151
|
Preetam S, Jonnalagadda S, Kumar L, Rath R, Chattopadhyay S, Alghamdi BS, Abuzenadah AM, Jha NK, Gautam A, Malik S, Ashraf GM. Therapeutic potential of lipid nanosystems for the treatment of Parkinson's disease. Ageing Res Rev 2023; 89:101965. [PMID: 37268112 DOI: 10.1016/j.arr.2023.101965] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The degeneration of dopaminergic neurons in the midbrain is primarily responsible for the onset of the disease. The major challenge faced in the treatment of PD is the blood-brain barrier (BBB), which impedes the delivery of therapeutics to targeted locations. To address this issue, lipid nanosystems have been used for the precise delivery of therapeutic compounds in anti-PD therapy. In this review, we will discuss the application and clinical significance of lipid nanosystem in delivering therapeutic compounds for anti-PD treatment. These medicinal compounds include ropinirole, apomorphine, bromocriptine, astaxanthin, resveratrol, dopamine, glyceryl monooleate, levodopa, N-3,4-bis(pivaloyloxy)- dopamine and fibroblast growth factor, which have significant potential to treat PD in the early stage. This review, in a nutshell, will pave the way for researchers to develop diagnostic and potential therapeutic approaches using nanomedicine to overcome the challenges posed by the BBB in delivering therapeutic compounds for PD.
Collapse
Affiliation(s)
- Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika, 59053, Sweden; Centre for Biotechnology, Siksha O Anusandhan (SOA-DU), Bhubaneswar 751030, Odisha, India.
| | - Swathi Jonnalagadda
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| | - Rajeswari Rath
- Centre for Biotechnology, Siksha O Anusandhan (SOA-DU), Bhubaneswar 751030, Odisha, India.
| | - Soham Chattopadhyay
- Department of Zoology, Maulana Azad College, Kolkata, Kolkata-700013, West Bengal, India.
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Adel M Abuzenadah
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad 500046, India.
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, 834001, India; Guru Nanak College of Pharmaceutical Sciences, Chakrata Road, Jhajra, Dehradun 248007, India.
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences.
| |
Collapse
|
152
|
Elmaidomy AH, Mohamad SA, Abdelnaser M, Yahia R, Mokhtar FA, Alsenani F, Badr MY, Almaghrabi SY, Altemani FH, Alzubaidi MA, Saber EA, Elrehany MA, Abdelmohsen UR, Sayed AM. Vitis vinifera leaf extract liposomal Carbopol gel preparation's potential wound healing and antibacterial benefits: in vivo, phytochemical, and computational investigation. Food Funct 2023; 14:7156-7175. [PMID: 37462414 DOI: 10.1039/d2fo03212k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vitis vinifera Egyptian edible leaf extract loaded on a soybean lecithin, cholesterol, and Carbopol gel preparation (VVL-liposomal gel) was prepared to maximize the in vivo wound healing and anti-MRSA activities for the crude extract, using an excision wound model and focusing on TLR-2, MCP-1, CXCL-1, CXCL-2, IL-6 and IL-1β, and MRSA (wound infection model, and peritonitis infection model). VVL-liposomal gel was stable with significant drug entrapment efficiency reaching 88% ± 3, zeta potential value ranging from -50 to -63, and a size range of 50-200 μm nm in diameter. The in vivo evaluation proved the ability of VVL-liposomal gel to gradually release the drugs in a sustained manner with greater complete wound healing effect and tissue repair after 7 days of administration, with a significant decrease in bacterial count compared with the crude extract. Phytochemical investigation of the crude extract of the leaves yielded fourteen compounds: two new stilbenes (1, 2), along with twelve known ones (3-14). Furthermore, a computational study was conducted to identify the genes and possible pathways responsible for the anti-MRSA activity of the isolated compounds, and inverse docking was used to identify the most likely molecular targets that could mediate the extract's antibacterial activity. Gyr-B was discovered to be the best target for compounds 1 and 2. Hence, VVL-liposomal gel can be used as a novel anti-dermatophytic agent with potent wound healing and anti-MRSA capacity, paving the way for future clinical research.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Mahmoud Abdelnaser
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Universities Zone, New Minya City 61111, Egypt
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Moutaz Y Badr
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Safa Y Almaghrabi
- Department of Physiology, Faculty of Medicine, King Abduaziz University, Jeddah 22252, Saudi Arabia.
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mubarak A Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minya 61519, Egypt
- Delegated to Deraya University, Universities Zone, New Minya 61111, Egypt
| | - Mahmoud A Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minya 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt.
| |
Collapse
|
153
|
He K, Wang T, Chen J, Huang X, Wang Z, Yang Z, Wang K, Zhao W, Jiang J, Zhao L. A Pegylated Liposome Loaded with Raddeanin A for Prostate Cancer Therapy. Int J Nanomedicine 2023; 18:4007-4021. [PMID: 37496689 PMCID: PMC10368069 DOI: 10.2147/ijn.s420803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Raddeanin A (RA), a potent triterpenoid extracted from Anemone raddeana Regel, has a moderate therapeutic effect on prostate cancer (PCa), correlating with serious biological toxicity. Therefore, a RA-loaded PEGylated liposome drug delivery system was devised in this study. Methods Hydrogenated soybean phospholipids (HSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-Polyethyleneglycol-2000 (sodium salt) (DSPE-PEG2k), cholesterol (CHO), and RA were utilised to prepare a RA-loaded liposome (LRA) drug delivery system via the thin film hydration technique., The drug loading content was confirmed by high performance liquid chromatography. Dynamic light scattering was employed to evaluate the drug's particle size and stability. Methyl tetrazolium, colony formation, and Western blot (WB) were used in vitro to elucidate the inhibitory effect and mechanism of LRA on prostate cancer cells. Finally, xenograft model was used to confirm the tumor-inhibiting efficacy, clarify the mechanism, and determine the biosafety in mice. Results LRA has stable physicochemical properties and a diameter of 173.5 15.3 nm. LRA inhibited the growth of prostate cancer cells in a dose- and time-dependent manner. LRA can substantially reduce the expression of AR and HMGB1, induce apoptosis, regulate the expression of cell cycle-related proteins in vitro and in vivo. The results of the biosafety tests demonstrated that LRA effectively reduced the adverse effects of RA. Conclusion As a drug delivery system, LRA could effectively and safely inhibit the progression of prostate cancer.
Collapse
Affiliation(s)
- Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Junyu Chen
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Xuemiao Huang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Weixin Zhao
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Jian Jiang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin, 130021, People’s Republic of China
| |
Collapse
|
154
|
Solarska-Ściuk K, Męczarska K, Jencova V, Jędrzejczak P, Klapiszewski Ł, Jaworska A, Hryć M, Bonarska-Kujawa D. Effect of Non-Modified as Well as Surface-Modified SiO 2 Nanoparticles on Red Blood Cells, Biological and Model Membranes. Int J Mol Sci 2023; 24:11760. [PMID: 37511517 PMCID: PMC10380300 DOI: 10.3390/ijms241411760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Nanoparticles are extremely promising components that are used in diagnostics and medical therapies. Among them, silica nanoparticles are ultrafine materials that, due to their unique physicochemical properties, have already been used in biomedicine, for instance, in cancer therapy. The aim of this study was to investigate the cytotoxicity of three types of nanoparticles (SiO2, SiO2-SH, and SiO2-COOH) in relation to red blood cells, as well as the impact of silicon dioxide nanoparticles on biological membranes and liposome models of membranes. The results obtained prove that hemolytic toxicity depends on the concentration of nanoparticles and the incubation period. Silica nanoparticles have a marginal impact on the changes in the osmotic resistance of erythrocytes, except for SiO2-COOH, which, similarly to SiO2 and SiO2-SH, changes the shape of erythrocytes from discocytes mainly towards echinocytes. What is more, nanosilica has an impact on the change in fluidity of biological and model membranes. The research gives a new view of the practical possibilities for the use of large-grain nanoparticles in biomedicine.
Collapse
Affiliation(s)
- Katarzyna Solarska-Ściuk
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Katarzyna Męczarska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Patryk Jędrzejczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Aleksandra Jaworska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Monika Hryć
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| |
Collapse
|
155
|
Zhang L, Li X, Yue G, Guo L, Hu Y, Cui Q, Wang J, Tang J, Liu H. Nanodrugs systems for therapy and diagnosis of esophageal cancer. Front Bioeng Biotechnol 2023; 11:1233476. [PMID: 37520291 PMCID: PMC10373894 DOI: 10.3389/fbioe.2023.1233476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
With the increasing incidence of esophageal cancer, its diagnosis and treatment have become one of the key issues in medical research today. However, the current diagnostic and treatment methods face many unresolved issues, such as low accuracy of early diagnosis, painful treatment process for patients, and high recurrence rate after recovery. Therefore, new methods for the diagnosis and treatment of esophageal cancer need to be further explored, and the rapid development of nanomaterials has brought new ideas for solving this problem. Nanomaterials used as drugs or drug delivery systems possess several advantages, such as high drug capacity, adjustably specific targeting capability, and stable structure, which endow nanomaterials great application potential in cancer therapy. However, even though the nanomaterials have been widely used in cancer therapy, there are still few reviews on their application in esophageal cancer, and systematical overview and analysis are deficient. Herein, we overviewed the application of nanodrug systems in therapy and diagnosis of esophageal cancer and summarized some representative case of their application in diagnosis, chemotherapy, targeted drug, radiotherapy, immunity, surgery and new therapeutic method of esophageal cancer. In addition, the nanomaterials used for therapy of esophageal cancer complications, esophageal stenosis or obstruction and oesophagitis, are also listed here. Finally, the challenge and the future of nanomaterials used in cancer therapy were discussed.
