151
|
Chi X, Nguyen D, Pemberton JM, Osterlund EJ, Liu Q, Brahmbhatt H, Zhang Z, Lin J, Leber B, Andrews DW. The carboxyl-terminal sequence of bim enables bax activation and killing of unprimed cells. eLife 2020; 9:44525. [PMID: 31976859 PMCID: PMC6980855 DOI: 10.7554/elife.44525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
The Bcl-2 family BH3 protein Bim promotes apoptosis at mitochondria by activating the pore-forming proteins Bax and Bak and by inhibiting the anti-apoptotic proteins Bcl-XL, Bcl-2 and Mcl-1. Bim binds to these proteins via its BH3 domain and to the mitochondrial membrane by a carboxyl-terminal sequence (CTS). In cells killed by Bim, the expression of a Bim mutant in which the CTS was deleted (BimL-dCTS) triggered apoptosis that correlated with inhibition of anti-apoptotic proteins being sufficient to permeabilize mitochondria isolated from the same cells. Detailed analysis of the molecular mechanism demonstrated that BimL-dCTS inhibited Bcl-XL but did not activate Bax. Examination of additional point mutants unexpectedly revealed that the CTS of Bim directly interacts with Bax, is required for physiological concentrations of Bim to activate Bax and that different residues in the CTS enable Bax activation and binding to membranes.
Collapse
Affiliation(s)
- Xiaoke Chi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Dang Nguyen
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - James M Pemberton
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Elizabeth J Osterlund
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Qian Liu
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Hetal Brahmbhatt
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| | - Zhi Zhang
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Molecular Biology and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Jialing Lin
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Molecular Biology and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Canada
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
152
|
Eraslan E, Tanyeli A, Güler MC, Kurt N, Yetim Z. Agomelatine prevents indomethacin-induced gastric ulcer in rats. Pharmacol Rep 2020; 72:984-991. [PMID: 32048252 DOI: 10.1007/s43440-019-00049-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/26/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gastric ulcer is a very common gastrointestinal disease that may be dangerous and even may lead to death. The current study was conducted to detect the prophylactic effects of agomelatine on indomethacin-induced gastric ulcer. METHODS In this study, a total of 5 groups were created as the sham, ulcer, omeprazole, agomelatine 1 mg/kg and agomelatine 5 mg/kg groups. The effects of agomelatine on indomethacin-induced gastric injury were investigated. Total antioxidant and oxidant levels; the oxidant parameters like oxidative stress index and the inflammation markers such as tumor necrosis factor-α, interleukin-1β, interleukin-6 and interleukin-10 levels in stomach tissue were determined by ELISA. In addition, the gastric mucosal injury occurred in stomach wall was examined with histopathological methods. RESULTS While the levels of the inflammatory markers, total oxidant status and oxidative stress index increased at an obvious level especially in the indomethacin group, the total antioxidant status levels decreased. It was observed that these parameters were improved at a significant level in agomelatine 1 mg/kg and agomelatine 5 mg/kg groups when compared to ulcer group; and the results were similar to omeprazole group. It was also observed that our histopathological findings were consistent with all our other results. CONCLUSIONS The results of this study showed that agomelatine usage in indomethacin-induced gastric ulcer model provides beneficial results.
Collapse
Affiliation(s)
- Ersen Eraslan
- Department of Physiology, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66200, Turkey.
| | - Ayhan Tanyeli
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mustafa Can Güler
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Zeliha Yetim
- Department of Histology and Embryology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
153
|
Ogbe RJ, Agbese SP, Abu AH. Protective effect of aqueous extract of Lophira lanceolata leaf against cisplatin-induced hepatorenal injuries and dyslipidemia in Wistar rats. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-019-0149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Hepatorenal injuries and dyslipidemia are common global health challenges but medicinal plant extracts may have potential to prevent them. Thus, this study evaluated the protective effect of aqueous extract of Lophira lanceolata leaf (LLE) against cisplatin-induced hepatorenal injuries and dyslipidemia in albino Wistar rats.
Methods
Thirty rats were randomly divided into 6 groups of 5 rats each. Group I rats received distilled water and served as control, group II rats were given 5 mg/kg cisplatin (CIS) intraperitoneally, groups III and IV rats were treated with 200 and 400 mg/kg LLE respectively for 26 days by oral gavages while groups V and VI rats were treated with 200 and 400 mg/kg LLE respectively, followed by CIS on the 21st day as in group II. About 24 h after treatment, blood was collected from the rats; then serum was separated and used for estimations of biochemical parameters. The kidney and liver of rats were removed, rinsed in normal saline, stored in 10% formalin and used for histological analyses.
Results
The biomarkers of hepatic (Aminotransferases, Alkaline phosphatase and Bilirubin) and renal (urea and creatinine) injuries, and dyslipidemia (Total cholesterol, triglycerides and LDL-cholesterol) significantly (p < 0.05) increased in the rats exclusively exposed to cisplatin when compared with normal control. However, treatment of cisplatin-exposed rats with 200 and 400 mg/kg LLE significantly (p < 0.05) reduced the levels of these biomarkers of hepatorenal injuries and dyslipidemia when compared with cisplatin control. Photomicrographs showed pathological signs in the liver and kidney of rats exclusively exposed to cisplatin, but there was moderate protection of these tissues in the rats treated with LLE and cisplatin.
Conclusion
The current findings have shown that Lophira lanceolata leaf extract may provide moderate protection against cisplatin-induced hepatorenal injuries and dyslipidemia in albino Wistar rats.
Collapse
|
154
|
Baecker D, Ma BN, Sagasser J, Schultz L, Hörschläger C, Weinreich M, Steiner L, Kircher B, Gust R. Amide and ester derivatives of chlorido[4-carboxy-1,2-disalicylideneaminobenzene]iron(iii) as necroptosis and ferroptosis inducers. Dalton Trans 2020; 49:6842-6853. [DOI: 10.1039/d0dt00168f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amide and ester derivatives of chlorido[4-carboxy-1,2-disalicylideneaminobenzene]iron(iii) were synthesized and characterized as necroptosis and ferroptosis inducers using the acute myeloid leukemia cell line HL-60.
Collapse
Affiliation(s)
- Daniel Baecker
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Benjamin N. Ma
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Jessica Sagasser
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Lukas Schultz
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Carina Hörschläger
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Maria Weinreich
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| | - Lucy Steiner
- Immunobiology and Stem Cell Laboratory
- Department of Internal Medicine V (Hematology and Oncology)
- Innsbruck Medical University
- 6020 Innsbruck
- Austria
| | - Brigitte Kircher
- Immunobiology and Stem Cell Laboratory
- Department of Internal Medicine V (Hematology and Oncology)
- Innsbruck Medical University
- 6020 Innsbruck
- Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- CMBI – Center for Molecular Biosciences Innsbruck
- University of Innsbruck
- CCB – Center for Chemistry and Biomedicine
| |
Collapse
|
155
|
Zhao S, Shao L, Wang Y, Meng Q, Yu J. Ketamine exhibits anti-gastric cancer activity via induction of apoptosis and attenuation of PI3K/Akt/mTOR. Arch Med Sci 2020; 16:1140-1149. [PMID: 32864003 PMCID: PMC7444715 DOI: 10.5114/aoms.2019.85146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/27/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Gastric cancer (GC) is the most widespread type of cancer after lung and liver cancer in men and after breast cancer in women. Thus, the present study was intended to evaluate the effect of ketamine (KET) on gastric cancer cells. MATERIAL AND METHODS The effect of KET was analyzed in vitro by the MTT assay against human gastric cancer cell lines BGC-823, MKN-45 and MKN-28. The effect KET on apoptosis, cell migration and cell cycle arrest was also quantified. Western blot analysis was performed to estimate the effect of KET on apoptosis mediators and PI3K/AKT/mTOR pathway mediators. A mouse xenograft assay was also conducted to further confirm the anticancer activity. RESULTS KET causes reduction of cellular viability of BGC-823, MKN-45 and MKN-28, with a more significant effect against BGC-823 cells. The KET treatment showed a dose-dependent increase in apoptotic cells among BGC-823 cells. KET causes a significant dose-dependent decline in migration of treated cells. It causes induction of apoptosis mediated via the mitochondrial pathway, where it causes a decline in Bcl2 and mitochondrial cytochrome c level together with increase in expression of Bax, cytosolic cytochrome c and cytosolic apoptotic protease activating factor-1 (Apaf-1). The level of p-PI3K, p-mTOR, p-GSK3β and p-AKT was found to be downregulated in a dose-dependent manner in KET-treated cells. In a mouse xenograft model, KET causes a reduction in relative tumour volume and tumour weight. CONCLUSIONS Our results suggest that ketamine has the ability to inhibit progression of gastric cancer via induction of apoptosis and attenuation of PI3K/Akt/mTOR.
Collapse
Affiliation(s)
- Shiling Zhao
- Department of Anesthesiology, The Third People's Hospital of Dalian, Dalian, China
| | - Lin Shao
- Department of Anesthesiology, The Third People's Hospital of Dalian, Dalian, China
| | - Yingwei Wang
- Department of Anesthesiology, The Third People's Hospital of Dalian, Dalian, China
| | - Qingtao Meng
- Department of Spinal, Department of Anesthesiology, The Third People's Hospital of Dalian, Dalian, China
| | - Jinning Yu
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian, China
| |
Collapse
|
156
|
Shi Y, Wang J, Liu J, Lin G, Xie F, Pang X, Pei Y, Cheng Y, Zhang Y, Lin Z, Yin Z, Wang X, Niu G, Chen X, Liu G. Oxidative stress-driven DR5 upregulation restores TRAIL/Apo2L sensitivity induced by iron oxide nanoparticles in colorectal cancer. Biomaterials 2019; 233:119753. [PMID: 31923762 DOI: 10.1016/j.biomaterials.2019.119753] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/11/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022]
Abstract
There exists an emergency clinical demand to overcome TRAIL/Apo2L (tumor necrosis factor-related apoptosis-inducing ligand) resistance, which is a major obstacle attributed to insufficient level or mutation of TRAIL receptors. Here, we developed an iron oxide cluster-based nanoplatform for both sensitization and MR image-guided evaluation to improve TRAIL/Apo2L efficacy in colorectal cancer, which has an inadequate response to TRAIL/Apo2L or chemotherapy. Specifically, NanoTRAIL (TRAIL/Apo2L-iron oxide nanoparticles) generated ROS (reactive oxygen species)-triggered JNK (c-Jun N-terminal kinase) activation and induced subsequent autophagy-assisted DR5 upregulation, resulting in a significant enhanced antitumor efficacy of TRAIL/Apo2L, which confirmed in both TRAIL-resistant HT-29, intermediately resistant SW-480 and sensitive HCT-116 cells. Furthermore, in a subcutaneous colorectal cancer mouse model, the in vivo tumor retention of NanoTRAIL can be demonstrated by MR T2 weighted contrast imaging, and NanoTRAIL significantly suppressed tumor growth and prolonged the survival time without observable adverse effects compared with control and TRAIL/Apo2L monotherapy. Importantly, in the study of colorectal cancer patient-derived xenograft models, we found that the NanoTRAIL treatment could significantly improve the survival outcome with consistent ROS-dependent autophagy-assisted DR5 upregulation and tumor apoptosis. Our results describe a transformative design that can be applied clinically to sensitize Apo2L/TRAIL-resistant patients using FDA-approved iron oxide nanoparticles.
