151
|
Peters AE, Mihalas BP, Bromfield EG, Roman SD, Nixon B, Sutherland JM. Autophagy in Female Fertility: A Role in Oxidative Stress and Aging. Antioxid Redox Signal 2020; 32:550-568. [PMID: 31892284 DOI: 10.1089/ars.2019.7986] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The precipitous age-related decline in female fertility is intimately associated with a reduction in both the quantity and quality of the germline (oocytes). Although complex etiologies undoubtedly contribute to the deterioration of oocyte quality, increasing attention has focused on the pervasive impact of oxidative stress. Indeed, the prolonged lifespan of the meiotically arrested oocyte places this cell at heightened risk of oxidative lesions, which commonly manifest in dysregulation of protein homeostasis (proteostasis). Although oocytes are able to mitigate this threat via the mobilization of a sophisticated network of surveillance, repair, and proteolytic pathways, these defenses are themselves prone to age-related defects, reducing their capacity to eliminate oxidatively damaged proteins. Recent Advances: Here, we give consideration to the quality control mechanisms identified within the ovary that afford protection to the female germline. Our primary focus is to review recent advances in our understanding of the autophagy pathway and its contribution to promoting oocyte longevity and modulating pathophysiological responses to oxidative stress. In addition, we explore the therapeutic potential of emerging strategies to fortify autophagic activity. Critical Issues: The complex interplay of oxidative stress and autophagy has yet to be fully elucidated within the context of the aging oocyte and surrounding ovarian environment. Future Directions: Emerging evidence provides a strong impetus to resolve the causal link between autophagy and oxidative stress-driven pathologies in the aging oocyte. Such research may ultimately inform novel therapeutic strategies to combat the age-related loss of female fertility via fortification of intrinsic autophagic activity.
Collapse
Affiliation(s)
- Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Bettina P Mihalas
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Priority Research Centre for Drug Development, University of Newcastle, Callaghan, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
152
|
Bahrami A, Bo S, Jamialahmadi T, Sahebkar A. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms. Ageing Res Rev 2020; 58:101024. [PMID: 32006687 DOI: 10.1016/j.arr.2020.101024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Human ageing is determined by degenerative alterations and processes with different manifestations such as gradual organ dysfunction, tissue function loss, increased population of aged (senescent) cells, incapability of maintaining homeostasis and reduced repair capacity, which collectively lead to an increased risk of diseases and death. The inhibitors of HMG-CoA reductase (statins) are the most widely used lipid-lowering agents, which can reduce cardiovascular morbidity and mortality. Accumulating evidence has documented several pleiotropic effects of statins in addition to their lipid-lowering properties. Recently, several studies have highlighted that statins may have the potential to delay the ageing process and inhibit the onset of senescence. In this review, we focused on the anti-ageing mechanisms of statin drugs and their effects on cardiovascular and non-cardiovascular diseases.
Collapse
|
153
|
Martínez-Cué C, Rueda N. Cellular Senescence in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:16. [PMID: 32116562 PMCID: PMC7026683 DOI: 10.3389/fncel.2020.00016] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a homeostatic biological process characterized by a permanent state of cell cycle arrest that can contribute to the decline of the regenerative potential and function of tissues. The increased presence of senescent cells in different neurodegenerative diseases suggests the contribution of senescence in the pathophysiology of these disorders. Although several factors can induce senescence, DNA damage, oxidative stress, neuroinflammation, and altered proteostasis have been shown to play a role in its onset. Oxidative stress contributes to accelerated aging and cognitive dysfunction stages affecting neurogenesis, neuronal differentiation, connectivity, and survival. During later life stages, it is implicated in the progression of cognitive decline, synapse loss, and neuronal degeneration. Also, neuroinflammation exacerbates oxidative stress, synaptic dysfunction, and neuronal death through the harmful effects of pro-inflammatory cytokines on cell proliferation and maturation. Both oxidative stress and neuroinflammation can induce DNA damage and alterations in DNA repair that, in turn, can exacerbate them. Another important feature associated with senescence is altered proteostasis. Because of the disruption in the function and balance of the proteome, senescence can modify the proper synthesis, folding, quality control, and degradation rate of proteins producing, in some diseases, misfolded proteins or aggregation of abnormal proteins. There is an extensive body of literature that associates cellular senescence with several neurodegenerative disorders including Alzheimer’s disease (AD), Down syndrome (DS), and Parkinson’s disease (PD). This review summarizes the evidence of the shared neuropathological events in these neurodegenerative diseases and the implication of cellular senescence in their onset or aggravation. Understanding the role that cellular senescence plays in them could help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
154
|
Implications of Oxidative Stress and Cellular Senescence in Age-Related Thymus Involution. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7986071. [PMID: 32089780 PMCID: PMC7025075 DOI: 10.1155/2020/7986071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
The human thymus is a primary lymphoepithelial organ which supports the production of self-tolerant T cells with competent and regulatory functions. Paradoxically, despite the crucial role that it exerts in T cell-mediated immunity and prevention of systemic autoimmunity, the thymus is the first organ of the body that exhibits age-associated degeneration/regression, termed “thymic involution.” A hallmark of this early phenomenon is a progressive decline of thymic mass as well as a decreased output of naïve T cells, thus resulting in impaired immune response. Importantly, thymic involution has been recently linked with cellular senescence which is a stress response induced by various stimuli. Accumulation of senescent cells in tissues has been implicated in aging and a plethora of age-related diseases. In addition, several lines of evidence indicate that oxidative stress, a well-established trigger of senescence, is also involved in thymic involution, thus highlighting a possible interplay between oxidative stress, senescence, and thymic involution.
Collapse
|
155
|
Abstract
Ageing appears to be a nearly universal feature of life, ranging from unicellular microorganisms to humans. Longevity depends on the maintenance of cellular functionality, and an organism's ability to respond to stress has been linked to functional maintenance and longevity. Stress response pathways might indeed become therapeutic targets of therapies aimed at extending the healthy lifespan. Various progeroid syndromes have been linked to genome instability, indicating an important causal role of DNA damage accumulation in the ageing process and the development of age-related pathologies. Recently, non-cell-autonomous mechanisms including the systemic consequences of cellular senescence have been implicated in regulating organismal ageing. We discuss here the role of cellular and systemic mechanisms of ageing and their role in ageing-associated diseases.
Collapse
Affiliation(s)
- Paulo F L da Silva
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
156
|
Yzydorczyk C, Li N, Rigal E, Chehade H, Mosig D, Armengaud JB, Rolle T, Krishnasamy A, Orozco E, Siddeek B, Juvet C, Vergely C, Simeoni U. Calorie Restriction in Adulthood Reduces Hepatic Disorders Induced by Transient Postnatal Overfeeding in Mice. Nutrients 2019; 11:nu11112796. [PMID: 31744052 PMCID: PMC6893580 DOI: 10.3390/nu11112796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022] Open
Abstract
Impaired early nutrition influences the risk of developing metabolic disorders in later life. We observed that transient postnatal overfeeding (OF) in mice induces long-term hepatic alterations, characterized by microsteatosis, fibrosis associated with oxidative stress (OS), and stress-induced premature senescence (SIPS). In this study, we investigated whether such changes can be reversed by moderate calorie restriction (CR). C57BL/6 male mice pups were maintained during lactation in litters adjusted to nine pups in the normal feeding (NF) group and three pups in the transient postnatal OF group. At six months of age, adult mice from the NF and OF groups were randomly assigned to an ad libitum diet or CR (daily energy supply reduced by 20%) for one month. In each group, at the age of seven months, analysis of liver structure, liver markers of OS (superoxide anion, antioxidant defenses), and SIPS (lipofuscin, p53, p21, p16, pRb/Rb, Acp53, sirtuin-1) were performed. CR in the OF group reduced microsteatosis, decreased levels of superoxide anion, and increased protein expression of catalase and superoxide dismutase. Moreover, CR decreased lipofuscin staining, p21, p53, Acp53, and p16 but increased pRb/Rb and sirtuin-1 protein expression. CR did not affect the NF group. These results suggest that CR reduces hepatic disorders induced by OF.
Collapse
Affiliation(s)
- Catherine Yzydorczyk
- DOHaD Laboratory, Woman-Mother-Child Department, Division of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (D.M.); (J.B.A.); (T.R.); (A.K.); (E.O.); (B.S.); (C.J.); (U.S.)
- Correspondence: ; Tel.: +41-(0)21-314-32-19
| | - Na Li
- Equipe Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA7460), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (N.L.); (C.V.)
| | - Eve Rigal
- Equipe Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA7460), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (N.L.); (C.V.)
| | - Hassib Chehade
- DOHaD Laboratory, Woman-Mother-Child Department, Division of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (D.M.); (J.B.A.); (T.R.); (A.K.); (E.O.); (B.S.); (C.J.); (U.S.)
| | - Dolores Mosig
- DOHaD Laboratory, Woman-Mother-Child Department, Division of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (D.M.); (J.B.A.); (T.R.); (A.K.); (E.O.); (B.S.); (C.J.); (U.S.)
| | - Jean Baptiste Armengaud
- DOHaD Laboratory, Woman-Mother-Child Department, Division of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (D.M.); (J.B.A.); (T.R.); (A.K.); (E.O.); (B.S.); (C.J.); (U.S.)
| | - Thibaud. Rolle
- DOHaD Laboratory, Woman-Mother-Child Department, Division of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (D.M.); (J.B.A.); (T.R.); (A.K.); (E.O.); (B.S.); (C.J.); (U.S.)
| | - Anithan Krishnasamy
- DOHaD Laboratory, Woman-Mother-Child Department, Division of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (D.M.); (J.B.A.); (T.R.); (A.K.); (E.O.); (B.S.); (C.J.); (U.S.)
| | - Eulalia Orozco
- DOHaD Laboratory, Woman-Mother-Child Department, Division of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (D.M.); (J.B.A.); (T.R.); (A.K.); (E.O.); (B.S.); (C.J.); (U.S.)
| | - Benazir Siddeek
- DOHaD Laboratory, Woman-Mother-Child Department, Division of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (D.M.); (J.B.A.); (T.R.); (A.K.); (E.O.); (B.S.); (C.J.); (U.S.)
| | - Christian Juvet
- DOHaD Laboratory, Woman-Mother-Child Department, Division of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (D.M.); (J.B.A.); (T.R.); (A.K.); (E.O.); (B.S.); (C.J.); (U.S.)
| | - Catherine Vergely
- Equipe Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA7460), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (N.L.); (C.V.)
| | - Umberto Simeoni
- DOHaD Laboratory, Woman-Mother-Child Department, Division of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (H.C.); (D.M.); (J.B.A.); (T.R.); (A.K.); (E.O.); (B.S.); (C.J.); (U.S.)
| |
Collapse
|
157
|
The Signaling of Cellular Senescence in Diabetic Nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7495629. [PMID: 31687085 PMCID: PMC6794967 DOI: 10.1155/2019/7495629] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/03/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy is the leading cause of chronic kidney disease (CKD) in western countries. Notably, it has a rapidly rising prevalence in China. The patients, commonly complicated with cardiovascular diseases and neurologic disorders, are at high risk to progress into end-stage renal disease (ESRD) and death. However, the pathogenic mechanisms of diabetic nephropathy have not been determined. Cellular senescence, which recently has gained broad attention, is thought to be an important player in the onset and development of diabetic nephropathy. In this issue, we generally review the mechanisms of cellular senescence in diabetic nephropathy, which involve telomere attrition, DNA damage, epigenetic alterations, mitochondrial dysfunction, loss of Klotho, Wnt/β-catenin signaling activation, persistent inflammation, and accumulation of uremic toxins. Moreover, we highlight the potential therapeutic targets of cellular senescence in diabetic nephropathy and provide important clues for clinical strategies.