Collapse
Affiliation(s)
- Lihan Zhang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xing Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Guangxing Yue
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lihao Guo
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China
| | - Yanhui Hu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qingli Cui
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Wang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jingwen Tang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
156
|
Hong L, Li W, Li Y, Yin S. Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Adv 2023; 13:21365-21382. [PMID: 37465582 PMCID: PMC10350659 DOI: 10.1039/d3ra02969g] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Traditional cancer chemotherapy easily produces serious toxic and side effects due to the lack of specific selection of tumor cells, which restricts its curative effect. Targeted delivery can increase the concentration of drugs in the target site and reduce their toxic and side effects on normal tissues and cells. Biocompatible and surface-modifiable nanocarriers are novel drug delivery systems, which are used to specifically target tumor sites in a controllable way. One of the effective ways to design effective targeting nanocarriers is to decorate with functional ligands, which can bind to specific receptors overexpressed on the surfaces of cancer cells. Various functional ligands, including transferrin, folic acid, polypeptide and hyaluronic acid, have been widely explored to develop tumor-selective drug delivery systems. This review focuses on the research progress of various receptors overexpressed on the surfaces of cancer cells and different nano-delivery systems of anticancer drugs targeted on the surfaces of cancer cells. We believe that through continuous research and development, actively targeted cancer nano-drugs will make a breakthrough and become an indispensable platform for accurate cancer treatment.
Collapse
Affiliation(s)
- Liquan Hong
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
| | - Wen Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Shouchun Yin
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| |
Collapse
|
157
|
Sanei-Dehkordi A, Ghasemian A, Zarenezhad E, Qasemi H, Nasiri M, Osanloo M. Nanoliposomes containing three essential oils from the Artemisia genus as effective larvicides against Aedes aegypti and Anopheles stephensi. Sci Rep 2023; 13:11002. [PMID: 37420038 PMCID: PMC10328918 DOI: 10.1038/s41598-023-38284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023] Open
Abstract
Aedes aegypti and Anopheles stephensi have challenged human health by transmitting several infectious disease agents, such as malaria, dengue fever, and yellow fever. Larvicides, especially in endemic regions, is an effective approach to the control of mosquito-borne diseases. In this study, the composition of three essential oil from the Artemisia L. family was analyzed by Gas Chromatography-Mass Spectrometry. Afterward, nanoliposomes containing essential oils of A. annua, A. dracunculus, and A. sieberi with particle sizes of 137 ± 5, 151 ± 6, and 92 ± 5 nm were prepared. Besides, their zeta potential values were obtained at 32 ± 0.5, 32 ± 0.6, and 43 ± 1.7 mV. ATR-FTIR analysis (Attenuated Total Reflection-Fourier Transform InfraRed) confirmed the successful loading of the essential oils. Moreover, The LC50 values of nanoliposomes against Ae. aegypti larvae were 34, 151, and 197 µg/mL. These values for An.stephensi were obtained as 23 and 90, and 140 µg/mL, respectively. The results revealed that nanoliposomes containing A. dracunculus exerted the highest potential larvicidal effect against Ae. aegypti and An. stephensi, which can be considered against other mosquitoes.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hajar Qasemi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Nasiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
158
|
Yang Y, Cheng N, Luo Q, Shao N, Ma X, Chen J, Luo L, Xiao Z. How Nanotherapeutic Platforms Play a Key Role in Glioma? A Comprehensive Review of Literature. Int J Nanomedicine 2023; 18:3663-3694. [PMID: 37427368 PMCID: PMC10327925 DOI: 10.2147/ijn.s414736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastoma (GBM), a highly aggressive form of brain cancer, is considered one of the deadliest cancers, and even with the most advanced medical treatments, most affected patients have a poor prognosis. However, recent advances in nanotechnology offer promising avenues for the development of versatile therapeutic and diagnostic nanoplatforms that can deliver drugs to brain tumor sites through the blood-brain barrier (BBB). Despite these breakthroughs, the use of nanoplatforms in GBM therapy has been a subject of great controversy due to concerns over the biosafety of these nanoplatforms. In recent years, biomimetic nanoplatforms have gained unprecedented attention in the biomedical field. With advantages such as extended circulation times, and improved immune evasion and active targeting compared to conventional nanosystems, bionanoparticles have shown great potential for use in biomedical applications. In this prospective article, we endeavor to comprehensively review the application of bionanomaterials in the treatment of glioma, focusing on the rational design of multifunctional nanoplatforms to facilitate BBB infiltration, promote efficient accumulation in the tumor, enable precise tumor imaging, and achieve remarkable tumor suppression. Furthermore, we discuss the challenges and future trends in this field. Through careful design and optimization of nanoplatforms, researchers are paving the way toward safer and more effective therapies for GBM patients. The development of biomimetic nanoplatform applications for glioma therapy is a promising avenue for precision medicine, which could ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
159
|
Laffleur F, Mayer AH. Oral nanoparticulate drug delivery systems for the treatment of intestinal bowel disease and colorectal cancer. Expert Opin Drug Deliv 2023; 20:1595-1607. [PMID: 38044874 DOI: 10.1080/17425247.2023.2289586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION The most popular method for delivering drugs locally and systemically is oral. However, the gastrointestinal tract's severe physiological (mucosal and enzymatic barrier) and physicochemical (pH) environment places restrictions on the oral drug delivery system's bioavailability and targeted design. AREAS COVERED Various nanoparticulate drug delivery systems (NPDDSs) based on lipids or polymers, such as liposomes, solid lipid nanoparticles, polymeric micelles, nanospheres, and nanocapsules and their application in successful treatment of serious diseases such as intestinal bowel disease and colorectal cancer (CRC). These systems can ensure advantages over conventional systems liked improved bioavailability, prolonged residence time, and enhanced solubility of poorly soluble drugs. Moreover, the nature of these NPDDSs led to numerous breakthroughs in bioavailability, active and passive targeting, controlled release, and cost-efficient production on an industrial scale in recent years. EXPERT OPINION An expert opinion on orally administrable lipid and polymer based NPDDS, the physiological barriers and their use in the treatment of intestinal bowel disease and CRC is provided within this review.
Collapse
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Alexander Heinz Mayer
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
160
|
Jarallah SJ, Aldossary AM, Tawfik EA, Altamimi RM, Alsharif WK, Alzahrani NM, As Sobeai HM, Qamar W, Alfahad AJ, Alshabibi MA, Alqahtani SH, Alshehri AA, Almughem FA. GL67 lipid-based liposomal formulation for efficient siRNA delivery into human lung cancer cells. Saudi Pharm J 2023; 31:1139-1148. [PMID: 37273265 PMCID: PMC10236467 DOI: 10.1016/j.jsps.2023.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023] Open
Abstract
The efficient delivery of small interfering RNA (siRNA) to the targeted cells significantly affects the regulation of the overexpressed proteins involved in the progression of several genetic diseases. SiRNA molecules in naked form suffer from low internalization across the cell membrane, high susceptibility to degradation by nuclease enzyme and low stability, which hinder their efficacy. Therefore, there is an urge to develop a delivery system that can protect siRNA from degradation and facilitate their uptake across the cell membrane. In this study, the cationic lipid (GL67) was exploited, in addition to DC-Chol and DOPE lipids, to design an efficient liposomal nanocarrier for siRNA delivery. The physiochemical characterizations demonstrated that the molar ratio of 3:1 has proper particle size measurements from 144 nm to 332 nm and zeta potential of -9 mV to 47 mV that depends on the ratio of the GL67 in the liposomal formulation. Gel retardation assay exhibited that increasing the percentage of GL67 in the formulations has a good impact on the encapsulation efficiency compared to DC-Chol. The optimal formulations of the 3:1 M ratio also showed high metabolic activity against A549 cells following a 24 h cell exposure. Flow cytometry findings showed that the highest GL67 lipid ratio (100 % GL67 and 0 % DC-Chol) had the highest percentage of cellular uptake. The lipoplex nanocarriers based on GL67 lipid could potentially influence treating genetic diseases owing to the high internalization efficiency and safety profile.
