151
|
Santovito E, Greco D, Logrieco AF, Avantaggiato G. Eubiotics for Food Security at Farm Level: Yeast Cell Wall Products and Their Antimicrobial Potential Against Pathogenic Bacteria. Foodborne Pathog Dis 2018; 15:531-537. [PMID: 29874106 DOI: 10.1089/fpd.2018.2430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The population increase in the last century was the first cause of the industrialization of animal productions, together with the necessity to satisfy the high food demand and the lack of space and land for the husbandry practices. As a consequence, the farmers moved from extensive to intensive agricultural systems and introduced new practices, such as the administration of antimicrobial drugs. Antibiotics were then used as growth promoters and for disease prevention. The uncontrolled and continuous use of antibiotics contributed to the spread of antibiotic resistance in animals, and this had adverse impacts on human health. This emergence led the European Union, in 2003, to ban the marketing and use of antibiotics as growth promoters, and for prophylaxis purposes from January 2006. This ban caused problems in farms, due to the decrease in animal performances (weight gain, feed conversion ratio, reproduction, etc.), and the rise in the incidence of certain diseases, such as those induced by Clostridium perfringens, Salmonella, Escherichia coli, and Listeria monocytogenes. The economic losses due to the ban increased the interest in researching alternative strategies for the prophylaxis of infectious diseases and for health and growth promotion, such as feed additives. Yeast-based materials, such as cell wall extract, represent promising alternatives to antibiotics, on the base of their prebiotic activity and their claimed capacity to bind enteropathogenic bacteria. Several authors reported examples of the effectiveness of yeast cell wall products in adsorbing bacteria, but there is a lack of knowledge on the mechanisms involved in this interaction. The purpose of this review is to provide an overview of the current approaches used for the control of pathogenic bacteria in feed, with a particular focus on the use of yeast-derived materials proposed to control zoonoses at farm level, and on their effect on animal health.
Collapse
Affiliation(s)
- Elisa Santovito
- Institute of Sciences of Food Production (ISPA) , National Research Council (CNR), Bari, Italy
| | - Donato Greco
- Institute of Sciences of Food Production (ISPA) , National Research Council (CNR), Bari, Italy
| | - Antonio F Logrieco
- Institute of Sciences of Food Production (ISPA) , National Research Council (CNR), Bari, Italy
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production (ISPA) , National Research Council (CNR), Bari, Italy
| |
Collapse
|
152
|
Alkhudhayri AA, Dkhil MA, Al-Quraishy S. Nanoselenium prevents eimeriosis-induced inflammation and regulates mucin gene expression in mice jejunum. Int J Nanomedicine 2018; 13:1993-2003. [PMID: 29662312 PMCID: PMC5892949 DOI: 10.2147/ijn.s162355] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Although elemental selenium has been found to be effective against Eimeria, no study has yet investigated the effects of selenium nanoparticles (SeNPs) on the Eimeria parasite. The aim of this study, therefore, was to evaluate the ameliorative effect of SeNPs compared with elemental selenium on mice jejunum infected with sporulated oocysts of Eimeria papillata. Methods The mice were divided into 4 groups, with the first being the non-infected, control group, and the second, third, and fourth groups being orally inoculated with 1,000 sporulated oocysts of E. papillata. The third and fourth groups also received, respectively, an oral dose of 0.1 mg/kg sodium selenite and 0.5 mg/kg SeNPs daily for 5 consecutive days. Results The infection induced severe histopathological jejunal damage, reflected in the form of destroyed jejunal mucosa, increased jejunal oxidative damage, a reduction in the number of jejunal goblet cells, and increased production of pro-inflammatory cytokines, quantified by real-time polymerase chain reaction. Treatment of mice with SeNPs significantly decreased the oocyst output in the feces by ~80%. Furthermore, the number of parasitic stages counted in stained jejunal paraffin sections was significantly decreased after the mice were treated with SeNPs. In addition, the number of goblet cells increased from 42.6±7.3 to 95.3±8.5 cells/10 villus-crypt units after treatment. By day 5 post-infection with E. papillata, SeNPs could be seen to have significantly increased the activity of glutathione peroxidase from 263±10 to 402.4±9 mU/mL. Finally, SeNPs were able to regulate the gene expression of mucin 2, interleukin 1β, interleukin 6, interferon-γ, and tumor necrosis factor α in the jejunum of mice infected with E. papillata. Conclusion The results collectively showed that SeNPs are more effective than sodium selenite with regard to their anti-coccidial, anti-oxidant, and anti-inflammatory role against eimeriosis induced in the jejunum of mice.
