151
|
Rubio-Cabezas O, Hattersley AT, Njølstad PR, Mlynarski W, Ellard S, White N, Chi DV, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2014. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2014; 15 Suppl 20:47-64. [PMID: 25182307 DOI: 10.1111/pedi.12192] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 12/18/2022] Open
Affiliation(s)
- Oscar Rubio-Cabezas
- Department of Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
El-Hattab AW, Emrick LT, Hsu JW, Chanprasert S, Jahoor F, Scaglia F, Craigen WJ. Glucose metabolism derangements in adults with the MELAS m.3243A>G mutation. Mitochondrion 2014; 18:63-9. [PMID: 25086207 PMCID: PMC4252755 DOI: 10.1016/j.mito.2014.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 02/08/2023]
Abstract
The m.3243A>G mutation in the mitochondrial gene MT-TL1 leads to a wide clinical spectrum ranging from asymptomatic carriers to MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) at the severe end. Diabetes mellitus (DM) occurs in mitochondrial diseases, with the m.3243A>G mutation being the most common mutation associated with mitochondrial DM. The pathogenesis of mitochondrial DM remains largely unknown, with previous studies suggesting that impaired insulin secretion is the major factor. In this study we used stable isotope infusion techniques to assess glucose metabolism in vivo and under physiological conditions in 5 diabetic and 11 non-diabetic adults with the m.3243A>G mutation and 10 healthy adult controls. Our results revealed increased glucose production due to increased gluconeogenesis in both diabetic and non-diabetic subjects with the m.3243A>G mutation. In addition, diabetic subjects demonstrated insulin resistance and relative insulin deficiency, resulting in an inability to increase glucose oxidation which can explain the development of DM in these subjects. Non-diabetic subjects showed normal insulin sensitivity; and therefore, they were able to increase their glucose oxidation rate. The ability to increase glucose utilization can act as a compensatory mechanism that explains why these subjects do not have DM despite the higher rate of glucose production. These results suggest that increased gluconeogenesis is not enough to cause DM and the occurrence of combined insulin resistance and relative insulin deficiency are needed to develop DM in individuals with the m.3243A>G mutation. Therefore, multiple defects in insulin and glucose metabolism are required for DM to occur in individuals with mitochondrial diseases. The results of this study uncover previously undocumented alterations in glucose metabolism in individuals with the m.3243A>G mutation that contribute significantly to our understanding of the pathogenesis of mitochondrial DM and can have significant implications for its management.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Lisa T Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Jean W Hsu
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Sirisak Chanprasert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Farook Jahoor
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
153
|
Naing A, Kenchaiah M, Krishnan B, Mir F, Charnley A, Egan C, Bano G. Maternally inherited diabetes and deafness (MIDD): diagnosis and management. J Diabetes Complications 2014; 28:542-6. [PMID: 24746802 DOI: 10.1016/j.jdiacomp.2014.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 11/17/2022]
Abstract
Maternally inherited diabetes with deafness is rare diabetes caused by a mitochondrial DNA defect. 85% of cases are associated with m.3243A>G mutation. It is important to diagnose this form of diabetes because of the unique management issues and associated comorbidities. A very strong family history of diabetes, deafness and presence of retinal dystrophy should prompt an investigation for MIDD. Microvascular complications out of keeping with duration of diabetes are another clue to the diagnosis. Retinal and renal manifestations of mitochondrial disease may be confused for diabetic complications. Glutamic acid decarboxylase (GAD) autoantibody negativity in a nonobese diabetic is another clue. Cardiac conduction defects and GDM may also raise suspicion as to the diagnosis. Recognizing this etiology of DM should promote family screening, genetic counseling, screening of associated comorbidities, avoidance of metformin, and cautious use of statins. We report a 77 years old lady with MIDD who was being followed up as insulin requiring type 2 diabetes. We then identified 5 more patients with MIDD in the same clinic. They all had A3243 mutation with characteristic clinical presentation. The pharmacological approaches discussed in the paper are unlikely to work in these patients as they were diagnosed late.
Collapse
Affiliation(s)
- Aye Naing
- Department of Diabetes and Endocrinology, St. George's Health NHS Trust, London SW17 0QT
| | - Manohar Kenchaiah
- Department of Diabetes and Endocrinology, St. George's Health NHS Trust, London SW17 0QT
| | - Binu Krishnan
- Department of Diabetes and Endocrinology, St. George's Health NHS Trust, London SW17 0QT
| | - Farheen Mir
- Department of Diabetes and Endocrinology, The Princess Alexander Hospital, Hamstel Road, Harlow, Essex CM20 1QX
| | - Amanda Charnley
- Department of Diabetes and Endocrinology, St. George's Health NHS Trust, London SW17 0QT
| | | | - Gul Bano
- Cellular and Molecular Medicine, St. George's University of London, London SW17 0RE.
| |
Collapse
|
154
|
Targeting mitochondria as therapeutic strategy for metabolic disorders. ScientificWorldJournal 2014; 2014:604685. [PMID: 24757426 PMCID: PMC3976884 DOI: 10.1155/2014/604685] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/12/2014] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are critical regulator of cell metabolism; thus, mitochondrial dysfunction is associated with many metabolic disorders. Defects in oxidative phosphorylation, ROS production, or mtDNA mutations are the main causes of mitochondrial dysfunction in many pathological conditions such as IR/diabetes, metabolic syndrome, cardiovascular diseases, and cancer. Thus, targeting mitochondria has been proposed as therapeutic approach for these conditions, leading to the development of small molecules to be tested in the clinical scenario. Here we discuss therapeutic interventions to treat mitochondrial dysfunction associated with two major metabolic disorders, metabolic syndrome, and cancer. Finally, novel mechanisms of regulation of mitochondrial function are discussed, which open new scenarios for mitochondria targeting.
Collapse
|
155
|
Tavira B, Gómez J, Díaz-Corte C, Llobet L, Ruiz-Pesini E, Ortega F, Coto E. Mitochondrial DNA haplogroups and risk of new-onset diabetes among tacrolimus-treated renal transplanted patients. Gene 2014; 538:195-8. [PMID: 24445060 DOI: 10.1016/j.gene.2014.01.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/21/2013] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Tacrolimus (Tac) is an immunosuppressive drug widely used to avoid organ rejection. New-onset diabetes after transplantation (NODAT) is a major complication among transplanted patients who receive Tac. The increased risk for NODAT could be partly mediated by the effect of Tac on mitochondria from pancreatic beta-cells. Common and rare mitochondrial DNA variants have been linked to the risk of diabetes. Our aim was to determine whether mtDNA polymorphisms/haplogroups were associated with NODAT in Tac-treated kidney transplanted. METHODS Seven polymorphisms that define the common European haplogroups were determined in 115 NODAT and 197 no-NODAT patients. RESULTS Haplogroup H was significantly more frequent in the NODAT group (50% vs. 35%; p=0.01, OR=1.82). There was no difference between patients without and with (n=106) D2M prior to the transplant. CONCLUSIONS Mitochondrial haplogroup H was associated with the risk for NODAT among Tac-treated transplanted patients. The reported differences between the mtDNA variants could explain the increased NODAT-risk among H-patients.
Collapse
Affiliation(s)
- Beatriz Tavira
- Genética Molecular, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Juan Gómez
- Genética Molecular, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Carmen Díaz-Corte
- Nefrología, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Laura Llobet
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco Ortega
- Nefrología, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain; Fundación Renal I. Alvarez de Toledo, Madrid, Spain
| | - Eliecer Coto
- Genética Molecular, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain; Fundación Renal I. Alvarez de Toledo, Madrid, Spain; Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
156
|
Rocha M, Apostolova N, Herance JR, Rovira-Llopis S, Hernandez-Mijares A, Victor VM. Perspectives and potential applications of mitochondria-targeted antioxidants in cardiometabolic diseases and type 2 diabetes. Med Res Rev 2014; 34:160-189. [PMID: 23650093 DOI: 10.1002/med.21285] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is abundant evidence to suggest that mitochondrial dysfunction is a main cause of insulin resistance and related cardiometabolic comorbidities. On the other hand, insulin resistance is one of the main characteristics of type 2 diabetes, obesity, and metabolic syndrome. Lipid and glucose metabolism require mitochondria to generate energy, and when O2 consumption is low due to inefficient nutrient oxidation, there is an increase in reactive oxygen species, which can impair different types of molecules, including DNA, lipids, proteins, and carbohydrates, thereby inducing proinflammatory processes. Factors which contribute to mitochondrial dysfunction, such as mitochondrial biogenesis and genetics, can also lead to insulin resistance in different insulin-target tissues, and its association with mitochondrial dysfunction can culminate in the development of cardiovascular diseases. In this context, therapies that improve mitochondrial function may also improve insulin resistance. This review explains mechanisms of mitochondrial function related to the pathological effects of insulin resistance in different tissues. The pathogenesis of cardiometabolic diseases will be explained from a mitochondrial perspective and the potential beneficial effects of mitochondria-targeted antioxidants as a therapy for modulating mitochondrial function in cardiometabolic diseases, especially diabetes, will also be considered.