Collapse
|
158
|
Cencioni C, Heid J, Krepelova A, Rasa SMM, Kuenne C, Guenther S, Baumgart M, Cellerino A, Neri F, Spallotta F, Gaetano C. Aging Triggers H3K27 Trimethylation Hoarding in the Chromatin of Nothobranchius furzeri Skeletal Muscle. Cells 2019; 8:cells8101169. [PMID: 31569376 PMCID: PMC6829443 DOI: 10.3390/cells8101169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/15/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Aging associates with progressive loss of skeletal muscle function, sometimes leading to sarcopenia, a process characterized by impaired mobility and weakening of muscle strength. Since aging associates with profound epigenetic changes, epigenetic landscape alteration analysis in the skeletal muscle promises to highlight molecular mechanisms of age-associated alteration in skeletal muscle. This study was conducted exploiting the short-lived turquoise killifish Nothobranchius furzeri (Nfu), a relatively new model for aging studies. The epigenetic analysis suggested a less accessible and more condensed chromatin in old Nfu skeletal muscle. Specifically, an accumulation of heterochromatin regions was observed as a consequence of increased levels of H3K27me3, HP1α, polycomb complex subunits, and senescence-associated heterochromatic foci (SAHFs). Consistently, euchromatin histone marks, including H3K9ac, were significantly reduced. In this context, integrated bioinformatics analysis of RNASeq and ChIPSeq, related to skeletal muscle of Nfu at different ages, revealed a down-modulation of genes involved in cell cycle, differentiation, and DNA repair and an up-regulation of inflammation and senescence genes. Undoubtedly, more studies are needed to disclose the detailed mechanisms; however, our approach enlightened unprecedented features of Nfu skeletal muscle aging, potentially associated with swimming impairment and reduced mobility typical of old Nfu.
Collapse
Affiliation(s)
- Chiara Cencioni
- National Research Council, Institute for Systems Analysis and Computer Science, 00185 Rome, Italy.
| | - Johanna Heid
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Anna Krepelova
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.
| | | | - Carsten Kuenne
- ECCPS Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.
| | - Stefan Guenther
- ECCPS Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.
| | - Mario Baumgart
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.
| | - Alessandro Cellerino
- Laboratory of Biology (Bio@SNS), Scuola Normale Superiore, c/o Istituto di Biofisica del CNR, 56124 Pisa, Italy.
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.
| | - Francesco Spallotta
- Department of Oncology, University of Turin, 10060 Candiolo (TO), Italy.
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy.
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy.
| |
Collapse
|
159
|
Maroni L, Pinto C, Giordano DM, Saccomanno S, Banales JM, Spallacci D, Albertini MC, Orlando F, Provinciali M, Milkiewicz M, Melum E, Labiano I, Milkiewicz P, Rychlicki C, Trozzi L, Scarpelli M, Benedetti A, Svegliati Baroni G, Marzioni M. Aging-Related Expression of Twinfilin-1 Regulates Cholangiocyte Biological Response to Injury. Hepatology 2019; 70:883-898. [PMID: 30561764 DOI: 10.1002/hep.30466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Abstract
Disorders of the biliary tree develop and progress differently according to patient age. It is currently not known whether the aging process affects the response to injury of cholangiocytes. The aim of this study was to identify molecular pathways associated with cholangiocyte aging and to determine their effects in the biological response to injury of biliary cells. A panel of microRNAs (miRs) involved in aging processes was evaluated in cholangiocytes of young and old mice (2 months and 22 months of age, respectively) and subjected to a model of sclerosing cholangitis. Intracellular pathways that are common to elevated miRs were identified by in silico analysis. Cell proliferation and senescence were evaluated in Twinfilin-1 (Twf1) knocked-down cells. In vivo, senescence-accelerated prone mice (Samp8, a model for accelerated aging), Twf1-/- , or their respective controls were subjected to DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine). Cholangiocytes from DDC-treated mice showed up-regulation of a panel of aging-related miRs. Twf1 was identified by in silico analysis as a common target of the up-regulated miRs. Twf1 expression was increased both in aged and diseased cholangiocytes, and in human cholangiopathies. Knock-down of Twf1 in cholangiocytes reduced cell proliferation. Senescence and senescence-associated secretory phenotype marker expression increased in Twf1 knocked-down cholangiocytes following pro-proliferative and pro-senescent (10-day lipopolysaccharide) stimulation. In vivo, Samp8 mice showed increased biliary proliferation, fibrosis, and Twf1 protein expression level, whereas Twf1-/- had a tendency toward lower biliary proliferation and fibrosis following DDC administration compared with control animals. Conclusion: We identified Twf1 as an important mediator of both cholangiocyte adaptation to aging processes and response to injury. Our data suggest that disease and aging might share common intracellular pathways.
Collapse
Affiliation(s)
- Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Debora Maria Giordano
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Saccomanno
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy.,Institute of Pathological Anatomy and Histopathology, Università Politecnica delle Marche, Ancona, Italy
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, Ikerbasque, CIBERehd, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Daniele Spallacci
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | | | - Fiorenza Orlando
- Advanced Technology Center for Aging Research, Experimental Animal Models for Aging Unit, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Experimental Animal Models for Aging Unit, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | | | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, Ikerbasque, CIBERehd, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and L Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Chiara Rychlicki
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Luciano Trozzi
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Marina Scarpelli
- Institute of Pathological Anatomy and Histopathology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | | | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
160
|
Novais EJ, Diekman BO, Shapiro IM, Risbud MV. p16 Ink4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence. Matrix Biol 2019; 82:54-70. [PMID: 30811968 PMCID: PMC6708504 DOI: 10.1016/j.matbio.2019.02.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/02/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration is an important contributor to chronic low back and neck pain. Although many environmental and genetic factors are known to contribute to disc degeneration, age is still the most significant risk factor. Recent studies have shown that senescence may play a role in age-related disc degeneration and matrix catabolism in humans and mouse models. Clearance of p16Ink4a-positive senescent cells reduces the degenerative phenotype in many age-associated diseases. Whether p16Ink4a plays a functional role in intervertebral disc degeneration and senescence is unknown. We first characterized the senescence status of discs in young and old mice. Quantitative histology, gene expression and a novel p16tdTom reporter mice showed an increase in p16Ink4a, p21 and IL-6, with a decrease in Ki67 with aging. Accordingly, we studied the spinal-phenotype of 18-month-old mice with conditional deletion of p16Ink4a in the disc driven by Acan-CreERT2 (cKO). The analyses of discs of cKO and age-matched control mice showed little change in cell morphology and tissue architecture. The cKO mice exhibited changes in functional attributes of aggrecan as well as in collagen composition of the intervertebral disc. While cKO discs exhibited a small decrease in TUNEL positive cells, lineage tracing experiments using ZsGreen reporter indicated that the overall changes in cell fate or numbers were minimal. The cKO mice maintained expression of NP-cell phenotypic markers CA3, Krt19 and GLUT-1. Moreover, in cKO discs, levels of p19Arf and RB were higher without alterations in Ki67, γH2AX, CDK4 and Lipofuscin deposition. Interestingly, the cKO discs showed lower levels of SASP markers, IL-1β, IL-6, MCP1 and TGF-β1. These results show that while, p16Ink4a is dispensable for induction and maintenance of senescence, conditional loss of p16Ink4a reduces apoptosis, limits the SASP phenotype and alters matrix homeostasis of disc cells.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Brian O Diekman
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; North Carolina State University, Raleigh, NC, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
161
|
Moreno-Blas D, Gorostieta-Salas E, Pommer-Alba A, Muciño-Hernández G, Gerónimo-Olvera C, Maciel-Barón LA, Konigsberg M, Massieu L, Castro-Obregón S. Cortical neurons develop a senescence-like phenotype promoted by dysfunctional autophagy. Aging (Albany NY) 2019; 11:6175-6198. [PMID: 31469660 PMCID: PMC6738425 DOI: 10.18632/aging.102181] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
Senescent cells accumulate in various tissues and organs with aging altering surrounding tissue due to an active secretome, and at least in mice their elimination extends healthy lifespan and ameliorates several chronic diseases. Whether all cell types senesce, including post-mitotic cells, has been poorly described mainly because cellular senescence was defined as a permanent cell cycle arrest. Nevertheless, neurons with features of senescence have been described in old rodent and human brains. In this study we characterized an in vitro model useful to study the molecular basis of senescence of primary rat cortical cells that recapitulates senescent features described in brain aging. We found that in long-term cultures, rat primary cortical neurons displayed features of cellular senescence before glial cells did, and developed a functional senescence-associated secretory phenotype able to induce paracrine premature senescence of mouse embryonic fibroblasts but proliferation of rat glial cells. Functional autophagy seems to prevent neuronal senescence, as we observed an autophagic flux reduction in senescent neurons both in vitro and in vivo, and autophagy impairment induced cortical cell senescence while autophagy stimulation inhibited it. Our findings suggest that aging-associated dysfunctional autophagy contributes to senescence transition also in neuronal cells.
