG, Moon JY, Kim JS, Jeong KH, Lee TW, Ihm CG, Lee SH. Clinical relevance of cell-free mitochondrial DNA during the early postoperative period in kidney transplant recipients. Sci Rep 2019; 9:18607. [PMID: 31819080 PMCID: PMC6901568 DOI: 10.1038/s41598-019-54694-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
Recent studies indicate that urinary mitochondrial DNA (mtDNA) is predictive of ischemic AKI and is related to delayed graft function (DGF) in renal transplantation. Nevertheless, the clinical implications and prognostic value of urinary mtDNA in kidney transplantation remain undetermined. Here, we aimed to evaluate the associations between cell-free mtDNA and clinical parameters, including pathological findings in allograft biopsy and post-transplant renal function. A total of 85 renal transplant recipients were enrolled, and blood and urine samples were collected at a median of 17 days after transplantation. Cell-free nuclear and mtDNA levels were measured by quantitative polymerase chain reaction for LPL and ND1 genes. Urinary cell-free mtDNA levels were significantly higher in patients with DGF (P < 0.001) and cases of deceased donor transplantation (P < 0.001). The subjects with acute rejection showed higher urinary mtDNA levels than those without abnormalities (P = 0.043). In addition, allograft functions at 9- and 12-month post-transplantation were significantly different between tertile groups of mtDNA independent of the presence of DGF or acute rejection, showing significantly better graft outcome in the lowest tertile group. Urinary cell-free mtDNA levels during the early post-transplant period are significantly associated with DGF, acute rejection in graft biopsy, and short-term post-transplant renal function.
Collapse
Affiliation(s)
- Kipyo Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Haena Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jung-Woo Seo
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Kyung-Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Tae Won Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Chun-Gyoo Ihm
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea. .,Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
184
|
Maruyama T, Takashima H, Oguma H, Nakamura Y, Ohno M, Utsunomiya K, Furukawa T, Tei R, Abe M. Canagliflozin Improves Erythropoiesis in Diabetes Patients with Anemia of Chronic Kidney Disease. Diabetes Technol Ther 2019; 21:713-720. [PMID: 31385724 PMCID: PMC6875696 DOI: 10.1089/dia.2019.0212] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: We evaluated the erythropoietic effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, in type 2 diabetes patients with anemia of chronic kidney disease. Methods: Nine diabetes patients were enrolled and administered 100 mg canagliflozin once a day for 12 weeks. The patients received fixed doses of conventional antidiabetic drugs and renin-angiotensin system inhibitors for 8 weeks before enrollment; these drugs were continued during the study. Endpoints were changes in erythropoiesis parameters, including erythrocyte and reticulocyte count, hemoglobin, hematocrit, and serum erythropoietin (EPO) concentration from baseline to 12 weeks. All variables were measured every 2 weeks. Results: Serum EPO concentration increased by 38 [15-62]% (P = 0.043) between baseline and 2 and 4 weeks. Reticulocyte count transiently increased at 2 weeks. Erythropoiesis occurred after 2 weeks of canagliflozin treatment. Erythrocyte count (from 386 ± 36 × 104/μL to 421 ± 36 × 104/μL; P = 0.0009), hemoglobin (from 11.8 ± 0.6 g/dL to 12.9 ± 1.1 g/dL; P = 0.0049), and hematocrit (from 37.1 ± 2.3% to 40.4 ± 3.2%; P = 0.002) increased from baseline to study completion. Although there were no significant changes in transferrin saturation, serum ferritin levels were decreased (P = 0.003). Conclusions: Canagliflozin treatment led to an improvement in erythropoiesis in patients with impaired kidney function. The effect on erythropoiesis appeared to be due to an EPO production-mediated mechanism and might be independent of glycemic control; however, further studies are needed to clarify this since the present study had a small sample size and no comparator group.