Collapse
Affiliation(s)
- Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingyi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China; School of Medicine, Xiamen University, Xiamen, 361105, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fengfei Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yihua Pei
- School of Medicine, Xiamen University, Xiamen, 361105, China; Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, China
| | - Yi Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhongning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhengyu Yin
- School of Medicine, Xiamen University, Xiamen, 361105, China; Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, China
| | - Xiaomin Wang
- School of Medicine, Xiamen University, Xiamen, 361105, China; Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
157
|
Shi CS, Kehrl JH. Bcl-2 regulates pyroptosis and necroptosis by targeting BH3-like domains in GSDMD and MLKL. Cell Death Discov 2019; 5:151. [PMID: 31839993 PMCID: PMC6901440 DOI: 10.1038/s41420-019-0230-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Apoptosis is a form of programmed cell death in multicellular organisms. Bcl-2 prevents apoptosis and promotes cellular survival by neutralizing BH3 domain-containing proteins, which directly activate the pore-forming proteins BAX and BAK. However, Bcl-2 is not known to regulate other cell death effectors such as gasdermin D (GSDMD) or mixed lineage kinase domain-like (MLKL), whose activation causes pyroptosis and necroptosis, respectively. Here, we identify a BH3-like domain in both GSDMD and MLKL that mediates an interaction with B-cell lymphoma 2 (Bcl-2). The presence of Bcl-2 reduced GSDMD cleavage at D275 by caspase-1, 4 or 5, and enhanced the GSDMD cleavage at D87. The GSDMD D87 cleavage inactivates the pyroptotic execution program. The presence of Bcl-2 also limited RIP3 mediated phosphorylation of MLKL, which reduced MLKL oligomerization and tempered the induction of necroptosis. Our observations suggest that the presence of Bcl-2 limits the induction of three forms of cell death apoptosis, pyroptosis, and necroptosis.
Collapse
Affiliation(s)
- Chong-Shan Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
158
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019; 18:5691-5698. [PMID: 31788041 PMCID: PMC6865693 DOI: 10.3892/ol.2019.10981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/11/2019] [Indexed: 11/06/2022] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
159
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019. [PMID: 31788041 DOI: 10.3892/ol.2019.10981/abstract] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
160
|
Zhang Q, Liu J, Zhang M, Wei S, Li R, Gao Y, Peng W, Wu C. Apoptosis Induction of Fibroblast-Like Synoviocytes Is an Important Molecular-Mechanism for Herbal Medicine along with its Active Components in Treating Rheumatoid Arthritis. Biomolecules 2019; 9:biom9120795. [PMID: 31795133 PMCID: PMC6995542 DOI: 10.3390/biom9120795] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 01/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a known chronic autoimmune disease can cause joint deformity and even loss of joint function. Fibroblast-like synoviocytes (FLS), one of the main cell types in synovial tissues of RA patients, are key effector cells in the development of RA and are considered as promising therapeutic targets for treating RA. Herbal medicines are precious resources for finding novel agents for treating various diseases including RA. It is reported that induction of apoptosis in FLS is an important mechanism for the herbal medicines to treat RA. Consequently, this paper reviewed the current available references on pro-apoptotic effects of herbal medicines on FLS and summarized the related possible signal pathways. Taken together, the main related signal pathways are concluded as death receptors mediated apoptotic pathway, mitochondrial dependent apoptotic pathway, NF-κB mediated apoptotic pathways, mitogen-activated protein kinase (MAPK) mediated apoptotic pathway, endoplasmic reticulum stress (ERS) mediated apoptotic pathway, PI3K-Akt mediated apoptotic pathway, and other reported pathways such as janus kinase/signal transducers and activators of transcription (JAK-STAT) signal pathway. Understanding the apoptosis induction pathways in FLS of these herbal medicines will not only help clear molecular mechanisms of herbal medicines for treating RA but also be beneficial for finding novel candidate therapeutic drugs from natural herbal medicines. Thus, we expect the present review will highlight the importance of herbal medicines and its components for treating RA via induction of apoptosis in FLS, and provide some directions for the future development of these mentioned herbal medicines as anti-RA drugs in clinical.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Shujun Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.W.); (Y.G.)
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Yongxiang Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.W.); (Y.G.)
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
- Correspondence: (W.P.); (C.W.); Tel.: +86-028-61801001 (W.P. & C.W.)
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
- Correspondence: (W.P.); (C.W.); Tel.: +86-028-61801001 (W.P. & C.W.)
| |
Collapse
|
161
|
Zhang Y, Li Y, Wang Y, Wang G, Mao L, Zhang D, Wang J. Effects of resveratrol on learning and memory in rats with vascular dementia. Mol Med Rep 2019; 20:4587-4593. [PMID: 31702039 PMCID: PMC6797959 DOI: 10.3892/mmr.2019.10723] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/19/2019] [Indexed: 01/19/2023] Open
Abstract
The purpose of the present study was to study the effects of resveratrol on cognitive function in rats with vascular dementia and to investigate the molecular mechanisms of its neuroprotective effects. Forty-five SD rats were randomly divided into 3 groups: The control group (Con group, n=15), the model group (VD group, n=15) and the resveratrol-treated VD group (Res group, n=15). The VD rats (the VD group and the Res group) were generated by bilateral common carotid artery occlusion. The rats in the Res group received daily resveratrol treatment intraperitoneally for 4 weeks. Cognitive function was tested using the Morris water maze test. The levels of SOD and MDA (oxidative stress indicators) were detected by ELISA kits. The protein expression of Bax, Bcl-2 and caspase-3 was detected by western blotting. Compared with the rats in the Con group, the rats in the VD group exhibited decreased cognitive function, significantly increased hippocampal content of MDA, Bax and caspase-3 (P<0.05), and significantly reduced hippocampal expression of SOD and Bcl-2 (P<0.05). Compared with the rats in the VD group, the rats in the Res group exhibited increased cognitive ability, reduced hippocampal content of MDA, Bax and caspase-3 (P<0.05), and increased hippocampal expression of SOD and Bcl-2 (P<0.05). Resveratrol treatment significantly improved the spatial learning and memory of the VD rats. The mechanism associated with the neuroprotective effects of resveratrol may be closely related to the inhibition of the apoptosis pathway and oxidative stress injury.
Collapse
Affiliation(s)
- Yeqing Zhang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Yuwang Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Yinxiao Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Gengyin Wang
- School of Basic Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Danhong Zhang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Jinhua Wang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
162
|
Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst) 2019; 82:102679. [DOI: 10.1016/j.dnarep.2019.102679] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
163
|
Mousavi Z, Yazdani Z, Moradabadi A, Hoseinpourkasgari F, Hassanshahi G. Role of some members of chemokine/cytokine network in the pathogenesis of thalassemia and sickle cell hemoglobinopathies: a mini review. Exp Hematol Oncol 2019; 8:21. [PMID: 31528501 PMCID: PMC6737600 DOI: 10.1186/s40164-019-0145-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/04/2019] [Indexed: 01/24/2023] Open
Abstract
The word of hemoglobinopathy is described for an array of disorders that affecting hemoglobin (Hb) functions. Hb is a molecule with 68 kDa molecular weight, serving as oxygen carrying metalloprotein. Hemoglobinopathy includes a wide range of Hb structural deficits varying from thalassemia to sickle cell disease. Cyto-chemokine network members are pivotally involved in the pathogenesis of hemoglobinopathies, however, the exact role of these mediators in the development of these disorders yet to be well addressed. Cytokines and chemokines are generated by inflamed endothelial cells that promote the expression of their respected receptors and further activate NF-κβ, recruit red blood cells (RBCs) and white blood cells (WBCs) toward the inflamed endothelium. Therefore, due to critical roles played by the cyto-chemokine network in several aspects of hemoglobinopathies pathophysiology including apoptosis of endothelial cells, RBC, WBC and etc.…, in the present review, we focused on the critical parts played by this network in the pathogenesis of hemoglobinopathies.
Collapse
Affiliation(s)
- Zahra Mousavi
- Department of Hematology and Medical Laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Zinat Yazdani
- Department of Hematology and Blood Banking, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Moradabadi
- Department of Hematology, School of Paramedicine, Arak University of Medical Science, Arak, Iran
| | | | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
164
|
Nucleoporin 62-Like Protein is Required for the Development of Pharyngeal Arches through Regulation of Wnt/β-Catenin Signaling and Apoptotic Homeostasis in Zebrafish. Cells 2019; 8:cells8091038. [PMID: 31492028 PMCID: PMC6770318 DOI: 10.3390/cells8091038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
We have previously observed the predominant expression of nucleoporin 62-like (Nup62l) mRNA in the pharyngeal region of zebrafish, which raises the question whether Nup62l has important implications in governing the morphogenesis of pharyngeal arches (PA) in zebrafish. Herein, we explored the functions of Nup62l in PA development. The disruption of Nup62l with a CRISPR/Cas9-dependent gene knockout approach led to defective PA, which was characterized by a thinned and shortened pharyngeal region and a significant loss of pharyngeal cartilages. During pharyngeal cartilage formation, prechondrogenic condensation and chondrogenic differentiation were disrupted in homozygous nup62l-mutants, while the specification and migration of cranial neural crest cells (CNCCs) were unaffected. Mechanistically, the impaired PA region of nup62l-mutants underwent extensive apoptosis, which was mainly dependent on activation of p53-dependent apoptotic pathway. Moreover, aberrant activation of a series of apoptotic pathways in nup62l-mutants is closely associated with the inactivation of Wnt/β-catenin signaling. Thus, these findings suggest that the regulation of Wnt/β-catenin activity by Nup62l is crucial for PA formation in zebrafish.