Collapse
Affiliation(s)
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
153
|
Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018; 23:E795. [PMID: 29601469 PMCID: PMC6017557 DOI: 10.3390/molecules23040795] [Citation(s) in RCA: 638] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Due to the increased demand of animal protein in developing countries, intensive farming is instigated, which results in antibiotic residues in animal-derived products, and eventually, antibiotic resistance. Antibiotic resistance is of great public health concern because the antibiotic-resistant bacteria associated with the animals may be pathogenic to humans, easily transmitted to humans via food chains, and widely disseminated in the environment via animal wastes. These may cause complicated, untreatable, and prolonged infections in humans, leading to higher healthcare cost and sometimes death. In the said countries, antibiotic resistance is so complex and difficult, due to irrational use of antibiotics both in the clinical and agriculture settings, low socioeconomic status, poor sanitation and hygienic status, as well as that zoonotic bacterial pathogens are not regularly cultured, and their resistance to commonly used antibiotics are scarcely investigated (poor surveillance systems). The challenges that follow are of local, national, regional, and international dimensions, as there are no geographic boundaries to impede the spread of antibiotic resistance. In addition, the information assembled in this study through a thorough review of published findings, emphasized the presence of antibiotics in animal-derived products and the phenomenon of multidrug resistance in environmental samples. This therefore calls for strengthening of regulations that direct antibiotic manufacture, distribution, dispensing, and prescription, hence fostering antibiotic stewardship. Joint collaboration across the world with international bodies is needed to assist the developing countries to implement good surveillance of antibiotic use and antibiotic resistance.
Collapse
Affiliation(s)
- Christy Manyi-Loh
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Sampson Mamphweli
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Edson Meyer
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Anthony Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| |
Collapse
|
154
|
Obaidat MM, Bani Salman AE, Davis MA, Roess AA. Major diseases, extensive misuse, and high antimicrobial resistance of Escherichia coli in large- and small-scale dairy cattle farms in Jordan. J Dairy Sci 2018; 101:2324-2334. [DOI: 10.3168/jds.2017-13665] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
|
155
|
Mingmongkolchai S, Panbangred W. Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol 2018; 124:1334-1346. [PMID: 29316021 DOI: 10.1111/jam.13690] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022]
Abstract
The use of probiotics as feed supplements in animal production has increased considerably over the last decade, particularly since the ban on antibiotic growth promoters in the livestock sector. Several Bacillus sp. are attractive for use as probiotic supplements in animal feed due to their ability to produce spores. Their heat stability and ability to survive the low pH of the gastric barrier represent an advantage over other probiotic micro-organisms. This review discusses important characteristics required for selection of Bacillus probiotic strains and summarizes the beneficial effect of Bacillus-based feed additives on animal production. Although the mechanism of action of Bacillus probiotics has not been fully elucidated, they are effective in improving the growth, survival and health status of terrestrial and aquatic livestock. Bacillus strains also have utility in bioremediation and can reduce nitrogenous waste, thereby improving environmental conditions and water quality. Finally, recent innovative approaches for using Bacillus spores in various applications are discussed.