Collapse
Affiliation(s)
- Daniel Moreno-Blas
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Elisa Gorostieta-Salas
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Alexander Pommer-Alba
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Gabriel Muciño-Hernández
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Cristian Gerónimo-Olvera
- Departamento de Neuropatología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Luis Angel Maciel-Barón
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, México
| | - Mina Konigsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, México
| | - Lourdes Massieu
- Departamento de Neuropatología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| |
Collapse
|
162
|
Liverani C, De Vita A, Minardi S, Kang Y, Mercatali L, Amadori D, Bongiovanni A, La Manna F, Ibrahim T, Tasciotti E. A biomimetic 3D model of hypoxia-driven cancer progression. Sci Rep 2019; 9:12263. [PMID: 31439905 PMCID: PMC6706452 DOI: 10.1038/s41598-019-48701-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 08/07/2019] [Indexed: 12/27/2022] Open
Abstract
The fate of tumors depends both on the cancer cells' intrinsic characteristics and on the environmental conditions where the tumors reside and grow. Engineered in vitro models have led to significant advances in cancer research, allowing the investigation of cells in physiological environments and the study of disease mechanisms and processes with enhanced relevance. Here we present a biomimetic cancer model based on a collagen matrix synthesized through a biologically inspired process. We compared in this environment the responses of two breast tumor lineages characterized by different molecular patterns and opposite clinical behaviors: MCF-7 that belong to the luminal A subtype connected to an indolent course, and basal-like MDA-MB-231 connected to high-grade and aggressive disease. Cancer cells in the biomimetic matrix recreate a hypoxic environment that affects their growth dynamics and phenotypic features. Hypoxia induces apoptosis and the selection of aggressive cells that acquire expression signatures associated with glycolysis, angiogenesis, cell-matrix interaction, epithelial to mesenchymal transition and metastatic ability. In response to hypoxia MDA-MB-231 migrate on the collagen fibrils and undergo cellular senescence, while MCF-7 do not exhibit these behaviors. Our biomimetic model mimics the evolution of tumors with different grade of aggressiveness fostered by a hypoxic niche and provides a relevant technology to dissect the events involved in cancer progression.
Collapse
Affiliation(s)
- Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola, Italy
| | - Silvia Minardi
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola, Italy
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola, Italy
| | - Federico La Manna
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola, Italy.
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave, Houston, TX, 77030, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
163
|
In vitro aged, hiPSC-origin engineered heart tissue models with age-dependent functional deterioration to study myocardial infarction. Acta Biomater 2019; 94:372-391. [PMID: 31146032 DOI: 10.1016/j.actbio.2019.05.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 01/29/2023]
Abstract
Deaths attributed to ischemic heart disease increased by 41.7% from 1990 to 2013. This is primarily due to an increase in the aged population, however, research on cardiovascular disease (CVD) has been overlooking aging, a well-documented contributor to CVD. The use of young animals is heavily preferred due to lower costs and ready availability, despite the prominent differences between young and aged heart structure and function. Here we present the first human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (iCM)-based, in vitro aged myocardial tissue model as an alternative research platform. Within 4 months, iCMs go through accelerated senescence and show cellular characteristics of aging. Furthermore, the model tissues fabricated using aged iCMs, with stiffness resembling that of aged human heart, show functional and pharmacological deterioration specific to aged myocardium. Our novel tissue model with age-appropriate physiology and pathology presents a promising new platform for investigating CVD or other age-related diseases. STATEMENT OF SIGNIFICANCE: In vitro and in vivo models of cardiovascular disease are aimed to provide crucial insight on the pathology and treatment of these diseases. However, the contribution of age-dependent cardiovascular changes is greatly underestimated through the use of young animals and premature cardiomyocytes. Here, we developed in vitro aged cardiac tissue models that mimic the aged heart tissue microenvironment and cellular phenotype and present the first evidence that age-appropriate in vitro disease models can be developed to gain more physiologically-relevant insight on development, progression, and amelioration of cardiovascular diseases.
Collapse
|
164
|
Nag TC, Maurya M, Roy TS. Age-related changes of the human retinal vessels: Possible involvement of lipid peroxidation. Ann Anat 2019; 226:35-47. [PMID: 31330304 DOI: 10.1016/j.aanat.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Aging of the human retina is accompanied by oxidative stress that exerts profound changes in the retinal neurons. It is unknown if oxidative stress influences the cellular components of the retinal vessels in some ways. METHODS We examined changes in retinal vessels in human donor eyes (age: 35-94 years; N=18) by light and transmission electron microscopy, TUNEL and immunohistochemistry for biomarkers of vascular smooth muscle cells (SMC; actin), oxidative stress (4-hydroxy 2-nonenal [HNE] and nitrotyrosine), microglia (Iba-1) and vessels (isolectin B4). RESULTS The earliest changes in the endothelium and pericytes of capillaries are apparent from the seventh decade. With aging, there is clear loss of organelles and cytoplasmic filaments, and a progressive thickening of the endothelial and pericyte basal lamina. Loss of filaments, accumulation of lipofuscin and autophagic vacuoles are significant events in aging pericytes and SMC. Actin immunolabelling reveals discontinuity in arterial SMC layers during eighth decade, indicating partial degeneration of SMC. This is followed by hyalinization, with degeneration of the endothelium and SMC in arteries and arterioles of the nerve fibre layer (NFL) and ganglion cell layer in ninth decade. Iba-1 positive microglia were in close contact with the damaged vessels in inner retina, and their cytoplasm was rich in lysosomes. HNE immunoreactivity, but not of nitrotyrosine, was detected in aged vessels from seventh decade onwards, suggesting that lipid peroxidation is a major problem of aged vessels. However, TUNEL positivity seen during this period was limited to few arteries and venules of NFL. CONCLUSION This study shows prominent age-related alterations of the pericytes and SMC of retinal vessels. These changes may limit the energy supply to the neurons and be responsible for age-related loss of neurons of the inner retina.
Collapse
Affiliation(s)
- Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
165
|
Biochemical Hallmarks of Oxidative Stress-Induced Overactivation of Xenopus Eggs. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7180540. [PMID: 31341903 PMCID: PMC6634078 DOI: 10.1155/2019/7180540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/28/2019] [Accepted: 05/28/2019] [Indexed: 02/05/2023]
Abstract
Egg overactivation occurs with a low frequency in the populations of naturally ovulated frog eggs. At present, its natural inducers, molecular mechanisms, and intracellular events remain unknown. Using microscopic and biochemical analyses, we demonstrate here that high levels of hydrogen peroxide-induced oxidative stress can cause time- and dose-dependent overactivation of Xenopus eggs. Lipofuscin accumulation, decrease of soluble cytoplasmic protein content, and depletion of intracellular ATP were found to take place in the overactivated eggs. Progressive development of these processes suggests that egg overactivation unfolds in a sequential and ordered fashion.
Collapse
|
166
|
|
167
|
Rusu ME, Simedrea R, Gheldiu AM, Mocan A, Vlase L, Popa DS, Ferreira IC. Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
168
|
Pratsinis H, Mavrogonatou E, Kletsas D. Scarless wound healing: From development to senescence. Adv Drug Deliv Rev 2019; 146:325-343. [PMID: 29654790 DOI: 10.1016/j.addr.2018.04.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
An essential element of tissue homeostasis is the response to injuries, cutaneous wound healing being the most studied example. In the adults, wound healing aims at quickly restoring the barrier function of the skin, leading however to scar, a dysfunctional fibrotic tissue. On the other hand, in fetuses a scarless tissue regeneration takes place. During ageing, the wound healing capacity declines; however, in the absence of comorbidities a higher quality in tissue repair is observed. Senescent cells have been found to accumulate in chronic unhealed wounds, but more recent reports indicate that their transient presence may be beneficial for tissue repair. In this review data on skin wound healing and scarring are presented, covering the whole spectrum from early embryonic development to adulthood, and furthermore until ageing of the organism.
Collapse
|
169
|
Zhai W, Yong D, El-Jawhari JJ, Cuthbert R, McGonagle D, Win Naing M, Jones E. Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions. Cytotherapy 2019; 21:803-819. [PMID: 31138507 DOI: 10.1016/j.jcyt.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/30/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Regardless of their tissue of origin, multipotent mesenchymal stromal cells (MSCs) are commonly expanded in vitro for several population doublings to achieve a sufficient number of cells for therapy. Prolonged MSC expansion has been shown to result in phenotypical, morphological and gene expression changes in MSCs, which ultimately lead to the state of senescence. The presence of senescent cells in therapeutic MSC batches is undesirable because it reduces their viability, differentiation potential and trophic capabilities. Additionally, senescent cells acquire senescence-activated secretory phenotype, which may not only induce apoptosis in the neighboring host cells following MSC transplantation, but also trigger local inflammatory reactions. This review outlines the current and promising new methodologies for the identification of senescent cells in MSC cultures, with a particular emphasis on non-destructive and label-free methodologies. Technologies allowing identification of individual senescent cells, based on new surface markers, offer potential advantage for targeted senescent cell removal using new-generation senolytic agents, and subsequent production of therapeutic MSC batches fully devoid of senescent cells. Methods or a combination of methods that are non-destructive and label-free, for example, involving cell size and spectroscopic measurements, could be the best way forward because they do not modify the cells of interest, thus maximizing the final output of therapeutic-grade MSC cultures. The further incorporation of machine learning methods has also recently shown promise in facilitating, automating and enhancing the analysis of these measured data.
Collapse
Affiliation(s)
- Weichao Zhai
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Derrick Yong
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Jehan Jomaa El-Jawhari
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Richard Cuthbert
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - May Win Naing
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Elena Jones
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK.
| |
Collapse
|
170
|
Verderame M, Scudiero R. How Glyphosate Impairs Liver Condition in the Field Lizard Podarcis siculus (Rafinesque-Schmaltz, 1810): Histological and Molecular Evidence. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4746283. [PMID: 31218226 PMCID: PMC6536989 DOI: 10.1155/2019/4746283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
The potential toxicity of glyphosate, a widely used broad-spectrum herbicide, is currently a great matter of debate. As vertebrate insectivores, lizards protect plants from herbivorous insects increasing plant biomass via the trophic cascade and represent an important link between invertebrates and higher predators. A negative effect of glyphosate on lizards' survival could have major impacts at the ecological levels. In this study, we investigated the effects of the exposure to low doses of glyphosate on the liver of the wall lizard Podarcis siculus, a suitable bioindicator of soil pollution. Two different doses of pure glyphosate (0.05 and 0.5 μg/kg body weight) were orally administered every other day for 3 weeks to sexually mature males and females. The results demonstrated that both doses, despite being very low, are toxic for the liver that showed clear signs of suffering, regardless of sex. The histological analysis provided a scenario of severe hepatic condition, which degenerated until the appearance of fibrotic formations. The morphological observations were consistent with a loss of liver physiological functions. Immunocytochemical investigations allowed us to detect an involvement of antioxidant/cytoprotective proteins, such as superoxide dismutase 1 (Cu/Zn SOD, known as SOD1), glutathione peroxidase 1 (GPx1), metallothionein (MT), and tumor suppressor protein 53, (p53) suggesting that the liver was trying to react against stress signals and damage induced by glyphosate. Finally, in situ hybridization and Real-Time PCR analysis showed the upregulation of estrogen receptor α and vitellogenin gene expression, thus demonstrating the xenoestrogenic action of glyphosate. The imbalance of the hormonal homeostasis could threaten the lizards' reproductive fitness and survival, altering the trophic cascade.