Collapse
Affiliation(s)
- Somayah J. Jarallah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Reem M. Altamimi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Wijdan K. Alsharif
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Nouf M. Alzahrani
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Homood M. As Sobeai
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed J. Alfahad
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Manal A. Alshabibi
- Healthy Aging Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Sarah H. Alqahtani
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
161
|
Zahra M, Chota A, Abrahamse H, George BP. Efficacy of Green Synthesized Nanoparticles in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:10931. [PMID: 37446109 DOI: 10.3390/ijms241310931] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is a complex and diverse disease characterized by the uncontrolled growth of abnormal cells in the body. It poses a significant global public health challenge and remains a leading cause of death. The rise in cancer cases and deaths is a significant worry, emphasizing the immediate need for increased awareness, prevention, and treatment measures. Photodynamic therapy (PDT) has emerged as a potential treatment for various types of cancer, including skin, lung, bladder, and oesophageal cancer. A key advantage of PDT is its ability to selectively target cancer cells while sparing normal cells. This is achieved by preferentially accumulating photosensitizing agents (PS) in cancer cells and precisely directing light activation to the tumour site. Consequently, PDT reduces the risk of harming surrounding healthy cells, which is a common drawback of conventional therapies such as chemotherapy and radiation therapy. The use of medicinal plants for therapeutic purposes has a long history dating back thousands of years and continues to be an integral part of healthcare in many cultures worldwide. Plant extracts and phytochemicals have demonstrated the ability to enhance the effectiveness of PDT by increasing the production of reactive oxygen species (ROS) and promoting apoptosis (cell death) in cancer cells. This natural approach capitalizes on the eco-friendly nature of plant-based photoactive compounds, offering valuable insights for future research. Nanotechnology has also played a pivotal role in medical advancements, particularly in the development of targeted drug delivery systems. Therefore, this review explores the potential of utilizing photosensitizing phytochemicals derived from medicinal plants as a viable source for PDT in the treatment of cancer. The integration of green photodynamic therapy with plant-based compounds holds promise for novel treatment alternatives for various chronic illnesses. By harnessing the scientific potential of plant-based compounds for PDT, we can pave the way for innovative and sustainable treatment strategies.
Collapse
Affiliation(s)
- Mehak Zahra
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| |
Collapse
|
162
|
Roy M, Roy A, Rustagi S, Pandey N. An Overview of Nanomaterial Applications in Pharmacology. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4838043. [PMID: 37388336 PMCID: PMC10307208 DOI: 10.1155/2023/4838043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/06/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Nanotechnology has become one of the most extensive fields of research. Nanoparticles (NPs) form the base for nanotechnology. Recently, nanomaterials (NMs) are widely used due to flexible chemical, biological, and physical characteristics with improved efficacy in comparison to bulk counterparts. The significance of each class of NMs is enhanced by identifying their properties. Day by day, there is an emergence of various applications of NMs, but the toxic effects associated with them cannot be avoided. NMs demonstrate therapeutic abilities by enhancing the drug delivery system, diagnosis, and therapeutic effects of numerous agents, but determining the benefits of NMs over other clinical applications (disease-specific) or substances is an ongoing investigation. This review is aimed at defining NMs and NPs and their types, synthesis, and pharmaceutical, biomedical, and clinical applications.
Collapse
Affiliation(s)
- Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| |
Collapse
|
163
|
Moya-Garcia CR, Li-Jessen NYK, Tabrizian M. Chitosomes Loaded with Docetaxel as a Promising Drug Delivery System to Laryngeal Cancer Cells: An In Vitro Cytotoxic Study. Int J Mol Sci 2023; 24:9902. [PMID: 37373051 DOI: 10.3390/ijms24129902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Current delivery of chemotherapy, either intra-venous or intra-arterial, remains suboptimal for patients with head and neck tumors. The free form of chemotherapy drugs, such as docetaxel, has non-specific tissue targeting and poor solubility in blood that deters treatment efficacy. Upon reaching the tumors, these drugs can also be easily washed away by the interstitial fluids. Liposomes have been used as nanocarriers to enhance docetaxel bioavailability. However, they are affected by potential interstitial dislodging due to insufficient intratumoral permeability and retention capabilities. Here, we developed and characterized docetaxel-loaded anionic nanoliposomes coated with a layer of mucoadhesive chitosan (chitosomes) for the application of chemotherapy drug delivery. The anionic liposomes were 99.4 ± 1.5 nm in diameter with a zeta potential of -26 ± 2.0 mV. The chitosan coating increased the liposome size to 120 ± 2.2 nm and the surface charge to 24.8 ± 2.6 mV. Chitosome formation was confirmed via FTIR spectroscopy and mucoadhesive analysis with anionic mucin dispersions. Blank liposomes and chitosomes showed no cytotoxic effect on human laryngeal stromal and cancer cells. Chitosomes were also internalized into the cytoplasm of human laryngeal cancer cells, indicating effective nanocarrier delivery. A higher cytotoxicity (p < 0.05) of docetaxel-loaded chitosomes towards human laryngeal cancer cells was observed compared to human stromal cells and control treatments. No hemolytic effect was observed on human red blood cells after a 3 h exposure, proving the proposed intra-arterial administration. Our in vitro results supported the potential of docetaxel-loaded chitosomes for locoregional chemotherapy delivery to laryngeal cancer cells.
Collapse
Affiliation(s)
- Christian R Moya-Garcia
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 Rue University, Montreal, QC H3A 2B4, Canada
| | - Nicole Y K Li-Jessen
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 Rue University, Montreal, QC H3A 2B4, Canada
- School of Communication Sciences and Disorders, McGill University, 2001 Av. McGill College #8, Montréal, QC H3A 1G1, Canada
- Department of Otolaryngology-Head and Neck Surgery, McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 Rue University, Montreal, QC H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 2001 Av. McGill College, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
164
|
Chen J, Zheng Y, Gong S, Zheng Z, Hu J, Ma L, Li X, Yu H. Mechanisms of theaflavins against gout and strategies for improving the bioavailability. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154782. [PMID: 36990009 DOI: 10.1016/j.phymed.2023.154782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Gout is a crystal related arthropathy caused by monosodium urate deposition. At present, the identification of appropriate treatments and new drugs to reduce serum uric acid levels and gout risk is a major research area. PURPOSE Theaflavins are naturally occurring compounds characterized by a benzodiazepine skeleton. The significant benefits of theaflavins have been well documented. A large number of studies have been carried out and excellent anti-gout results have been achieved in recent years. STUDY DESIGN A comprehensive analysis of the mechanism of the anti-gout effect of theaflavins is presented through a literature review and network pharmacology prediction, and strategies for increasing the bioavailability of theaflavins are summarized. METHODS In this review, the active components and pharmacological mechanisms of theaflavins in the treatment of gout were summarized, and the relationship between theaflavins and gout, the relevant components, and the potential mechanisms of anti-gout action were clarified by reviewing the literature on the anti-gout effects of theaflavins and network pharmacology. RESULTS Theaflavins exert anti-gout effects by down regulating the gene and protein expression of glucose transporter 9 (GLUT9) and uric acid transporter 1 (URAT1), while upregulating the mRNA expression levels of organic anion transporter 1 (OAT1), organic cation transporter N1 (OCTN1), organic cation transporters 1/2 (Oct1/2), and organic anion transporter 2 (OAT2). Network pharmacology prediction indicate that theaflavins can regulate the AGE-RAGE and cancer signaling pathways through ATP-binding cassette subfamily B member 1 (ABCB1), recombinant mitogen activated protein kinase 14 (MAPK14), telomerase reverse tranase (TERT), signal transducer and activator of transcription 1 (STAT1), matrix metalloproteinase 2 (MMP2), B-cell lymphoma-2 (BCL2), and matrix metalloproteinase 14 (MMP14) targets for anti-gout effects. CONCLUSION This review presents the mechanisms of anti-gout action of theaflavins and strategies for improving the bioavailability of theaflavins, as well as providing research strategies for anti-gout treatment measures and the development of novel anti-gout drugs.
Collapse
Affiliation(s)
- Jingzi Chen
- Chinese Medicine Rehabilitation Department, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Yanchao Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Sihan Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Zhigang Zheng
- Wuxi Teaturn Bioengineering Co., Ltd., Wuxi 214000, China
| | - Jing Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Hongjian Yu
- Wuxi Teaturn Bioengineering Co., Ltd., Wuxi 214000, China.
| |
Collapse
|
165
|
Ahmed ETM, Hassan M, Shamma RN, Makky A, Hassan DH. Controlling the Evolution of Selective Vancomycin Resistance through Successful Ophthalmic Eye-Drop Preparation of Vancomycin-Loaded Nanoliposomes Using the Active-Loading Method. Pharmaceutics 2023; 15:1636. [PMID: 37376084 DOI: 10.3390/pharmaceutics15061636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Vancomycin is the front-line defense and drug of choice for the most serious and life-threatening methicillin-resistant Staphylococcus aureus (MRSA) infections. However, poor vancomycin therapeutic practice limits its use, and there is a consequent rise of the threat of vancomycin resistance by complete loss of its antibacterial activity. Nanovesicles as a drug-delivery platform, with their featured capabilities of targeted delivery and cell penetration, are a promising strategy to resolve the shortcomings of vancomycin therapy. However, vancomycin's physicochemical properties challenge its effective loading. In this study, we used the ammonium sulfate gradient method to enhance vancomycin loading into liposomes. Depending on the pH difference between the extraliposomal vancomycin-Tris buffer solution (pH 9) and the intraliposomal ammonium sulfate solution (pH 5-6), vancomycin was actively and successfully loaded into liposomes (up to 65% entrapment efficiency), while the liposomal size was maintained at 155 nm. Vancomycin-loaded nanoliposomes effectively enhanced the bactericidal effect of vancomycin; the minimum inhibitory concentration (MIC) value for MRSA decreased 4.6-fold. Furthermore, they effectively inhibited and killed heteroresistant vancomycin-intermediate S.aureous (h-VISA) with an MIC of 0.338 μg mL-1. Moreover, MRSA could not develop resistance against vancomycin that was loaded into and delivered by liposomes. Vancomycin-loaded nanoliposomes could be a feasible solution for enhancing vancomycin's therapeutic use and controlling the emerging vancomycin resistance.