Collapse
Affiliation(s)
- Milagros Rocha
- Fundacion para la Investigacion Sanitaria y Biomedica de la Comunidad Valenciana FISABIO, Valencia, Spain; University Hospital Doctor Peset, Endocrinology Service, Valencia, Spain; INCLIVA Foundation, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
157
|
Mory PB, Santos MCD, Kater CE, Moisés RS. Maternally-inherited diabetes with deafness (MIDD) and hyporeninemic hypoaldosteronism. ACTA ACUST UNITED AC 2013; 56:574-7. [PMID: 23295301 DOI: 10.1590/s0004-27302012000800019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/26/2012] [Indexed: 12/20/2022]
Abstract
Maternally-inherited diabetes with deafness (MIDD) is a rare form of monogenic diabetes that results, in most cases, from an A-to-G transition at position 3243 of mitochondrial DNA (m.3243A>G) in the mitochondrial-encoded tRNA leucine (UUA/G) gene. As the name suggests, this condition is characterized by maternally-inherited diabetes and bilateral neurosensory hearing impairment. A characteristic of mitochondrial cytopathies is the progressive multisystemic involvement with the development of more symptoms during the course of the disease. We report here the case of a patient with MIDD who developed hyporeninemic hypoaldosteronism.
Collapse
Affiliation(s)
- Patricia B Mory
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
158
|
The effect of the intracerebroventricular injection of Ghrelin agonist on diabetes type 2 disease in male wistar rats. Int J Diabetes Dev Ctries 2013. [DOI: 10.1007/s13410-013-0165-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
159
|
Maechler P. Mitochondrial function and insulin secretion. Mol Cell Endocrinol 2013; 379:12-8. [PMID: 23792187 DOI: 10.1016/j.mce.2013.06.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
In the endocrine fraction of the pancreas, the β-cell rapidly reacts to fluctuations in blood glucose concentrations by adjusting the rate of insulin secretion. Glucose-sensing coupled to insulin exocytosis depends on transduction of metabolic signals into intracellular messengers recognized by the secretory machinery. Mitochondria play a central role in this process by connecting glucose metabolism to insulin release. Mitochondrial activity is primarily regulated by metabolic fluxes, but also by dynamic morphology changes and free Ca(2+) concentrations. Recent advances of mitochondrial Ca(2+) homeostasis are discussed; in particular the roles of the newly-identified mitochondrial Ca(2+) uniporter MCU and its regulatory partner MICU1, as well as the mitochondrial Na(+)-Ca(2+) exchanger. This review describes how mitochondria function both as sensors and generators of metabolic signals; such as NADPH, long chain acyl-CoA, glutamate. The coupling factors are additive to the Ca(2+) signal and participate to the amplifying pathway of glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Pierre Maechler
- Department of Cell Physiology and Metabolism, Geneva University Medical Centre, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
160
|
Schaefer AM, Walker M, Turnbull DM, Taylor RW. Endocrine disorders in mitochondrial disease. Mol Cell Endocrinol 2013; 379:2-11. [PMID: 23769710 PMCID: PMC3820028 DOI: 10.1016/j.mce.2013.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/30/2013] [Accepted: 06/06/2013] [Indexed: 02/09/2023]
Abstract
Endocrine dysfunction in mitochondrial disease is commonplace, but predominantly restricted to disease of the endocrine pancreas resulting in diabetes mellitus. Other endocrine manifestations occur, but are relatively rare by comparison. In mitochondrial disease, neuromuscular symptoms often dominate the clinical phenotype, but it is of paramount importance to appreciate the multi-system nature of the disease, of which endocrine dysfunction may be a part. The numerous phenotypes attributable to pathogenic mutations in both the mitochondrial (mtDNA) and nuclear DNA creates a complex and heterogeneous catalogue of disease which can be difficult to navigate for novices and experts alike. In this article we provide an overview of the endocrine disorders associated with mitochondrial disease, the way in which the underlying mitochondrial disorder influences the clinical presentation, and how these factors influence subsequent management.
Collapse
Affiliation(s)
- Andrew M. Schaefer
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Corresponding authors. Address: Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK. Tel.: +44 1912223685.
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Douglass M. Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Corresponding authors. Address: Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK. Tel.: +44 1912223685.
| |
Collapse
|
161
|
McInnes J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr Metab (Lond) 2013; 10:63. [PMID: 24499129 PMCID: PMC3853754 DOI: 10.1186/1743-7075-10-63] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/08/2013] [Indexed: 01/06/2023] Open
Abstract
Research in the last decade has revolutionized the way in which we view mitochondria. Mitochondria are no longer viewed solely as cellular powerhouses; rather, mitochondria are now understood to be vibrant, mobile structures, constantly undergoing fusion and fission, and engaging in intimate interactions with other cellular compartments and structures. Findings have implicated mitochondria in a wide variety of cellular processes and molecular interactions, such as calcium buffering, lipid flux, and intracellular signaling. As such, it does not come as a surprise that an increasing number of human pathologies have been associated with functional defects in mitochondria. The difficulty in understanding and treating human pathologies caused by mitochondrial dysfunction arises from the complex relationships between mitochondria and other cellular processes, as well as the genetic background of such diseases. This review attempts to provide a summary of the background knowledge and recent developments in mitochondrial processes relating to mitochondrial-associated metabolic diseases arising from defects or deficiencies in mitochondrial function, as well as insights into current and future avenues for investigation.
Collapse
Affiliation(s)
- Joseph McInnes
- School of Engineering and Science, Research Center MOLIFE - Molecular Life Science, Jacobs University Bremen, Campus Ring 1, Research II, Room 120, Bremen D-28759, Germany.
| |
Collapse
|
162
|
Wang C, Li X, Mu K, Li L, Wang S, Zhu Y, Zhang M, Ryu J, Xie Z, Shi D, Zhang WJ, Dong LQ, Jia W. Deficiency of APPL1 in mice impairs glucose-stimulated insulin secretion through inhibition of pancreatic beta cell mitochondrial function. Diabetologia 2013; 56:1999-2009. [PMID: 23793716 PMCID: PMC4556236 DOI: 10.1007/s00125-013-2971-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Adaptor protein, phosphotyrosine interaction, pleckstrin homology domain and leucine zipper containing 1 (APPL1) is an adapter protein that positively mediates adiponectin signalling. Deficiency of APPL1 in the target tissues of insulin induces insulin resistance. We therefore aimed, in the present study, to determine its role in regulating pancreatic beta cell function. METHODS A hyperglycaemic clamp test was performed to determine insulin secretion in APPL1 knockout (KO) mice. Glucose- and adiponectin-induced insulin release was measured in islets from APPL1 KO mice or INS-1(832/13) cells with either APPL1 knockdown or overproduction. RT-PCR and western blotting were conducted to analyse gene expression and protein abundance. Oxygen consumption rate (OCR), ATP production and mitochondrial membrane potential were assayed to evaluate mitochondrial function. RESULTS APPL1 is highly expressed in pancreatic islets, but its levels are decreased in mice fed a high-fat diet and db/db mice compared with controls. Deletion of the Appl1 gene leads to impairment of both the first and second phases of insulin secretion during hyperglycaemic clamp tests. In addition, glucose-stimulated insulin secretion (GSIS) is significantly decreased in islets from APPL1 KO mice. Conversely, overproduction of APPL1 leads to an increase in GSIS in beta cells. In addition, expression levels of several genes involved in insulin production, mitochondrial biogenesis and mitochondrial OCR, ATP production and mitochondrial membrane potential are reduced significantly in APPL1-knockdown beta cells. Moreover, suppression or overexproduction of APPL1 inhibits or stimulates adiponectin-potentiated GSIS in beta cells, respectively. CONCLUSIONS/INTERPRETATION Our study demonstrates the roles of APPL1 in regulating GSIS and mitochondrial function in pancreatic beta cells, which implicates APPL1 as a therapeutic target in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Chen Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Xiaowen Li
- Diabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Kaida Mu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Ling Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shihong Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Yunxia Zhu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Jiyoon Ryu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Zhifang Xie
- Department of Pathophysiology, Second Military Medical University, Shanghai, People’s Republic of China
| | - Dongyun Shi
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
| | - Weiping J. Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, People’s Republic of China
| | - Lily Q. Dong
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
163
|
Luu L, Dai FF, Prentice KJ, Huang X, Hardy AB, Hansen JB, Liu Y, Joseph JW, Wheeler MB. The loss of Sirt1 in mouse pancreatic beta cells impairs insulin secretion by disrupting glucose sensing. Diabetologia 2013; 56:2010-20. [PMID: 23783352 DOI: 10.1007/s00125-013-2946-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS Sirtuin 1 (SIRT1) has emerged as a key metabolic regulator of glucose homeostasis and insulin secretion. Enhanced SIRT1 activity has been shown to be protective against diabetes, although the mechanisms remain largely unknown. The aim of this study was to determine how SIRT1 regulates insulin secretion in the pancreatic beta cell. METHODS Pancreatic beta cell-specific Sirt1 deletion was induced by tamoxifen injection in 9-week-old Pdx1CreER:floxSirt1 mice (Sirt1BKO). Controls were injected with vehicle. Mice were assessed metabolically via glucose challenge, insulin tolerance tests and physical variables. In parallel, Sirt1 short interfering RNA-treated MIN6 cells (SIRT1KD) and isolated Sirt1BKO islets were used to investigate the effect of SIRT1 inactivation on insulin secretion and gene expression. RESULTS OGTTs showed impaired glucose disposal in Sirt1BKO mice due to insufficient insulin secretion. Isolated Sirt1BKO islets and SIRT1KD MIN6 cells also exhibited impaired glucose-stimulated insulin secretion. Subsequent analyses revealed impaired α-ketoisocaproic acid-induced insulin secretion and attenuated glucose-induced Ca(2+) influx, but normal insulin granule exocytosis in Sirt1BKO beta cells. Microarray studies revealed a large cluster of mitochondria-related genes, the expression of which was dysregulated in SIRT1KD MIN6 cells. Upon further analysis, we demonstrated an explicit defect in mitochondrial function: the inability to couple nutrient metabolism to mitochondrial membrane hyperpolarisation and reduced oxygen consumption rates. CONCLUSIONS/INTERPRETATION Taken together, these findings indicate that in beta cells the deacetylase SIRT1 regulates the expression of specific mitochondria-related genes that control metabolic coupling, and that a decrease in beta cell Sirt1 expression impairs glucose sensing and insulin secretion.