Collapse
Affiliation(s)
- Takashi Maruyama
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroyuki Takashima
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hidetaka Oguma
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshihiro Nakamura
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Michiko Ohno
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kei Utsunomiya
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuya Furukawa
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Ritsukou Tei
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
- Address correspondence to: Masanori Abe, MD, PhD, Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
185
|
Abstract
Mitochondria fulfill the high metabolic energy demands of the kidney and are regularly exposed to oxidative stress causing mitochondrial damage. The selective removal of damaged and dysfunctional mitochondria through a process known as mitophagy is essential in maintaining cellular homeostasis and physiological function. Mitochondrial quality control by mitophagy is particularly crucial for an organ such as the kidney, which is rich in mitochondria. The role of mitophagy in the pathogenesis of kidney diseases has lately gained significant attention. In this review, we summarize the current understanding of the implications of mitophagy during pathological conditions of the kidney, including acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
186
|
Impact of Intravenous Iron on Oxidative Stress and Mitochondrial Function in Experimental Chronic Kidney Disease. Antioxidants (Basel) 2019; 8:antiox8100498. [PMID: 31640237 PMCID: PMC6826506 DOI: 10.3390/antiox8100498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Mitochondrial dysfunction is observed in chronic kidney disease (CKD). Iron deficiency anaemia (IDA), a common complication in CKD, is associated with poor clinical outcomes affecting mitochondrial function and exacerbating oxidative stress. Intravenous (iv) iron, that is used to treat anaemia, may lead to acute systemic oxidative stress. This study evaluated the impact of iv iron on mitochondrial function and oxidative stress. Methods: Uraemia was induced surgically in male Sprague-Dawley rats and studies were carried out 12 weeks later in two groups sham operated and uraemic (5/6 nephrectomy) rats not exposed to i.v. iron versus sham operated and uraemic rats with iv iron. Results: Induction of uraemia resulted in reduced iron availability (serum iron: 31.1 ± 1.8 versus 46.4 ± 1.4 µM), low total iron binding capacity (26.4 ± 0.7 versus 29.5 ± 0.8 µM), anaemia (haematocrit: 42.5 ± 3.0 versus 55.0 ± 3.0%), cardiac hypertrophy, reduced systemic glutathione peroxidase activity (1.12 ± 0.11 versus 1.48 ± 0.12 U/mL), tissue oxidative stress (oxidised glutathione: 0.50 ± 0.03 versus 0.36 ± 0.04 nmol/mg of tissue), renal mitochondrial dysfunction (proton/electron leak: 61.8 ± 8.0 versus 22.7 ± 5.77) and complex I respiration (134.6 ± 31.4 versus 267.6 ± 26.4 pmol/min/µg). Iron therapy had no effect on renal function and cardiac hypertrophy but improved anaemia and systemic glutathione peroxidase (GPx) activity. There was increased renal iron content and complex II and complex IV dysfunction. Conclusion: Iron therapy improved iron deficiency anaemia in CKD without significant impact on renal function or oxidant status.
Collapse
|
187
|
Renal glycosuria as a novel early sign of colistin-induced kidney damage in mice. Antimicrob Agents Chemother 2019:AAC.01650-19. [PMID: 31591120 PMCID: PMC6879251 DOI: 10.1128/aac.01650-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The polymyxin colistin represents a last-resort antibiotic for multidrug-resistant infections, but its use is limited by the frequent onset of acute drug-induced kidney injury (DIKI). It is essential to closely monitor kidney function prior to and during colistin treatment in order to pinpoint early signs of injury and minimize long-term renal dysfunction. To facilitate this, a mouse model of colistin-induced nephrotoxicity was used to uncover novel early markers of colistin-induced DIKI. The polymyxin colistin represents a last-resort antibiotic for multidrug-resistant infections, but its use is limited by the frequent onset of acute drug-induced kidney injury (DIKI). It is essential to closely monitor kidney function prior to and during colistin treatment in order to pinpoint early signs of injury and minimize long-term renal dysfunction. To facilitate this, a mouse model of colistin-induced nephrotoxicity was used to uncover novel early markers of colistin-induced DIKI. Increased urinary levels of kidney injury molecule-1 (Kim-1) as well as glycosuria were observed in colistin-treated mice, where alterations of established clinical markers of acute kidney injury (serum creatinine and albuminuria) and emerging markers such as cystatin C were inaccurate in flagging renal damage as confirmed by histology. A direct interaction of colistin with renal glucose reabsorption was ruled out by a cis-inhibition assay in mouse brush border membrane vesicles (BBMV). Immunohistochemical examination and protein quantification by Western blotting showed a marked reduction in the protein amount of sodium-glucose transporter 2 (Sglt2), the main kidney glucose transporter, in renal tissue from colistin-treated mice in comparison to that in control animals. Consistently, BBMV isolated from treated mouse kidneys also showed a reduction in ex vivo glucose uptake compared to that in BBMV isolated from control kidneys. These findings support pathology observations of colistin-induced proximal tubule damage at the site of the brush border membrane, where Sglt2 is expressed, and open avenues for the study of glycosuria as a sensitive, specific, and accessible marker of DIKI during colistin therapy.