Collapse
Affiliation(s)
- El Tahra M Ahmed
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza 12585, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43511, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
| | - Amna Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
| | - Doaa H Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza 12585, Egypt
| |
Collapse
|
166
|
Baudo G, Flinn H, Holcomb M, Tiwari A, Soriano S, Taraballi F, Godin B, Zinger A, Villapol S. Sex-dependent improvement in traumatic brain injury outcomes after liposomal delivery of dexamethasone in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541045. [PMID: 37292856 PMCID: PMC10245763 DOI: 10.1101/2023.05.16.541045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Traumatic Brain Injury (TBI) can have long-lasting physical, emotional, and cognitive consequences due to the neurodegeneration caused by its robust inflammatory response. Despite advances in rehabilitation care, effective neuroprotective treatments for TBI patients are lacking. Furthermore, current drug delivery methods for TBI treatment are inefficient in targeting inflamed brain areas. To address this issue, we have developed a liposomal nanocarrier (Lipo) encapsulating dexamethasone (Dex), an agonist for the glucocorticoid receptor utilized to alleviate inflammation and swelling in various conditions. In vitro studies show that Lipo-Dex were well tolerated in human and murine neural cells. Lipo-Dex showed significant suppression of inflammatory cytokines, IL-6 and TNF-α, release after induction of neural inflammation with lipopolysaccharide. Further, the Lipo-Dex were administered to young adult male and female C57BL/6 mice immediately after a controlled cortical impact injury. Our findings demonstrate that Lipo-Dex can selectively target the injured brain, thereby reducing lesion volume, cell death, astrogliosis, the release of proinflammatory cytokines, and microglial activation compared to Lipo-treated mice in a sex-dependent manner, showing a major impact only in male mice. This highlights the importance of considering sex as a crucial variable in developing and evaluating new nano-therapies for brain injury. These results suggest that Lipo-Dex administration may effectively treat acute TBI.
Collapse
Affiliation(s)
- Gherardo Baudo
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute Department of Orthopedics and Sports Medicine Houston Methodist Hospital Houston TX, USA
| | - Hannah Flinn
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Morgan Holcomb
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Anjana Tiwari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Sirena Soriano
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute Department of Orthopedics and Sports Medicine Houston Methodist Hospital Houston TX, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Assaf Zinger
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion−Israel Institute of Technology, Haifa, Israel
| | - Sonia Villapol
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
167
|
Uchida N. Design of supramolecular nanosheets for drug delivery applications. Polym J 2023; 55:1-8. [PMID: 37359988 PMCID: PMC10169173 DOI: 10.1038/s41428-023-00788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 06/28/2023]
Abstract
Two specific concepts have emerged in the field of materials science over the last several decades: nanosheets and supramolecular polymers. More recently, supramolecular nanosheets, in which these two concepts are integrated, have attracted particular attention, and they exhibit many fascinating characteristics. This review focuses on the design and applications of supramolecular nanosheets consisting of tubulin proteins and phospholipid membranes.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588 Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| |
Collapse
|
168
|
Hamedinasab H, Rezayan AH, Jaafari MR, Mashreghi M, Alvandi H. The Protective Effect of N-acetylcysteine against Liposome and Chitosan-Induced Cytotoxicity. J Microencapsul 2023:1-9. [PMID: 37147916 DOI: 10.1080/02652048.2023.2209646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
AIM N-acetylcysteine (NAC) as an antioxidant used to moderate liposome and chitosan-Induced cell cytotoxicity at their high concentrations. METHODS liposome and chitosan were prepared and characterized. The cytotoxicity effect of liposome with NAC-loaded liposome (liposome-NAC) and chitosan solution with chitosan solution containing NAC (chitosan-NAC) on the A549 cell line was compared. RESULTS Particle size, zeta potential, and NAC drug release for liposome were 125.9 ± 8 nm, -34.7 ± 2.1 mv, and 51.1% ±3%, respectively. SEM (Scanning electron microscope) and TEM (Transmission electron microscope) indicated spherical shape of liposome. Encapsulation efficiency of liposome-NAC was 12% ±0.98%. Particle size and zeta potential for chitosan solution were 361 ± 11.3 nm and 10.8 ± 1.52 mv. Stability storage study indicated good stability of chitosan and liposome. Cell viability of liposome-NAC and chitosan-NAC significantly was higher than liposome and chitosan at all four concentrations. CONCLUSION NAC has a protective effect against liposome and chitosan-induced cell toxicity.
Collapse
Affiliation(s)
- Hamed Hamedinasab
- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hale Alvandi
- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| |
Collapse
|
169
|
Chaves MA, Ferreira LS, Baldino L, Pinho SC, Reverchon E. Current Applications of Liposomes for the Delivery of Vitamins: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091557. [PMID: 37177102 PMCID: PMC10180326 DOI: 10.3390/nano13091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Liposomes have been used for several decades for the encapsulation of drugs and bioactives in cosmetics and cosmeceuticals. On the other hand, the use of these phospholipid vesicles in food applications is more recent and is increasing significantly in the last ten years. Although in different stages of technological maturity-in the case of cosmetics, many products are on the market-processes to obtain liposomes suitable for the encapsulation and delivery of bioactives are highly expensive, especially those aiming at scaling up. Among the bioactives proposed for cosmetics and food applications, vitamins are the most frequently used. Despite the differences between the administration routes (oral for food and mainly dermal for cosmetics), some challenges are very similar (e.g., stability, bioactive load, average size, increase in drug bioaccessibility and bioavailability). In the present work, a systematic review of the technological advancements in the nanoencapsulation of vitamins using liposomes and related processes was performed; challenges and future perspectives were also discussed in order to underline the advantages of these drug-loaded biocompatible nanocarriers for cosmetics and food applications.
Collapse
Affiliation(s)
- Matheus A Chaves
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Letícia S Ferreira
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Samantha C Pinho
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
170
|
Crintea A, Motofelea AC, Șovrea AS, Constantin AM, Crivii CB, Carpa R, Duțu AG. Dendrimers: Advancements and Potential Applications in Cancer Diagnosis and Treatment-An Overview. Pharmaceutics 2023; 15:pharmaceutics15051406. [PMID: 37242648 DOI: 10.3390/pharmaceutics15051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and the main treatment methods for this condition are surgery, chemotherapy, and radiotherapy. These treatment methods are invasive and can cause severe adverse reactions among organisms, so nanomaterials are increasingly used as structures for anticancer therapies. Dendrimers are a type of nanomaterial with unique properties, and their production can be controlled to obtain compounds with the desired characteristics. These polymeric molecules are used in cancer diagnosis and treatment through the targeted distribution of some pharmacological substances. Dendrimers have the ability to fulfill several objectives in anticancer therapy simultaneously, such as targeting tumor cells so that healthy tissue is not affected, controlling the release of anticancer agents in the tumor microenvironment, and combining anticancer strategies based on the administration of anticancer molecules to potentiate their effect through photothermal therapy or photodynamic therapy. The purpose of this review is to summarize and highlight the possible uses of dendrimers regarding the diagnosis and treatment of oncological conditions.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Alina Simona Șovrea
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Alina Gabriela Duțu
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
171
|
Martínez-Rodríguez P, Guerrero-Rubio MA, Hernández-García S, Henarejos-Escudero P, García-Carmona F, Gandía-Herrero F. Characterization of betalain-loaded liposomes and its bioactive potential in vivo after ingestion. Food Chem 2023; 407:135180. [PMID: 36521390 DOI: 10.1016/j.foodchem.2022.135180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Betalains are plant pigments characterized by showing a wide range of beneficial properties for health. Its bioactive potential has been studied for the first time after its encapsulation in liposomes and subsequent administration to the animal model Caenorhabditis elegans. Phenylalanine-betaxanthin and indoline carboxylic acid-betacyanin encapsulated at concentrations of 25 and 500 μM managed to reduce lipid accumulation and oxidative stress in the nematodes. Highly antioxidant betalains dopaxanthin and betanidin were also included in the survival analyses. The results showed that phenylalanine-betaxanthin was the most effective betalain by increasing the lifespan of C. elegans by 21.8%. In addition, the administration of encapsulated natural betanidin increased the nematodes' survival rate by up to 13.8%. The preservation of the bioactive properties of betalains manifested in this study means that the stabilization of the plant pigments through encapsulation in liposomes can be postulated as a new way for administration in pharmacological and food applications.