Collapse
Affiliation(s)
- L Luu
- Department of Physiology, University of Toronto, 1 King's College Circle Room 3352, Toronto, ON M5S 1A8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Wang YE, Marinov GK, Wold BJ, Chan DC. Genome-wide analysis reveals coating of the mitochondrial genome by TFAM. PLoS One 2013; 8:e74513. [PMID: 23991223 PMCID: PMC3753274 DOI: 10.1371/journal.pone.0074513] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondria contain a 16.6 kb circular genome encoding 13 proteins as well as mitochondrial tRNAs and rRNAs. Copies of the genome are organized into nucleoids containing both DNA and proteins, including the machinery required for mtDNA replication and transcription. The transcription factor TFAM is critical for initiation of transcription and replication of the genome, and is also thought to perform a packaging function. Although specific binding sites required for initiation of transcription have been identified in the D-loop, little is known about the characteristics of TFAM binding in its nonspecific packaging state. In addition, it is unclear whether TFAM also plays a role in the regulation of nuclear gene expression. Here we investigate these questions by using ChIP-seq to directly localize TFAM binding to DNA in human cells. Our results demonstrate that TFAM uniformly coats the whole mitochondrial genome, with no evidence of robust TFAM binding to the nuclear genome. Our study represents the first high-resolution assessment of TFAM binding on a genome-wide scale in human cells.
Collapse
Affiliation(s)
- Yun E. Wang
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Georgi K. Marinov
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Barbara J. Wold
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - David C. Chan
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
165
|
Ye W, Chen S, Jin S, Lu J. A novel heteroplasmic mitochondrial DNA mutation, A8890G, in a patient with juvenile‑onset metabolic syndrome: a case report. Mol Med Rep 2013; 8:1060-6. [PMID: 23921547 DOI: 10.3892/mmr.2013.1616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/16/2013] [Indexed: 11/05/2022] Open
Abstract
Metabolic syndrome (MS) is a complex disorder characterized by a group of metabolic abnormalities. In the present study, the case of an 18‑year‑old male who presented with MS characteristics with central obesity (overweight and a waist circumference of 95 cm) and dyslipidemia (high TG, low HDL levels and low apoA‑I/apoB‑100) was reported. The patient's family has maternally inherited diabetes and a number of the patient's maternal relatives present MS features. For the investigation of the mitochondrial DNA variants in the patient and the patient's family, genomic DNA of all the family members were extracted from peripheral blood using routine methods. Amplification of mitochondrial DNA in 24 overlapping fragments by PCR, direct sequencing and denaturing high‑performance liquid chromatography was utilized for genetic analysis. Sequences were compared to the reference sequence to identify variants. Bioinformatic methods and databases were used to analyze conservation of the variants and to predict the protein secondary structure. With the exception of the patient, five relatives were diagnosed with MS. Moreover, 5 of the 8 family members had been diagnosed with diabetes, hearing loss and mild kidney impairment according to serum biochemical analysis. Further molecular genetic analysis indicated that the MS‑associated variant T16189C was detected in this family. Notably, a heteroplasmic mutation A8890G was detected in the patient in the mitochondrial ATP6 gene, which codes the ATP synthase subunit 6 (ATPase6). A8890G changed the highly conserved ATPase6 Lys122 into Glu122 in the mitochondrial inner membrane. However, this mutation was not detected in other family members. In conclusion, the mutation A8890G may affect the function of ATPase 6 and the production of ATP, thus contributing to juvenile‑onset MS. It was not detected in other family members possibly due to the mitochondrial genetic segregation or production of a new germline mutation in the juvenile‑onset patient.
Collapse
Affiliation(s)
- Wei Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | | | | | | |
Collapse
|
166
|
Sato M, Sato K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:1979-1984. [PMID: 23524114 DOI: 10.1016/j.bbamcr.2013.03.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/06/2013] [Accepted: 03/10/2013] [Indexed: 10/27/2022]
Abstract
The mitochondrion is an organelle that has its own DNA (mtDNA). Mitochondria play essential roles in energy production and in various cellular processes such as metabolism and signal transduction. In most animals, including humans, although the sperm-derived paternal mitochondria enter the oocyte cytoplasm after fertilization, their mtDNA is never transmitted to the offspring. This pattern of mtDNA inheritance is well known as "maternal inheritance." However, how the paternal mitochondria and mtDNA are eliminated from the cytoplasm of gametes or zygotes remains an enigma. Recently, a variety of mechanisms, including specific nuclease-dependent systems, ubiquitin-proteasome system, and autophagy have been shown to degrade the paternal mtDNA or the paternal mitochondria themselves in order to prevent paternal mtDNA transmission. In this review, we will address the current state of knowledge of the molecular mechanisms underlying the elimination of paternal mtDNA or mitochondrial structures for ensuring the maternal transmission of mtDNA.
Collapse
Affiliation(s)
- Miyuki Sato
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | | |
Collapse
|
167
|
Harasym AC, Thrush AB, Harper ME, Wright DC, Chan CB. Enhanced glucose homeostasis in BHE/cdb rats with mutated ATP synthase. Mitochondrion 2013; 13:320-9. [DOI: 10.1016/j.mito.2013.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 03/06/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
|
168
|
Pathogenesis of the metabolic syndrome: insights from monogenic disorders. Mediators Inflamm 2013; 2013:920214. [PMID: 23766565 PMCID: PMC3673346 DOI: 10.1155/2013/920214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/18/2013] [Indexed: 12/16/2022] Open
Abstract
Identifying rare human metabolic disorders that result from a single-gene defect has not only enabled improved diagnostic and clinical management of such patients, but also has resulted in key biological insights into the pathophysiology of the increasingly prevalent metabolic syndrome. Insulin resistance and type 2 diabetes are linked to obesity and driven by excess caloric intake and reduced physical activity. However, key events in the causation of the metabolic syndrome are difficult to disentangle from compensatory effects and epiphenomena. This review provides an overview of three types of human monogenic disorders that result in (1) severe, non-syndromic obesity, (2) pancreatic beta cell forms of early-onset diabetes, and (3) severe insulin resistance. In these patients with single-gene defects causing their exaggerated metabolic disorder, the primary defect is known. The lessons they provide for current understanding of the molecular pathogenesis of the common metabolic syndrome are highlighted.