Collapse
|
188
|
Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis 2019; 10:677. [PMID: 31515472 PMCID: PMC6742651 DOI: 10.1038/s41419-019-1899-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
Acute kidney injury (AKI) is a syndrome of abrupt loss of renal functions. The underlying pathological mechanisms of AKI remain largely unknown. BCL2-interacting protein 3 (BNIP3) has dual functions of regulating cell death and mitophagy, but its pathophysiological role in AKI remains unclear. Here, we demonstrated an increase of BNIP3 expression in cultured renal proximal tubular epithelial cells following oxygen-glucose deprivation-reperfusion (OGD-R) and in renal tubules after renal ischemia–reperfusion (IR)-induced injury in mice. Functionally, silencing Bnip3 by specific short hairpin RNAs in cultured renal tubular cells reduced OGD-R-induced mitophagy, and potentiated OGD-R-induced cell death. In vivo, Bnip3 knockout worsened renal IR injury, as manifested by more severe renal dysfunction and tissue injury. We further showed that Bnip3 knockout reduced mitophagy, which resulted in the accumulation of damaged mitochondria, increased production of reactive oxygen species, and enhanced cell death and inflammatory response in kidneys following renal IR. Taken together, these findings suggest that BNIP3-mediated mitophagy has a critical role in mitochondrial quality control and tubular cell survival during AKI.
Collapse
|
189
|
Zhong J, Whitman JB, Yang HC, Fogo AB. Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. J Histochem Cytochem 2019; 67:623-632. [PMID: 31116068 PMCID: PMC6713971 DOI: 10.1369/0022155419850170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/22/2019] [Indexed: 01/17/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) presents with scar in parts of some glomeruli and often progresses to global and diffuse glomerulosclerosis. Podocyte injury is the initial target in primary FSGS, induced by a circulating factor. Several gene variants, for example, APOL1, are associated with increased susceptibility to FSGS. Primary FSGS may be due to genetic mutation in key podocyte genes. Increased work stress after loss of nephrons, epigenetic mechanisms, and various profibrotic pathways can contribute to progressive sclerosis, regardless of the initial injury. The progression of FSGS lesions also involves crosstalk between podocytes and other kidney cells, such as parietal epithelial cells, glomerular endothelial cells, and even tubular epithelial cells. New insights related to these mechanisms could potentially lead to new therapeutic strategies to prevent progression of FSGS.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob B Whitman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
190
|
Tammaro A, Scantlebery AML, Rampanelli E, Borrelli C, Claessen N, Butter LM, Soriani A, Colonna M, Leemans JC, Dessing MC, Florquin S. TREM1/3 Deficiency Impairs Tissue Repair After Acute Kidney Injury and Mitochondrial Metabolic Flexibility in Tubular Epithelial Cells. Front Immunol 2019; 10:1469. [PMID: 31354698 PMCID: PMC6629955 DOI: 10.3389/fimmu.2019.01469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Long-term sequelae of acute kidney injury (AKI) are associated with incomplete recovery of renal function and the development of chronic kidney disease (CKD), which can be mediated by aberrant innate immune activation, mitochondrial pathology, and accumulation of senescent tubular epithelial cells (TECs). Herein, we show that the innate immune receptor Triggering receptor expressed on myeloid cells-1 (TREM-1) links mitochondrial metabolism to tubular epithelial senescence. TREM-1 is expressed by inflammatory and epithelial cells, both players in renal repair after ischemia/reperfusion (IR)-induced AKI. Hence, we subjected WT and TREM1/3 KO mice to different models of renal IR. TREM1/3 KO mice displayed no major differences during the acute phase of injury, but increased mortality was observed in the recovery phase. This detrimental effect was associated with maladaptive repair, characterized by persistent tubular damage, inflammation, fibrosis, and TEC senescence. In vitro, we observed an altered mitochondrial homeostasis and cellular metabolism in TREM1/3 KO primary TECs. This was associated with G2/M arrest and increased ROS accumulation. Further exposure of cells to ROS-generating triggers drove the cells into a stress-induced senescent state, resulting in decreased wound healing capacity. Treatment with a mitochondria anti-oxidant partly prevented the senescent phenotype, suggesting a role for mitochondria herein. In summary, we have unraveled a novel (metabolic) mechanism by which TREM1/3 deficiency drives senescence in TECs. This involves redox imbalance, mitochondrial dysfunction and a decline in cellular metabolic activities. These finding suggest a novel role for TREM-1 in maintaining tubular homeostasis through regulation of mitochondrial metabolic flexibility.