Collapse
Affiliation(s)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
171
|
Paskaš S, Krajnović T, Basile MS, Dunđerović D, Cavalli E, Mangano K, Mammana S, Al-Abed Y, Nicoletti F, Mijatović S, Maksimović-Ivanić D. Senescence as a main mechanism of Ritonavir and Ritonavir-NO action against melanoma. Mol Carcinog 2019; 58:1362-1375. [PMID: 30997718 DOI: 10.1002/mc.23020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
The main focus of this study is exploring the effect and mechanism of two HIV-protease inhibitors: Ritonavir and Ritonavir-nitric oxide (Ritonavir-NO) on in vitro growth of melanoma cell lines. NO modification significantly improved the antitumor potential of Ritonavir, as the IC50 values of Ritonavir-NO were approximately two times lower than IC50 values of the parental compound. Our results showed for the first time, that both compounds induced senescence in primary and metastatic melanoma cell lines. This transformation was manifested as a change in cell morphology, enlargement of nuclei, increased cellular granulation, upregulation of β-galactosidase activity, lipofuscin granules appearance, higher production of reactive oxygen species and persistent inhibition of proliferation. The expression of p53, as one of the key regulators of senescence, was upregulated after 48 hours of Ritonavir-NO treatment only in metastatic B16F10 cells, ranking it as a late-response event. The development of senescent phenotype was consistent with the alteration of the cytoskeleton-as we observed diminished expression of vinculin, α-actin, and β-tubulin. Permanent inhibition of S6 protein by Ritonavir-NO, but not Ritonavir, could be responsible for a stronger antiproliferative potential of the NO-modified compound. Taken together, induction of senescent phenotype may provide an excellent platform for developing therapeutic approaches based on selective killing of senescent cells.
Collapse
Affiliation(s)
- Svetlana Paskaš
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| | - Tamara Krajnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| | - Maria S Basile
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Duško Dunđerović
- Institute of Pathology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Eugenio Cavalli
- Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Santa Mammana
- Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| |
Collapse
|
172
|
Beauvarlet J, Bensadoun P, Darbo E, Labrunie G, Rousseau B, Richard E, Draskovic I, Londono-Vallejo A, Dupuy JW, Nath Das R, Guédin A, Robert G, Orange F, Croce S, Valesco V, Soubeyran P, Ryan KM, Mergny JL, Djavaheri-Mergny M. Modulation of the ATM/autophagy pathway by a G-quadruplex ligand tips the balance between senescence and apoptosis in cancer cells. Nucleic Acids Res 2019; 47:2739-2756. [PMID: 30759257 PMCID: PMC6451122 DOI: 10.1093/nar/gkz095] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 01/07/2023] Open
Abstract
G-quadruplex ligands exert their antiproliferative effects through telomere-dependent and telomere-independent mechanisms, but the inter-relationships among autophagy, cell growth arrest and cell death induced by these ligands remain largely unexplored. Here, we demonstrate that the G-quadruplex ligand 20A causes growth arrest of cancer cells in culture and in a HeLa cell xenografted mouse model. This response is associated with the induction of senescence and apoptosis. Transcriptomic analysis of 20A treated cells reveals a significant functional enrichment of biological pathways related to growth arrest, DNA damage response and the lysosomal pathway. 20A elicits global DNA damage but not telomeric damage and activates the ATM and autophagy pathways. Loss of ATM following 20A treatment inhibits both autophagy and senescence and sensitizes cells to death. Moreover, disruption of autophagy by deletion of two essential autophagy genes ATG5 and ATG7 leads to failure of CHK1 activation by 20A and subsequently increased cell death. Our results, therefore, identify the activation of ATM by 20A as a critical player in the balance between senescence and apoptosis and autophagy as one of the key mediators of such regulation. Thus, targeting the ATM/autophagy pathway might be a promising strategy to achieve the maximal anticancer effect of this compound.
Collapse
Affiliation(s)
- Jennifer Beauvarlet
- Institut Bergonié, Université de Bordeaux, INSERM U1218, F-33076 Bordeaux, France
| | - Paul Bensadoun
- Institut Bergonié, Université de Bordeaux, INSERM U1218, F-33076 Bordeaux, France
| | - Elodie Darbo
- Institut Bergonié, Université de Bordeaux, INSERM U1218, F-33076 Bordeaux, France
- Centre de Bioinformatique de Bordeaux, université de Bordeaux, F-33000 Bordeaux France
| | - Gaelle Labrunie
- Institut Bergonié, Université de Bordeaux, INSERM U1218, F-33076 Bordeaux, France
- ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR 5320, IECB, F-33600, Pessac, France
| | - Benoît Rousseau
- Service commun des animaleries, Université de Bordeaux, F-33000 Bordeaux, France
| | - Elodie Richard
- Institut Bergonié, Université de Bordeaux, INSERM U1218, F-33076 Bordeaux, France
| | - Irena Draskovic
- Institut Curie, PSL Research University, CNRS, UMR3244, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, F-75005 Paris, France
| | - Arturo Londono-Vallejo
- Institut Curie, PSL Research University, CNRS, UMR3244, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3244, F-75005 Paris, France
| | - Jean-William Dupuy
- Université de Bordeaux, Centre de Génomique Fonctionnelle, Plateforme Protéome, F-33000, Bordeaux, France
| | - Rabindra Nath Das
- ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR 5320, IECB, F-33600, Pessac, France
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR 5320, IECB, F-33600, Pessac, France
| | - Guillaume Robert
- Inserm U1065, C3M, Team: Myeloid Malignancies and Multiple Myeloma, Université Côte d’Azur, F-06204 Nice, France
| | - Francois Orange
- Université Côte d’Azur, Centre Commun de Microscopie Appliquée (CCMA), 06108 Nice, France
| | - Sabrina Croce
- Department of Biopathology, Institut Bergonié, F-33076 Bordeaux, France
| | - Valerie Valesco
- Department of Biopathology, Institut Bergonié, F-33076 Bordeaux, France
| | - Pierre Soubeyran
- Institut Bergonié, Université de Bordeaux, INSERM U1218, F-33076 Bordeaux, France
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, G611BD, UK and Institute of Cancer Sciences, University of Glasgow,Glasgow G61 1QH, UK
| | - Jean-Louis Mergny
- ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR 5320, IECB, F-33600, Pessac, France
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | | |
Collapse
|
173
|
Bertolo A, Baur M, Guerrero J, Pötzel T, Stoyanov J. Autofluorescence is a Reliable in vitro Marker of Cellular Senescence in Human Mesenchymal Stromal Cells. Sci Rep 2019; 9:2074. [PMID: 30765770 PMCID: PMC6376004 DOI: 10.1038/s41598-019-38546-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2018] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are used in cell therapies, however cellular senescence increases heterogeneity of cell populations and leads to uncertainty in therapies’ outcomes. The determination of cellular senescence is time consuming and logistically intensive. Here, we propose the use of endogenous autofluorescence as real-time quantification of cellular senescence in human MSC, based on label-free flow cytometry analysis. We correlated cell autofluorescence to senescence using senescence-associated beta-galactosidase assay (SA-β-Gal) with chromogenic (X-GAL) and fluorescent (C12FDG) substrates, gene expression of senescence markers (such as p16INK4A, p18INK4C, CCND2 and CDCA7) and telomere length. Autofluorescence was further correlated to MSC differentiation assays (adipogenesis, chondrogenesis and osteogenesis), MSC stemness markers (CD90/CD106) and cytokine secretion (IL-6 and MCP-1). Increased cell autofluorescence significantly correlated with increased SA-β-Gal signal (both X-GAL and C12FDG substrates), cell volume and cell granularity, IL-6/MCP-1 secretion and with increased p16INK4A and CCND2 gene expression. Increased cell autofluorescence was negatively associated with the expression of the CD90/CD106 markers, osteogenic and chondrogenic differentiation potentials and p18INK4C and CDCA7 gene expression. Cell autofluorescence correlated neither with telomere length nor with adipogenic differentiation potential. We conclude that autofluorescence can be used as fast and non-invasive senescence assay for comparing MSC populations under controlled culture conditions.
Collapse
Affiliation(s)
| | - Martin Baur
- Cantonal Hospital of Lucerne, Lucerne, 6000, Switzerland.,Swiss Paraplegic Centre, Nottwil, 6207, Switzerland
| | - Julien Guerrero
- Department of Biomedicine and Tissue Engineering, University of Basel Hospital, Basel, 4031, Switzerland
| | | | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, 6207, Switzerland. .,Institute for Surgical Technology and Biomechanics, University of Bern, Bern, 3014, Switzerland.
| |
Collapse
|
174
|
Tokmakov AA, Sato KI. Activity and intracellular localization of senescence-associated β-galactosidase in aging Xenopus oocytes and eggs. Exp Gerontol 2019; 119:157-167. [PMID: 30769028 DOI: 10.1016/j.exger.2019.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/22/2019] [Accepted: 02/02/2019] [Indexed: 12/14/2022]
Abstract
Senescence-associated β-galactosidase (SA-β-gal) serves as a marker of senescence in aging somatic cells. However, little is known about SA-β-gal dynamics in aging gamete cells. To address this issue, here we investigated activity and intracellular localization of SA-β-gal in freshly obtained and aging oocytes and eggs of the African clawed frog Xenopus laevis. Data base mining revealed the presence of several homologous β-galactosidase sequences in the annotated Xenopus genome. Some of them were predicted to contain an N-terminal signal peptide sequence, suggesting enzyme translocation to cellular organelles. Biochemical and microscopic analyses confirmed SA-β-gal localization in the particulate and cytosolic fractions of oocytes and eggs. SA-β-gal activity was found to reside predominantly within a fraction of dense cytoplasmic granules that were extensively stained with the lysosome-specific dye LysoTracker Green DND-26 and had an average size of 8.9 ± 5.6 μm. These features identify the SA-β-gal-containing granules as a subpopulation of yolk platelets, specialized late endosomes or lysosomes that accumulate and store processed protein in frog oocytes. Further analysis revealed an increase of SA-β-gal activity in Xenopus eggs, but not in oocytes, aged in vitro over 48 h. Our data suggest that endosomal acidification during egg aging may be responsible for this increase.