Collapse
|
165
|
Maciel E, Neves BM, Martins J, Colombo S, Cruz MT, Domingues P, Domingues MRM. Oxidized phosphatidylserine mitigates LPS-triggered macrophage inflammatory status through modulation of JNK and NF-kB signaling cascades. Cell Signal 2019; 61:30-38. [DOI: 10.1016/j.cellsig.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/14/2019] [Accepted: 04/29/2019] [Indexed: 01/17/2023]
|
166
|
Shanmugapriya, Othman N, Sasidharan S. Prediction of genes and protein-protein interaction networking for miR-221-5p using bioinformatics analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
167
|
Piscopo P, Grasso M, Puopolo M, D'Acunto E, Talarico G, Crestini A, Gasparini M, Campopiano R, Gambardella S, Castellano AE, Bruno G, Denti MA, Confaloni A. Circulating miR-127-3p as a Potential Biomarker for Differential Diagnosis in Frontotemporal Dementia. J Alzheimers Dis 2019; 65:455-464. [PMID: 30056425 DOI: 10.3233/jad-180364] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Given the heterogeneous nature of frontotemporal dementia (FTD), sensitive biomarkers are greatly needed for the accurate diagnosis of this neurodegenerative disorder. Circulating miRNAs have been reported as promising biomarkers for neurodegenerative disorders and processes affecting the central nervous system, especially in aging. The objective of the study was to evaluate if some circulating miRNAs linked with apoptosis (miR-29b-3p, miR-34a-5p, miR-16-5p, miR-17-5p, miR-107, miR-19b-3p, let-7b-5p, miR-26b-5p, and 127-3p) were able to distinguish between FTD patients and healthy controls. For this study, we enrolled 127 subjects, including 54 patients with FTD, 20 patients with Alzheimer's disease (AD), and 53 healthy controls. The qRT-PCR analysis showed a downregulation of miR-127-3p in FTD compared to controls, while the levels of other miRNAs remained unchanged. Then, miR-127-3p expression was also analyzed in AD patients, finding a different expression between two patient groups. A receiver operating characteristic curve was then created for miR-127-3p to discriminate FTD versus AD (AUC: 0.8986), and versus healthy controls (AUC: 0.8057). In conclusion, miR-127-3p could help to diagnose FTD and to distinguish it from AD.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | - Maria Puopolo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela D'Acunto
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy.,Department of Biology and Biotechnologies 'Charles Darwin', University of Rome "Sapienza", Rome, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, University of Rome "Sapienza", Rome, Italy
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Gasparini
- Department of Human Neuroscience, University of Rome "Sapienza", Rome, Italy
| | - Rosa Campopiano
- Department of Neurology, IRCCS Neuromed Institute, Pozzilli, IS, Italy
| | | | | | - Giuseppe Bruno
- Department of Human Neuroscience, University of Rome "Sapienza", Rome, Italy
| | - Michela A Denti
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | | |
Collapse
|
168
|
Sharma A, Boise LH, Shanmugam M. Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers (Basel) 2019; 11:E1144. [PMID: 31405035 PMCID: PMC6721599 DOI: 10.3390/cancers11081144] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Abstract
Cellular growth and proliferation depend upon the acquisition and synthesis of specific metabolites. These metabolites fuel the bioenergy, biosynthesis, and redox potential required for duplication of cellular biomass. Multicellular organisms maintain tissue homeostasis by balancing signals promoting proliferation and removal of cells via apoptosis. While apoptosis is in itself an energy dependent process activated by intrinsic and extrinsic signals, whether specific nutrient acquisition (elevated or suppressed) and their metabolism regulates apoptosis is less well investigated. Normal cellular metabolism is regulated by lineage specific intrinsic features and microenvironment driven extrinsic features. In the context of cancer, genetic abnormalities, unconventional microenvironments and/or therapy engage constitutive pro-survival signaling to re-program and rewire metabolism to maintain survival, growth, and proliferation. It thus becomes particularly relevant to understand whether altered nutrient acquisition and metabolism in cancer can also contribute to the evasion of apoptosis and consequently therapy resistance. Our review attempts to dissect a causal relationship between two cancer hallmarks, i.e., deregulated cellular energetics and the evasion of programmed cell death with primary focus on the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
169
|
Inhibiting c-Jun N-terminal kinase (JNK)-mediated apoptotic signaling pathway in PC12 cells by a polysaccharide (CCP) from Coptis chinensis against Amyloid-β (Aβ)-induced neurotoxicity. Int J Biol Macromol 2019; 134:565-574. [PMID: 31071400 DOI: 10.1016/j.ijbiomac.2019.05.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the protective effect and possible mechanism of a polysaccharide (CCP) from Coptis chinensis against Amyloid-β protein (Aβ)-induced toxicity in PC12 cells. The results showed pretreatment with CCP significantly protected PC12 cells from Aβ25-35 induced cell death, lactate dehydrogenase (LDH) release, nuclear fragmentation, mitochondrial dysfunction and cytochrome c release from mitochondria. Furthermore, CCP (100 μg/ml) significantly inhibited Aβ25-35 induced c-Jun N-terminal kinase (JNK) phosphorylation, but not influence signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (p38MAPK) pathway, and interestingly, the promoting effect of CCP on PC12 cell survival was only blocked by pre-treatment with a SP600125 (JNK inhibitor). In addition, Aβ25-35-induced increase of Bax and cleaved caspase-3, as well as decrease of Bcl-2 protein expression was markedly reversed by CCP or SP600125. Thus, our results indicate that the neuroprotective effect of CCP is associated with JNK-dependent apoptotic pathway.
Collapse
|
170
|
Antrodia cinnamomea Enhances Chemo-Sensitivity of 5-FU and Suppresses Colon Tumorigenesis and Cancer Stemness via Up-Regulation of Tumor Suppressor miR-142-3p. Biomolecules 2019; 9:biom9080306. [PMID: 31349708 PMCID: PMC6723279 DOI: 10.3390/biom9080306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
5-Fluorouracil (5-FU) regimen remains the backbone of the first-line agent to treat colon cancer, but often these patients develop resistance. Cancer stem cells (CSC's) are considered as one of the key contributors in the development of drug resistance and tumor recurrence. We aimed to provide preclinical evidence for Antrodia cinnamomea (AC), as a potential in suppressing colon cancer CSC's to overcome 5-FU drug-resistant. In-vitro assays including cell viability, colony formation, AC + 5-FU drug combination index and tumor sphere generation were applied to determine the inhibitory effect of AC. Mouse xenograft models also incorporated to evaluate in vivo effect of AC. AC treatment significantly inhibited the proliferation, colony formation and tumor sphere generation. AC also inhibited the expression of oncogenic markers (NF-κB, and C-myc), EMT/metastasis markers (vimentin and MMP3) and stemness associated markers (β-catenin, SOX-2 and Nanog). Sequential treatment of AC and 5-FU synergized and reduces colon cancer viability both in vivo and in vitro. Mechanistically, AC mediated anti-tumor effect was associated with an increased level of tumor suppressor microRNAs especially, miR142-3p. AC can be a potent synergistic adjuvant, down-regulates cancer stemness genes and enhances the antitumor ability of 5-FU by stimulating apoptosis-associated genes, suppressing inflammation and metastasis genes through miR142-3p in colon cancer.
Collapse
|
171
|
Codispoti B, Makeeva I, Sied J, Benincasa C, Scacco S, Tatullo M. Should we reconsider the apoptosis as a strategic player in tissue regeneration? Int J Biol Sci 2019; 15:2029-2036. [PMID: 31592227 PMCID: PMC6775292 DOI: 10.7150/ijbs.36362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Apoptosis plays a central role in organs development and homeostasis. Impaired regulation of this process is often associated with the onset of several human diseases, such as developmental disorders and cancer. The last scientific investigations have discovered interesting connections between apoptosis, stem cells, tissue regeneration and cancer. The role of "programmed cell death" in stem cells and tissue engineering is extremely promising; in fact, it holds great potential for regenerative purposes. However, several questions still remain unsolved: do we really know all the main molecular actors able to switch ON/OFF the apoptosis? Is it possible to modulate these players, to obtain a predictable regeneration of tissues and organs? But primarily: should we reconsider the apoptosis as a strategic player in tissue regeneration? In this topical review, we have carefully examined the most recent discoveries about the role of apoptosis in stem cells and, specifically, in mesenchymal stem cells. The pivotal molecules involved in the activation and inhibition of the apoptotic pathways will be carefully described, with the aim to shed an overall light on the complex scenario of stem cell life and death, and on a novel strategy for tissue regeneration.