Collapse
Affiliation(s)
| | | | | | - Cristiana Borrelli
- Laboratory Affiliated With Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Nike Claessen
- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Loes M Butter
- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alessandra Soriani
- Laboratory Affiliated With Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MI, United States
| | | | - Mark C Dessing
- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
191
|
Salt Inducible Kinase Signaling Networks: Implications for Acute Kidney Injury and Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20133219. [PMID: 31262033 PMCID: PMC6651122 DOI: 10.3390/ijms20133219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
A number of signal transduction pathways are activated during Acute Kidney Injury (AKI). Of particular interest is the Salt Inducible Kinase (SIK) signaling network, and its effects on the Renal Proximal Tubule (RPT), one of the primary targets of injury in AKI. The SIK1 network is activated in the RPT following an increase in intracellular Na+ (Na+in), resulting in an increase in Na,K-ATPase activity, in addition to the phosphorylation of Class IIa Histone Deacetylases (HDACs). In addition, activated SIKs repress transcriptional regulation mediated by the interaction between cAMP Regulatory Element Binding Protein (CREB) and CREB Regulated Transcriptional Coactivators (CRTCs). Through their transcriptional effects, members of the SIK family regulate a number of metabolic processes, including such cellular processes regulated during AKI as fatty acid metabolism and mitochondrial biogenesis. SIKs are involved in regulating a number of other cellular events which occur during AKI, including apoptosis, the Epithelial to Mesenchymal Transition (EMT), and cell division. Recently, the different SIK kinase isoforms have emerged as promising drug targets, more than 20 new SIK2 inhibitors and activators having been identified by MALDI-TOF screening assays. Their implementation in the future should prove to be important in such renal disease states as AKI.
Collapse
|
192
|
Affiliation(s)
- Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; .,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Robert J Unwin
- Department of Renal Medicine, University College London, London, United Kingdom; and.,CVRM Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
193
|
Nespoux J, Patel R, Hudkins KL, Huang W, Freeman B, Kim YC, Koepsell H, Alpers CE, Vallon V. Gene deletion of the Na +-glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol 2019; 316:F1201-F1210. [PMID: 30995111 PMCID: PMC6620597 DOI: 10.1152/ajprenal.00111.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Renal Na+-glucose cotransporter SGLT1 mediates glucose reabsorption in the late proximal tubule, a hypoxia-sensitive tubular segment that enters the outer medulla. Gene deletion in mice (Sglt1-/-) was used to determine the role of the cotransporter in acute kidney injury induced by ischemia-reperfusion (IR), including the initial injury and subsequent recovery phase. On days 1 and 16 after IR, absolute and fractional urinary glucose excretion remained greater in Sglt1-/- mice versus wild-type (WT) littermates, consistent with a sustained contribution of SGLT1 to tubular glucose reabsorption in WT mice. Absence of SGLT1 did not affect the initial kidney impairment versus WT mice, as indicated by similar increases on day 1 in plasma concentrations of creatinine and urinary excretion of the tubular injury marker kidney injury molecule-1 as well as a similar rise in plasma osmolality and fall in urine osmolality as indicators of impaired urine concentration. Recovery of kidney function on days 14/16, however, was improved in Sglt1-/- versus WT mice, as indicated by lower plasma creatinine, higher glomerula filtration rate (by FITC-sinistrin in awake mice), and more completely restored urine and plasma osmolality. This was associated with a reduced tubular injury score in the cortex and outer medulla, better preserved renal mRNA expression of tubular transporters (Sglt2 and Na+-K+-2Cl- cotransporter Nkcc2), and a lesser rise in renal mRNA expression of markers of injury, inflammation, and fibrosis [kidney injury molecule-1, chemokine (C-C motif) ligand 2, fibronectin 1, and collagen type I-α1] in Sglt1-/- versus WT mice. These results suggest that SGLT1 activity in the late proximal tubule may have deleterious effects during recovery of IR-induced acute kidney injury and identify SGLT1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Josselin Nespoux
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Kelly L Hudkins
- Department of Pathology, University of Washington , Seattle, Washington
| | - Winnie Huang