Collapse
Affiliation(s)
- S Mingmongkolchai
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Science, Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Mahidol University, Bangkok, Thailand
| | - W Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Science, Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Mahidol University, Bangkok, Thailand
| |
Collapse
|
156
|
Delatour T, Racault L, Bessaire T, Desmarchelier A. Screening of veterinary drug residues in food by LC-MS/MS. Background and challenges. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:632-645. [PMID: 29324075 DOI: 10.1080/19440049.2018.1426890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Regulatory agencies and government authorities have established maximum residue limits (MRL) in various food matrices of animal origin for supporting governments and food operators in the monitoring of veterinary drug residues in the food chain, and ultimately in the consumer's plate. Today, about 200 veterinary drug residues from several families, mainly with antibiotic, antiparasitic or antiinflammatory activities, are regulated in a variety of food matrices such as milk, meat or egg. This article provides a review of the regulatory framework in milk and muscle including data from Codex Alimentarius, Europe, the U.S.A., Canada and China for about 220 veterinary drugs. The article also provides a comprehensive overview of the challenge for food control, and emphasizes the pivotal role of liquid chromatography-mass spectrometry (LC-MS), either in tandem with quadrupoles (LC-MS/MS) or high resolution MS (LC-HRMS), for ensuring an adequate consumer protection combined with an affordable cost. The capability of a streamlined LC-MS/MS platform for screening 152 veterinary drug residues in a broad range of raw materials and finished products is highlighted in a production line perspective. The rationale for a suite of four methods intended to achieve appropriate performance in terms of scope and sensitivity is presented. Overall, the platform encompasses one stream for the determination of 105 compounds in a run (based on acidic QuEChERS-like), plus two streams for 23 β-lactams (alkaline QuEChERS-like) and 10 tetracyclines (low-temperature partitioning), respectively, and a dedicated stream for 14 aminoglycosides (molecularly-imprinted polymer).
Collapse
Affiliation(s)
- Thierry Delatour
- a Nestlé Research Center , Institute of Food Safety and Analytical Science , Lausanne , Switzerland
| | - Lucie Racault
- a Nestlé Research Center , Institute of Food Safety and Analytical Science , Lausanne , Switzerland
| | - Thomas Bessaire
- a Nestlé Research Center , Institute of Food Safety and Analytical Science , Lausanne , Switzerland
| | - Aurélien Desmarchelier
- a Nestlé Research Center , Institute of Food Safety and Analytical Science , Lausanne , Switzerland
| |
Collapse
|
157
|
Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, Ray P, Puniya AK, Panwar H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front Vet Sci 2018; 4:237. [PMID: 29359135 PMCID: PMC5766636 DOI: 10.3389/fvets.2017.00237] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host-microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive overview on possible alternates to current day antibiotics that could be implemented in livestock sector.
Collapse
Affiliation(s)
- Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Mudit Chandra
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Brij Pal Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Rohini Devidas Gulhane
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Jatinder Paul Singh Gill
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Kumar Puniya
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| |
Collapse
|
158
|
Vadalasetty KP, Lauridsen C, Engberg RM, Vadalasetty R, Kutwin M, Chwalibog A, Sawosz E. Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. BMC Vet Res 2018; 14:1. [PMID: 29291752 PMCID: PMC5748950 DOI: 10.1186/s12917-017-1323-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNP) have gained much attention in recent years due to their biomedical applications, especially as antimicrobial agents. AgNP may be used in poultry production as an alternative to the use of antibiotic growth promoter. However, little is known about the impact of oral administration of AgNP on the gut microbiota and the immune system. The aim of the present study was to investigate the effects of AgNP on growth, hematological and immunological profile as well as intestinal microbial composition in broilers challenged with Campylobacter jejuni (C. jejuni). RESULTS AgNP did not affect the intestinal microbial profile of birds. The body weight gain and the relative weights of bursa and spleen were reduced when supplemented with AgNP. There was no difference with respect to packed cell volume. However, the plasma concentrations of IgG and IgM were lower in birds receiving AgNP compared to the non-supplemented control group. The expression of TNF-α and NF-kB at mRNA level was significantly higher in birds receiving AgNP. CONCLUSIONS The application of AgNP via the drinking water in the concentration of 50 ppm reduced broiler growth, impaired immune functions and had no antibacterial effect on different intestinal bacterial groups, which may limit the applicability of AgNP against C. jejuni in broiler chickens.