Collapse
Affiliation(s)
- Alexander A Tokmakov
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| | - Ken-Ichi Sato
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
175
|
da Silva PFL, Ogrodnik M, Kucheryavenko O, Glibert J, Miwa S, Cameron K, Ishaq A, Saretzki G, Nagaraja‐Grellscheid S, Nelson G, von Zglinicki T. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 2019; 18:e12848. [PMID: 30462359 PMCID: PMC6351849 DOI: 10.1111/acel.12848] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022] Open
Abstract
Senescent cells accumulate with age in multiple tissues and may cause age-associated disease and functional decline. In vitro, senescent cells induce senescence in bystander cells. To see how important this bystander effect may be for accumulation of senescent cells in vivo, we xenotransplanted senescent cells into skeletal muscle and skin of immunocompromised NSG mice. 3 weeks after the last transplantation, mouse dermal fibroblasts and myofibres displayed multiple senescence markers in the vicinity of transplanted senescent cells, but not where non-senescent or no cells were injected. Adjacent to injected senescent cells, the magnitude of the bystander effect was similar to the increase in senescence markers in myofibres between 8 and 32 months of age. The age-associated increase of senescence markers in muscle correlated with fibre thinning, a widely used marker of muscle aging and sarcopenia. Senescent cell transplantation resulted in borderline induction of centrally nucleated fibres and no significant thinning, suggesting that myofibre aging might be a delayed consequence of senescence-like signalling. To assess the relative importance of the bystander effect versus cell-autonomous senescence, we compared senescent hepatocyte frequencies in livers of wild-type and NSG mice under ad libitum and dietary restricted feeding. This enabled us to approximate cell-autonomous and bystander-driven senescent cell accumulation as well as the impact of immunosurveillance separately. The results suggest a significant impact of the bystander effect for accumulation of senescent hepatocytes in liver and indicate that senostatic interventions like dietary restriction may act as senolytics in immunocompetent animals.
Collapse
Affiliation(s)
- Paulo F. L. da Silva
- The ABC – Newcastle University Ageing Biology CentreInstitute for Cell and Molecular BiologyCampus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
- Present address:
Institute for Genome Stability in Ageing and DiseaseCologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneJoseph‐Stelzmann‐Str. 26Cologne50931Germany
| | - Mikolaj Ogrodnik
- The ABC – Newcastle University Ageing Biology CentreInstitute for Cell and Molecular BiologyCampus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Olena Kucheryavenko
- The ABC – Newcastle University Ageing Biology CentreInstitute for Cell and Molecular BiologyCampus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
- Present address:
Federal Institute for Risk AssessmentMax‐Dohrn‐Str. 8‐10Berlin10589Germany
| | - Julien Glibert
- The ABC – Newcastle University Ageing Biology CentreInstitute for Cell and Molecular BiologyCampus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Satomi Miwa
- The ABC – Newcastle University Ageing Biology CentreInstitute for Cell and Molecular BiologyCampus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Kerry Cameron
- The ABC – Newcastle University Ageing Biology CentreInstitute for Cell and Molecular BiologyCampus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Abbas Ishaq
- The ABC – Newcastle University Ageing Biology CentreInstitute for Cell and Molecular BiologyCampus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Gabriele Saretzki
- The ABC – Newcastle University Ageing Biology CentreInstitute for Cell and Molecular BiologyCampus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Sushma Nagaraja‐Grellscheid
- Department of BiosciencesDurham UniversityDurhamUK
- Present address:
Computational Biology UnitDepartment of BiosciencesUniversity of BergenBergen5006Norway
| | - Glyn Nelson
- The ABC – Newcastle University Ageing Biology CentreInstitute for Cell and Molecular BiologyCampus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
| | - Thomas von Zglinicki
- The ABC – Newcastle University Ageing Biology CentreInstitute for Cell and Molecular BiologyCampus for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK
- Arts and Sciences Faculty, Molecular Biology and GeneticsNear East UniversityMersinTurkey
| |
Collapse
|
176
|
Ogrodnik M, Salmonowicz H, Gladyshev VN. Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging Cell 2019; 18:e12841. [PMID: 30346102 PMCID: PMC6351832 DOI: 10.1111/acel.12841] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
Understanding the aging process and ways to manipulate it is of major importance for biology and medicine. Among the many aging theories advanced over the years, the concept most consistent with experimental evidence posits the buildup of numerous forms of molecular damage as a foundation of the aging process. Here, we discuss that this concept integrates well with recent findings on cellular senescence, offering a novel view on the role of senescence in aging and age‐related disease. Cellular senescence has a well‐established role in cellular aging, but its impact on the rate of organismal aging is less defined. One of the most prominent features of cellular senescence is its association with macromolecular damage. The relationship between cell senescence and damage concerns both damage as a molecular signal of senescence induction and accelerated accumulation of damage in senescent cells. We describe the origin, regulatory mechanisms, and relevance of various damage forms in senescent cells. This view on senescent cells as carriers and inducers of damage puts new light on senescence, considering it as a significant contributor to the rise in organismal damage. Applying these ideas, we critically examine current evidence for a role of cellular senescence in aging and age‐related diseases. We also discuss the differential impact of longevity interventions on senescence burden and other types of age‐related damage. Finally, we propose a model on the role of aging‐related damage accumulation and the rate of aging observed upon senescent cell clearance.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle upon Tyne UK
| | - Hanna Salmonowicz
- Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle upon Tyne UK
| | - Vadim N. Gladyshev
- Division of Genetics; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston Massachusetts
| |
Collapse
|
177
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 669] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
178
|
Gunaratna RT, Santos A, Luo L, Nagi C, Lambertz I, Spier M, Conti CJ, Fuchs-Young RS. Dynamic role of the codon 72 p53 single-nucleotide polymorphism in mammary tumorigenesis in a humanized mouse model. Oncogene 2019; 38:3535-3550. [PMID: 30651598 PMCID: PMC6756019 DOI: 10.1038/s41388-018-0630-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/14/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
Female breast cancer (BrCa) is the most common noncutaneous cancer among women in the United States. Human epidemiological studies reveal that a p53 single-nucleotide polymorphism (SNP) at codon 72, encoding proline (P72) or arginine (R72), is associated with differential risk of several cancers, including BrCa. However, the molecular mechanisms by which these variants affect mammary tumorigenesis remain unresolved. To investigate the effects of this polymorphism on susceptibility to mammary cancer, we used a humanized p53 mouse model, homozygous for either P72 or R72. Our studies revealed that R72 mice had a significantly higher mammary tumor incidence and reduced latency in both DMBA-induced and MMTV-Erbb2/Neu mouse mammary tumor models compared to P72 mice. Analyses showed that susceptible mammary glands from E-R72 (R72 x MMTV-Erbb2/Neu) mice developed a senescence-associated secretory phenotype (SASP) with influx of proinflammatory macrophages, ultimately resulting in chronic, protumorigenic inflammation. Mammary tumors arising in E-R72 mice also had an increased influx of tumor-associated macrophages, contributing to angiogenesis and elevated tumor growth rates. These results demonstrate that the p53 R72 variant increased susceptibility to mammary tumorigenesis through chronic inflammation.
Collapse
Affiliation(s)
- Ramesh T Gunaratna
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andres Santos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Linjie Luo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Isabel Lambertz
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Madison Spier
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Claudio J Conti
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain.,Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Robin S Fuchs-Young
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA. .,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
179
|
Tarry-Adkins JL, Aiken CE, Ashmore TJ, Fernandez-Twinn DS, Chen JH, Ozanne SE. A suboptimal maternal diet combined with accelerated postnatal growth results in an altered aging profile in the thymus of male rats. FASEB J 2019; 33:239-253. [PMID: 29975569 PMCID: PMC6314471 DOI: 10.1096/fj.201701350rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Reduced fetal nutrition and rapid postnatal growth accelerates the aging phenotype in many organ systems; however, effects on the immune system are unclear. We addressed this by studying the thymus from a rat model of developmental programming. The recuperated group was generated by in utero protein restriction, followed by cross-fostering to control-fed mothers, and were then compared with controls. Fat infiltration and adipocyte size increased with age ( P < 0.001) and in recuperated thymi ( P < 0.05). Cortex/medulla ratio decreased with age ( P < 0.001) and decreased ( P < 0.05) in 12-mo recuperated thymi. Age-associated decreases in thymic-epithelial cell ( P < 0.01) and thymocyte markers ( P < 0.01) were observed in both groups and was decreased ( P < 0.05) in recuperated thymi. These data demonstrate effects of developmental programming upon thymic involution. The recuperated group had longer thymic telomeres than controls ( P < 0.001) at 22 d and at 3 mo, which was associated with increased expression of telomere-length maintenance molecules [telomerase RNA component ( Terc; P < 0.01), P23 ( P = 0.02), and Ku70 and Ku80 ( P < 0.01)]. By 12 mo, recuperated offspring had shorter thymic telomeres than controls had ( P < 0.001) and reduced DNA damage-response markers [( DNA-PKcs, Mre11 ( P < 0.01), Xrcc4 ( P = 0.02), and γ-H2ax ( P < 0.001], suggesting failure of earlier compensatory responses. Our results suggest that low birth weight with rapid postnatal growth results in premature thymic maturation, resulting in accelerated thymic aging. This could lead to increased age-associated vulnerability to infection.-Tarry-Adkins, J. L., Aiken, C. E., Ashmore, T. J., Fernandez-Twinn, D. S., Chen, J.-H., Ozanne, S. E. A suboptimal maternal diet combined with accelerated postnatal growth results in an altered aging profile in the thymus of male rats.