Collapse
Affiliation(s)
- Pedro Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
172
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
173
|
Olajubutu O, Ogundipe OD, Adebayo A, Adesina SK. Drug Delivery Strategies for the Treatment of Pancreatic Cancer. Pharmaceutics 2023; 15:pharmaceutics15051318. [PMID: 37242560 DOI: 10.3390/pharmaceutics15051318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic cancer is fast becoming a global menace and it is projected to be the second leading cause of cancer-related death by 2030. Pancreatic adenocarcinomas, which develop in the pancreas' exocrine region, are the predominant type of pancreatic cancer, representing about 95% of total pancreatic tumors. The malignancy progresses asymptomatically, making early diagnosis difficult. It is characterized by excessive production of fibrotic stroma known as desmoplasia, which aids tumor growth and metastatic spread by remodeling the extracellular matrix and releasing tumor growth factors. For decades, immense efforts have been harnessed toward developing more effective drug delivery systems for pancreatic cancer treatment leveraging nanotechnology, immunotherapy, drug conjugates, and combinations of these approaches. However, despite the reported preclinical success of these approaches, no substantial progress has been made clinically and the prognosis for pancreatic cancer is worsening. This review provides insights into challenges associated with the delivery of therapeutics for pancreatic cancer treatment and discusses drug delivery strategies to minimize adverse effects associated with current chemotherapy options and to improve the efficiency of drug treatment.
Collapse
Affiliation(s)
| | - Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Amusa Adebayo
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| |
Collapse
|
174
|
Mynott RL, Habib A, Best OG, Wallington-Gates CT. Ferroptosis in Haematological Malignancies and Associated Therapeutic Nanotechnologies. Int J Mol Sci 2023; 24:ijms24087661. [PMID: 37108836 PMCID: PMC10146166 DOI: 10.3390/ijms24087661] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Haematological malignancies are heterogeneous groups of cancers of the bone marrow, blood or lymph nodes, and while therapeutic advances have greatly improved the lifespan and quality of life of those afflicted, many of these cancers remain incurable. The iron-dependent, lipid oxidation-mediated form of cell death, ferroptosis, has emerged as a promising pathway to induce cancer cell death, particularly in those malignancies that are resistant to traditional apoptosis-inducing therapies. Although promising findings have been published in several solid and haematological malignancies, the major drawbacks of ferroptosis-inducing therapies are efficient drug delivery and toxicities to healthy tissue. The development of tumour-targeting and precision medicines, particularly when combined with nanotechnologies, holds potential as a way in which to overcome these obstacles and progress ferroptosis-inducing therapies into the clinic. Here, we review the current state-of-play of ferroptosis in haematological malignancies as well as encouraging discoveries in the field of ferroptosis nanotechnologies. While the research into ferroptosis nanotechnologies in haematological malignancies is limited, its pre-clinical success in solid tumours suggests this is a very feasible therapeutic approach to treat blood cancers such as multiple myeloma, lymphoma and leukaemia.
Collapse
Affiliation(s)
- Rachel L Mynott
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Ali Habib
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Oliver G Best
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Craig T Wallington-Gates
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
- Flinders Medical Centre, Bedford Park, SA 5042, Australia
| |
Collapse
|
175
|
Nanjaiah H, Moudgil KD. The Utility of Peptide Ligand-Functionalized Liposomes for Subcutaneous Drug Delivery for Arthritis Therapy. Int J Mol Sci 2023; 24:ijms24086883. [PMID: 37108047 PMCID: PMC10138553 DOI: 10.3390/ijms24086883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Liposomes and other types of nanoparticles are increasingly being explored for drug delivery in a variety of diseases. There is an impetus in the field to exploit different types of ligands to functionalize nanoparticles to guide them to the diseased site. Most of this work has been conducted in the cancer field, with relatively much less information from autoimmune diseases, such as rheumatoid arthritis (RA). Furthermore, in RA, many drugs are self-administered by patients subcutaneously (SC). In this context, we have examined the attributes of liposomes functionalized with a novel joint-homing peptide (denoted ART-1) for arthritis therapy using the SC route. This peptide was previously identified following phage peptide library screening in the rat adjuvant arthritis (AA) model. Our results show a distinct effect of this peptide ligand on increasing the zeta potential of liposomes. Furthermore, liposomes injected SC into arthritic rats showed preferential homing to arthritic joints, following a migration profile in vivo similar to that of intravenously injected liposomes, except for a less steep decline after the peak. Finally, liposomal dexamethasone administered SC was more effective than the unpackaged (free) drug in suppressing arthritis progression in rats. We suggest that with suitable modifications, this SC liposomal treatment modality can be adapted for human RA therapy.
Collapse
Affiliation(s)
- Hemalatha Nanjaiah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
176
|
Efimova AA, Popov AS, Kazantsev AV, Semenyuk PI, Le-Deygen IM, Lukashev NV, Yaroslavov AA. pH-Sensitive Liposomes with Embedded 3-(isobutylamino)cholan-24-oic Acid: What Is the Possible Mechanism of Fast Cargo Release? MEMBRANES 2023; 13:407. [PMID: 37103834 PMCID: PMC10141028 DOI: 10.3390/membranes13040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
pH-sensitive liposomes have great potential for biomedical applications, in particular as nanocontainers for the delivery of biologically active compounds to specific areas of the human body. In this article, we discuss the possible mechanism of fast cargo release from a new type of pH-sensitive liposomes with embedded ampholytic molecular switch (AMS, 3-(isobutylamino)cholan-24-oic acid) with carboxylic anionic groups and isobutylamino cationic ones attached to the opposite ends of the steroid core. AMS-containing liposomes demonstrated the rapid release of the encapsulated substance when altering the pH of an outer solution, but the exact mechanism of the switch action has not yet been accurately determined. Here, we report on the details of fast cargo release based on the data obtained using ATR-FTIR spectroscopy as well as atomistic molecular modeling. The findings of this study are relevant to the potential application of AMS-containing pH-sensitive liposomes for drug delivery.
Collapse
Affiliation(s)
- Anna A. Efimova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Anton S. Popov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexey V. Kazantsev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Pavel I. Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninkie Gory 1/40, 119992 Moscow, Russia
| | - Irina M. Le-Deygen
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Nikolay V. Lukashev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexander A. Yaroslavov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
177
|
Bhattacharjee B, Ikbal AMA, Farooqui A, Sahu RK, Ruhi S, Syed A, Miatmoko A, Khan D, Khan J. Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak. CHEMICKE ZVESTI 2023; 77:1-24. [PMID: 37362791 PMCID: PMC10072050 DOI: 10.1007/s11696-023-02795-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.
Collapse
Affiliation(s)
- Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, Assam 784501 India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, 788011 India
| | - Atika Farooqui
- The Deccan College of Medical Sciences, Kanchan Bagh, Hyderabad, Telangana 500058 India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand 249161 India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Ayesha Syed
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115 Indonesia
| | - Danish Khan
- Panineeya Institute of Dental Science and Research Centre, Kalonji Narayana Rao University of Health Sciences, Warangal, Telangana 506007 India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100 Shah Alam, Selangor Malaysia
| |
Collapse
|
178
|
Bemidinezhad A, Mirzavi F, Gholamhosseinian H, Gheybi F, Soukhtanloo M. Gold-containing liposomes and glucose-coated gold nanoparticles enhances the radiosensitivity of B16F0 melanoma cells via increasing apoptosis and ROS production. Life Sci 2023; 318:121495. [PMID: 36780937 DOI: 10.1016/j.lfs.2023.121495] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
AIM To increase the effectiveness of radiation therapy, metals with high Z number are used as radiosensitizers. In this regard, the effectiveness of various gold nanoparticles as radiosensitizer has been proven. Therefore, this study aimed to evaluate the effects of liposomes containing gold ions (Gold-Lips) and glucose-coated gold nanoparticles (Glu-GNPs) on radiation sensitivity of B16F0 melanoma cells. MAIN METHODS Naked GNPs, Glu-GNPs and Gold-Lips were synthesized and their physicochemical properties were evaluated using DLS. The cytotoxicity and sensitivity of the nanoparticles to radiation were evaluated using MTT and colony formation assay, respectively. Flow cytometry was performed to evaluate the apoptotic effect of nanoparticles on B16F0 cells. The intracellular ROS levels and mRNA expression of Bax, Bcl-2, p53, Caspase-3, and Caspase-7 genes were also evaluated. Finally, caspase 3/7 activity was determined using a luminescence assay kit. KEY FINDINGS The results revealed that GNPs, Glu-GNPs, and Gold-Lips had a desired size and zeta potential. Results from the colony assay showed that the all non-toxic concentrations of Gold-Lips significantly increased cell death in B16F0 cells compared with the Glu-GNPs (p > 0.05). Flow cytometry and Caspase-3/-7 activity confirmed the results of the colony assay and showed that increasing the sensitivity of cells to radiation increases apoptosis. Moreover, we found that Gold-Lips increased the mRNA expression of p53, Bax, and Caspase-3/-7, and decreased the Bcl-2 mRNA expression. SIGNIFICANCE Overall, both Gold-Lips and Glu-GNPs enhanced the radiosensitivity of B16F0 cells, however, Gold-Lips had better effects, which could make them a promising tools in cancer radiotherapy.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
179
|
Fulton MD, Najahi-Missaoui W. Liposomes in Cancer Therapy: How Did We Start and Where Are We Now. Int J Mol Sci 2023; 24:ijms24076615. [PMID: 37047585 PMCID: PMC10095497 DOI: 10.3390/ijms24076615] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Since their first discovery in the 1960s by Alec Bangham, liposomes have been shown to be effective drug delivery systems for treating various cancers. Several liposome-based formulations received approval by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA), with many others in clinical trials. Liposomes have several advantages, including improved pharmacokinetic properties of the encapsulated drug, reduced systemic toxicity, extended circulation time, and targeted disposition in tumor sites due to the enhanced permeability and retention (EPR) mechanism. However, it is worth noting that despite their efficacy in treating various cancers, liposomes still have some potential toxicity and lack specific targeting and disposition. This explains, in part, why their translation into the clinic has progressed only incrementally, which poses the need for more research to focus on addressing such translational limitations. This review summarizes the main properties of liposomes, their current status in cancer therapy, and their limitations and challenges to achieving maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Melody D. Fulton
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
180
|
Montanari E, Krupke H, Leroux JC. Engineering Lipid Spherulites for the Sustained Release of Highly Dosed Small Hydrophilic Compounds. Adv Healthc Mater 2023; 12:e2202249. [PMID: 36571233 PMCID: PMC11469156 DOI: 10.1002/adhm.202202249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Currently, there is a lack of parenteral sustained release formulations for the delivery of highly dosed small hydrophilic drugs. Therefore, parenteral lipid spherulites are engineered capable of entrapping large amounts of such compounds and spontaneously releasing them in a sustained fashion. A library of spherulites is prepared with a simple green process, using phosphatidylcholine (PC) and/or phosphatidylethanolamine (PE), nonionic surfactants and water. The vesicle formulations exhibiting appropriate size distribution and morphology are selected and loaded with 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), ((OEG2 )2 -IP4), an inositol phosphate derivative currently under clinical evaluation for the treatment of aortic valve stenosis. The loading efficiency of spherulites is up to 12.5-fold higher than that of liposomes produced with the same materials. While the PC-containing vesicles showed high stability, the PE spherulites gradually lost their multilayer organization upon dilution, triggering the active pharmaceutical ingredient (API) release over time. In vitro experiments and pharmacokinetic studies in rats demonstrated the ability of PE spherulites to increase the systemic exposure of (OEG2 )2 -IP4 up to 3.1-fold after subcutaneous injection, and to completely release their payload within 3-4 d. In conclusion, PE spherulites represent a promising lipid platform for the extravascular parenteral administration of highly dosed small hydrophilic drugs.