Collapse
Affiliation(s)
| | | | | | - Radhika Vadalasetty
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
159
|
Kim YJ, Moon JS, Oh DH, Chon JW, Song BR, Lim JS, Heo EJ, Park HJ, Wee SH, Sung K. Genotypic characterization of ESBL-producing E. coli from imported meat in South Korea. Food Res Int 2017; 107:158-164. [PMID: 29580473 DOI: 10.1016/j.foodres.2017.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 11/26/2022]
Abstract
Twenty extended-spectrum β-lactamase (ESBL)-producing E. coli strains were isolated from imported meat in South Korea. ESBL strains of E. coli were detected in chicken (14/20) more often than in pork (6/20) and beef (0/20); the highest number (12/20) was detected in Brazilian meats. The blaCTX-M genes were predominant in meats from many countries. E. coli from pork imported from France produced the blaCTX-M-58 enzyme, which has never been documented previously in ESBL-producing bacteria from clinical or environmental sources. Additionally, the coexistence of the blaCTX-M-2 and blaOXA-1 enzymes in EC12-5 isolate was found for the first time in an ESBL E. coli isolate. A rare blaCTX-M type, blaCTX-M-25, was found in 40% of ESBL E. coli isolates. Phenotypic susceptibility testing showed that E. coli isolates were resistant to up to eleven antibiotics, including ciprofloxacin. For the first time, a new combination in an integron gene cassette, aacA4-cmlA6-qacEΔ1, was found in an E. coli isolate from poultry imported from Brazil. Three E. coli ST117 isolates, from an avian pathogenic lineage producing CTX-M-94, harbored fimH, fyuA, iutA, papC, rfc, and traT virulence genes and were not susceptible to quinolones. For the first time, rfc and papG virulence factors were detected in ESBL E. coli strains isolated from meat products. Even though E. coli CC21 and CC22 were obtained from meats from the USA and Brazil, respectively, they had a similarity coefficient higher than 99% in rep-PCR and the same MLST type (ST117), phenotypic antibiotic resistance pattern, integron gene (qacEΔ1), and plasmid DNA profile. This study indicates that imported meat products may be a source of ESBL-producing E. coli strains in South Korea.
Collapse
Affiliation(s)
- Young-Jo Kim
- Ministry of Food and Drug Safety, Chungcheongbuk-do, Republic of Korea
| | - Jin-San Moon
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Republic of Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jung-Whan Chon
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Bo-Ra Song
- Ministry of Food and Drug Safety, Chungcheongbuk-do, Republic of Korea
| | - Jong-Su Lim
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Republic of Korea
| | - Eun-Jeong Heo
- Ministry of Food and Drug Safety, Chungcheongbuk-do, Republic of Korea
| | - Hyun-Jung Park
- Ministry of Food and Drug Safety, Chungcheongbuk-do, Republic of Korea
| | - Sung-Hwan Wee
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Republic of Korea
| | - Kidon Sung
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
160
|
Premarathne JMKJK, Anuar AS, Thung TY, Satharasinghe DA, Jambari NN, Abdul-Mutalib NA, Huat JTY, Basri DF, Rukayadi Y, Nakaguchi Y, Nishibuchi M, Radu S. Prevalence and Antibiotic Resistance against Tetracycline in Campylobacter jejuni and C. coli in Cattle and Beef Meat from Selangor, Malaysia. Front Microbiol 2017; 8:2254. [PMID: 29255448 PMCID: PMC5722848 DOI: 10.3389/fmicb.2017.02254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/31/2017] [Indexed: 01/28/2023] Open
Abstract
Campylobacter is a major foodborne pathogen frequently associated with human bacterial gastroenteritis in the world. This study was conducted to determine the prevalence and antibiotic resistance of Campylobacter spp. in the beef food system in Malaysia. A total of 340 samples consisting of cattle feces (n = 100), beef (n = 120) from wet markets and beef (n = 120) from hypermarkets were analyzed for Campylobacter spp. The overall prevalence of Campylobacter was 17.4%, consisting of 33% in cattle fecal samples, 14.2% in raw beef from wet market and 7.5% in raw beef from the hypermarket. The multiplex-polymerase chain reaction (PCR) identified 55% of the strains as C. jejuni, 26% as C. coli, and 19% as other Campylobacter spp. A high percentage of Campylobacter spp. were resistant to tetracycline (76.9%) and ampicillin (69.2%), whilst low resistance was exhibited to chloramphenicol (7.6%). The MAR Index of Campylobacter isolates from this study ranged from 0.09 to 0.73. The present study indicates the potential public health risk associated with the beef food system, hence stringent surveillance, regulatory measures, and appropriate interventions are required to minimize Campylobacter contamination and prudent antibiotic usage that can ensure consumer safety.