Collapse
Affiliation(s)
- Bruna Codispoti
- Marrelli Health, Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Irina Makeeva
- Department of Therapeutic Dentistry, IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jamal Sied
- Advanced Technology Dental Research Laboratory, Faculty of Dentistry, King Abdul Aziz University, KSA and Director of CODE-M, Center of Dental Education and Medicine, Pakistan
| | - Caterina Benincasa
- Marrelli Health, Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Salvatore Scacco
- Dept. of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy
| | - Marco Tatullo
- Marrelli Health, Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy.,Department of Therapeutic Dentistry, IM Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
172
|
Wattanathamsan O, Hayakawa Y, Pongrakhananon V. Molecular mechanisms of natural compounds in cell death induction and sensitization to chemotherapeutic drugs in lung cancer. Phytother Res 2019; 33:2531-2547. [DOI: 10.1002/ptr.6422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/06/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Onsurang Wattanathamsan
- Inter‐department program of Pharmacology, Graduate SchoolChulalongkorn University Bangkok Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research ClusterChulalongkorn University Bangkok Thailand
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural MedicineUniversity of Toyama Toyama Japan
| | - Varisa Pongrakhananon
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research ClusterChulalongkorn University Bangkok Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical SciencesChulalongkorn University Bangkok Thailand
| |
Collapse
|
173
|
Hasan MM, Islam MS, Hoque KMF, Haque A, Reza MA. Effect of Citrus macroptera Fruit Pulp Juice on Alteration of Caspase Pathway Rendering Anti-Proliferative Activity against Ehrlich's Ascites Carcinoma in Mice. Toxicol Res 2019; 35:271-277. [PMID: 31341556 PMCID: PMC6629448 DOI: 10.5487/tr.2019.35.3.271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/09/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
Citrus macroptera (Rutaceae) has long been used in folk medicine in Bangladesh. Considering the folkloric context, this study was aimed to scrutinize anti-proliferative activity of C. macroptera fruit pulp juice (CMFPJ) against Ehrlich's ascites carcinoma (EAC). The anti-proliferative capacity of CMFPJ was investigated and confirmed primarily using MTT assay. In vivo anti-proliferative aptitude of CMFPJ was investigated with 25, 50, and 100 mg/kg/day intraperitoneal (i.p.) treatment. Anti-proliferative efficacy of CMFPJ was assessed based on EAC growth inhibition. CMFPJ inhibited EAC growth in vitro in a dose-dependent manner. And the percentages of in vivo EAC growth inhibition were 19.53, 49.2, and 68.9% at 25, 50, and 100 mg/kg CMFPJ respectively. CMFPJ significantly induced expression of apoptosis regulatory genes caspase-8, caspase-9, cytochrome-c, and caspase-3. This considerable anti-cancer activity was perhaps due to combinatorial effect of lectin, polyphenols, and flavonoids present in CMFPJ.
Collapse
Affiliation(s)
- Md. Mahmudul Hasan
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi,
Bangladesh
| | - Md. Shihabul Islam
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi,
Bangladesh
| | - Kazi Md. Faisal Hoque
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi,
Bangladesh
| | - Ariful Haque
- Molecular Pathology Laboratory, Institute of Biological Sciences, University of Rajshahi, Rajshahi,
Bangladesh
| | - Md Abu Reza
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi,
Bangladesh
| |
Collapse
|
174
|
Current Progress of Research on Neurodegenerative Diseases of Salvianolic Acid B. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3281260. [PMID: 31341529 PMCID: PMC6612994 DOI: 10.1155/2019/3281260] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/29/2019] [Indexed: 12/30/2022]
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae), one of the most commonly used traditional Chinese herbs, is widely used for the treatment of cardiovascular disease, cerebrovascular disease, Alzheimer's disease, and Parkinson's disease in clinical practice. Salvianolic acid B (Sal B, C36H30O16, FW = 718.62) is the main water-soluble active ingredient of Salvia miltiorrhiza Bunge, which performs prophylactic and therapeutic activities against neurodegenerative diseases. So far, numerous studies have proved that multiple factors and mechanisms are involved in the pathological process of neurodegenerative diseases, including amyloid β (Aβ) aggregation and fibril formation, hyperphosphorylation of tau protein, neuroinflammation, oxidative-stress damage, mitochondrial dysfunction, and neuron apoptosis. This study is aimed at reviewing experimental studies and describing the possible mechanisms of Sal B on neurodegenerative diseases.
Collapse
|
175
|
Khurana L, ElGindi M, Tilstam PV, Pantouris G. Elucidating the role of an immunomodulatory protein in cancer: From protein expression to functional characterization. Methods Enzymol 2019; 629:307-360. [PMID: 31727247 DOI: 10.1016/bs.mie.2019.05.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several fundamental discoveries made over the last two decades, in the field of cancer biology, have increased our understanding of the complex tumor micro- and macroenvironments. This has shifted the current empirical cancer therapies to more rationalized treatments targeting immunomodulatory proteins. From the point of identification, a protein target undergoes several interrogations, which are necessary to truly define its druggability. Here, we outline some basic steps that can be followed for in vitro characterization of a potential immunomodulatory protein target. We describe procedures for recombinant protein expression and purification including key annotations on protein cloning, expression systems, purification strategies and protein characterization using structural and biochemical approaches. For functional characterization, we provide detailed protocols for using flow-cytometric techniques in cell lines or primary cells to study protein expression profiles, proliferation, apoptosis and cell-cycle changes. This multilevel approach can provide valuable, in-depth understanding of any protein target with potential immunomodulatory effects.
Collapse
Affiliation(s)
- Leepakshi Khurana
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States
| | - Mei ElGindi
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Pathricia V Tilstam
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Georgios Pantouris
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States; Department of Chemistry, University of the Pacific, Stockton, CA, United States.
| |
Collapse
|
176
|
Ma Q, Liang M, Wu Y, Ding N, Duan L, Yu T, Bai Y, Kang F, Dong S, Xu J, Dou C. Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J Biol Chem 2019; 294:11240-11247. [PMID: 31167789 DOI: 10.1074/jbc.ra119.007625] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Indexed: 11/06/2022] Open
Abstract
In bone remodeling, after a lifespan of ∼2 weeks, osteoclasts undergo apoptosis in each bone turnover cycle, resulting in generation of a large number of apoptotic bodies (ABs). However, the biological roles of osteoclast-derived ABs (OC-ABs) in bone remodeling have not been investigated and remain unknown. In this study, we stimulated bone marrow macrophages with receptor activator of NF-κB ligand (RANKL) to obtain both preosteoclasts and mature osteoclasts (mOCs). We then used alendronate to induce apoptosis in preosteoclasts and mOCs and generate the respective ABs and used flow cytometry and immunoblotting to characterize the sizes and immunogenic characteristics of the extracted ABs. We show that mOC-ABs are engulfed by preosteoblastic MC3T3-E1 cells and promote the viability of these cells. Among all osteoclast-derived extracellular vesicles, mOC-ABs had the highest osteogenic potency. We further observed that mOC-ABs had the highest vesicular receptor activator of NF-κB (RANK) levels among all types of osteoclast-derived extracellular vesicles. Of note, masking of vesicular RANK by soluble RANKL strongly abolished the osteogenic potency of osteoclast-derived ABs. Mechanistically, we found that mOC-ABs induce osteoblast differentiation by activatingPI3K/AKT/mechanistic target of rapamycin (mTOR)/ribosomal protein S6 kinase signaling. In conclusion, OC-ABs promote osteogenic differentiation by stimulating osteoblast differentiation via activation of RANKL reverse signaling. These findings provide important insights into the reversal phase between the bone resorption and formation stages during bone remodeling and identify an AB-dependent cellular signaling mechanism in osteoclast-osteoblast coupling.
Collapse
Affiliation(s)
- Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Mengmeng Liang
- Department of Biomedical Materials Science, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yutong Wu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ning Ding
- Department of Blood Purification, General Hospital of Shenyang Military Area Command, Shenyang 110000, China
| | - Lianli Duan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yun Bai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China .,Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
177
|
Ma J, Gao G, Lu H, Fang D, Li L, Wei G, Chen A, Yang Y, Zhang H, Huo J. Reversal effect of ginsenoside Rh2 on oxaliplatin-resistant colon cancer cells and its mechanism. Exp Ther Med 2019; 18:630-636. [PMID: 31258699 PMCID: PMC6566025 DOI: 10.3892/etm.2019.7604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 04/18/2019] [Indexed: 01/28/2023] Open
Abstract
Chemotherapy is an important treatment modality for colon cancer, however, drug resistance is the main factor leading to treatment failure. Ginsenoside Rh2 (G-Rh2), the main bioactive metabolite of ginseng, is known to possess the ability to potently induce cell apoptosis, inhibit cell proliferation and reverse multidrug resistance in a variety of cancer cells. The present study examined the effect of G-Rh2 on oxaliplatin (L-OHP)-resistant colon cancer cells and its potential mechanism. L-OHP-resistant colon cancer cells (LoVo/L-OHP) and LoVo cells were used in the present study. The effect of G-Rh2 on LoVo/L-OHP and LoVo cell proliferation was measured using a 3-(4,5 dimethylthiazol-z-yl)-3,5-diphenyltetrazolium bromide assay. The effects of G-Rh2 on LoVo/L-OHP and LoVo cell apoptosis were detected by flow cytometry. The mRNA and protein expression of apoptosis-related genes Bax, Bcl-2 and caspase-3, drug resistance-related genes P-glycoprotein (P-gp) and Smad4, were determined in LoVo/L-OHP and LoVo cells treated with G-Rh2 by reverse transcription-quantitative polymerase chain reaction and western blot analyses. G-Rh2 treatment significantly inhibited the proliferation and induced the apoptosis of LoVo/L-OHP and LoVo cells. In addition, G-Rh2 treatment resulted in a significant increase in pro-apoptotic factors, Bax and caspase-3, and decrease in anti-apoptotic factor Bcl-2 in the LoVo/L-OHP and LoVo cells. Furthermore, G-Rh2 treatment significantly decreased the levels of P-gp and increased the levels of Smad4 in the LoVo/L-OHP and LoVo cells. It was found that L-OHP had no significant effects on LoVo/L-OHP cell proliferation or apoptosis, whereas G-Rh2 + L-OHP treatment significantly inhibited LoVo/L-OHP cell proliferation and induced apoptosis. L-OHP had no significant effects on the expression of P-gp, Smad4, Bcl-2, Bax or caspase-3 in LoVo/L-OHP cells. Treatment with G-Rh2 + L-OHP significantly reduced the expression of P-gp and Bcl-2, and enhanced the expression levels of Smad4, Bax and caspase-3. These findings demonstrated that G-Rh2 reversed the drug resistance of LoVo/L-OHP cells to L-OHP, and this may be mediated by inhibiting cell proliferation and promoting apoptosis and regulating the expression of drug resistance genes. These results suggest that G-Rh2 may function as a potent anticancer drug for drug resistance in colon cancer treatment.