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Young Chul Kim
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Hermann Koepsell
- Department of Molecular Plant Physiology, University Würzburg , Würzburg , Germany
| | - Charles E Alpers
- Department of Pathology, University of Washington , Seattle, Washington
| | - Volker Vallon
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Pharmacology, University of California , San Diego, California
| |
Collapse
|
194
|
Khan S, Yusufi FNK, Yusufi ANK. Comparative effect of indomethacin (IndoM) on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in the kidney, small intestine and liver of rats. Toxicol Rep 2019; 6:389-394. [PMID: 31080746 PMCID: PMC6506459 DOI: 10.1016/j.toxrep.2019.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/18/2019] [Accepted: 04/28/2019] [Indexed: 01/27/2023] Open
Abstract
Indomethacin (IndoM) has prominent anti-inflammatory and analgesic-antipyretic properties. However, high incidence and severity of side-effects on the structure and functions of the kidney, liver and intestine limits its clinical use. The present study tested the hypothesis that IndoM causes multi-organ toxicity by inducing oxidative stress that alters the structure of various cellular membranes, metabolism and hence functions. The effect of IndoM was determined on the enzymes of carbohydrate metabolism, brush border membrane (BBM) and oxidative stress in the rat kideny, liver and intestine to understand the mechanism of IndoM induced toxicity. Adult male Wister rats were given IndoM (20 mg/kg) intra-peritoneally in sodium bicarbonate twice a day for 3 d. The body weights of the rats were recorded before and after experimental procedure. IndoM administration significantly increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but inorganic phosphate indicating IndoM induced renal, hepatic and intestinal toxicity. Activity of lactate dehydrogenase along with glucose-6- and fructose-1, 6-bis phosphatase, glucose-6-phosphate dehydrogenase and NADP-malic enzyme increased but malate dehydrogenase decreased in all tissues. Lipid peroxidation (LPO) significantly increased whereas the antioxidant enzymes decreased in all rat tissues studied. The results indicate that IndoM administration caused severe damage to kidney, liver and intestine by icreasing LPO, suppressing antioxidant enzymes and inhibiting oxidative metablolism. The energy dependence was shifted to anaerobic glycolysis due to mitochondrial damage supported by increased gluconeogenesis to provide more glucose to meet energy requirements.
Collapse
Key Words
- ACPase, Acid phosphatase an enzyme
- ALP, Alkaline phosphatase an enzyme
- ANOVA, Analysis of variance statistical tool
- ATP, Adenosine 5’-triphosphate energy currency
- BBM, Brush border membrane intestinal membrane
- BBMV, Brush border membrane vesicles
- BUN, Blood urea nitrogen blood parameter
- Carbohydrate metabolism
- G6PDH, Glucose-6-phosphate dehydrogenase an enzyme
- G6Pase, Glucose-6-phosphatase an enzyme
- GGTase, γ-Glutammyl transferase an enzyme
- HK, Hexokinase an enzyme
- HMP, Hexose monophosphate
- Indomethacin
- Intestine
- Kidney
- LAP, Leucine amino peptidase, an enzyme
- LDH, Lactate dehydrogenase an enzyme
- LPO, Lipid peroxidation
- Liver
- MDH, Malate dehydrogenase an enzyme
- ME, Malic enzyme an enzyme
- NADP+, Nicotinamide adenine dinucleotide phosphate
- NADPH, Nicotinamide adenine dinucleotide phosphate (reduced) reducing equivalent
- Oxidative stress
- Pi, Inorganic phosphate
- ROS, Reactive oxygen species
- SH, Sulfhydryl groups
- SOD, Superoxide dismutase, an enzyme
- TCA cycle, Tri-carboxylic acid cycle
- Toxicity
Collapse
Affiliation(s)
- Sheeba Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, India
| | - Faiz Noor Khan Yusufi
- Department of Statistics and Operations Research, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Ahad Noor Khan Yusufi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, India
| |
Collapse
|
195
|
Melis N, Thuillier R, Steichen C, Giraud S, Sauvageon Y, Kaminski J, Pelé T, Badet L, Richer JP, Barrera-Chimal J, Jaisser F, Tauc M, Hauet T. Emerging therapeutic strategies for transplantation-induced acute kidney injury: protecting the organelles and the vascular bed. Expert Opin Ther Targets 2019; 23:495-509. [PMID: 31022355 DOI: 10.1080/14728222.2019.1609451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Renal ischemia-reperfusion injury (IRI) is a significant clinical challenge faced by clinicians in a broad variety of clinical settings such as perioperative and intensive care. Renal IRI induced acute kidney injury (AKI) is a global public health concern associated with high morbidity, mortality, and health-care costs. Areas covered: This paper