Collapse
Affiliation(s)
- Jane L. Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom,Correspondence: University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Hills Rd., Cambridge CB2 OQQ, United Kingdom. E-mail:
| | - Catherine E. Aiken
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Thomas J. Ashmore
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Denise S. Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Jian-Hua Chen
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
180
|
Rizou SV, Evangelou K, Myrianthopoulos V, Mourouzis I, Havaki S, Athanasiou A, Vasileiou PVS, Margetis A, Kotsinas A, Kastrinakis NG, Sfikakis P, Townsend P, Mikros E, Pantos C, Gorgoulis VG. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol Biol 2019; 1896:119-138. [PMID: 30474845 DOI: 10.1007/978-1-4939-8931-7_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipofuscin accumulation is a hallmark of senescence. This nondegradable material aggregates in the cytoplasm of stressed or damaged cells due to metabolic imbalance associated with aging and age-related diseases. Indications of a soluble state of lipofuscin have also been provided, rendering the perspective of monitoring such processes via lipofuscin quantification in liquids intriguing. Therefore, the development of an accurate and reliable method is of paramount importance. Currently available assays are characterized by inherent pitfalls which demote their credibility. We herein describe a simple, highly specific and sensitive protocol for measuring lipofuscin levels in any type of liquid. The current method represents an evolution of a previously described assay, developed for in vitro and in vivo senescent cell recognition that exploits a newly synthesized Sudan Black-B analog (GL13). Analysis of human clinical samples with the modified protocol provided strong evidence of its usefulness for the exposure and surveillance of age-related conditions.
Collapse
Affiliation(s)
- Sophia V Rizou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Vassilios Myrianthopoulos
- Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- PharmaInformatics Unit, Athena Research Center, Athens, Greece
| | - Iordanis Mourouzis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aggelos Margetis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Kastrinakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Sfikakis
- First Department of Propaedeutic Internal Medicine and Rheumatology Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Paul Townsend
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- PharmaInformatics Unit, Athena Research Center, Athens, Greece
| | - Constantinos Pantos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
- Biomedical Research Foundation, Academy of Athens, Athens, Greece.
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
181
|
Barbouti A, Evangelou K, Pateras IS, Papoudou-Bai A, Patereli A, Stefanaki K, Rontogianni D, Muñoz-Espín D, Kanavaros P, Gorgoulis VG. In situ evidence of cellular senescence in Thymic Epithelial Cells (TECs) during human thymic involution. Mech Ageing Dev 2019; 177:88-90. [PMID: 29490231 DOI: 10.1016/j.mad.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 02/02/2023]
Abstract
Cellular senescence, an age-related process in response to damage and stress, also occurs during normal development and adult life. The thymus is a central lymphoepithelial organ of the immune system that exhibits age-related changes termed thymic involution. Since the mechanisms regulating thymic involution are still not well elucidated, we questioned whether cellular senescence is implicated in this process. We demonstrate, for the first time in situ, that cellular senescence occurs during human thymic involution using SenTraGor™, a novel chemical compound that is applicable in archival tissue material, providing thus further insights in thymus histophysiology.
Collapse
Affiliation(s)
- Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Konstantinos Evangelou
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece; Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Amalia Patereli
- Department of Pathology, Agia Sophia Hospital, Athens, Greece
| | | | - Dimitra Rontogianni
- Department of Anatomic Pathology, Evangelismos General Hospital, University of Athens, Athens, Greece
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
182
|
Griukova A, Deryabin P, Sirotkina M, Shatrova A, Nikolsky N, Borodkina A. P38 MAPK inhibition prevents polybrene-induced senescence of human mesenchymal stem cells during viral transduction. PLoS One 2018; 13:e0209606. [PMID: 30586456 PMCID: PMC6306270 DOI: 10.1371/journal.pone.0209606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022] Open
Abstract
The unique capacity of mesenchymal stem cells (MSCs) to migrate to the sites of damage, following intravenous transplantation, along with their proliferation and differentiation abilities make them promising candidates for MSC-based gene therapy. This therapeutic approach requires high efficacy delivery of stable transgenes to ensure their adequate expression in MSCs. One of the methods to deliver transgenes is via the viral transduction of MSCs. However, due to low transduction efficiency of MSCs, various polications are used to promote the association of viral particles with membranes of target cells. Among these polications polybrene is the most widely used one. Unfortunately, viral infection in presence of polybrene was shown to negatively affect proliferation rate of stem cells. The molecular mechanism underlying this effect is not yet uncovered. Therefore, the present study aimed to elucidate the mechanism of this phenomenon as well as to develop an effective approach to overcome the negative impact of polybrene on the properties of human endometrium-derived mesenchymal stem cells (hMESCs) during lentiviral infection. We found that the negative effect on proliferation observed during the viral infection in presence of polybrene is mediated by the polycation itself. Furthermore, we revealed that the treatment with polybrene alone led to the p38 MAPK-dependent premature senescence of hMESCs. These findings allowed us to develop an effective strategy to attenuate the negative polybrene impact on the hMESCs properties during lentiviral infection by inhibiting the activity of p38 MAPK. Importantly, the proposed approach did not attenuate the transduction efficiency of hMESCs, yet prevented polybrene-induced senescence and thereby restored the proliferation of the infected cells. These results provide the plausible means to reduce side effects of polybrene during the viral infection of primary cells, particularly MSCs.
Collapse
Affiliation(s)
- Anastasiia Griukova
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - Pavel Deryabin
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - Maria Sirotkina
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - Alla Shatrova
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - Nikolay Nikolsky
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - Aleksandra Borodkina
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| |
Collapse
|
183
|
Beach TA, Groves AM, Johnston CJ, Williams JP, Finkelstein JN. Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis. Int J Radiat Biol 2018; 94:1104-1115. [PMID: 30238842 PMCID: PMC6309234 DOI: 10.1080/09553002.2018.1516907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/17/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Radiation-induced lung injuries (RILI), namely radiation pneumonitis and/or fibrosis, are dose-limiting outcomes following treatment for thoracic cancers. As part of a search for mitigation targets, we sought to determine if persistent DNA damage is a characteristic of this progressive injury. METHODS C57BL/6J female mice were sacrificed at 24 h, 1, 4, 12, 16, 24 and 32 weeks following a single dose of 12.5 Gy thorax only gamma radiation; their lungs were compared to age-matched unirradiated animals. Tissues were examined for DNA double-strand breaks (DSBs) (γ-H2A.X and p53bp1), cellular senescence (senescence-associated beta-galactosidase and p21) and oxidative stress (malondialdehyde). RESULTS Data revealed consistently higher numbers of DSBs compared to age-matched controls, with increases in γ-H2A.X positivity beyond 24 h post-exposure, particularly during the pathological phases, suggesting periods of recurrent DNA damage. Additional intermittent increases in both cellular senescence and oxidative stress also appeared to coincide with pneumonitis and fibrosis. CONCLUSIONS These novel, long-term data indicate (a) increased and persistent levels of DSBs, oxidative stress and cellular senescence may serve as bioindicators of RILI, and (b) prevention of genotoxicity, via mitigation of free radical production, continues to be a potential strategy for the prevention of pulmonary radiation injury.
Collapse
Affiliation(s)
- Tyler A. Beach
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Angela M. Groves
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Carl J. Johnston
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
184
|
Sharma R, Williams IS, Gatchie L, Sonawane VR, Chaudhuri B, Bharate SB. Furanoflavones pongapin and lanceolatin B blocks the cell cycle and induce senescence in CYP1A1-overexpressing breast cancer cells. Bioorg Med Chem 2018; 26:6076-6086. [PMID: 30448188 DOI: 10.1016/j.bmc.2018.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022]
Abstract
Expression of cytochrome P450-1A1 (CYP1A1) is suppressed under physiologic conditions but is induced (a) by polycyclic aromatic hydrocarbons (PAHs) which can be metabolized by CYP1A1 to carcinogens, and (b) in majority of breast cancers. Hence, phytochemicals or dietary flavonoids, if identified as CYP1A1 inhibitors, may help in preventing PAH-mediated carcinogenesis and breast cancer. Herein, we have investigated the cancer chemopreventive potential of a flavonoid-rich Indian medicinal plant, Pongamia pinnata (L.) Pierre. Methanolic extract of its seeds inhibits CYP1A1 in CYP1A1-overexpressing normal human HEK293 cells, with IC50 of 0.6 µg/mL. Its secondary metabolites, the furanoflavonoids pongapin/lanceolatin B, inhibit CYP1A1 with IC50 of 20 nM. Although the furanochalcone pongamol inhibits CYP1A1 with IC50 of only 4.4 µM, a semisynthetic pyrazole-derivative P5b, has ∼10-fold improved potency (IC50, 0.49 μM). Pongapin/lanceolatin B and the methanolic extract of P. pinnata seeds protect CYP1A1-overexpressing HEK293 cells from B[a]P-mediated toxicity. Remarkably, they also block the cell cycle of CYP1A1-overexpressing MCF-7 breast cancer cells, at the G0-G1 phase, repress cyclin D1 levels and induce cellular-senescence. Molecular modeling studies demonstrate the interaction pattern of pongapin/lanceolatin B with CYP1A1. The results strongly indicate the potential of methanolic seed-extract and pongapin/lanceolatin B for further development as cancer chemopreventive agents.
Collapse
Affiliation(s)
- Rajni Sharma
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ibidapo S Williams
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Linda Gatchie
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Vinay R Sonawane
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Bhabatosh Chaudhuri
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK; Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
185
|
Hui CW, St-Pierre MK, Detuncq J, Aumailley L, Dubois MJ, Couture V, Skuk D, Marette A, Tremblay JP, Lebel M, Tremblay MÈ. Nonfunctional mutant Wrn protein leads to neurological deficits, neuronal stress, microglial alteration, and immune imbalance in a mouse model of Werner syndrome. Brain Behav Immun 2018; 73:450-469. [PMID: 29908963 DOI: 10.1016/j.bbi.2018.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter lifespan. Yet, little is known about the impact of WRN mutations on the central nervous system in both humans and mouse models of WS. In the current study, we have performed a longitudinal behavioral assessment on mice bearing a Wrn helicase deletion. Behavioral tests demonstrated a loss of motor activity and coordination, reduction in perception, increase in repetitive behavior, and deficits in both spatial and social novelty memories in Wrn mutant mice compared to age-matched wild type mice. These neurological deficits were associated with biochemical and histological changes in the brain of aged Wrn mutant mice. Microglia, resident immune cells that regulate neuronal plasticity and function in the brain, were hyper-ramified in multiple regions involved with the behavioral deficits of Wrn mutant mice. Furthermore, western analyses indicated that Wrn mutant mice exhibited an increase of oxidative stress markers in the prefrontal cortex. Supporting these findings, electron microscopy studies revealed increased cellular aging and oxidative stress features, among microglia and neurons respectively, in the prefrontal cortex of aged Wrn mutant mice. In addition, multiplex immunoassay of serum identified significant changes in the expression levels of several pro- and anti-inflammatory cytokines. Taken together, these findings indicate that microglial dysfunction and neuronal oxidative stress, associated with peripheral immune system alterations, might be important driving forces leading to abnormal neurological symptoms in WS thus suggesting potential therapeutic targets for interventions.