Collapse
Affiliation(s)
- Jayasekara M. K. J. K. Premarathne
- Faculty of Food Science and Technology, Food Safety Research Center, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Livestock and Avian Science, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Aimi S. Anuar
- Faculty of Food Science and Technology, Food Safety Research Center, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Tze Young Thung
- Faculty of Food Science and Technology, Food Safety Research Center, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Dilan A. Satharasinghe
- Institute of Bio Science, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Basic Veterinary Science, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Nuzul Noorahya Jambari
- Food Safety Research Center (FOSREC), Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Noor-Azira Abdul-Mutalib
- Food Safety Research Center (FOSREC), Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - John Tang Yew Huat
- Faculty of Food Technology, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Dayang F. Basri
- Faculty of Health Sciences, School of Diagnostic and Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yaya Rukayadi
- Faculty of Food Science and Technology, Food Safety Research Center, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | | | | | - Son Radu
- Faculty of Food Science and Technology, Food Safety Research Center, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
161
|
Hudson JA, Frewer LJ, Jones G, Brereton PA, Whittingham MJ, Stewart G. The agri-food chain and antimicrobial resistance: A review. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
162
|
Mie A, Andersen HR, Gunnarsson S, Kahl J, Kesse-Guyot E, Rembiałkowska E, Quaglio G, Grandjean P. Human health implications of organic food and organic agriculture: a comprehensive review. Environ Health 2017; 16:111. [PMID: 29073935 PMCID: PMC5658984 DOI: 10.1186/s12940-017-0315-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/02/2017] [Indexed: 05/08/2023]
Abstract
This review summarises existing evidence on the impact of organic food on human health. It compares organic vs. conventional food production with respect to parameters important to human health and discusses the potential impact of organic management practices with an emphasis on EU conditions. Organic food consumption may reduce the risk of allergic disease and of overweight and obesity, but the evidence is not conclusive due to likely residual confounding, as consumers of organic food tend to have healthier lifestyles overall. However, animal experiments suggest that identically composed feed from organic or conventional production impacts in different ways on growth and development. In organic agriculture, the use of pesticides is restricted, while residues in conventional fruits and vegetables constitute the main source of human pesticide exposures. Epidemiological studies have reported adverse effects of certain pesticides on children's cognitive development at current levels of exposure, but these data have so far not been applied in formal risk assessments of individual pesticides. Differences in the composition between organic and conventional crops are limited, such as a modestly higher content of phenolic compounds in organic fruit and vegetables, and likely also a lower content of cadmium in organic cereal crops. Organic dairy products, and perhaps also meats, have a higher content of omega-3 fatty acids compared to conventional products. However, these differences are likely of marginal nutritional significance. Of greater concern is the prevalent use of antibiotics in conventional animal production as a key driver of antibiotic resistance in society; antibiotic use is less intensive in organic production. Overall, this review emphasises several documented and likely human health benefits associated with organic food production, and application of such production methods is likely to be beneficial within conventional agriculture, e.g., in integrated pest management.