focuses on the pathophysiology of transplantation-related AKI and recent findings on cellular stress responses at the intersection of 1. The Unfolded protein response; 2. Mitochondrial dysfunction; 3. The benefits of mineralocorticoid receptor antagonists. Lastly, perspectives are offered to the readers. Expert opinion: Renal IRI is caused by a sudden and temporary impairment of blood flow to the organ. Defining the underlying cellular cascades involved in IRI will assist us in the identification of novel interventional targets to attenuate IRI with the potential to improve transplantation outcomes. Targeting mitochondrial function and cellular bioenergetics upstream of cellular damage may offer several advantages compared to targeting downstream inflammatory and fibrosis processes. An improved understanding of the cellular pathophysiological mechanisms leading to kidney injury will hopefully offer improved targeted therapies to prevent and treat the injury in the future.
Collapse
Affiliation(s)
- Nicolas Melis
- a Laboratory of Cellular and Molecular Biology , Center for Cancer Research, National Cancer Institute , Bethesda , MD , USA
| | - Raphael Thuillier
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France.,e Fédération Hospitalo-Universitaire SUPORT , Poitiers , France
| | - Clara Steichen
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Sebastien Giraud
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France
| | - Yse Sauvageon
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Jacques Kaminski
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Thomas Pelé
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Lionel Badet
- f Faculté de Médecine , Université Claude Bernard Lyon 1 , Villeurbanne , France.,g Hospices Civiles de Lyon , Service d'urologie et de chirurgie de la transplantation , Lyon , France
| | - Jean Pierre Richer
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,h CHU de Poitiers , Service de chirurgie générale et endocrinienne , Poitiers , France.,i Faculté de Médecine et de Pharmacie , ABS Lab (Laboratoire d'Anatomie, Biomécanique et Simulation), Université de Poitiers , Poitiers , France
| | - Jonatan Barrera-Chimal
- j Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Medicina Traslacional , Instituto de Investigaciones Biomédicas, UNAM and Instituto Nacional de Cardiología Ignacio Chávez , Mexico City , Mexico
| | - Frédéric Jaisser
- k INSERM, UMRS 1138, Team 1 , Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris, Descartes University , Paris , France
| | - Michel Tauc
- l LP2M CNRS-UMR7370, LabEx ICST , Medical Faculty, Université Côte d'Azur , Nice , France
| | - Thierry Hauet
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France.,e Fédération Hospitalo-Universitaire SUPORT , Poitiers , France.,i Faculté de Médecine et de Pharmacie , ABS Lab (Laboratoire d'Anatomie, Biomécanique et Simulation), Université de Poitiers , Poitiers , France.,m IBiSA Plateforme 'plate-forme MOdélisation Préclinique - Innovation Chirurgicale et Technologique (MOPICT)', Domaine Expérimental du Magneraud , Surgères , France
| |
Collapse
|
196
|
Zheng M, Cai J, Liu Z, Shu S, Wang Y, Tang C, Dong Z. Nicotinamide reduces renal interstitial fibrosis by suppressing tubular injury and inflammation. J Cell Mol Med 2019; 23:3995-4004. [PMID: 30993884 PMCID: PMC6533567 DOI: 10.1111/jcmm.14285] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Renal interstitial fibrosis is a common pathological feature in progressive kidney diseases currently lacking effective treatment. Nicotinamide (NAM), a member of water‐soluble vitamin B family, was recently suggested to have a therapeutic potential for acute kidney injury (AKI) in mice and humans. The effect of NAM on chronic kidney pathologies, including renal fibrosis, is unknown. Here we have tested the effects of NAM on renal interstitial fibrosis using in vivo and in vitro models. In vivo, unilateral urethral obstruction (UUO) induced renal interstitial fibrosis as indicated Masson trichrome staining and expression of pro‐fibrotic proteins, which was inhibited by NAM. In UUO, NAM suppressed tubular atrophy and apoptosis. In addition, NAM suppressed UUO‐associated T cell and macrophage infiltration and induction of pro‐inflammatory cytokines, such as TNF‐α and IL‐1β. In cultured mouse proximal tubule cells, NAM blocked TGF–β‐induced expression of fibrotic proteins, while it marginally suppressed the morphological changes induced by TGF‐β. NAM also suppressed the expression of pro‐inflammatory cytokines (eg MCP‐1 and IL‐1β) during TGF‐β treatment of these cells. Collectively, the results demonstrate an anti‐fibrotic effect of NAM in kidneys, which may involve the suppression of tubular injury and inflammation.