Collapse
Affiliation(s)
- Jun Ma
- Department of Oncology, Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223001, P.R. China
| | - Guangyi Gao
- Department of Traditional Chinese Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223001, P.R. China
| | - Hong Lu
- Department of Oncology, Changshu No. 1 People's Hospital, Changshu, Jiangsu 215500, P.R. China
| | - Dong Fang
- Department of Oncology, Zhenjiang Hospital of Integrated Traditional and Western Medicine, Zhenjiang, Jiangsu 212000, P.R. China
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Guoli Wei
- Department of Oncology, Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223001, P.R. China
| | - Aifei Chen
- Department of Oncology, Huai'an Hospital of Chinese Medicine, Huai'an, Jiangsu 223001, P.R. China
| | - Yong Yang
- Department of Oncology, Huai'an Hospital of Chinese Medicine, Huai'an, Jiangsu 223001, P.R. China
| | - Hongying Zhang
- Department of Oncology, Huai'an Hospital of Chinese Medicine, Huai'an, Jiangsu 223001, P.R. China
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| |
Collapse
|
178
|
TNF-Related Apoptosis-Inducing Ligand Receptor 1 in Patients With Ankylosing Spondylitis. J Clin Rheumatol 2019; 26:242-247. [PMID: 31094932 DOI: 10.1097/rhu.0000000000001050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) belongs to the tumor necrosis factor (TNF) superfamily and is reported to play a role in autoimmune diseases. In this study, we aimed to measure serum TRAIL receptor 1 (TRAIL-R1) concentration and assess any phenotypic relationship in patients with ankylosing spondylitis (AS). METHODS Fifty-three patients with AS were recruited from August 2014 to December 2014 cross-sectionally. Fifty-three sex- and age-matched healthy controls were also recruited. Serum TRAIL-R1 concentrations were measured using an enzyme-linked immunosorbent assay. The association between serum TRAIL-R1, TNF-α, disease activity indices, markers of systemic inflammation, and clinical features were evaluated. RESULTS Serum TRAIL-R1 and TNF-α levels were increased in patients with AS compared with healthy controls (4.5 ± 2.3 vs 3.5 ± 2.3 pg/mL, p = 0.036; 3.8 [1.6-7.7] vs 2.0 [0.21-5.7] pg/mL, p = 0.048, respectively). Serum TRAIL-R1 displayed a medium positive correlation with serum TNF-α concentrations (r = 0.412; p = 0.002). Serum TRAIL-R1 concentration was higher in human leucocyte antigen (HLA)-B27-positive patients compared with non-HLA-B27 patients (5.5 ± 2.2 vs 3.1 ± 1.6 pg/mL, p < 0.001). No relationship was found between serum TRAIL-R1 concentration and disease activity scores. CONCLUSIONS This study confirms that serum TRAIL-R1 levels are higher in AS patients than healthy controls. The persistence of significantly elevated serum TRAIL-R1 levels, even in patients with low disease activity or after excluding biologic treatment, and the association with HLA-B27 positivity, warrants further investigation due to the unclear role of TRAIL-R1 in the pathophysiology of AS.
Collapse
|
179
|
Pourrazi H, Jafari A. Effects of a Combination of Dietary Restriction and Exercise Training on Myocardial Apoptosis in Male Rats. NUTRITION AND FOOD SCIENCES RESEARCH 2019. [DOI: 10.29252/nfsr.6.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
180
|
Verleih M, Borchel A, Rebl A, Brenmoehl J, Kühn C, Goldammer T. A molecular survey of programmed cell death in rainbow trout: Structural and functional specifications of apoptotic key molecules. Comp Biochem Physiol B Biochem Mol Biol 2019; 230:57-69. [DOI: 10.1016/j.cbpb.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/24/2022]
|
181
|
Fretts AM, Imamura F, Marklund M, Micha R, Wu JHY, Murphy RA, Chien KL, McKnight B, Tintle N, Forouhi NG, Qureshi WT, Virtanen JK, Wong K, Wood AC, Lankinen M, Rajaobelina K, Harris TB, Djoussé L, Harris B, Wareham NJ, Steffen LM, Laakso M, Veenstra J, Samieri C, Brouwer IA, Yu CI, Koulman A, Steffen BT, Helmer C, Sotoodehnia N, Siscovick D, Gudnason V, Wagenknecht L, Voutilainen S, Tsai MY, Uusitupa M, Kalsbeek A, Berr C, Mozaffarian D, Lemaitre RN. Associations of circulating very-long-chain saturated fatty acids and incident type 2 diabetes: a pooled analysis of prospective cohort studies. Am J Clin Nutr 2019; 109:1216-1223. [PMID: 30982858 PMCID: PMC6500926 DOI: 10.1093/ajcn/nqz005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Saturated fatty acids (SFAs) of different chain lengths have unique metabolic and biological effects, and a small number of recent studies suggest that higher circulating concentrations of the very-long-chain SFAs (VLSFAs) arachidic acid (20:0), behenic acid (22:0), and lignoceric acid (24:0) are associated with a lower risk of diabetes. Confirmation of these findings in a large and diverse population is needed. OBJECTIVE We investigated the associations of circulating VLSFAs 20:0, 22:0, and 24:0 with incident type 2 diabetes in prospective studies. METHODS Twelve studies that are part of the Fatty Acids and Outcomes Research Consortium participated in the analysis. Using Cox or logistic regression within studies and an inverse-variance-weighted meta-analysis across studies, we examined the associations of VLSFAs 20:0, 22:0, and 24:0 with incident diabetes among 51,431 participants. RESULTS There were 14,276 cases of incident diabetes across participating studies. Higher circulating concentrations of 20:0, 22:0, and 24:0 were each associated with a lower risk of incident diabetes. Pooling across cohorts, the RR (95% CI) for incident diabetes comparing the 90th percentile to the 10th percentile was 0.78 (0.70, 0.87) for 20:0, 0.84 (0.77, 0.91) for 22:0, and 0.75 (0.69, 0.83) for 24:0 after adjustment for demographic, lifestyle, adiposity, and other health factors. Results were fully attenuated in exploratory models that adjusted for circulating 16:0 and triglycerides. CONCLUSIONS Results from this pooled analysis indicate that higher concentrations of circulating VLSFAs 20:0, 22:0, and 24:0 are each associated with a lower risk of diabetes.
Collapse
Affiliation(s)
- Amanda M Fretts
- Department of Epidemiology
- Cardiovascular Health Research Unit
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Matti Marklund
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Renata Micha
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Jason H Y Wu
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Kerry Wong
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Alexis C Wood
- USDA / Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | | | - Kalina Rajaobelina
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
| | | | - Luc Djoussé
- Divisions of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Bill Harris
- OmegaQuant Analytics, Sioux Falls, SD
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Nick J Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, School of Public Health
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Cécilia Samieri
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
| | - Ingeborg A Brouwer
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Albert Koulman
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Biomedical Research Centres Core Nutritional Biomarker Laboratory
- National Institute for Health Research Biomedical Research Centres Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- Medical Research Council Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Brian T Steffen
- Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit
- Department of Medicine, University of Washington, Seattle, WA
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, Reyjavik, Iceland
| | | | - Lynne Wagenknecht
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Michael Y Tsai
- Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | | | - Anya Kalsbeek
- Department of Biology, Dordt College, Sioux Center, IA
| | - Claudine Berr
- Inserm, University of Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
- Memory Research and Resources Center, Department of Neurology, Montpellier University Hospital, Montpellier, France
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
182
|
Kretz AL, Trauzold A, Hillenbrand A, Knippschild U, Henne-Bruns D, von Karstedt S, Lemke J. TRAILblazing Strategies for Cancer Treatment. Cancers (Basel) 2019; 11:cancers11040456. [PMID: 30935038 PMCID: PMC6521007 DOI: 10.3390/cancers11040456] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023] Open
Abstract
In the late 1990s, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-family, started receiving much attention for its potential in cancer therapy, due to its capacity to induce apoptosis selectively in tumour cells in vivo. TRAIL binds to its membrane-bound death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5) inducing the formation of a death-inducing signalling complex (DISC) thereby activating the apoptotic cascade. The ability of TRAIL to also induce apoptosis independently of p53 makes TRAIL a promising anticancer agent, especially in p53-mutated tumour entities. Thus, several so-called TRAIL receptor agonists (TRAs) were developed. Unfortunately, clinical testing of these TRAs did not reveal any significant anticancer activity, presumably due to inherent or acquired TRAIL resistance of most primary tumour cells. Since the potential power of TRAIL-based therapies still lies in TRAIL's explicit cancer cell-selectivity, a desirable approach going forward for TRAIL-based cancer therapy is the identification of substances that sensitise tumour cells for TRAIL-induced apoptosis while sparing normal cells. Numerous of such TRAIL-sensitising strategies have been identified within the last decades. However, many of these approaches have not been verified in animal models, and therefore potential toxicity of these approaches has not been taken into consideration. Here, we critically summarise and discuss the status quo of TRAIL signalling in cancer cells and strategies to force tumour cells into undergoing apoptosis triggered by TRAIL as a cancer therapeutic approach. Moreover, we provide an overview and outlook on innovative and promising future TRAIL-based therapeutic strategies.
Collapse
Affiliation(s)
- Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna Trauzold
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany.
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann Straße 26, 50931 Cologne, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
183
|
Yaylak B, Erdogan I, Akgul B. Transcriptomics Analysis of Circular RNAs Differentially Expressed in Apoptotic HeLa Cells. Front Genet 2019; 10:176. [PMID: 30918512 PMCID: PMC6424894 DOI: 10.3389/fgene.2019.00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/18/2019] [Indexed: 01/16/2023] Open
Abstract
Apoptosis is a form of regulated cell death that plays a critical role in survival and developmental homeostasis. There are numerous reports on regulation of apoptosis by protein-coding genes as well as small non-coding RNAs, such as microRNAs. However, there is no comprehensive investigation of circular RNAs (circRNA) that are differentially expressed under apoptotic conditions. We have performed a transcriptomics study in which we first triggered apoptosis in HeLa cells through treatment with four different agents, namely cisplatin, doxorubicin, TNF-α and anti-Fas mAb. Total RNAs isolated from control as well as treated cells were treated with RNAse R to eliminate the linear RNAs. The remaining RNAs were then subjected to deep-sequencing to identify differentially expressed circRNAs. Interestingly, some of the dys-regulated circRNAs were found to originate from protein-coding genes well-documented to regulate apoptosis. A number of candidate circRNAs were validated with qPCR with or without RNAse R treatment as well. We then took advantage of bioinformatics tools to investigate the coding potential of differentially expressed RNAs. Additionally, we examined the candidate circRNAs for the putative miRNA-binding sites and their putative target mRNAs. Our analyses point to a potential for circRNA-mediated sponging of miRNAs known to regulate apoptosis. In conclusion, this is the first transcriptomics study that provides a complete circRNA profile of apoptotic cells that might shed light onto the potential role of circRNAs in apoptosis.