Collapse
Affiliation(s)
- Axel Mie
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, 11883 Stockholm, Sweden
- Swedish University of Agricultural Sciences (SLU), Centre for Organic Food and Farming (EPOK), Ultuna, Sweden
| | - Helle Raun Andersen
- University of Southern Denmark, Department of Public Health, Odense, Denmark
| | - Stefan Gunnarsson
- Swedish University of Agricultural Sciences (SLU), Department of Animal Environment and Health, Skara, Sweden
| | - Johannes Kahl
- University of Copenhagen, Department of Nutrition, Exercise and Sports, Frederiksberg, Denmark
| | - Emmanuelle Kesse-Guyot
- Research Unit on Nutritional Epidemiology (U1153 Inserm, U1125 INRA, CNAM, Université Paris 13), Centre of Research in Epidemiology and Statistics Sorbonne Paris Cité, Bobigny, France
| | - Ewa Rembiałkowska
- Warsaw University of Life Sciences, Department of Functional & Organic Food & Commodities, Warsaw, Poland
| | - Gianluca Quaglio
- Scientific Foresight Unit (Science and Technology Options Assessment [STOA]), Directorate-General for Parliamentary Research Services (EPRS), European Parliament, Brussels, Belgium
| | - Philippe Grandjean
- University of Southern Denmark, Department of Public Health, Odense, Denmark
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, USA
| |
Collapse
|
163
|
Goutard FL, Bordier M, Calba C, Erlacher-Vindel E, Góchez D, de Balogh K, Benigno C, Kalpravidh W, Roger F, Vong S. Antimicrobial policy interventions in food animal production in South East Asia. BMJ 2017; 358:j3544. [PMID: 28874351 PMCID: PMC5598294 DOI: 10.1136/bmj.j3544] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Flavie Goutard and colleagues call for concerted multisectoral measures through stronger policies to combat antimicrobial resistance
Collapse
Affiliation(s)
- Flavie Luce Goutard
- CIRAD, UMR ASTRE, F-34398 Montpellier, France
- Kasetsart University, 10900 Bangkok, Thailand
| | | | | | | | - Delfy Góchez
- World Organisation for Animal Health (OIE), Paris, France
| | - Katinka de Balogh
- Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand
| | - Carolyn Benigno
- Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand
| | - Wantanee Kalpravidh
- Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand
| | - Francois Roger
- CIRAD, UMR ASTRE, F-34398 Montpellier, France
- Kasetsart University, 10900 Bangkok, Thailand
| | - Sirenda Vong
- World Health Organization, Regional Office for South East Asia, New Delhi, India
| |
Collapse
|
164
|
Majdinasab M, Yaqub M, Rahim A, Catanante G, Hayat A, Marty JL. An Overview on Recent Progress in Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1947. [PMID: 28837093 PMCID: PMC5621119 DOI: 10.3390/s17091947] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/09/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
Anti-microbial drugs are widely employed for the treatment and cure of diseases in animals, promotion of animal growth, and feed efficiency. However, the scientific literature has indicated the possible presence of antimicrobial drug residues in animal-derived food, making it one of the key public concerns for food safety. Therefore, it is highly desirable to design fast and accurate methodologies to monitor antimicrobial drug residues in animal-derived food. Legislation is in place in many countries to ensure antimicrobial drug residue quantities are less than the maximum residue limits (MRL) defined on the basis of food safety. In this context, the recent years have witnessed a special interest in the field of electrochemical biosensors for food safety, based on their unique analytical features. This review article is focused on the recent progress in the domain of electrochemical biosensors to monitor antimicrobial drug residues in animal-derived food.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, Shiraz University, Shiraz 71441-65186, Iran.
| | - Mustansara Yaqub
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Gaelle Catanante
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan CEDEX 66860, France.
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan CEDEX 66860, France.
| |
Collapse
|
165
|
Hembach N, Schmid F, Alexander J, Hiller C, Rogall ET, Schwartz T. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Front Microbiol 2017; 8:1282. [PMID: 28744270 PMCID: PMC5504345 DOI: 10.3389/fmicb.2017.01282] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
Seven wastewater treatment plants (WWTPs) with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.