Collapse
Affiliation(s)
- Elita Montanari
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8093, Switzerland
| | - Hanna Krupke
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
181
|
Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles' Physicochemical Properties on Responses in Biological Systems. Polymers (Basel) 2023; 15:polym15071596. [PMID: 37050210 PMCID: PMC10096782 DOI: 10.3390/polym15071596] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
In the last four decades, nanotechnology has gained momentum with no sign of slowing down. The application of inventions or products from nanotechnology has revolutionised all aspects of everyday life ranging from medical applications to its impact on the food industry. Nanoparticles have made it possible to significantly extend the shelf lives of food product, improve intracellular delivery of hydrophobic drugs and improve the efficacy of specific therapeutics such as anticancer agents. As a consequence, nanotechnology has not only impacted the global standard of living but has also impacted the global economy. In this review, the characteristics of nanoparticles that confers them with suitable and potentially toxic biological effects, as well as their applications in different biological fields and nanoparticle-based drugs and delivery systems in biomedicine including nano-based drugs currently approved by the U.S. Food and Drug Administration (FDA) are discussed. The possible consequence of continuous exposure to nanoparticles due to the increased use of nanotechnology and possible solution is also highlighted.
Collapse
Affiliation(s)
- Azeez Yusuf
- Irish Centre for Genetic Lung Disease, Department of Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, D02 YN77 Dublin, Ireland
| | | | - Hanan Henidi
- Research Department, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Ohoud Y Alshehri
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
| | - Mohammed S Aldughaim
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11451, Saudi Arabia
| |
Collapse
|
182
|
Karimi H, Rabbani S, Babadi D, Dadashzadeh S, Haeri A. Piperine Liposome-Embedded in Hyaluronan Hydrogel as an Effective Platform for Prevention of Postoperative Peritoneal Adhesion. J Microencapsul 2023; 40:279-301. [PMID: 36948888 DOI: 10.1080/02652048.2023.2194415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This study aimed to prepare piperine (PIP) loaded liposomes in hyaluronic acid (HA) hydrogel to provide a hybrid superstructure for postoperative adhesion prevention. Liposomes were prepared using thin-film hydration method. The optimised formulation was characterised by size, SEM, TEM, FTIR, encapsulation efficiency (EE)% (w/w), and release pattern. Liposome-in-hydrogel formulation was investigated by rheology, SEM, and release studies. The efficacy was evaluated in a rat peritoneal abrasion model. EE% (w/w) increased with increasing lipid concentration from 10 to 30; however, a higher percentage of Chol reduced EE% (w/w). The optimised liposome (EE: 68.10 ± 4.18% (w/w), average diameter: 513 ± 14.67 nm, PDI: 0.15 ± 0.04) was used for hydrogel embedding. No sign of adhesion in 5/8 rats and no collagen deposition confirmed the in vivo effectiveness of the optimised formulation. Overall, providing a sustained delivery of PIP, the developed liposome-in-hydrogel formulation can be a promising carrier to prevent postoperative adhesion.
Collapse
Affiliation(s)
- Hanieh Karimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delaram Babadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
183
|
Athanasopoulou F, Manolakakis M, Vernia S, Kamaly N. Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine (Lond) 2023; 18:67-84. [PMID: 36896958 DOI: 10.2217/nnm-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Nanomedicines are revolutionizing healthcare as recently demonstrated by the Pfizer/BioNTech and Moderna COVID-2019 vaccines, with billions of doses administered worldwide in a safe manner. Nonalcoholic fatty liver disease is the most common noncommunicable chronic liver disease, posing a major growing challenge to global public health. However, due to unmet diagnostic and therapeutic needs, there is great interest in the development of novel translational approaches. Nanoparticle-based approaches offer novel opportunities for efficient and specific drug delivery to liver cells, as a step toward precision medicines. In this review, the authors highlight recent advances in nanomedicines for the generation of novel diagnostic and therapeutic tools for nonalcoholic fatty liver disease and related liver diseases.
Collapse
Affiliation(s)
- Foteini Athanasopoulou
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.,MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Michail Manolakakis
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.,MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
184
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
185
|
Sun Y, Chan J, Bose K, Tam C. Simultaneous control of infection and inflammation with keratin-derived antibacterial peptides targeting TLRs and co-receptors. Sci Transl Med 2023; 15:eade2909. [PMID: 36888696 PMCID: PMC10173409 DOI: 10.1126/scitranslmed.ade2909] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/10/2023] [Indexed: 03/10/2023]
Abstract
Controlling infection-driven inflammation is a major clinical dilemma because of limited therapeutic options and possible adverse effects on microbial clearance. Compounding this difficulty is the continued emergence of drug-resistant bacteria, where experimental strategies aiming to augment inflammatory responses for enhanced microbial killing are not applicable treatment options for infections of vulnerable organs. As with corneal infections, severe or prolonged inflammation jeopardizes corneal transparency, leading to devastating vision loss. We hypothesized that keratin 6a-derived antimicrobial peptides (KAMPs) may be a two-pronged remedy capable of tackling bacterial infection and inflammation at once. We used murine peritoneal neutrophils and macrophages, together with an in vivo model of sterile corneal inflammation, to find that nontoxic and prohealing KAMPs with natural 10- and 18-amino acid sequences suppressed lipoteichoic acid (LTA)- and lipopolysaccharide (LPS)-induced NFκB and IRF3 activation, proinflammatory cytokine production, and phagocyte recruitment independently of their bactericidal function. Mechanistically, KAMPs not only competed with bacterial ligands for cell surface Toll-like receptor (TLR) and co-receptors (MD2, CD14, and TLR2) but also reduced cell surface availability of TLR2 and TLR4 through promotion of receptor endocytosis. Topical KAMP treatment effectively alleviated experimental bacterial keratitis, as evidenced by substantial reductions of corneal opacification, inflammatory cell infiltration, and bacterial burden. These findings reveal the TLR-targeting activities of KAMPs and demonstrate their therapeutic potential as a multifunctional drug for managing infectious inflammatory disease.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jonathan Chan
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Karthikeyan Bose
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
186
|
Mateos-Maroto A, Gai M, Brückner M, da Costa Marques R, Harley I, Simon J, Mailänder V, Morsbach S, Landfester K. Systematic modulation of the lipid composition enables the tuning of liposome cellular uptake. Acta Biomater 2023; 158:463-474. [PMID: 36599401 DOI: 10.1016/j.actbio.2022.12.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
As liposomes have been widely explored as drug delivery carriers over the past decades, they are one of the most promising platforms due to their biocompatibility and versatility for surface functionalization. However, to improve the specific design of liposomes for future biomedical applications such as nanovaccines, it is necessary to understand how these systems interact with cell membranes, as most of their potential applications require them to be internalized by cells. Even though several investigations on the cellular uptake of liposomes were conducted, the effect of the liposome membrane properties on internalization in different cell lines remains unclear. Here, we demonstrate how the cellular uptake behavior of liposomes can be driven towards preferential interaction with dendritic cells (DC2.4) as compared to macrophages (RAW264.7) by tuning the lipid composition with varied molar ratios of the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Cellular internalization efficiency was analyzed by flow cytometry, as well as liposome-cell membrane co-localization by confocal laser scanning microscopy. The corresponding proteomic analysis of the protein corona was performed in order to unravel the possible effect on the internalization. The obtained results of this work reveal that it is possible to modulate the cellular uptake towards enhanced internalization by dendritic cells just by modifying the applied lipids and, thus, mainly the physico-chemical properties of the liposomes. STATEMENT OF SIGNIFICANCE: In the field of nanomedicine, it is of key importance to develop new specific and efficient drug carriers. In this sense, liposomes are one of the most widely known carrier types and used in clinics with good results. However, the exact interaction mechanisms of liposomes with cells remain unclear, which is of great importance for the design of new drug delivery platforms. Therefore, in this work we demonstrate that cellular uptake depends on the lipid composition. We are able to enhance the uptake in a specific cell type just by tuning the content of a lipid in the liposome membrane. This finding could be a step towards the selective design of liposomes to be internalized by specific cells with promising applications in biomedicine.