Collapse
Affiliation(s)
- Bilge Yaylak
- Non-Coding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Ipek Erdogan
- Non-Coding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bunyamin Akgul
- Non-Coding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
184
|
Argüelles S, Guerrero-Castilla A, Cano M, Muñoz MF, Ayala A. Advantages and disadvantages of apoptosis in the aging process. Ann N Y Acad Sci 2019; 1443:20-33. [PMID: 30839127 DOI: 10.1111/nyas.14020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/14/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
Researchers cannot predict as yet how long a human being can live. Life expectancy has been steadily increasing in the last century, but perhaps not always the quality of life in parallel with it. Future generations will be faced with the problems of an increased life expectancy along with the emergence of new age-related diseases. A deeper understanding of the aging process is crucial to ameliorate, if not to prevent, these projected new old-age diseases. One of the mechanisms responsible for healthy aging is through the effective maintenance of physiological, biochemical, and immunological functions. To carry this out, the organism needs to create new cells to replace old ones and to induce the disappearance of old and damaged cells. Apoptosis is involved in all these processes. However, if apoptosis is dysregulated, premature senescence-associated diseases are likely to appear. In our review, the focus will be on a better understanding of the role of apoptosis in the aging process. These signaling pathways will most assuredly be pharmacologically targeted in antiaging medicine therapies.
Collapse
Affiliation(s)
- Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | - Mercedes Cano
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Mario F Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Antonio Ayala
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
185
|
Ricardo de Brito Bello S, Naliwaiko K, Vicentini MS, Rossetti FX, Claudio Fernandes L, Messias-Reason IJD. Nutrition and Cancercapsaicin Treatment Reduces Tumor Growth, Tumor Cell Proliferation Ex Vivo and Partially Reverses Cancer Cachexia in Walker 256 Tumor-Bearing Rats. Nutr Cancer 2019; 71:111-117. [PMID: 30741012 DOI: 10.1080/01635581.2018.1557219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Capsaicin (trans-8-methyl-n-vanillyl-6-nonenamide) is the main pungent component found in hot peppers. AIM In this study, we investigated the effect of capsaicin treatment on tumor growth and the metabolic indicators of cachexia in Walker 256 tumor-bearing rats. METHODS Male Wistar rats were inoculated subcutaneously in the right flank with 1 ml of a sterile suspension of 3 × 107 Walker tumor cells. The treated groups received capsaicin intraperitoneal 5 mg/kg body weight for 13 days. RESULTS The tumor weight on Day 14 in the non-treated group was 18 g. The rats also had a body weight loss, hypoglycemia, hyperlactacidemia, hypertriacylglycerolemia, and a depletion in glycogen storage. Treatment with capsaicin decreased tumor growth by 49% and a reversal of triacylglycerol serum. We also found a 32% reduction in tumor cell proliferation ex vivo. Lactate serum concentrations and body weight were lower but did not reach control levels. CONCLUSION The treatment with capsaicin reduces tumor growth and cellular proliferation along with increased apoptosis and partial cachexia reversal.
Collapse
Affiliation(s)
- Sérgio Ricardo de Brito Bello
- a Departamento de Fisiologia, Laboratório de Metabolismo Celular , Universidade Federal do Paraná , Curitiba , Brazil
| | - Katya Naliwaiko
- b Departamento de Biologia Celular , Universidade Federal do Paraná , Curitiba , Brazil
| | - Mariana Scudeller Vicentini
- c Faculdades Integradas do Vale do Ribeira , Departamento de Saúde, Coordenação de Nutrição, Registro , Brazil
| | - Francini Xavier Rossetti
- c Faculdades Integradas do Vale do Ribeira , Departamento de Saúde, Coordenação de Nutrição, Registro , Brazil
| | - Luiz Claudio Fernandes
- a Departamento de Fisiologia, Laboratório de Metabolismo Celular , Universidade Federal do Paraná , Curitiba , Brazil
| | - Iara José de Messias-Reason
- d Departamento de Patologia Médica , Hospital das Clínicas, Universidade Federal do Paraná , Curitiba , Brazil
| |
Collapse
|
186
|
Impellizzeri D, Siracusa R, Cordaro M, Crupi R, Peritore AF, Gugliandolo E, D'Amico R, Petrosino S, Evangelista M, Di Paola R, Cuzzocrea S. N-Palmitoylethanolamine-oxazoline (PEA-OXA): A new therapeutic strategy to reduce neuroinflammation, oxidative stress associated to vascular dementia in an experimental model of repeated bilateral common carotid arteries occlusion. Neurobiol Dis 2019; 125:77-91. [PMID: 30660740 DOI: 10.1016/j.nbd.2019.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/12/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022] Open
Abstract
AIM Recent studies revealed that pharmacological modulation of NAE-hydrolyzing acid amidase (NAAA) can be achieved with PEA oxazoline (PEA-OXA). Hence, the aim of the present work was to thoroughly evaluate the anti-inflammatory and neuroprotective effects of PEA-OXA in an experimental model of vascular dementia (VaD) induced by bilateral carotid arteries occlusion. At 24 h after VaD induction, animals were orally administered with 10 mg/kg of PEA-OXA daily for 15 days. RESULTS Brain tissues were handled for histological, immunohistochemical, western blot, and immunofluorescence analysis. PEA-OXA treatment evidently reduced the histological alterations and neuronal death induced by VaD and additionally improved behavioral deficits. Further, PEA-OXA decreased GFAP and Iba-1, markers of astrocytes, and microglia activation, as well as increased MAP-2, a marker of neuron development. Moreover, PEA-OXA reduced oxidative stress, modulated Nrf2-mediated antioxidant response, and inhibited the apoptotic process. INNOVATION Some drugs may demonstrate their healing potential by regulating neuroinflammation, rather than by their habitually attributed actions only. Palmitoylethanolamide (PEA) is a prototype ALIAmide, well-known for its analgesic, anti-inflammatory, and neuroprotective properties. The inhibition of PEA degradation by targeting NAAA, its catabolic enzyme, is a different approach for treating neuroinflammation. This research offers new insight into the mechanism of PEA-OXA-induced neuroprotection. CONCLUSION Thus, the modulation of intracellular NAAA by PEA-OXA could offer a novel means of controlling neuroinflammatory conditions associated with VaD.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy; Epitech Group SpA, Via Einaudi 13, 35030, Saccolongo, Padova, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of the Sacred Heart, Rome, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy; Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine,Saint Louis, USA.
| |
Collapse
|
187
|
Hussain S. Measurement of Nanoparticle-Induced Mitochondrial Membrane Potential Alterations. Methods Mol Biol 2019; 1894:123-131. [PMID: 30547458 DOI: 10.1007/978-1-4939-8916-4_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mitochondria hold a critical role in cell metabolism and homeostasis. Mitochondrial injury plays central part in deciding cell fate especially in programmed cell death pathways. Various nanomaterials lead to different cell death modalities by inducing mitochondrial injury. Mitochondrial injury is manifested as multiple biochemical events ranging from altered energy production, mitochondrial outer membrane permeability, release of pro-apoptotic BCl-2 family proteins, loss of mitochondrial inner membrane potential, mitochondrial swelling, and disruption of mitochondrial structure leading to eventual lysis of mitochondria. Mitochondrial membrane permeability (loss of mitochondrial membrane potential) is a critical event in deciding cell fate. This chapter presents an overview of nanomaterial-induced loss of mitochondrial membrane potential and discusses potential nano-specific artifacts in these assays. Finally, a detailed methodology to accurately quantify and validate the loss of mitochondrial membrane potential after nanomaterial exposures is presented.
Collapse
Affiliation(s)
- Salik Hussain
- Department of Physiology and Pharmacology, Robert C. Byrd Health Science Center, School of Medicine,, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
188
|
Haskali MB, Denoyer D, Roselt PD, Hicks RJ, Hutton CA. Radiosynthesis and preliminary in vivo evaluation of 18F-labelled glycosylated duramycin peptides for imaging of phosphatidylethanolamine during apoptosis. MEDCHEMCOMM 2019. [DOI: 10.1039/c9md00354a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[18F]-Labelled duramycin derivatives incorporating hydrophilic aminogalacturonic acid moieties were prepared as tracers for in vivo imaging of phosphatidylethanolamine during apoptosis.
Collapse
Affiliation(s)
- Mohammad B. Haskali
- School of Chemistry
- The University of Melbourne
- Australia
- Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
| | - Delphine Denoyer
- The Centre for Molecular Imaging and Translational Research Laboratory
- The Peter MacCallum Cancer Centre
- Melbourne
- Australia
| | - Peter D. Roselt
- The Centre for Molecular Imaging and Translational Research Laboratory
- The Peter MacCallum Cancer Centre
- Melbourne
- Australia
| | - Rodney J. Hicks
- The Centre for Molecular Imaging and Translational Research Laboratory
- The Peter MacCallum Cancer Centre
- Melbourne
- Australia
- The Sir Peter MacCallum Department of Oncology
| | - Craig A. Hutton
- School of Chemistry
- The University of Melbourne
- Australia
- Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
| |
Collapse
|
189
|
Xu P, Ning P, Wang J, Qin Y, Liang F, Cheng Y. Precise control of apoptosis via gold nanostars for dose dependent photothermal therapy of melanoma. J Mater Chem B 2019; 7:6934-6944. [DOI: 10.1039/c9tb01956a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Precise induction and monitoring of cell apoptosis are significant for cancer treatment.