Collapse
|
169
|
Ding Y, Leng J, Fan F, Xia B, Xu P. The role of mitochondrial DNA mutations in hearing loss. Biochem Genet 2013; 51:588-602. [PMID: 23605717 DOI: 10.1007/s10528-013-9589-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/10/2012] [Indexed: 11/29/2022]
Abstract
Mutations in mitochondrial DNA (mtDNA) are one of the most important causes of hearing loss. Of these, the homoplasmic A1555G and C1494T mutations at the highly conserved decoding site of the 12S rRNA gene are well documented as being associated with either aminoglycoside-induced or nonsyndromic hearing loss in many families worldwide. Moreover, five mutations associated with nonsyndromic hearing loss have been identified in the tRNA(Ser(UCN)) gene: A7445G, 7472insC, T7505C, T7510C, and T7511C. Other mtDNA mutations associated with deafness are mainly located in tRNA and protein-coding genes. Failures in mitochondrial tRNA metabolism or protein synthesis were observed from cybrid cells harboring these primary mutations, thereby causing the mitochondrial dysfunctions responsible for deafness. This review article provides a detailed summary of mtDNA mutations that have been reported in deafness and further discusses the molecular mechanisms of these mtDNA mutations in deafness expression.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Nanjing Medical University, Huansha Road, Hangzhou, China.
| | | | | | | | | |
Collapse
|
170
|
Eleftheriadis T, Antoniadi G, Pissas G, Liakopoulos V, Stefanidis I. The renal endothelium in diabetic nephropathy. Ren Fail 2013; 35:592-599. [PMID: 23472883 DOI: 10.3109/0886022x.2013.773836] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy is the leading cause of end-stage renal disease. Diabetes mellitus is characterized by generalized endothelial dysfunction. However, recent data also emphasizes the role of local renal endothelium dysfunction in the pathogenesis of diabetic nephropathy. Hyperglycemia triggers a complex network of signal-transduction molecules, transcription factors, and mediators that culminate in endothelial dysfunction. In the glomerulus, vascular endothelial growth factor-A (VEGF)-induced neoangiogenesis may contribute to the initial hyperfiltration and microalbuminuria due to increased filtration area and immaturity of the neovessels, respectively. However, subsequent decrease in podocytes number decreases VEGF production resulting in capillary rarefaction and decreased glomerular filtration rate (GFR). Decreased nitric oxide availability also plays a significant role in the development of advanced lesions of diabetic nephropathy through disruption of glomerular autoregulation, uncontrolled VEGF action, release of prothrombotic substances by endothelial cells and angiotensin-II-independent aldosterone production. In addition, disturbances in endothelial glycocalyx contribute to decreased permselectivity and microalbuminuria; whereas there are recent evidences that reduced glomerular fenestral endothelium leads to decreased GFR levels. Endothelial repair mechanisms are also impaired in diabetes, since circulating endothelial progenitor cells number is decreased in diabetic patients with microalbuminuria. Finally, in the context of elevated profibrotic cytokine transforming growth factor-β levels, endothelial cells also confer to the deteriorating process of fibrosis in advanced diabetic nephropathy through endothelial to mesenchymal transition.
Collapse
|
171
|
Kirmse B, Baumgart S, Rakhmanina N. Metabolic and mitochondrial effects of antiretroviral drug exposure in pregnancy and postpartum: implications for fetal and future health. Semin Fetal Neonatal Med 2013; 18:48-55. [PMID: 23164810 DOI: 10.1016/j.siny.2012.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antiretroviral drugs (ARVs) are indispensable in the treatment and prevention of human immunodeficiency virus infection. Although their use before, during and after pregnancy is considered safe for mother and child, there are still lingering concerns about their long-term health consequences and the ramifications of their effects on lipid, glucose, intermediary and mitochondrial metabolism. This article reviews the known effects of ARVs on macromolecular and mitochondrial metabolism as well as the potential maternal, fetal, neonatal and adult health risks associated with abnormal energy metabolism during gestation. Recommendations about enhanced monitoring for these risks in affected populations are being provided.
Collapse
Affiliation(s)
- Brian Kirmse
- Children's National Medical Center, Division of Genetics and Metabolism, Washington, DC, USA.
| | | | | |
Collapse
|
172
|
Implications of microRNAs in the pathogenesis of diabetes. Arch Pharm Res 2013; 36:154-66. [DOI: 10.1007/s12272-013-0017-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/24/2012] [Indexed: 01/30/2023]
|
173
|
Mkaouar-Rebai E, Chamkha I, Mezghani N, Ben Ayed I, Fakhfakh F. Screening of mitochondrial mutations in Tunisian patients with mitochondrial disorders: an overview study. ACTA ACUST UNITED AC 2013; 24:163-78. [PMID: 23301511 DOI: 10.3109/19401736.2012.748045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate the spectrum of common mitochondrial mutations in Tunisia during the years of 2002-2012, 226 patients with mitochondrial disorders were clinically diagnosed with hearing loss, Leigh syndrome (LS), diabetes, cardiomyopathy, Kearns-Sayre syndrome (KSS), Pearson syndrome (PS), myopathy, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS) and Wolfram syndrome. Restriction fragment length polymorphism (PCR-RFLP), radioactive PCR, single specific primer-PCR (SSP-PCR) analysis and PCR-sequencing methods were used to identify the mutations. Two cases with m.1555A>G mutation and two families with the novel 12S rRNA m.735A>G transition were detected in patients with hearing loss. Three cases with m.8993T>G mutation, two patients with the novel m.5523T>G and m.5559A>G mutations in the tRNA(Trp) gene, and two individuals with the undescribed m.9478T>C mutation in the cytochrome c oxidase subunit III (COXIII) gene were found with LS. In addition, one case with hypertrophic cardiomyopathy and deafness presented the ND1 m.3395A>G mutation and the tRNA(Ile) m.4316A>G variation. Besides, multiple mitochondrial deletions were detected in patients with KSS, PS, and Wolfram syndrome. The m.14709T>C mutation in the tRNA(Glu) was reported in four maternally inherited diabetes and deafness patients and a novel tRNA(Val) m.1640A>G mutation was detected in a MELAS patient.
Collapse
Affiliation(s)
- Emna Mkaouar-Rebai
- Human Molecular Genetic Laboratory, Faculty of Medicine of Sfax, Avenue Magida Boulila, 3029 Sfax, Tunisia.
| | | | | | | | | |
Collapse
|
174
|
Schaffer SW, Jong CJ, Warner D, Ito T, Azuma J. Taurine Deficiency and MELAS Are Closely Related Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:153-65. [DOI: 10.1007/978-1-4614-6093-0_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
175
|
Kolesar JE, Wang CY, Taguchi YV, Chou SH, Kaufman BA. Two-dimensional intact mitochondrial DNA agarose electrophoresis reveals the structural complexity of the mammalian mitochondrial genome. Nucleic Acids Res 2012; 41:e58. [PMID: 23275548 PMCID: PMC3575812 DOI: 10.1093/nar/gks1324] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial genome exists in numerous structural conformations, complicating the study of mitochondrial DNA (mtDNA) metabolism. Here, we describe the development of 2D intact mtDNA agarose gel electrophoresis (2D-IMAGE) for the separation and detection of approximately two-dozen distinct topoisomers. Although the major topoisomers were well conserved across many cell and tissue types, unique differences in certain cells and tissues were also observed. RNase treatment revealed that partially hybridized RNAs associated primarily with covalently closed circular DNA, consistent with this structure being the template for transcription. Circular structures composed of RNA:DNA hybrids contained only heavy-strand DNA sequences, implicating them as lagging-strand replication intermediates. During recovery from replicative arrest, 2D-IMAGE showed changes in both template selection and replication products. These studies suggest that discrete topoisomers are associated with specific mtDNA-directed processes. Because of the increased resolution, 2D-IMAGE has the potential to identify novel mtDNA intermediates involved in replication or transcription, or pathology including oxidative linearization, deletions or depletion.
Collapse
Affiliation(s)
- Jill E Kolesar
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street VET220E, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
176
|
Gariani K, Philippe J, Jornayvaz FR. Non-alcoholic fatty liver disease and insulin resistance: from bench to bedside. DIABETES & METABOLISM 2012; 39:16-26. [PMID: 23266468 DOI: 10.1016/j.diabet.2012.11.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 11/09/2012] [Accepted: 11/10/2012] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in the developed countries. There is also growing evidence from basic and clinical research that NAFLD has a strong relationship to insulin resistance, which is a key factor in the development of type 2 diabetes. The aim of this review is to summarize the recent important findings linking NAFLD and insulin resistance. Lipid accumulation, particularly of diacylglycerol, appears to be of major importance in this process. Mitochondrial dysfunction, through decreased mitochondrial biogenesis, increases oxidative stress, and ageing also plays an important role. Finally, endoplasmic reticulum stress and inflammation also probably contribute to the development of insulin resistance via mechanisms that are still not well understood. Clinical aspects of NAFLD, such as its diagnosis and management, are also investigated in this review.