Collapse
Affiliation(s)
- Ana Mateos-Maroto
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Meiyu Gai
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maximilian Brückner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Richard da Costa Marques
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Iain Harley
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johanna Simon
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
187
|
Inclusion complexation and liposomal encapsulation of an isoniazid hydrazone derivative in cyclodextrin for pH-dependent controlled release. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
188
|
Caritá AC, Resende de Azevedo J, Chevalier Y, Arquier D, Vinícius Buri M, Riske KA, Ricci Leonardi Ideas G, Bolzinger MA. ELASTIC CATIONIC LIPOSOMES FOR VITAMIN C DELIVERY: DEVELOPMENT, CHARACTERIZATION AND SKIN ABSORPTION STUDY. Int J Pharm 2023; 638:122897. [PMID: 37003313 DOI: 10.1016/j.ijpharm.2023.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
The influence of hydrophilic surfactants acting on the membrane elasticity of liposomes on the skin absorption of vitamin C is investigated. The purpose of encapsulation inside cationic liposomes is to improve the skin delivery of vitamin C. The properties of elastic liposomes (ELs) are compared to that of conventional liposomes (CLs). ELs are formed by the addition of the "edge activator" Polysorbate 80 to the CLs composed of soybean lecithin, cationic lipid DOTAP (1,2-dioleoyl-3-trimethylammoniopropane chloride), and cholesterol. The liposomes are characterized by dynamic light scattering and electron microscopy. No toxicity is detected in human keratinocyte cells. Evidences of Polysorbate 80 incorporation into liposome bilayers and of the higher flexibility of ELs are given by isothermal titration calorimetry and pore edge tension measurements in giant unilamellar vesicles. The presence of a positive charge in the liposomal membrane increases the encapsulation efficacy by approximately 30% for both CLs and ELs. Skin absorption of vitamin C from CLs, ELs and a control aqueous solution measured in Franz cells shows a high delivery of vitamin C into each skin layer and the acceptor fluid from both liposome types. These results suggest that another mechanism drives skin diffusion, involving interactions between cationic lipids and vitamin C depending on the skin pH.
Collapse
|
189
|
Singh N, Reddy KP, Das P, Kishor BK, Datta P. Complex formulation strategies to overcome the delivery hurdles of laptinib in metastatic breast cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
190
|
Lu Y, Luo Q, Jia X, Tam JP, Yang H, Shen Y, Li X. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology. J Pharm Anal 2023; 13:239-254. [PMID: 37102112 PMCID: PMC10123947 DOI: 10.1016/j.jpha.2022.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Flavonoids such as baohuoside I and icaritin are the major active compounds in Epimedii Folium (EF) and possess excellent therapeutic effects on various diseases. Encouragingly, in 2022, icaritin soft capsules were approved to reach the market for the treatment of hepatocellular carcinoma (HCC) by National Medical Products Administration (NMPA) of China. Moreover, recent studies demonstrate that icaritin can serve as immune-modulating agent to exert anti-tumor effects. Nonetheless, both production efficiency and clinical applications of epimedium flavonoids have been restrained because of their low content, poor bioavailability, and unfavorable in vivo delivery efficiency. Recently, various strategies, including enzyme engineering and nanotechnology, have been developed to increase productivity and activity, improve delivery efficiency, and enhance therapeutic effects of epimedium flavonoids. In this review, the structure-activity relationship of epimedium flavonoids is described. Then, enzymatic engineering strategies for increasing the productivity of highly active baohuoside I and icaritin are discussed. The nanomedicines for overcoming in vivo delivery barriers and improving therapeutic effects of various diseases are summarized. Finally, the challenges and an outlook on clinical translation of epimedium flavonoids are proposed.
Collapse
Affiliation(s)
- Yi Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiulan Luo
- College of Fashion & Design, Jiaxing Nanhu University, Jiaxing, Zhejiang, 314001, China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Huan Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuping Shen
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xin Li
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
191
|
Qiu J, Anas Tomeh M, Jin Y, Zhang B, Zhao X. Microfluidic fabrication of anticancer peptide loaded ZIF-8 nanoparticles for the treatment of breast cancer. J Colloid Interface Sci 2023; 642:810-819. [PMID: 37043939 DOI: 10.1016/j.jcis.2023.03.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Anticancer peptides (ACPs) are promising antitumor drugs owning to their great cancer cell targeting and anticancer effects as well as low drug resistance. However, many of the ACPs have non-specific toxicity and can be easily degraded by the enzymes after administration. Therefore, drug delivery systems (DDSs) are required to shield these peptides from degradation and induce targeted delivery. In this paper, a high performance microfluidic device was used to fabricate the zeolitic imidazolate framework (ZIF-8) encapsulating an ACP (At3) recently developed by our group. The microfluidic device allowed for efficient and rapid mixing to generate ACP loaded nanoparticles (NPs) with controllable properties at high production rate (120 mL/min) and high encapsulation efficiency. The ZIF-8 NPs synthesised by microfluidic processing showed lower polydispersity index (PDI) than the conventional method, demonstrating an improved size uniformity. Encapsulating At3 into the ZIF-8 (At3@ZIF-8) significantly reduced the hemolytic effect and provided a pH-controlled release of At3 peptide. At3@ZIF-8 showed higher anticancer effect than the unloaded peptide at the same concentration due to the enhanced cell uptake by the ZIF-8 NPs. The NPs were able to inhibit the growth of the multicellular tumour spheroids (MCTSs) and damage the mitochondrial membrane of the MCF-7 breast cancer cells. In vivo experiments demonstrated that the At3@ZIF-8 NPs inhibited the growth of MCF-7 tumours in nude mice without changing the biochemical properties of the blood or the histopathological properties of vital organs. Therefore, the development of At3 loaded NPs provides an alternative approach in ACP delivery which can broaden the application of ACP-based cancer therapy.
Collapse
|
192
|
van de Looij SM, de Jong OG, Vermonden T, Lorenowicz MJ. Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration. J Control Release 2023; 355:685-708. [PMID: 36739906 DOI: 10.1016/j.jconrel.2023.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are a population of small vesicles secreted by essentially all cell types, containing a wide variety of biological macromolecules. Due to their intrinsic capabilities for efficient intercellular communication, they are involved in various aspects of cellular functioning. In the past decade, EVs derived from stem cells attracted interest in the field of regenerative medicine. Owing to their regenerative properties, they have great potential for use in tissue repair, in particular for tissues with limited regenerative capabilities such as cartilage. The maintenance of articular cartilage is dependent on a precarious balance of many different components that can be disrupted by the onset of prevalent rheumatic diseases. However, while cartilage is a tissue with strong mechanical properties that can withstand movement and heavy loads for years, it is virtually incapable of repairing itself after damage has occurred. Stem cell-derived EVs (SC-EVs) transport regenerative components such as proteins and nucleic acids from their parental cells to recipient cells, thereby promoting cartilage healing. Many possible pathways through which SC-EVs execute their regenerative function have been reported, but likely there are still numerous other pathways that are still unknown. This review discusses various preclinical studies investigating intra-articular injections of free SC-EVs, which, while often promoting chondrogenesis and cartilage repair in vivo, showed a recurring limitation of the need for multiple administrations to achieve sufficient tissue regeneration. Potentially, this drawback can be overcome by making use of an EV delivery platform that is capable of sustainably releasing EVs over time. With their remarkable versatility and favourable chemical, biological and mechanical properties, hydrogels can facilitate this release profile by encapsulating EVs in their porous structure. Ideally, the optimal delivery platform can be formed in-situ, by means of an injectable hydrogel that can be administered directly into the affected joint. Relevant research fulfilling these criteria is discussed in detail, including the steps that still need to be taken before injectable hydrogels for sustained delivery of EVs can be applied in the context of cartilage regeneration in the clinic.