Collapse
Affiliation(s)
- Peng Xu
- The State Key Laboratory of Refractories and Metallurgy
- Coal Conversion and New Carbon Materials Hubei Key Laboratory
- School of Chemistry and Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan
| | - Peng Ning
- Institute for Regenerative Medicine
- Institute for Translational Nanomedicine
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| | - Jingjing Wang
- Institute for Regenerative Medicine
- Institute for Translational Nanomedicine
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| | - Yao Qin
- Institute for Regenerative Medicine
- Institute for Translational Nanomedicine
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy
- Coal Conversion and New Carbon Materials Hubei Key Laboratory
- School of Chemistry and Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan
| | - Yu Cheng
- Institute for Regenerative Medicine
- Institute for Translational Nanomedicine
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| |
Collapse
|
190
|
Ramezani N, Vanaky B, Shakeri N, Soltanian Z, Fakhari Rad F, Shams Z. Evaluation of Bcl-2 and Bax Expression in the Heart of Diabetic Rats after Four Weeks of High Intensity Interval Training. MEDICAL LABORATORY JOURNAL 2019. [DOI: 10.29252/mlj.13.1.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
191
|
Oyagbemi AA, Omobowale TO, Awoyomi OV, Ajibade TO, Falayi OO, Ogunpolu BS, Okotie UJ, Asenuga ER, Adejumobi OA, Hassan FO, Ola-Davies OE, Saba AB, Adedapo AA, Yakubu MA. Cobalt chloride toxicity elicited hypertension and cardiac complication via induction of oxidative stress and upregulation of COX-2/Bax signaling pathway. Hum Exp Toxicol 2018; 38:519-532. [PMID: 30596275 DOI: 10.1177/0960327118812158] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cobalt is a ferromagnetic metal with extensive industrial and biological applications. To assess the toxic effects of, and mechanisms involved in cobalt chloride (CoCl2)-induced cardio-renal dysfunctions. Male Wistar rats were exposed orally, daily through drinking water to 0 ppm (control), 150 ppm, 300 ppm, and 600 ppm of CoCl2, respectively. Following exposure, results revealed significant ( p < 0.05) rise in markers of oxidative stress, but decreased activities of catalase, glutathione peroxidase, glutathione-S-transferase, and reduced glutathione content in cardiac and renal tissues. There were significant increases in systolic, diastolic, and mean arterial blood pressure at the 300- and 600-ppm level of CoCl2-exposed rats relative to the control. Prolongation of QT and QTc intervals was observed in CoCl2 alone treated rats. Also, there were significant increases in the heart rates, and reduction in P wave, and PR duration of rats administered CoCl2. Histopathology of the kidney revealed peritubular and periglomerular inflammation, focal glomerular necrosis following CoCl2 exposure. Further, cyclooxygenase-2 and B-cell associated protein X expressions were upregulated in the cardiac and renal tissues of CoCl2-exposed rats relative to the control. Combining all, results from this study implicated oxidative stress, inflammation, and apoptosis as pathologic mechanisms in CoCl2-induced hypertension and cardiovascular complications of rats.
Collapse
Affiliation(s)
- A A Oyagbemi
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - T O Omobowale
- 2 Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O V Awoyomi
- 3 Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Nigeria
| | - T O Ajibade
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O O Falayi
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - B S Ogunpolu
- 2 Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - U J Okotie
- 3 Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Nigeria
| | - E R Asenuga
- 5 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Ibadan, Nigeria
| | - O A Adejumobi
- 2 Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - F O Hassan
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O E Ola-Davies
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - A B Saba
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - A A Adedapo
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - M A Yakubu
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.,6 Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
192
|
Alexandraki KI, Apostolopoulos NV, Adamopoulos C, Stamouli E, Dalagiorgou G, Papaioannou TG, Analitis A, Karamanou M, Makrilakis K, Politis A, Piperi C. Differential Expression of Apoptotic and Low-Grade Inflammatory Markers in Alzheimer Disease Compared to Diabetes Mellitus Type 1 and 2. J Appl Lab Med 2018; 3:1003-1013. [PMID: 31639691 DOI: 10.1373/jalm.2018.027623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuroinflammation, impaired brain insulin signaling, and neuronal apoptosis may be interrelated in the pathophysiology of people with Alzheimer disease (AD) and diabetes, either type 1 or 2 diabetes (T1D or T2D, respectively). METHODS We studied 116 patients: 41 with AD, 20 with T1D, 21 with T2D, and 34 healthy controls. The number (n) of cytokine-secreting peripheral blood mononuclear cells (PBMCs) before and after mitogenic stimulation was determined for interleukin 1β (IL1β), interleukin 6 (IL6), tumor necrosis factor (TNF) by the enzyme-linked-immuno-spot assay. Serum concentrations of C-reactive protein (CRP) and Fas ligand (FASLG) were determined by ELISA. RESULTS The studied subgroups did not differ in sex but differed in age. Higher CRP concentrations were detected in the AD group than in the T1D group (P = 0.02) and lower in controls (P < 0.001). The nPBMCs was higher in AD patients after stimulation than in basal conditions: after stimulation in nTNF (P < 0.001 vs T2D; P < 0.001 vs T1D; P = 0.001 vs control), nIL6 (P = 0.039 vs T2D; P < 0.001 vs T1D; P = 0.007 vs control), and nIL1β (P = 0.03 vs control). The nPBMCs increased after stimulation with ΡΜA in all the subgroups (P < 0.001). FASLG in the AD group displayed statistically higher concentrations than in all other subgroups (P < 0.001 vs T2D; P < 0.001 vs T1D; P = 0.012 vs control). The nPBMCs was positively correlated with plasma concentrations of FASLG in the AD subgroup. CONCLUSIONS Patients with AD display a low-grade systemic inflammation compared to people with diabetes. The FAS-FASLG pathway has a potential role because FASLG concentrations are positively correlated with the inflammatory response in AD. However, this positive correlation cannot be seen in people with diabetes, at least not with the apoptotic markers used in the present study.
Collapse
Affiliation(s)
- Krystallenia I Alexandraki
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; .,Endocrine Unit, First Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christos Adamopoulos
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Stamouli
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Dalagiorgou
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros G Papaioannou
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Analitis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Konstantinos Makrilakis
- Diabetologic Center, First Department of Propedeutic Medicine, Laiko University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Politis
- First Department of Psychiatry, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
193
|
Mohammadi G, Dargahi L, Naserpour T, Mirzanejad Y, Alizadeh SA, Peymani A, Nassiri-Asl M. Probiotic mixture of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 attenuates hippocampal apoptosis induced by lipopolysaccharide in rats. Int Microbiol 2018; 22:317-323. [PMID: 30810993 DOI: 10.1007/s10123-018-00051-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/11/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023]
Abstract
In recent years, the beneficial impact of targeted gut microbiota manipulation in various neurological disorders has become more evident. Therefore, probiotics have been considered as a promising approach to modulate brain gene expression and neuronal pathways even in some neurodegenerative diseases. The purpose of this study was to determine the effect of probiotic biotherapy with combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on the expression levels of proteins critical to neuronal apoptosis in hippocampus of lipopolysaccharide (LPS)-exposed rats. Four groups of animals (Control, LPS, Probiotic + LPS, and Probiotic) were treated with maltodextrin (placebo) or probiotic (109 CFU/ml/rat) for 2 weeks by gavage. On the 15th day, a single intraperitoneal dose of saline or LPS (1 mg/kg) was injected and 4 h later, protein assessment was performed by western blotting in hippocampal tissues. LPS significantly increased the Bax, Bax/Bcl-2 ratio, and cleaved caspase-3 expression along with decreased the Bcl-2 and procaspase-3 protein levels. However, probiotic pretreatment (L. helveticus R0052 + B. longum R0175) significantly downregulated the Bax and Bax/Bcl-2 ratio accompanied with upregulated Bcl-2 expression. Prophylactic treatment with these bacteria also attenuated LPS-induced caspase-3 activation by remarkably increasing the expression of procaspase-3 while reducing the level of cleaved caspase-3 in target tissues. Our data indicate that probiotic formulation (L. helveticus R0052 + B. longum R0175) alleviated hippocampal apoptosis induced by LPS in rats via the gut-brain axis and suggest that this probiotic could play a beneficial role in some neurodegenerative conditions.
Collapse
Affiliation(s)
- Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taghi Naserpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Yazdan Mirzanejad
- Division of Infectious Diseases, University of British Columbia, Vancouver, Canada
| | - Safar Ali Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, Qazvin University of Medical Sciences, P.O. Box 341197-5981, Qazvin, Iran.
| |
Collapse
|
194
|
Zhaolin Z, Guohua L, Shiyuan W, Zuo W. Role of pyroptosis in cardiovascular disease. Cell Prolif 2018; 52:e12563. [PMID: 30525268 PMCID: PMC6496801 DOI: 10.1111/cpr.12563] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiac function is determined by the dynamic equilibrium of various cell types and the extracellular matrix that composes the heart. Cardiovascular diseases (CVDs), especially atherosclerosis and myocardial infarction, are often accompanied by cell death and acute/chronic inflammatory reactions. Caspase‐dependent pyroptosis is characterized by the activation of pathways leading to the activation of NOD‐like receptors, especially the NLRP3 inflammasome and its downstream effector inflammatory factors interleukin (IL)‐1β and IL‐18. Many studies in the past decade have investigated the role of pyroptosis in CVDs. The findings of these studies have led to the development of therapeutic approaches based on the regulation of pyroptosis, and some of these approaches are in clinical trials. This review summarizes the molecular mechanisms, regulation and cellular effects of pyroptosis briefly and then discusses the current pyroptosis studies in CVD research.