Collapse
Affiliation(s)
- Chin Wai Hui
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Marie-Kim St-Pierre
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Jérôme Detuncq
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Lucie Aumailley
- Axe endocrinologie/néphrologie, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Marie-Julie Dubois
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| | - Vanessa Couture
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Daniel Skuk
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - André Marette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| | - Jacques P Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Michel Lebel
- Axe endocrinologie/néphrologie, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada.
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada.
| |
Collapse
|
186
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
187
|
Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation. Mol Neurobiol 2018; 56:3638-3656. [PMID: 30173408 DOI: 10.1007/s12035-018-1333-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited neurologic disorders in which iron accumulates in the basal ganglia resulting in progressive dystonia, spasticity, parkinsonism, neuropsychiatric abnormalities, and optic atrophy or retinal degeneration. The most prevalent form of NBIA is pantothenate kinase-associated neurodegeneration (PKAN) associated with mutations in the gene of pantothenate kinase 2 (PANK2), which is essential for coenzyme A (CoA) synthesis. There is no cure for NBIA nor is there a standard course of treatment. In the current work, we describe that fibroblasts derived from patients harbouring PANK2 mutations can reproduce many of the cellular pathological alterations found in the disease, such as intracellular iron and lipofuscin accumulation, increased oxidative stress, and mitochondrial dysfunction. Furthermore, mutant fibroblasts showed a characteristic senescent morphology. Treatment with pantothenate, the PANK2 enzyme substrate, was able to correct all pathological alterations in responder mutant fibroblasts with residual PANK2 enzyme expression. However, pantothenate had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of pantothenate in particular mutations was also confirmed in induced neurons obtained by direct reprograming of mutant fibroblasts. Our results suggest that pantothenate treatment can stabilize the expression levels of PANK2 in selected mutations. These results encourage us to propose our screening model as a quick and easy way to detect pantothenate-responder patients with PANK2 mutations. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of pantothenate.
Collapse
|
188
|
Gorgoulis VG, Pefani D, Pateras IS, Trougakos IP. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 2018; 246:12-40. [PMID: 29756349 PMCID: PMC6120562 DOI: 10.1002/path.5097] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven 'defensive' network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Dafni‐Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
189
|
Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA, Kouloukoussa M, Kittas C, Georgakilas AG, Gorgoulis VG. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther 2018; 193:31-49. [PMID: 30121319 DOI: 10.1016/j.pharmthera.2018.08.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stress response mechanism ensuring homeostasis. Its temporal activation during embryonic development or normal adult life is linked with beneficial properties. In contrast, persistent (chronic) senescence seems to exert detrimental effects fostering aging and age-related disorders, such as cancer. Due to the lack of a reliable marker able to detect senescence in vivo, its precise impact in age-related diseases is to a large extent still undetermined. A novel reagent termed GL13 (SenTraGorTM) that we developed, allowing senescence recognition in any type of biological material, emerges as a powerful tool to study the phenomenon of senescence in vivo. Exploiting the advantages of this novel methodological approach, scientists will be able to detect and connect senescence with aggressive behavior in human malignancies, such as tolerance to chemotherapy in classical Hodgkin Lymphoma and Langerhans Cell Histiocytosis. The latter depicts the importance of developing the new and rapidly expanding field of senotherapeutic agents targeting and driving to cell death senescent cells. We discuss in detail the current progress of this exciting area of senotherapeutics and suggest its future perspectives and applications.
Collapse
Affiliation(s)
- Vassilios Myrianthopoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Greece; PharmaInformatics Unit, Athena Research Center, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Theodoros P Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Myrsini Kouloukoussa
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Museum of Anthropology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Kittas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
190
|
Detecting senescent fate in mesenchymal stem cells: a combined cytofluorimetric and ultrastructural approach. Biogerontology 2018; 19:401-414. [PMID: 30101381 DOI: 10.1007/s10522-018-9766-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/06/2018] [Indexed: 02/08/2023]
Abstract
Senescence can impair the therapeutic potential of stem cells. In this study, senescence-associated morphofunctional changes in periosteum-derived progenitor cells (PDPCs) from old and young individuals were investigated by combining cytofluorimetry, immunohistochemistry, and transmission electron microscopy. Cell cycle analysis demonstrated a large number of G0/G1 phase cells in PDPCs from old subjects and a progressive accumulation of G0/G1 cells during passaging in cultures from young subjects. Cytofluorimetry documented significant changes in light scattering parameters and closely correlated with the ultrastructural features, especially changes in mitochondrial shape and autophagy, which are consistent with the mitochondrial-lysosomal axis theory of ageing. The combined morphological, biofunctional, and ultrastructural approach enhanced the flow cytometric study of PDPC ageing. We speculate that impaired autophagy, documented in replicative senescent and old PDPCs, reflect a switch from quiescence to senescence. Its demonstration in a tissue with limited turnover-like the cambium layer of the periosteum, where reversible quiescence is the normal stem cell state throughout life-adds a new piece to the regenerative medicine jigsaw in an ageing society.
Collapse
|
191
|
Walters HE, Cox LS. mTORC Inhibitors as Broad-Spectrum Therapeutics for Age-Related Diseases. Int J Mol Sci 2018; 19:E2325. [PMID: 30096787 PMCID: PMC6121351 DOI: 10.3390/ijms19082325] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Chronological age represents the greatest risk factor for many life-threatening diseases, including neurodegeneration, cancer, and cardiovascular disease; ageing also increases susceptibility to infectious disease. Current efforts to tackle individual diseases may have little impact on the overall healthspan of older individuals, who would still be vulnerable to other age-related pathologies. However, recent progress in ageing research has highlighted the accumulation of senescent cells with chronological age as a probable underlying cause of pathological ageing. Cellular senescence is an essentially irreversible proliferation arrest mechanism that has important roles in development, wound healing, and preventing cancer, but it may limit tissue function and cause widespread inflammation with age. The serine/threonine kinase mTOR (mechanistic target of rapamycin) is a regulatory nexus that is heavily implicated in both ageing and senescence. Excitingly, a growing body of research has highlighted rapamycin and other mTOR inhibitors as promising treatments for a broad spectrum of age-related pathologies, including neurodegeneration, cancer, immunosenescence, osteoporosis, rheumatoid arthritis, age-related blindness, diabetic nephropathy, muscular dystrophy, and cardiovascular disease. In this review, we assess the use of mTOR inhibitors to treat age-related pathologies, discuss possible molecular mechanisms of action where evidence is available, and consider strategies to minimize undesirable side effects. We also emphasize the urgent need for reliable, non-invasive biomarkers of senescence and biological ageing to better monitor the efficacy of any healthy ageing therapy.
Collapse
Affiliation(s)
- Hannah E Walters
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
192
|
Cindrova-Davies T, Fogarty NME, Jones CJP, Kingdom J, Burton GJ. Evidence of oxidative stress-induced senescence in mature, post-mature and pathological human placentas. Placenta 2018; 68:15-22. [PMID: 30055665 PMCID: PMC6083404 DOI: 10.1016/j.placenta.2018.06.307] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Premature ageing has been implicated in placental dysfunction. Senescence can be activated by oxidative stress, a key intermediary in the pathophysiology of pre-eclampsia. We examined senescence markers across normal gestation, and in pathological and post-mature pregnancies. Inducers of oxidative stress were used to mimic senescence changes in term explants. METHODS Placental samples were collected with ethical approval and informed consent: first and second trimester samples from surgical terminations; term and pre-term controls, and early-onset pre-eclampsia samples from caesarean deliveries. Paraffin and EM blocks of post-mature placentas were from an archival collection. Term explants were subjected to hypoxia-reoxygenation (HR) or hydrogen peroxide (H2O2). RESULTS p21 was increased significantly in term homogenates compared to first and second trimester samples, and was significantly higher in PE compared to term controls. Immunostaining revealed nuclear localisation of p21 and phosphorylated histone γH2AX in syncytiotrophoblast, with abundant foci in pathological and post-mature placentas. Abnormal nuclear appearances were observed in post-mature placentas. Sudan-Black-B staining demonstrated abundant lipofuscin, an aggregate of oxidised proteins, lipids and metals, in post-mature and pathological placentas. The percentage of nuclei positive for 8-hydroxy-2'-deoxy-guanosine, a marker of oxidised DNA/RNA, was increased in pathological placentas compared to age-matched controls. These changes could be mimicked by challenge with HR or H2O2. DISCUSSION Senescence markers increase in normal placentas with gestational age, and are exaggerated in post-mature and pathological cases. Oxidative stress triggers equivalent changes in explants, and may precipitate senescence in vivo. The consequent pro-inflammatory senescence-associated secretory phenotype may contribute to the pathophysiology of pre-eclampsia.
Collapse
Affiliation(s)
| | - Norah M E Fogarty
- Centre for Trophoblast Research, University of Cambridge, UK; Francis Crick Institute, London, UK
| | - Carolyn J P Jones
- Maternal and Fetal Health Research Centre Division of Developmental Biology & Medicine School of Medical Sciences Faculty of Biology, Medicine and Health University of Manchester, Manchester Academic Health Science Centre, St Mary's Hospital Oxford Road Manchester M13 9 WL, UK
| | - John Kingdom
- Mount Sinai Hospital, University of Toronto, Canada
| | - Graham J Burton
- Centre for Trophoblast Research, University of Cambridge, UK
| |
Collapse
|
193
|
Vinatier C, Domínguez E, Guicheux J, Caramés B. Role of the Inflammation-Autophagy-Senescence Integrative Network in Osteoarthritis. Front Physiol 2018; 9:706. [PMID: 29988615 PMCID: PMC6026810 DOI: 10.3389/fphys.2018.00706] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis is the most common musculoskeletal disease causing chronic disability in adults. Studying cartilage aging, chondrocyte senescence, inflammation, and autophagy mechanisms have identified promising targets and pathways with clinical translatability potential. In this review, we highlight the most recent mechanistic and therapeutic preclinical models of aging with particular relevance in the context of articular cartilage and OA. Evidence supporting the role of metabolism, nuclear receptors and transcription factors, cell senescence, and circadian rhythms in the development of musculoskeletal system degeneration assure further translational efforts. This information might be useful not only to propose hypothesis and advanced models to study the molecular mechanisms underlying joint degeneration, but also to translate our knowledge into novel disease-modifying therapies for OA.