Collapse
Affiliation(s)
- Meiling Zheng
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University, Changsha, China.,The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University, Changsha, China
| | - Shaoqun Shu
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University, Changsha, China
| | - Ying Wang
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University, Changsha, China
| | - Chengyuan Tang
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University, Changsha, China
| |
Collapse
|
197
|
Wei Q, Su J, Dong G, Zhang M, Huo Y, Dong Z. Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells. Am J Physiol Renal Physiol 2019; 316:F1162-F1172. [PMID: 30969803 DOI: 10.1152/ajprenal.00422.2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Renal interstitial fibrosis is a common pathological feature of chronic kidney disease that may involve changes of metabolism in kidney cells. In the present study, we first showed that blockade of glycolysis with either dichloroacetate (DCA) or shikonin to target different glycolytic enzymes reduced renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO). Both inhibitors evidently suppressed the induction of fibronectin and collagen type I in obstructed kidneys, with DCA also showing inhibitory effects on collagen type IV and α-smooth muscle actin (α-SMA). Histological examination also confirmed less collagen deposition in DCA-treated kidneys. Both DCA and shikonin significantly inhibited renal tubular apoptosis but not interstitial apoptosis in UUO. Macrophage infiltration after UUO injury was also suppressed. Shikonin, but not DCA, caused obvious animal weight loss during UUO. To determine whether shikonin and DCA worked on tubular cells and/or fibroblasts, we tested their effects on cultured renal proximal tubular BUMPT cells and renal NRK-49F fibroblasts during hypoxia or transforming growth factor-β1 treatment. Although both inhibitors reduced fibronectin and α-SMA production in NRK-49F cells during hypoxia or transforming growth factor-β1 treatment, they did not suppress fibronectin and α-SMA expression in BUMPT cells. Altogether, these results demonstrate the inhibitory effect of glycolysis inhibitors on renal interstitial fibrosis. In this regard, DCA is more potent for fibrosis inhibition and less toxic to animals than shikonin.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Jennifer Su
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University , Augusta, Georgia.,Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
| |
Collapse
|
198
|
Chen T, Cao Q, Wang Y, Harris DCH. M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney Int 2019; 95:760-773. [PMID: 30827512 DOI: 10.1016/j.kint.2018.10.041] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Tissue macrophages are crucial players in homeostasis, inflammation, and immunity. They are characterized by heterogeneity and plasticity, due to which they display a continuum of phenotypes with M1/M2 presenting 2 extremes of this continuum. M2 macrophages are usually termed in the literature as anti-inflammatory and wound healing. Substantial progress has been made in elucidating the biology of M2 macrophages and their potential for clinical translation. In this review we discuss the current state of knowledge in M2 macrophage research with an emphasis on kidney disease. We explore their therapeutic potential and the challenges in using them as cellular therapies. Some new regulators that shape macrophage polarization and potential areas for future research are also examined.
Collapse
Affiliation(s)
- Titi Chen
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia.