Collapse
Affiliation(s)
- Zeng Zhaolin
- Yueyang Maternal and Child Health Hospital, Yueyang, China.,Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Li Guohua
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Wu Shiyuan
- Yueyang Maternal and Child Health Hospital, Yueyang, China
| | - Wang Zuo
- Yueyang Maternal and Child Health Hospital, Yueyang, China.,Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
195
|
Romagnoli R, Prencipe F, Lopez-Cara LC, Oliva P, Baraldi S, Baraldi PG, Estévez-Sarmiento F, Quintana J, Estévez F. Synthesis and biological evaluation of alpha-bromoacryloylamido indolyl pyridinyl propenones as potent apoptotic inducers in human leukaemia cells. J Enzyme Inhib Med Chem 2018; 33:727-742. [PMID: 29620429 PMCID: PMC6009983 DOI: 10.1080/14756366.2018.1450749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/07/2018] [Indexed: 02/06/2023] Open
Abstract
The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. To investigate the influence of the position of the pyridine nitrogen on biological activity, two different series of α-bromoacryloylamido indolyl pyridinyl propenones 3a-h and 4a-d were designed and synthesized by a pharmacophore hybridization approach and evaluated for their antiproliferative activity against a panel of six human cancer cell lines. These hybrid molecules were prepared to combine the α-bromoacryloyl moiety with two series of indole-inspired chalcone analogues, possessing an indole derivative and a 3- or 4-pyridine ring, respectively, linked on either side of 2-propen-1-one system. The structure-activity relationship was also investigated by the insertion of alkyl or benzyl moieties at the N-1 position of the indole nucleus. We found that most of the newly synthesized displayed high antiproliferative activity against U-937, MOLT-3, K-562, and NALM-6 leukaemia cell lines, with one-digit to double-digit nanomolar IC50 values. The antiproliferative activities of 3-pyridinyl derivatives 3f-h revealed that N-benzyl indole analogues generally exhibited lower activity compared to N-H or N-alkyl derivatives 3a-b and 3c-e, respectively. Moreover, cellular mechanism studies elucidated that compound 4a induced apoptosis along with a decrease of mitochondrial membrane potential and activated caspase-3 in a concentration-dependent manner.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Ferrara, Italy
| | - Filippo Prencipe
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Ferrara, Italy
| | - Luisa Carlota Lopez-Cara
- Departamento de Química Farmaceútica y Orgánica Facultad de Farmacia, Campus de Cartuja s/n, Granada, Spain
| | - Paola Oliva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Ferrara, Italy
| | - Stefania Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Ferrara, Italy
| | - Francisco Estévez-Sarmiento
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de las Palmas de Gran Canaria, Spain
| | - José Quintana
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de las Palmas de Gran Canaria, Spain
| | - Francisco Estévez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de las Palmas de Gran Canaria, Spain
| |
Collapse
|
196
|
Rong X, Sun-Waterhouse D, Wang D, Jiang Y, Li F, Chen Y, Zhao S, Li D. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity. Compr Rev Food Sci Food Saf 2018; 18:48-66. [DOI: 10.1111/1541-4337.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- School of Chemical Sciences; The Univ. of Auckland; Private Bag Auckland 92019 New Zealand
| | - Dan Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- Shandong Inst. of Pomology; Taian Shandong 271000 P. R. China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences; Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province; Jinan Shandong 250100 P. R. China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| |
Collapse
|
197
|
Iosub-Amir A, Bai F, Sohn YS, Song L, Tamir S, Marjault HB, Mayer G, Karmi O, Jennings PA, Mittler R, Onuchic JN, Friedler A, Nechushtai R. The anti-apoptotic proteins NAF-1 and iASPP interact to drive apoptosis in cancer cells. Chem Sci 2018; 10:665-673. [PMID: 30774867 PMCID: PMC6349067 DOI: 10.1039/c8sc03390k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
We reveal a novel interaction between the two anti-apoptotic proteins iASPP and NAF-1, which are overexpressed in many types of cancer cells, and propose that this interaction is required for apoptosis activation in cancer cells. A peptide derived from the interaction interface inhibits apoptosis in cells.
Suppression of apoptosis is a key Hallmark of cancer cells, and reactivation of apoptosis is a major avenue for cancer therapy. We reveal an interaction between the two anti-apoptotic proteins iASPP and NAF-1, which are overexpressed in many types of cancer cells and tumors. iASPP is an inhibitory member of the ASPP protein family, whereas NAF-1 belongs to the NEET 2Fe–2S protein family. We show that the two proteins are stimulated to interact in cells during apoptosis. Using peptide array screening and computational methods we mapped the interaction interfaces of both proteins to residues 764–778 of iASPP that bind to a surface groove of NAF-1. A peptide corresponding to the iASPP 764–780 sequence stabilized the NAF-1 cluster, inhibited NAF-1 interaction with iASPP, and inhibited staurosporine-induced apoptosis activation in human breast cancer, as well as in PC-3 prostate cancer cells in which p53 is inactive. The iASPP 764–780 IC50 value for inhibition of cell death in breast cancer cells was 13 ± 1 μM. The level of cell death inhibition by iASPP 764–780 was altered in breast cancer cells expressing different levels and/or variants of NAF-1, indicating that the peptide activity is associated with NAF-1 function. We propose that the interaction between iASPP and NAF-1 is required for apoptosis activation in cancer cells. This interaction uncovers a new layer in the highly complex regulation of cell death in cancer cells and opens new avenues of exploration into the development of novel anticancer drugs that reactivate apoptosis in malignant tumors.
Collapse
Affiliation(s)
- Anat Iosub-Amir
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Fang Bai
- Center for Theoretical Biological Physics , Department of Physics , Rice University , Houston , TX 77005 , USA .
| | - Yang-Sung Sohn
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Luhua Song
- Department of Biological Sciences , University of North Texas , Denton , TX 76203 , USA
| | - Sagi Tamir
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Henri-Baptiste Marjault
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Guy Mayer
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Ola Karmi
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Patricia A Jennings
- Department of Chemistry & Biochemistry , University of California at San Diego , La Jolla , CA 92093 , USA
| | - Ron Mittler
- Department of Surgery , University of Missouri School of Medicine , Christopher S. Bond Life Sciences Center , University of Missouri , 1201 Rollins St , Columbia , MO 65201 , USA
| | - José N Onuchic
- Center for Theoretical Biological Physics , Department of Physics , Rice University , Houston , TX 77005 , USA .
| | - Assaf Friedler
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| |
Collapse
|
198
|
AnvariFar H, Amirkolaie AK, Jalali AM, Miandare HK, Sayed AH, Üçüncü Sİ, Ouraji H, Ceci M, Romano N. Environmental pollution and toxic substances: Cellular apoptosis as a key parameter in a sensible model like fish. AQUATIC TOXICOLOGY 2018; 204:144-159. [PMID: 30273782 DOI: 10.1016/j.aquatox.2018.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/06/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
The industrial wastes, sewage effluents, agricultural run-off and decomposition of biological waste may cause high environmental concentration of chemicals that can interfere with the cell cycle activating the programmed process of cells death (apoptosis). In order to provide a detailed understanding of environmental pollutants-induced apoptosis, here we reviewed the current knowledge on the interactions of environmental chemicals and programmed cell death. Metals (aluminum, arsenic, cadmium, chromium, cobalt, zinc, copper, mercury and silver) as well as other chemicals including bleached kraft pulp mill effluent (BKME), persistent organic pollutants (POPs), and pesticides (organo-phosphated, organo-chlorinated, carbamates, phyretroids and biopesticides) were evaluated in relation to apoptotic pathways, heat shock proteins and metallothioneins. Although research performed over the past decades has improved our understanding of processes involved in apoptosis in fish, yet there is lack of knowledge on associations between environmental pollutants and apoptosis. Thus, this review could be useful tool to study the cytotoxic/apoptotic effects of different pollutants in fish species.
Collapse
Affiliation(s)
- Hossein AnvariFar
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran; University of Applied Science and Technology, Provincial Unit, P.O. Box: 4916694338, Golestan, Iran
| | - A K Amirkolaie
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Ali M Jalali
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran; Sturgeon Affairs Management, Gorgan, Golestan, Iran; Center for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, VIC, 3280, Australia
| | - H K Miandare
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran
| | - Alaa H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, İzmir, Turkey
| | - Hossein Ouraji
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Marcello Ceci
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy
| | - Nicla Romano
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy.
| |
Collapse
|
199
|
Zhu X, Zhao J, Abbas HMK, Liu Y, Cheng M, Huang J, Cheng W, Wang B, Bai C, Wang G, Dong W. Pyramiding of nine transgenes in maize generates high-level resistance against necrotrophic maize pathogens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2145-2156. [PMID: 30006836 DOI: 10.1007/s00122-018-3143-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/06/2018] [Indexed: 05/25/2023]
Abstract
Key message Nine transgenes from different categories, viz. plant defense response genes and anti-apoptosis genes, played combined roles in maize to inhibit the necrotrophic pathogens Rhizoctonia solani and Bipolaris maydis. Maize sheath blight and southern corn leaf blight are major global threats to maize production. The management of these necrotrophic pathogens has encountered limited success due to the characteristics of their lifestyle. Here, we presented a transgenic pyramiding breeding strategy to achieve nine different resistance genes integrated in one transgenic maize line to combat different aspects of necrotrophic pathogens. These nine genes, selected from two different categories, plant defense response genes (Chi, Glu, Ace-AMP1, Tlp, Rs-AFP2, ZmPROPEP1 and Pti4), and anti-apoptosis genes (Iap and p35), were successfully transferred into maize and further implicated in resistance against the necrotrophic pathogens Rhizoctonia solani and Bipolaris maydis. Furthermore, the transgenic maize line 910, with high expression levels of the nine integrated genes, was selected from 49 lines. Under greenhouse and field trial conditions, line 910 showed significant resistance against maize sheath blight and southern corn leaf blight diseases. Higher-level resistance was obtained after the pyramiding of more resistance transgenes from different categories that function via different mechanisms. The present study provides a successful strategy for the management of necrotrophic pathogens.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jinfeng Zhao
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, 046011, Shanxi Province, China
| | - Hafiz Muhammad Khalid Abbas
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing, 100081, China
| | - Menglan Cheng
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jue Huang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenjuan Cheng
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Beibei Wang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Cuiying Bai
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing, 100081, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
200
|
Martin HL, Bedford R, Heseltine SJ, Tang AA, Haza KZ, Rao A, McPherson MJ, Tomlinson DC. Non-immunoglobulin scaffold proteins: Precision tools for studying protein-protein interactions in cancer. N Biotechnol 2018; 45:28-35. [DOI: 10.1016/j.nbt.2018.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/08/2018] [Accepted: 02/18/2018] [Indexed: 02/08/2023]
|