Collapse
Affiliation(s)
- Claire Vinatier
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France
| | - Eduardo Domínguez
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jerome Guicheux
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France.,CHU Nantes, PHU4 OTONN, Nantes, France
| | - Beatriz Caramés
- Grupo de Biología del Cartílago, Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| |
Collapse
|
194
|
Rashid K, Sundar IK, Gerloff J, Li D, Rahman I. Lung cellular senescence is independent of aging in a mouse model of COPD/emphysema. Sci Rep 2018; 8:9023. [PMID: 29899396 PMCID: PMC5998122 DOI: 10.1038/s41598-018-27209-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Cigarette smoke (CS) induces lung cellular senescence that plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). How aging influences cellular senescence and other molecular hallmarks, and increases the risk of CS-induced damage remains unknown. We hypothesized that aging-associated changes in lungs worsen the COPD/emphysema by CS exposure. Younger and older groups of C57BL/6J mice were exposed to chronic CS for 6 months with respective age-matched air-exposed controls. CS caused a decline in lung function and affected the lung structure of both groups of mice. No alterations were observed in the induction of inflammatory mediators between the air-exposed younger and older controls, but aging increased the severity of CS-induced lung inflammation. Aging per se increased lung cellular senescence and significant changes in damage-associated molecular patterns marker S100A8. Gene transcript analysis using the nanoString nCounter showed a significant upregulation of key pro-senescence targets by CS (Mmp12, Ccl2, Cdkn2a, Tert, Wrn, and Bub1b). Aging independently influenced lung function and structure, as well as increased susceptibility to CS-induced inflammation in emphysema, but had a negligible effect on cellular senescence. Thus, aging solely does not contribute to the induction of cellular senescence by CS in a mouse model of COPD/emphysema.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Janice Gerloff
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
195
|
Abd-Elkareem M, Abou Khalil NS, Sayed AH. Hepatotoxic responses of 4-nonylphenol on African catfish (Clarias gariepinus): antixoidant and histochemical biomarkers. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018. [PMID: 29516258 DOI: 10.1007/s10695-018-0485-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
4-Nonylphenol (NP) toxicity in fish attracts much attention due to its ability in targeting several organs; however, the researches regarding its potential hepatotoxicity are conflicting and still require further investigation. Therefore, the objective of this study is to focus on this issue from the histophysiological point of view using NP intoxicated African catfish (Clarias gariepinus) as a model of hepatotoxicity. Twelve adult fish (6 per group) were divided into two groups; the first was considered as a control and the second was exposed to NP dissolved in water at a dose of 0.1 mg/kg BW for 3 weeks. A significant reduction in the hepatic alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels was observed in NP-exposed fish. Concerning the oxidant/antioxidant balance, a significant depletion in superoxide dismutase, catalase, and glutathione peroxidase was found along with a significant elevation in total peroxide and malondialdhyde. The histopathological examination of the hepatic tissues revealed that NP had marked hepatotoxic effects including hepatitis, centrilobular and focal hydropic and fatty degeneration, fatty change (steatosis), hepatic coagulative necrosis, and nuclear alterations in addition to apoptosis of hepatocytes and necrosis of endothelial cells. Depletion of the glycogen and increased in pigments (lipofuscin and hemosiderin) content in the hepatocytes were also recorded. Hemosiderosis and proliferation of the connective tissue around the blood vessels and branches of bile ducts and in the portal areas were also observed. In light of these findings, it was concluded that NP has a well-defined hepatotoxic impact paving the road towards other studies to investigate other detrimental cyto-physiological influences of this aquatic pollutant.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Anatomy, Histology and Embryology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nasser S Abou Khalil
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alaa H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
196
|
Saleh T, Tyutynuk-Massey L, Cudjoe EK, Idowu MO, Landry JW, Gewirtz DA. Non-Cell Autonomous Effects of the Senescence-Associated Secretory Phenotype in Cancer Therapy. Front Oncol 2018; 8:164. [PMID: 29868482 PMCID: PMC5968105 DOI: 10.3389/fonc.2018.00164] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
In addition to promoting various forms of cell death, most conventional anti-tumor therapies also promote senescence. There is now extensive evidence that therapy-induced senescence (TIS) might be transient, raising the concern that TIS could represent an undesirable outcome of therapy by providing a mechanism for tumor dormancy and eventual disease recurrence. The senescence-associated secretory phenotype (SASP) is a hallmark of TIS and may contribute to aberrant effects of cancer therapy. Here, we propose that the SASP may also serve as a major driver of escape from senescence and the re-emergence of proliferating tumor cells, wherein factors secreted from the senescent cells contribute to the restoration of tumor growth in a non-cell autonomous fashion. Accordingly, anti-SASP therapies might serve to mitigate the deleterious outcomes of TIS. In addition to providing an overview of the putative actions of the SASP, we discuss recent efforts to identify and eliminate senescent tumor cells.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Liliya Tyutynuk-Massey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Emmanuel K Cudjoe
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael O Idowu
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Joseph W Landry
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
197
|
Abstract
Cellular senescence is a highly stable cell cycle arrest that is elicited in response to different stresses. By imposing a growth arrest, senescence limits the replication of old or damaged cells. Besides exiting the cell cycle, senescent cells undergo many other phenotypic alterations such as metabolic reprogramming, chromatin rearrangement, or autophagy modulation. In addition, senescent cells produce and secrete a complex combination of factors, collectively referred as the senescence-associated secretory phenotype, that mediate most of their non-cell-autonomous effects. Because senescent cells influence the outcome of a variety of physiological and pathological processes, including cancer and age-related diseases, pro-senescent and anti-senescent therapies are actively being explored. In this Review, we discuss the mechanisms regulating different aspects of the senescence phenotype and their functional implications. This knowledge is essential to improve the identification and characterization of senescent cells in vivo and will help to develop rational strategies to modulate the senescence program for therapeutic benefit.
Collapse
Affiliation(s)
- Nicolás Herranz
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jesús Gil
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
198
|
Tumor microenvironment in functional adrenocortical adenomas: immune cell infiltration in cortisol-producing adrenocortical adenoma. Hum Pathol 2018; 77:88-97. [PMID: 29596893 DOI: 10.1016/j.humpath.2018.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment plays pivotal roles in various human neoplasms. However, that of benign tumor, particularly hormone-secreting endocrine tumors, has remained virtually unknown. Therefore, we firstly attempted to analyze the tumor microenvironment of autonomous hormone-secreting adrenocortical adenomas. We first histologically evaluated 21 cortisol-producing adrenocortical adenoma (CPA) and 13 aldosterone-producing adrenocortical adenoma (APA) cases. Quantitative histologic analysis revealed that intratumoral immune cell infiltration (ICI) was more pronounced in CPAs than in APAs. We then evaluated the cytokine and chemokine profiles using polymerase chain reaction arrays in APAs and CPAs. Angiogenic chemokines, C-X-C motif chemokine ligand (CXCL) 1 and CXCL2, were significantly more abundant in CPAs than in APAs using subsequent quantitative polymerase chain reaction and immunohistochemical analyses. We then examined the vascular density between these 2 adenomas, and the density was significantly higher in overt CPAs than in APAs. Of particular interest, CXCL12-positive vessels were detected predominantly in CPAs, and their infiltrating immune cells were C-X-C motif chemokine receptor 4 (CXCR4) positive. These results above indicated that CXCL12-CXCR4 signaling could partly account for ICI detected predominantly in CPAs. We then further explored the etiology of ICI in CPAs by evaluating the senescence of tumor cells possibly caused by excessive cortisol in CPAs. The status of senescence markers, p16 and p21, was significantly more abundant in CPAs than in APAs. In addition, all CPA cases examined were positive for senescence-associated β-galactosidase. These results all indicated that exposure to local excessive cortisol could result in senescence of tumors cells and play essential roles in constituting the characteristic tissue microenvironment of CPAs.
Collapse
|
199
|
Parity-Dependent Hemosiderin and Lipofuscin Accumulation in the Reproductively Aged Mouse Ovary. Anal Cell Pathol (Amst) 2018; 2018:1289103. [PMID: 29736365 PMCID: PMC5874974 DOI: 10.1155/2018/1289103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 01/10/2023] Open
Abstract
The progressive decline of the ovarian follicle pool leads to reproductive ageing. The latter is accompanied by age-related disorders, including various types of cancer. In fact, the highest rates of ovarian cancer (OC) occur at postmenopause while OC risk is significantly modulated by parity records during previous fertile life. We approached the age-parity relationship in the C57BL/6 mouse model and herein describe the presence of nonheme iron (hemosiderin) and deposits of the "age pigment" lipofuscin in reproductively aged mouse ovaries by applying conventional histochemical methods and autofluorescence. In addition, the 8-OHdG adduct was evaluated in ovarian genomic DNA. Both hemosiderin and lipofuscin were significantly higher in virgin compared to multiparous ovaries. The same pattern was observed for 8-OHdG. We conclude that nulliparity induces a long-term accumulation of iron and lipofuscin with concomitant oxidative damage to DNA in the mouse ovary. Since lipofuscin is a widely accepted senescence marker and given the recently postulated role of lipofuscin-associated iron as a source of reactive oxygen species (ROS) in senescent cells, these findings suggest a possible pathogenic mechanism by which nulliparity contributes to an increased OC risk in the postmenopausal ovary.
Collapse
|
200
|
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol 2018; 28:436-453. [PMID: 29477613 DOI: 10.1016/j.tcb.2018.02.001] [Citation(s) in RCA: 1439] [Impact Index Per Article: 239.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a permanent state of cell cycle arrest that promotes tissue remodeling during development and after injury, but can also contribute to the decline of the regenerative potential and function of tissues, to inflammation, and to tumorigenesis in aged organisms. Therefore, the identification, characterization, and pharmacological elimination of senescent cells have gained attention in the field of aging research. However, the nonspecificity of current senescence markers and the existence of different senescence programs strongly limit these tasks. Here, we describe the molecular regulators of senescence phenotypes and how they are used for identifying senescent cells in vitro and in vivo. We also highlight the importance that these levels of regulations have in the development of therapeutic targets.
Collapse
Affiliation(s)
- Alejandra Hernandez-Segura
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|