| | - Qi Cao
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Yiping Wang
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - David C H Harris
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia; Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
199
|
Ellis R, Katerelos M, Choy SW, Cook N, Lee M, Paizis K, Pell G, Walker S, Power DA, Mount PF. Increased expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoforms in urinary exosomes in pre-eclampsia. J Transl Med 2019; 17:60. [PMID: 30819197 PMCID: PMC6394033 DOI: 10.1186/s12967-019-1806-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Glycolysis is altered in various kidney diseases, but little is known about glycolysis in pre-eclampsia, a multi-system disorder with major pathological effects on the kidney. Urinary exosomes provide a non-invasive alternative for studying changes in kidney metabolism. This study aims to characterise the expression and phosphorylation of isozymes of the key glycolytic regulatory protein, 6-phosphofructokinase-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), in urinary exosomes of subjects with pre-eclampsia (PE), compared to normotensive non-pregnant (NC) and normotensive pregnant (NP) controls. Methods A cross-sectional study of NC (n = 19), NP (n = 23) and PE (n = 29) subjects was performed. Exosomes were isolated from urine samples by differential ultracentrifugation, and then analyzed by Western blot and densitometry for expression of PFK-2/FBPase-2 isozymes (PFKFB2, PFKFB3 and PFKFB4) and phosphorylation of PFKFB2 at residues Ser483 and Ser466 and PFKFB3 at Ser461. Results PFKFB2 expression was increased 4.7-fold in PE compared to NP (p < 0.001). PFKFB2 phosphorylation at Ser483 was increased 2.6-fold in PE compared to NP (p = 0.002). Expression of phosphorylated PFKFB2/PFKFB3 at Ser466/Ser461 was increased in PE, being present in 77.4% (95% CI 59.9–88.9%) of PE and 8.3% (95% CI 1.2–27.0%) of NP samples (p < 0.001). PFKFB3 was more commonly expressed in PE, detected in 90.3% (95% CI 74.3–97.4%) of PE and 8.3% (95% CI 1.2–27.0%) of NP samples (p < 0.001). PFKFB4 had a 7.2-fold increase in expression in PE compared to NP (p < 0.001). No significant differences between NP and NC groups were observed. Conclusion Regulatory proteins that increase glycolysis are increased in the urinary exosomes of subjects with pre-eclampsia, suggesting that renal glycolysis may be increased in this condition.
Collapse
Affiliation(s)
- R Ellis
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.,Department of Nephrology, Austin Health, Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia
| | - M Katerelos
- Department of Nephrology, Austin Health, Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,Kidney Laboratory, Institute for Breathing and Sleep, Heidelberg, Australia
| | - S W Choy
- Department of Nephrology, Austin Health, Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia
| | - N Cook
- Department of Nephrology, Austin Health, Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia
| | - M Lee
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.,Department of Nephrology, Austin Health, Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,Kidney Laboratory, Institute for Breathing and Sleep, Heidelberg, Australia
| | - K Paizis
- Department of Nephrology, Austin Health, Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia
| | - G Pell
- Mercy Hospital for Women, Heidelberg, Australia
| | - S Walker
- Mercy Hospital for Women, Heidelberg, Australia
| | - D A Power
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.,Department of Nephrology, Austin Health, Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,Kidney Laboratory, Institute for Breathing and Sleep, Heidelberg, Australia
| | - P F Mount
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia. .,Department of Nephrology, Austin Health, Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia. .,Kidney Laboratory, Institute for Breathing and Sleep, Heidelberg, Australia.
| |
Collapse
|
200
|
Acute kidney injury to chronic kidney disease transition: insufficient cellular stress response. Curr Opin Nephrol Hypertens 2019; 27:314-322. [PMID: 29702491 DOI: 10.1097/mnh.0000000000000424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Recent epidemiological and preclinical mechanistic studies provide strong evidence that acute kidney injury (AKI) and chronic kidney disease (CKD) form an interconnected syndrome. Injured kidneys undergo a coordinated reparative process with an engagement of multiple cell types after injury; however, maladaptation to the injury subjects kidneys to a vicious cycle of fibrogenesis and nephron loss. In this review, we will outline and discuss the pathogenesis of AKI-to-CKD transition with an emphasis on dysregulated 'cellular stress adaptation' as a potential therapeutic target. RECENT FINDINGS Recent studies identify the crucial role of injured tubular epithelial cells in the transition from AKI to CKD. Damaged tubular cells undergo reactivation of developmental and epithelial-mesenchymal transition signaling, metabolic alteration, and cell-cycle arrest, thereby driving inflammation and fibrogenesis. Recent work highlights that cellular stress-adaptive pathways against hypoxic and oxidative stress provide insufficient protection after severe AKI episode. SUMMARY Insufficient cellular stress adaptation may underpin the persistent activation of inflammatory and fibrogenic signaling in damaged kidneys. We propose that harnessing cellular stress-adaptive responses will be a promising therapeutic strategy to halt or even reverse the deleterious process of AKI-to-CKD transition.
Collapse
|