Collapse
Affiliation(s)
- K Gariani
- Service of Endocrinology, Diabetes, Hypertension and Nutrition, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | | | | |
Collapse
|
177
|
Chu HT, Hsiao WWL, Tsao TTH, Chang CM, Liu YW, Fan CC, Lin H, Chang HH, Yeh TJ, Chen JC, Huang DM, Chen CC, Kao CY. Quantitative assessment of mitochondrial DNA copies from whole genome sequencing. BMC Genomics 2012; 13 Suppl 7:S5. [PMID: 23282223 PMCID: PMC3521385 DOI: 10.1186/1471-2164-13-s7-s5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Mitochondrial dysfunction is associated with various aging diseases. The copy number of mtDNA in human cells may therefore be a potential biomarker for diagnostics of aging. Here we propose a new computational method for the accurate assessment of mtDNA copies from whole genome sequencing data. Results Two families of the human whole genome sequencing datasets from the HapMap and the 1000 Genomes projects were used for the accurate counting of mitochondrial DNA copy numbers. The results revealed the parental mitochondrial DNA copy numbers are significantly lower than that of their children in these samples. There are 8%~21% more copies of mtDNA in samples from the children than from their parents. The experiment demonstrated the possible correlations between the quantity of mitochondrial DNA and aging-related diseases. Conclusions Since the next-generation sequencing technology strives to deliver affordable and non-biased sequencing results, accurate assessment of mtDNA copy numbers can be achieved effectively from the output of whole genome sequencing. We implemented the method as a software package MitoCounter with the source code and user's guide available to the public at http://sourceforge.net/projects/mitocounter/.
Collapse
Affiliation(s)
- Hsueh-Ting Chu
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
Monogenic diabetes constitutes a heterogeneous group of single gene disorders. The molecular background and clinical picture of many of these diseases have been described. While each of these forms is much less prevalent than multifactorial type 1 and type 2 diabetes mellitus (T2DM), together they affect millions of patients worldwide. Genetic diagnosis, which has become widely available, is of great clinical importance for patients with single gene diabetes. It helps to fully understand the pathophysiology of the disease, tailor the optimal hypoglycemic treatment, and define the prognosis for the entire family. Monogenic diabetes forms can be divided into 2 large groups, resulting from impaired insulin secretion or from an abnormal response to insulin. There are several lessons we have been taught by single-gene diabetes. We learned that the gene responsible for the occurrence of diabetes can be identified if an appropriate search strategy is used. In addition, discoveries of genes responsible for monogenic disorders pointed to them as susceptibility candidates for T2DM. Moreover, establishing that some families of proteins or biological pathways, such as transcription factors or potassium channel subunits, are involved in monogenic diabetes sparked research on their involvement in multifactorial diabetes. Finally, the example of single gene diabetes, particularly HNF1A MODY and permanent neonatal diabetes associated with the KCNJ11 and ABCC8 genes, all efficiently controlled on sulfonylurea, inspires us to continue the efforts to tailor individual treatment for T2DM patients. In this review paper, we summarize the impact of single gene disease discoveries on diabetes research and clinical practice.
Collapse
Affiliation(s)
- Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University, Medical College, 15 Kopernika Street, 31-501 Krakow, Poland
- University Hospital, Krakow, Poland
| | - Jan Skupien
- Section on Genetics and Epidemiology, Joslin Diabetes Centre, Harvard Medical School, Boston, MA USA
| | - Maciej T. Malecki
- Department of Metabolic Diseases, Jagiellonian University, Medical College, 15 Kopernika Street, 31-501 Krakow, Poland
- University Hospital, Krakow, Poland
| |
Collapse
|
179
|
Bates MGD, Hollingsworth KG, Newman JH, Jakovljevic DG, Blamire AM, MacGowan GA, Keavney BD, Chinnery PF, Turnbull DM, Taylor RW, Trenell MI, Gorman GS. Concentric hypertrophic remodelling and subendocardial dysfunction in mitochondrial DNA point mutation carriers. Eur Heart J Cardiovasc Imaging 2012; 14:650-8. [PMID: 23129433 PMCID: PMC3681541 DOI: 10.1093/ehjci/jes226] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aims Hypertrophic remodelling and systolic dysfunction are common in patients with mitochondrial disease and independent predictors of morbidity and early mortality. Screening strategies for cardiac disease are unclear. We investigated whether myocardial abnormalities could be identified in mitochondrial DNA mutation carriers without clinical cardiac involvement. Methods and results Cardiac magnetic resonance imaging was performed in 22 adult patients with mitochondrial disease due to the m.3243A>G mutation, but no known cardiac involvement, and 22 age- and gender-matched control subjects: (i) Phosphorus-31- magnetic resonance spectroscopy, (ii) cine imaging (iii), cardiac tagging and (iv) late gadolinium enhancement (LGE) imaging. Disease burden was determined using the Newcastle Mitochondrial Disease Adult Scale (NMDAS) and urinary mutation load. Compared with control subjects, patients had an increased left ventricular mass index (LVMI), LV mass to end-diastolic volume (M/V) ratio, wall thicknesses (all P < 0.01), torsion and torsion to endocardial strain ratio (both P < 0.05). Longitudinal shortening was decreased in patients (P < 0.0001) and correlated with an increased LVMI (r = −0.52, P < 0.03), but there were no differences in the diastolic function. Among patients there was no correlation of LVMI or the M/V ratio with diabetic or hypertensive status, but the mutation load and NMDAS correlated with the LVMI (r = 0.71 and r = 0.79, respectively, both P < 0.001). The phosphocreatine/adenosine triphosphate ratio was decreased in patients (P < 0.001) but did not correlate with other parameters. No patients displayed focal LGE. Conclusion Concentric remodelling and subendocardial dysfunction occur in patients carrying m.3243A>G mutation without clinical cardiac disease. Patients with higher mutation loads and disease burden may be at increased risk of cardiac involvement.
Collapse
Affiliation(s)
- Matthew G D Bates
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
El-Hattab AW, Emrick LT, Craigen WJ, Scaglia F. Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders. Mol Genet Metab 2012; 107:247-52. [PMID: 22819233 DOI: 10.1016/j.ymgme.2012.06.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 06/30/2012] [Accepted: 06/30/2012] [Indexed: 12/20/2022]
Abstract
Mitochondrial diseases arise as a result of dysfunction of the respiratory chain, leading to inadequate ATP production required to meet the energy needs of various organs. On the other hand, nitric oxide (NO) deficiency can occur in mitochondrial diseases and potentially play major roles in the pathogenesis of several complications including stroke-like episodes, myopathy, diabetes, and lactic acidosis. NO deficiency in mitochondrial disorders can result from multiple factors including decreased NO production due to endothelial dysfunction, NO sequestration by cytochrome c oxidase, NO shunting into reactive nitrogen species formation, and decreased availability of the NO precursors arginine and citrulline. Arginine and citrulline supplementation can result in increased NO production and hence potentially have therapeutic effects on NO deficiency-related manifestations of mitochondrial diseases. Citrulline is a more efficient NO donor than arginine as it results in a greater increase in de novo arginine synthesis, which plays a major role in driving NO production. This concept is supported by the observation that the three enzymes responsible for recycling citrulline to NO (argininosuccinate synthase and lyase, and nitric oxide synthase) function as a complex that can result in compartmentalizing NO synthesis and channeling citrulline efficiently to NO synthesis. Clinical research evaluating the effect of arginine and citrulline in mitochondrial diseases is limited to uncontrolled open label studies demonstrating that arginine administration to subjects with MELAS syndrome results in improvement in the clinical symptoms associated with stroke-like episodes and a decrease in the frequency and severity of these episodes. Therefore, controlled clinical studies of the effects of arginine or citrulline supplementation on different aspects of mitochondrial diseases are needed to explore the potential therapeutic effects of these NO donors.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Medical Genetics Section, Department of Pediatrics, The Children's Hospital at King Fahad Medical City and King Saud bin Abdulaziz University for Health Science, Riyadh, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
181
|
Weiss H, Wester-Rosenloef L, Koch C, Koch F, Baltrusch S, Tiedge M, Ibrahim S. The mitochondrial Atp8 mutation induces mitochondrial ROS generation, secretory dysfunction, and β-cell mass adaptation in conplastic B6-mtFVB mice. Endocrinology 2012; 153:4666-76. [PMID: 22919063 DOI: 10.1210/en.2012-1296] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in mitochondrial DNA (mtDNA) cause a variety of pathologic phenotypes. In this study, we used conplastic mouse strains to characterize the impact of a mtDNA mutation in the Atp8 gene on β-cell function, reactive oxygen species (ROS) generation, β-cell mass, and glucose metabolism in response to high-fat diet (HFD). In comparison with B6-mt(AKR) controls, the B6-mt(FVB) strain carries a point mutation of the mtDNA-coded Atp8 gene (ATP synthase), leading to a fragmentated mitochondrial phenotype. Isolated pancreatic islets from 3-month-old B6-mt(FVB) mice showed increased mitochondrial generation of ROS, reduced cellular ATP levels, reduced glucose-induced insulin secretion, higher susceptibility to palmitate stress, and pathological morphology of mitochondria. ROS generation in β-cells was not affected by changes of the ambient glucose concentrations. Feeding a HFD for 3 months resulted in impaired glucose tolerance in B6-mt(FVB) mice but not in B6-mt(AKR) controls. In B6-mt(FVB) animals, glucose intolerance positively correlated with gain of body weight. Serum insulin levels and β-cell mass significantly increased in B6-mt(FVB) mice after a 3-month HFD. The data indicate that the mutation in the Atp8 gene induces mitochondrial dysfunction in β-cells with concomitant impairment of secretory responsiveness. This mitochondrial dysfunction induced a higher susceptibility to metabolic stressors, although this effect appeared not strictly linked to nutrient-induced ROS generation. The Atp8 gene mutation caused mitochondrial dysfunction, apparently stimulating an adaptive increase of β-cell mass in response to HFD, whereas mitochondrial ROS might have had an supportive role.