Collapse
Affiliation(s)
- Sanne M van de Looij
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Magdalena J Lorenowicz
- Regenerative Medicine Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands; Centre for Molecular Medicine, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands; Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands.
| |
Collapse
|
193
|
Multiepitope Subunit Peptide-Based Nanovaccine against Porcine Circovirus Type 2 (PCV2) Elicited High Antibody Titers in Vaccinated Mice. Molecules 2023; 28:molecules28052248. [PMID: 36903494 PMCID: PMC10005372 DOI: 10.3390/molecules28052248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Porcine circovirus 2 (PCV2) infection is one of the most serious threats to the swine industry. While the disease can be prevented, to some extent, by commercial PCV2a vaccines, the evolving nature of PCV2 necessitates the development of a novel vaccine that can compete with the mutations of the virus. Thus, we have developed novel multiepitope vaccines based on the PCV2b variant. Three PCV2b capsid protein epitopes, together with a universal T helper epitope, were synthesized and formulated with five delivery systems/adjuvants: complete Freund's adjuvant, poly(methyl acrylate) (PMA), poly(hydrophobic amino acid), liposomes and rod-shaped polymeric nanoparticles built from polystyrene-poly(N-isopropylacrylamide)-poly(N-dimethylacrylamide). Mice were subcutaneously immunized with the vaccine candidates three times at three-week intervals. All vaccinated mice produced high antibody titters after three immunizations as analyzed by the enzyme-linked immunosorbent assay (ELISA), while mice vaccinated with PMA-adjuvanted vaccine elicited high antibody titers even after a single immunization. Thus, the multiepitope PCV2 vaccine candidates designed and examined here show strong potential for further development.
Collapse
|
194
|
Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030751. [PMID: 36986612 PMCID: PMC10058222 DOI: 10.3390/pharmaceutics15030751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer is one of the major public health problems worldwide. Despite the advances in cancer therapy, it remains a challenge due to the low specificity of treatment and the development of multidrug resistance mechanisms. To overcome these drawbacks, several drug delivery nanosystems have been investigated, among them, magnetic nanoparticles (MNP), especially superparamagnetic iron oxide nanoparticles (SPION), which have been applied for treating cancer. MNPs have the ability to be guided to the tumor microenvironment through an external applied magnetic field. Furthermore, in the presence of an alternating magnetic field (AMF) this nanocarrier can transform electromagnetic energy in heat (above 42 °C) through Néel and Brown relaxation, which makes it applicable for hyperthermia treatment. However, the low chemical and physical stability of MNPs makes their coating necessary. Thus, lipid-based nanoparticles, especially liposomes, have been used to encapsulate MNPs to improve their stability and enable their use as a cancer treatment. This review addresses the main features that make MNPs applicable for treating cancer and the most recent research in the nanomedicine field using hybrid magnetic lipid-based nanoparticles for this purpose.
Collapse
|
195
|
Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023; 13:531-557. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Nanotechnological advancements over the past few years have led to the development of newer treatment strategies in brain cancer therapy which leads to the establishment of nano oncology. Nanostructures with high specificity, are best suitable to penetrate the blood-brain barrier (BBB). Their desired physicochemical properties, such as small sizes, shape, higher surface area to volume ratio, distinctive structural features, and the possibility to attach various substances on their surface transform them into potential transport carriers able to cross various cellular and tissue barriers, including the BBB. The review emphasizes nanotechnology-based treatment strategies for the exploration of brain tumors and highlights the current progress of different nanomaterials for the effective delivery of drugs for brain tumor therapy.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Preethi Somanna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| |
Collapse
|
196
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
197
|
Abdi B, Mofidfar M, Hassanpour F, Kirbas Cilingir E, Kalajahi SK, Milani PH, Ghanbarzadeh M, Fadel D, Barnett M, Ta CN, Leblanc RM, Chauhan A, Abbasi F. Therapeutic contact lenses for the treatment of corneal and ocular surface diseases: advances in extended and targeted drug delivery. Int J Pharm 2023; 638:122740. [PMID: 36804524 DOI: 10.1016/j.ijpharm.2023.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
The eye is one of the most important organs in the human body providing critical information on the environment. Many corneal diseases can lead to vision loss affecting the lives of people around the world. Ophthalmic drug delivery has always been a major challenge in the medical sciences. Since traditional methods are less efficient (∼ 5%) at delivering drugs to ocular tissues, contact lenses have generated growing interest in ocular drug delivery due to their potential to enhance drug bioavailability in ocular tissues. The main techniques used to achieve sustained release are discussed in this review, including soaking in drug solutions, incorporating drug into multilayered contact lenses, use of vitamin E barriers, molecular imprinting, nanoparticles, micelles and liposomes. The most clinically relevant results on different eye pathologies are presented. In addition, this review summarizes the benefits of contact lenses over eye drops, strategies for incorporating drugs into lenses to achieve sustained release, results of in vitro and in vivo studies, and the recent advances in the commercialization of therapeutic contact lenses for allergic conjunctivitis.
Collapse
Affiliation(s)
- Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, CA, USA; School of Medicine, Stanford University, Stanford, CA, USA
| | - Fatemeh Hassanpour
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | | | - Sepideh K Kalajahi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Paria H Milani
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mahsa Ghanbarzadeh
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Daddi Fadel
- Center for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Melissa Barnett
- University of California, Davis Eye Center, Sacramento, CA, USA
| | - Christopher N Ta
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, CO, USA.
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran.
| |
Collapse
|
198
|
Ebenezer O, Comoglio P, Wong GKS, Tuszynski JA. Development of Novel siRNA Therapeutics: A Review with a Focus on Inclisiran for the Treatment of Hypercholesterolemia. Int J Mol Sci 2023; 24:4019. [PMID: 36835426 PMCID: PMC9966809 DOI: 10.3390/ijms24044019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Over the past two decades, it was discovered that introducing synthetic small interfering RNAs (siRNAs) into the cytoplasm facilitates effective gene-targeted silencing. This compromises gene expression and regulation by repressing transcription or stimulating sequence-specific RNA degradation. Substantial investments in developing RNA therapeutics for disease prevention and treatment have been made. We discuss the application to proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to and degrades the low-density lipoprotein cholesterol (LDL-C) receptor, interrupting the process of LDL-C uptake into hepatocytes. PCSK9 loss-of-function modifications show significant clinical importance by causing dominant hypocholesterolemia and lessening the risk of cardiovascular disease (CVD). Monoclonal antibodies and small interfering RNA (siRNA) drugs targeting PCSK9 are a significant new option for managing lipid disorders and improving CVD outcomes. In general, monoclonal antibodies are restricted to binding with cell surface receptors or circulating proteins. Similarly, overcoming the intracellular and extracellular defenses that prevent exogenous RNA from entering cells must be achieved for the clinical application of siRNAs. N-acetylgalactosamine (GalNAc) conjugates are a simple solution to the siRNA delivery problem that is especially suitable for treating a broad spectrum of diseases involving liver-expressed genes. Inclisiran is a GalNAc-conjugated siRNA molecule that inhibits the translation of PCSK9. The administration is only required every 3 to 6 months, which is a significant improvement over monoclonal antibodies for PCSK9. This review provides an overview of siRNA therapeutics with a focus on detailed profiles of inclisiran, mainly its delivery strategies. We discuss the mechanisms of action, its status in clinical trials, and its prospects.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa
| | - Pietro Comoglio
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jack A. Tuszynski
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
199
|
Abstract
Ethanol injection method is one of the preferred methods for liposome preparation due to its advantages including rapidity, safety, and reproducibility. This method involves the injection of phospholipid solution of ethanol into a stirred aqueous solution. Due to the diffusion of ethanol in aqueous solution, the dissolved phospholipids precipitate to form bilayer phospholipid fragments, which further fuse to form closed liposomal structures. After evaporation of ethanol, the liposomes can be finally obtained. In this chapter, we will describe the details of ethanol injection method for preparing liposomes and discuss issues that need to be considered during the fabrication process.
Collapse
Affiliation(s)
- Guangsheng Du
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xun Sun
- West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
200
|
Singh S, Grewal S, Sharma N, Behl T, Gupta S, Anwer MK, Vargas-De-La-Cruz C, Mohan S, Bungau SG, Bumbu A. Unveiling the Pharmacological and Nanotechnological Facets of Daidzein: Present State-of-the-Art and Future Perspectives. Molecules 2023; 28:1765. [PMID: 36838751 PMCID: PMC9958968 DOI: 10.3390/molecules28041765] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Herbal drugs have been attracting much scientific interest in the last few decades and nowadays, phytoconstituents-based research is in progress to disclose their unidentified medicinal potential. Daidzein (DAI) is the natural phytoestrogen isoflavone derived primarily from leguminous plants, such as the soybean and mung bean, and its IUPAC name is 4',7-dihydroxyisoflavone. This compound has received great attention as a fascinating pharmacophore with remarkable potential for the therapeutic management of several diseases. Certain pharmacokinetic properties of DAI such as less aqueous solubility, low permeability, and poor bioavailability are major obstacles restricting the therapeutic applications. In this review, distinctive physicochemical characteristics and pharmacokinetics of DAI has been elucidated. The pharmacological applications in treatment of several disorders like oxidative stress, cancer, obesity, cardiovascular, neuroprotective, diabetes, ovariectomy, anxiety, and inflammation with their mechanism of action are explained. Furthermore, this review article comprehensively focuses to provide up-to-date information about nanotechnology-based formulations which have been investigated for DAI in preceding years which includes polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carrier, polymer-lipid nanoparticles, nanocomplexes, polymeric micelles, nanoemulsion, nanosuspension, liposomes, and self-microemulsifying drug delivery systems.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Sonam Grewal
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Tapan Behl
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15081, Peru
| | - Syam Mohan
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602117, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Adrian Bumbu
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|