Collapse
Affiliation(s)
- Heike Weiss
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Schillingallee 70, 18057 Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
182
|
Supale S, Li N, Brun T, Maechler P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab 2012; 23:477-87. [PMID: 22766318 DOI: 10.1016/j.tem.2012.06.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/02/2012] [Accepted: 06/02/2012] [Indexed: 12/17/2022]
Abstract
In pancreatic β cells, mitochondria play a central role in coupling glucose metabolism to insulin exocytosis, thereby ensuring strict control of glucose-stimulated insulin secretion. Defects in mitochondrial function impair this metabolic coupling, and ultimately promote apoptosis and β cell death. Various factors have been identified that may contribute to mitochondrial dysfunction. In this review we address the emerging concept of complex links between these factors. We also discuss the role of the mitochondrial genome and mutations associated with diabetes, the effect of oxidative stress and reactive oxygen species, the sensitivity of mitochondria to lipotoxicity, and the adaptive dynamics of mitochondrial morphology. Better comprehension of the molecular mechanisms contributing to mitochondrial dysfunction will help drive the development of effective therapeutic approaches.
Collapse
Affiliation(s)
- Sachin Supale
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
183
|
Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:921-9. [DOI: 10.1016/j.bbagrm.2012.03.002] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/08/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
184
|
Abstract
Insulin resistance is a major risk factor for type 2 diabetes. AMP-activated protein kinase (AMPK) is a drug target in the improvement of insulin sensitivity. Several insulin-sensitizing medicines are able to activate AMPK through inhibition of mitochondrial functions. These drugs, such as metformin and STZ, inhibit ATP synthesis in mitochondria to raise AMP/ATP ratio in the process of AMPK activation. However, chemicals that activate AMPK directly or by activating its upstream kinases have not been approved for treatment of type 2 diabetes in humans. In an early study, we reported that berberine inhibited oxygen consumption in mitochondria, and increased AMP/ATP ratio in cells. The observation suggests an indirect mechanism for AMPK activation by berberine. Berberine stimulates glycolysis for ATP production that offsets the cell toxicity after mitochondria inhibition. The study suggests that mitochondrial inhibition is an approach for AMPK activation. In this review article, literature is critically reviewed to interpret the role of mitochondria function in the mechanism of insulin resistance, which supports that mitochondria inhibitors represent a new class of AMPK activator. The inhibitors are promising candidates for insulin sensitizers. This review provides a guideline in search for small molecule AMPK activators in the drug discovery for type 2 diabetes.
Collapse
|
185
|
Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. Proc Natl Acad Sci U S A 2012; 109:10528-33. [PMID: 22689997 DOI: 10.1073/pnas.1202367109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It has been hypothesized that respiration defects caused by accumulation of pathogenic mitochondrial DNA (mtDNA) mutations and the resultant overproduction of reactive oxygen species (ROS) or lactates are responsible for aging and age-associated disorders, including diabetes and tumor development. However, there is no direct evidence to prove the involvement of mtDNA mutations in these processes, because it is difficult to exclude the possible involvement of nuclear DNA mutations. Our previous studies resolved this issue by using an mtDNA exchange technology and showed that a G13997A mtDNA mutation found in mouse tumor cells induces metastasis via ROS overproduction. Here, using transmitochondrial mice (mito-mice), which we had generated previously by introducing G13997A mtDNA from mouse tumor cells into mouse embryonic stem cells, we provide convincing evidence supporting part of the abovementioned hypothesis by showing that G13997A mtDNA regulates diabetes development, lymphoma formation, and metastasis--but not aging--in this model.
Collapse
|
186
|
Jain D, Jain R, Eberhard D, Eglinger J, Bugliani M, Piemonti L, Marchetti P, Lammert E. Age- and diet-dependent requirement of DJ-1 for glucose homeostasis in mice with implications for human type 2 diabetes. J Mol Cell Biol 2012; 4:221-30. [PMID: 22611253 DOI: 10.1093/jmcb/mjs025] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Elderly patients often suffer from multiple age-related diseases. Here we show that the expression of DJ-1, an antioxidant protein with reduced expression in the central nervous system of patients with Parkinson's disease, is reduced in pancreatic islets of patients with type 2 diabetes mellitus (T2DM). In contrast, under non-diabetic conditions, DJ-1 expression increases in mouse and human islets during aging. In mouse islets, we show that DJ-1 prevents an increase in reactive oxygen species levels as the mice age. This antioxidant function preserves mitochondrial integrity and physiology, prerequisites for glucose-stimulated insulin secretion. Accordingly, DJ-1-deficient mice develop glucose intolerance and reduced β cell area as they age or gain weight. Our data suggest that DJ-1 is more generally involved in age- and lifestyle-related human diseases and show for the first time that DJ-1 plays a key role in glucose homeostasis and might serve as a novel drug target for T2DM.
Collapse
Affiliation(s)
- Deepak Jain
- Institute of Metabolic Physiology, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Mazzaccara C, Iafusco D, Liguori R, Ferrigno M, Galderisi A, Vitale D, Simonelli F, Landolfo P, Prisco F, Masullo M, Sacchetti L. Mitochondrial diabetes in children: seek and you will find it. PLoS One 2012; 7:e34956. [PMID: 22536343 PMCID: PMC3334935 DOI: 10.1371/journal.pone.0034956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Maternally Inherited Diabetes and Deafness (MIDD) is a rare form of diabetes due to defects in mitochondrial DNA (mtDNA). 3243 A>G is the mutation most frequently associated with this condition, but other mtDNA variants have been linked with a diabetic phenotype suggestive of MIDD. From 1989 to 2009, we clinically diagnosed mitochondrial diabetes in 11 diabetic children. Diagnosis was based on the presence of one or more of the following criteria: 1) maculopathy; 2) hearing impairment; 3) maternal heritability of diabetes/impaired fasting glucose and/or hearing impairment and/or maculopathy in three consecutive generations (or in two generations if 2 or 3 members of a family were affected). We sequenced the mtDNA in the 11 probands, in their mothers and in 80 controls. We identified 33 diabetes-suspected mutations, 1/33 was 3243A>G. Most patients (91%) and their mothers had mutations in complex I and/or IV of the respiratory chain. We measured the activity of these two enzymes and found that they were less active in mutated patients and their mothers than in the healthy control pool. The prevalence of hearing loss (36% vs 75–98%) and macular dystrophy (54% vs 86%) was lower in our mitochondrial diabetic adolescents than reported in adults. Moreover, we found a hitherto unknown association between mitochondrial diabetes and celiac disease. In conclusion, mitochondrial diabetes should be considered a complex syndrome with several phenotypic variants. Moreover, deafness is not an essential component of the disease in children. The whole mtDNA should be screened because the 3243A>G variant is not as frequent in children as in adults. In fact, 91% of our patients were mutated in the complex I and/or IV genes. The enzymatic assay may be a useful tool with which to confirm the pathogenic significance of detected variants.
Collapse
Affiliation(s)
- Cristina Mazzaccara
- CEINGE – Advanced Biotechnologies S. C. a R. L., Naples, Italy
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Dario Iafusco
- Department of Pediatrics, Second University of Naples, Naples, Italy
| | - Rosario Liguori
- CEINGE – Advanced Biotechnologies S. C. a R. L., Naples, Italy
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | | | - Alfonso Galderisi
- Department of Pediatrics, Second University of Naples, Naples, Italy
| | - Domenico Vitale
- CEINGE – Advanced Biotechnologies S. C. a R. L., Naples, Italy
| | | | - Paolo Landolfo
- Department of Ophthalmology, Second University of Naples, Naples, Italy
| | - Francesco Prisco
- Department of Pediatrics, Second University of Naples, Naples, Italy
| | - Mariorosario Masullo
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- Department of Study of the Institutions and Territorial Systems, University of Naples “Parthenope”, Naples, Italy
| | - Lucia Sacchetti
- CEINGE – Advanced Biotechnologies S. C. a R. L., Naples, Italy
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
188
|
Schanz J, Rudofsky G, Runz H, Rath T. A deaf mother and son with diabetes and renal failure. Clin Kidney J 2012; 5:137-139. [PMID: 29497515 PMCID: PMC5783218 DOI: 10.1093/ckj/sfs018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chronic renal failure is a well-known complication of long-standing diabetes. Moreover, audiological abnormalities are a common feature of patients with end-stage renal disease. Severe deafness, however, is not a typical symptom in most patients with chronic renal failure and likewise in patients with diabetes mellitus. In this case report, we describe a young patient with insulin-dependant diabetes mellitus, severe deafness requiring hearing aid and chronic renal failure outlining typical clinical features of the maternally inherited diabetes with deafness syndrome. Genetic testing confirmed the presence of the m.3243A>G mutation.
Collapse
Affiliation(s)
- Jurik Schanz
- Department of Endocrinology, Nephrology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Gottfried Rudofsky
- Department of Endocrinology, Nephrology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Heiko Runz
- Department of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Thomas Rath
- Department of Nephrology and Transplantation Medicine, Westpfalzklinikum Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
189
|
Affiliation(s)
- Roy Taylor
- Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, U.K.
| |
Collapse
|
190
|
García E, Sánchez R, Partida M, de Mingo ML, Calatayud M, Martínez G, Hawkins F. [Patient with diabetes and impaired hearing]. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2012; 59:220-222. [PMID: 22153565 DOI: 10.1016/j.endonu.2011.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/22/2011] [Indexed: 05/31/2023]
MESH Headings
- Adult
- DNA, Mitochondrial/genetics
- Deafness/diagnosis
- Deafness/drug therapy
- Deafness/genetics
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Epilepsy/etiology
- Female
- Genes, Mitochondrial
- Hearing Loss, Bilateral/genetics
- Hearing Loss, Conductive/genetics
- Hearing Loss, Mixed Conductive-Sensorineural/genetics
- Humans
- Hypoglycemia/etiology
- Insulin/therapeutic use
- Mitochondrial Diseases
- Mutation, Missense
- Pedigree
- Polymorphism, Restriction Fragment Length
- RNA, Transfer, Leu/genetics
- Ubiquinone/therapeutic use
Collapse
|
191
|
Aroor AR, Mandavia C, Ren J, Sowers JR, Pulakat L. Mitochondria and Oxidative Stress in the Cardiorenal Metabolic Syndrome. Cardiorenal Med 2012; 2:87-109. [PMID: 22619657 DOI: 10.1159/000335675] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 12/16/2022] Open
Abstract
Mitochondria play a fundamental role in the maintenance of normal structure, function, and survival of tissues. There is considerable evidence for mitochondrial dysfunction in association with metabolic diseases including insulin resistance, obesity, diabetes, and the cardiorenal metabolic syndrome. The phenomenon of reactive oxygen species (ROS)-induced ROS release through interactions between cytosolic and mitochondrial oxidative stress contributes to a vicious cycle of enhanced oxidative stress and mitochondrial dysfunction. Activation of the cytosolic and mitochondrial NADPH oxidase system, impairment of the mitochondrial electron transport, activation of p66shc pathway-targeting mitochondria, endoplasmic reticular stress, and activation of the mammalian target of the rapamycin-S6 kinase pathway underlie dysregulation of mitochondrial dynamics and promote mitochondrial oxidative stress. These processes are further modulated by acetyltransferases including sirtuin 1 and sirtuin 3, the former regulating nuclear acetylation and the latter regulating mitochondrial acetylation. The regulation of mitochondrial functions by microRNAs forms an additional layer of molecular control of mitochondrial oxidative stress. Alcohol further exacerbates mitochondrial oxidative stress induced by overnutrition and promotes the development of metabolic diseases.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Mo., USA
| | | | | | | | | |
Collapse
|
192
|
Stott-Miller M, Chen C, Chuang SC, Lee YCA, Boccia S, Brenner H, Cadoni G, Dal Maso L, La Vecchia C, Lazarus P, Levi F, Matsuo K, Morgenstern H, Müller H, Muscat J, Olshan AF, Purdue MP, Serraino D, Vaughan TL, Zhang ZF, Boffetta P, Hashibe M, Schwartz SM. History of diabetes and risk of head and neck cancer: a pooled analysis from the international head and neck cancer epidemiology consortium. Cancer Epidemiol Biomarkers Prev 2012; 21:294-304. [PMID: 22144496 PMCID: PMC3275674 DOI: 10.1158/1055-9965.epi-11-0590] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND A history of diabetes is associated with an increased risk of several types of cancers. Whether diabetes is a risk factor for head and neck cancer (HNC) has received little attention. METHODS We pooled data from 12 case-control studies including 6,448 cases and 13,747 controls, and estimated OR and 95% CI for the associations between diabetes and HNC, adjusted for age, education level, sex, race/ethnicity, study center, cigarette smoking, alcohol use, and body mass index. RESULTS We observed a weak association between diabetes and the incidence of HNC overall (OR, 1.09; 95% CI: 0.95-1.24). However, we observed a modest association among never smokers (OR, 1.59; 95% CI: 1.22-2.07), and no association among ever smokers (OR, 0.96; 95% CI: 0.83-1.11); likelihood ratio test for interaction P = 0.001. CONCLUSION A history of diabetes was weakly associated with HNC overall, but we observed evidence of effect modification by smoking status, with a positive association among those who never smoked cigarettes. IMPACT This study suggests that glucose metabolism abnormalities may be a HNC risk factor in subgroups of the population. Prospective studies incorporating biomarkers are needed to improve our understanding of the relationship between diabetes and HNC risk, possibly providing new strategies in the prevention of HNC.
Collapse
Affiliation(s)
- Marni Stott-Miller
- Fred Hutchinson Cancer Research Center, Mailstop: M4-C308, 1100 Fairview Ave N., Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Desquiret-Dumas V, Gueguen N, Barth M, Chevrollier A, Hancock S, Wallace DC, Amati-Bonneau P, Henrion D, Bonneau D, Reynier P, Procaccio V. Metabolically induced heteroplasmy shifting and l-arginine treatment reduce the energetic defect in a neuronal-like model of MELAS. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1019-29. [PMID: 22306605 DOI: 10.1016/j.bbadis.2012.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 11/17/2022]
Abstract
The m.3243A>G variant in the mitochondrial tRNA(Leu(UUR)) gene is a common mitochondrial DNA (mtDNA) mutation. Phenotypic manifestations depend mainly on the heteroplasmy, i.e. the ratio of mutant to normal mtDNA copies. A high percentage of mutant mtDNA is associated with a severe, life-threatening neurological syndrome known as MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). MELAS is described as a neurovascular disorder primarily affecting the brain and blood vessels, but the pathophysiology of the disease is poorly understood. We developed a series of cybrid cell lines at two different mutant loads: 70% and 100% in the nuclear background of a neuroblastoma cell line (SH-SY5Y). We investigated the impact of the mutation on the metabolism and mitochondrial respiratory chain activity of the cybrids. The m.3243A>G mitochondrial mutation induced a metabolic switch towards glycolysis in the neuronal cells and produced severe defects in respiratory chain assembly and activity. We used two strategies to compensate for the biochemical defects in the mutant cells: one consisted of lowering the glucose content in the culture medium, and the other involved the addition of l-arginine. The reduction of glucose significantly shifted the 100% mutant cells towards the wild-type, reaching a 90% mutant level and restoring respiratory chain complex assembly. The addition of l-arginine, a nitric oxide (NO) donor, improved complex I activity in the mutant cells in which the defective NO metabolism had led to a relative shortage of NO. Thus, metabolically induced heteroplasmy shifting and l-arginine therapy may constitute promising therapeutic strategies against MELAS.
Collapse
Affiliation(s)
- Valerie Desquiret-Dumas
- Department of Biochemistry and Genetics, Angers University Hospital, School of Medicine, Angers, F-49000, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Gardner DSL, Tai ES. Clinical features and treatment of maturity onset diabetes of the young (MODY). Diabetes Metab Syndr Obes 2012; 5:101-8. [PMID: 22654519 PMCID: PMC3363133 DOI: 10.2147/dmso.s23353] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maturity onset diabetes of the young (MODY) is a heterogeneous group of disorders that result in β-cell dysfunction. It is rare, accounting for just 1%-2% of all diabetes. It is often misdiagnosed as type 1 or type 2 diabetes, as it is often difficult to distinguish MODY from these two forms. However, diagnosis allows appropriate individualized care, depending on the genetic etiology, and allows prognostication in family members. In this review, we discuss features of the common causes of MODY, as well as the treatment and diagnosis of MODY.
Collapse
Affiliation(s)
- Daphne SL Gardner
- Department of Endocrinology, Singapore General Hospital, Singapore
- Correspondence: Daphne SL Gardner, Department of Endocrinology, Singapore General Hospital, Block 6, Level 6, Outram Road, Singapore 169608, Tel +65 6321 4523, Email
| | - E Shyong Tai
- Department of Endocrinology, National University Hospital, Singapore
| |
Collapse
|
195
|
Lindroos MM, Borra R, Mononen N, Lehtimäki T, Virtanen KA, Lepomäki V, Guiducci L, Iozzo P, Majamaa K, Nuutila P. Mitochondrial diabetes is associated with insulin resistance in subcutaneous adipose tissue but not with increased liver fat content. J Inherit Metab Dis 2011; 34:1205-12. [PMID: 21556834 DOI: 10.1007/s10545-011-9338-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/27/2011] [Accepted: 04/07/2011] [Indexed: 12/18/2022]
Abstract
We recently showed that patients with mitochondrial diabetes are insulin resistant in skeletal muscle before the decline in insulin secretion is observed. In this study, we further evaluate whether insulin resistance is associated with increased ectopic fat accumulation and altered adipose and hepatic tissue insulin sensitivity. We studied 15 nonobese patients with the m.3243A > G mutation. Five were without diabetes (group 1), three had newly diagnosed diabetes (group 2), and seven had previously diagnosed diabetes (group 3). Thirteen healthy volunteers of similar age and body mass index (BMI) served as controls. Insulin-stimulated glucose uptake was measured with positron emission tomography using 2- [(18)F]-fluoro-2-deoxyglucose during euglycemic hyperinsulinemia. Fat masses and liver fat content were measured with magnetic resonance imaging and spectroscopy. Compared with controls, insulin-stimulated glucose uptake in adipose tissue was decreased by ∼50% in all groups with the m.3243A > G mutation. In addition, fat masses were not different, but insulin-mediated suppression of lipolysis and adiponectin metabolism were blunted in patients with the m.3243A > G mutation. Hepatic fat content was normal (<5.6%) in 80% of patients and significantly elevated in one case only. Hepatic glucose metabolism in patients with m.3243A > G did not differ from that of controls. In conclusion, m.3243A > G mutation affects subcutaneous adipose tissue metabolism. This seems to occur before aberrant liver metabolism, if any, can be observed or before beta-cell failure results in mitochondrial diabetes.
Collapse
Affiliation(s)
- Markus M Lindroos
- Turku PET Centre, University of Turku and Turku University Hospital, P.O. Box 52, FIN-20521, Turku, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Say RE, Whittaker RG, Turnbull HE, McFarland R, Taylor RW, Turnbull DM. Mitochondrial disease in pregnancy: a systematic review. Obstet Med 2011; 4:90-4. [PMID: 27579099 PMCID: PMC4989604 DOI: 10.1258/om.2011.110008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2011] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial diseases are heterogeneous in clinical presentation and genotype. The incidence of known pathogenic mitochondrial DNA mutations in the general population is 1 in 500. Little is known about the implications of pregnancy for women with mitochondrial disease. We undertook a systematic review of the literature on mitochondrial disease in pregnancy. Ten case reports were identified. The most common complications were threatened preterm labour (5 women) and preeclampsia (4 women). Two women experienced magnesium sulphate toxicity. Pregnancy had a varied effect on mitochondrial disease with some women being asymptomatic; others developing mild symptoms such as exercise intolerance or muscle weakness which resolved postnatally; and others developed more serious, persistent symptoms such as symptomatic Wolff-Parkinson-White syndrome, persistent paraesthesia and focal segmental glomerulosclerosis. Women with mitochondrial disease appear to be at increased risk of complications during pregnancy and labour but further prospective cohort studies are needed.
Collapse
Affiliation(s)
- R E Say
- Institute of Cellular Medicine
| | - R G Whittaker
- Mitochondrial Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - H E Turnbull
- Mitochondrial Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - R McFarland
- Mitochondrial Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - R W Taylor
- Mitochondrial Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - D M Turnbull
- Mitochondrial Research Group, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
197
|
Liu Y, Lee YF, Ng MK. SNP and gene networks construction and analysis from classification of copy number variations data. BMC Bioinformatics 2011; 12 Suppl 5:S4. [PMID: 21989070 PMCID: PMC3226254 DOI: 10.1186/1471-2105-12-s5-s4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Detection of genomic DNA copy number variations (CNVs) can provide a complete and more comprehensive view of human disease. It is interesting to identify and represent relevant CNVs from a genome-wide data due to high data volume and the complexity of interactions. RESULTS In this paper, we incorporate the DNA copy number variation data derived from SNP arrays into a computational shrunken model and formalize the detection of copy number variations as a case-control classification problem. More than 80% accuracy can be obtained using our classification model and by shrinkage, the number of relevant CNVs to disease can be determined. In order to understand relevant CNVs, we study their corresponding SNPs in the genome and a statistical software PLINK is employed to compute the pair-wise SNP-SNP interactions, and identify SNP networks based on their P-values. Our selected SNP networks are statistically significant compared with random SNP networks and play a role in the biological process. For the unique genes that those SNPs are located in, a gene-gene similarity value is computed using GOSemSim and gene pairs that have similarity values being greater than a threshold are selected to construct gene networks. A gene enrichment analysis show that our gene networks are functionally important.Experimental results demonstrate that our selected SNP and gene networks based on the selected CNVs contain some functional relationships directly or indirectly to disease study. CONCLUSIONS Two datasets are given to demonstrate the effectiveness of the introduced method. Some statistical and biological analysis show that this shrunken classification model is effective in identifying CNVs from genome-wide data and our proposed framework has a potential to become a useful analysis tool for SNP data sets.
Collapse
Affiliation(s)
- Yang Liu
- Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | |
Collapse
|
198
|
Radha V, Kanthimathi S, Mohan V. Genetics of Type 2 diabetes in Asian Indians. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/dmt.11.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
199
|
Kanwar YS, Sun L, Xie P, Liu FY, Chen S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:395-423. [PMID: 21261520 DOI: 10.1146/annurev.pathol.4.110807.092150] [Citation(s) in RCA: 580] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetic nephropathy is a well-known complication of diabetes and is a leading cause of chronic renal failure in the Western world. It is characterized by the accumulation of extracellular matrix in the glomerular and tubulointerstitial compartments and by the thickening and hyalinization of intrarenal vasculature. The various cellular events and signaling pathways activated during diabetic nephropathy may be similar in different cell types. Such cellular events include excessive channeling of glucose intermediaries into various metabolic pathways with generation of advanced glycation products, activation of protein kinase C, increased expression of transforming growth factor β and GTP-binding proteins, and generation of reactive oxygen species. In addition to these metabolic and biochemical derangements, changes in the intraglomerular hemodynamics, modulated in part by local activation of the renin-angiotensin system, compound the hyperglycemia-induced injury. Events involving various intersecting pathways occur in most cell types of the kidney.
Collapse
Affiliation(s)
- Yashpal S Kanwar
- Departments of Pathology, Northwestern University School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
200
|
Ryu HS, Park SY, Ma D, Zhang J, Lee W. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One 2011; 6:e17343. [PMID: 21464990 PMCID: PMC3064581 DOI: 10.1371/journal.pone.0017343] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/31/2011] [Indexed: 12/24/2022] Open
Abstract
Background Mitochondrial dysfunction induces insulin resistance in myocytes via a reduction of insulin receptor substrate-1 (IRS-1) expression. However, the effect of mitochondrial dysfunction on insulin sensitivity is not understood well in hepatocytes. Although research has implicated the translational repression of target genes by endogenous non-coding microRNAs (miRNA) in the pathogenesis of various diseases, the identity and role of the miRNAs that are involved in the development of insulin resistance also remain largely unknown. Methodology To determine whether mitochondrial dysfunction induced by genetic or metabolic inhibition causes insulin resistance in hepatocytes, we analyzed the expression and insulin-stimulated phosphorylation of insulin signaling intermediates in SK-Hep1 hepatocytes. We used qRT-PCR to measure cellular levels of selected miRNAs that are thought to target IRS-1 3′ untranslated regions (3′UTR). Using overexpression of miR-126, we determined whether IRS-1-targeting miRNA causes insulin resistance in hepatocytes. Principal Findings Mitochondrial dysfunction resulting from genetic (mitochondrial DNA depletion) or metabolic inhibition (Rotenone or Antimycin A) induced insulin resistance in hepatocytes via a reduction in the expression of IRS-1 protein. In addition, we observed a significant up-regulation of several miRNAs presumed to target IRS-1 3′UTR in hepatocytes with mitochondrial dysfunction. Using reporter gene assay we confirmed that miR-126 directly targeted to IRS-1 3′UTR. Furthermore, the overexpression of miR-126 in hepatocytes caused a substantial reduction in IRS-1 protein expression, and a consequent impairment in insulin signaling. Conclusions/Significance We demonstrated that miR-126 was actively involved in the development of insulin resistance induced by mitochondrial dysfunction. These data provide novel insights into the molecular basis of insulin resistance, and implicate miRNA in the development of metabolic disease.
Collapse
Affiliation(s)
- Hyun Su Ryu
- Department of Biochemistry, Dongguk University College of Medicine, Kyungju, Korea
| | - Seung-Yoon Park
- Department of Biochemistry, Dongguk University College of Medicine, Kyungju, Korea
| | - Duan Ma
- Key Lab of Molecular Medicine, Shanghai Medical College, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Lab of Molecular Medicine, Shanghai Medical College, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, Kyungju, Korea
- * E-mail:
| |
Collapse
|