Collapse
Affiliation(s)
- Norman Hembach
- Bioengineering and Biosystems Department, Karlsruhe Institute of Technology, Institute of Functional InterfacesEggenstein-Leopoldshafen, Germany
| | - Ferdinand Schmid
- Bioengineering and Biosystems Department, Karlsruhe Institute of Technology, Institute of Functional InterfacesEggenstein-Leopoldshafen, Germany
| | - Johannes Alexander
- Bioengineering and Biosystems Department, Karlsruhe Institute of Technology, Institute of Functional InterfacesEggenstein-Leopoldshafen, Germany
| | | | - Eike T Rogall
- Bioengineering and Biosystems Department, Karlsruhe Institute of Technology, Institute of Functional InterfacesEggenstein-Leopoldshafen, Germany
| | - Thomas Schwartz
- Bioengineering and Biosystems Department, Karlsruhe Institute of Technology, Institute of Functional InterfacesEggenstein-Leopoldshafen, Germany
| |
Collapse
|
166
|
Moudgil P, Bedi JS, Moudgil AD, Gill JPS, Aulakh RS. Emerging issue of antibiotic resistance from food producing animals in India: Perspective and legal framework. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1326934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pallavi Moudgil
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - J. S. Bedi
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Aman D. Moudgil
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, CSKHPKV, Palampur, Himachal Pradesh, India
| | - J. P. S. Gill
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - R. S. Aulakh
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
167
|
Valenzuela-Grijalva NV, Pinelli-Saavedra A, Muhlia-Almazan A, Domínguez-Díaz D, González-Ríos H. Dietary inclusion effects of phytochemicals as growth promoters in animal production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:8. [PMID: 28428891 PMCID: PMC5392986 DOI: 10.1186/s40781-017-0133-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/16/2017] [Indexed: 11/28/2022]
Abstract
Growth promoters have been widely used as a strategy to improve productivity, and great benefits have been observed throughout the meat production chain. However, the prohibition of growth promoters in several countries, as well as consumer rejection, has led industry and the academy to search for alternatives. For decades, the inclusion of phytochemicals in animal feed has been proposed as a replacement for traditional growth promoters. However, there are many concerns about the application of phytochemicals and their impact on the various links in the meat production chain (productive performance, carcass and meat quality). Therefore, the effects of these feed additives are reviewed in this article, along with their potential safety and consumer benefits, to understand the current state of their use. In summary, the replacement of traditional growth promoters in experiments with broilers yielded benefits in all aspects of the meat production chain, such as improvements in productive performance and carcass and meat quality. Although the effects in pigs have been similar to those observed in broilers, fewer studies have been carried out in pigs, and there is a need to define the types of phytochemicals to be used and the appropriate stages for adding such compounds. In regard to ruminant diets, few studies have been conducted, and their results have been inconclusive. Therefore, it is necessary to propose more in vivo studies to determine other strategies for phytochemical inclusion in the production phases and to select the appropriate types of compounds. It is also necessary to define the variables that will best elucidate the mechanism(s) of action that will enable the future replacement of synthetic growth promoters with phytochemical feed additives.
Collapse
Affiliation(s)
- Nidia Vanessa Valenzuela-Grijalva
- Laboratorio de Ciencia y Tecnología de la Carne, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD A.C.), Carretera a la Victoria Km. 0.6. C.P, Hermosillo, Sonora 83304 Mexico
| | - Araceli Pinelli-Saavedra
- Laboratorio de Nutrición Animal, CIAD A.C, Carretera a la Victoria Km. 0.6. C.P, Hermosillo, Sonora 83304 Mexico
| | - Adriana Muhlia-Almazan
- Laboratorio Bioenergética y Genética Molecular, CIAD A.C, Carretera a la Victoria Km. 0.6. C.P, Hermosillo, Sonora 83304 Mexico
| | - David Domínguez-Díaz
- Departamento de Nutrición Animal, Facultad de Zootecnia, Universidad Autónoma de Chihuahua, C. Escorza 900, Col. Centro, Chihuahua, Chihuahua 31100 Mexico
| | - Humberto González-Ríos
- Laboratorio de Ciencia y Tecnología de la Carne, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD A.C.), Carretera a la Victoria Km. 0.6. C.P, Hermosillo, Sonora 83304 Mexico
| |
Collapse
|
168
|
Alonso C, Zarazaga M, Ben Sallem R, Jouini A, Ben Slama K, Torres C. Antibiotic resistance inEscherichia coliin husbandry animals: the African perspective. Lett Appl Microbiol 2017; 64:318-334. [DOI: 10.1111/lam.12724] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- C.A. Alonso
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| | - M. Zarazaga
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| | - R. Ben Sallem
- Faculté des Sciences de Tunis; Laboratoire des Microorganismes et Biomolécules Actives; Université de Tunis El Manar; Tunis Tunisia
| | - A. Jouini
- Laboratoire d’Épidémiologie et Microbiologie Vétérinaire. Institut Pasteur de Tunis; Université de Tunis El Manar; Tunis Tunisia
| | - K. Ben Slama
- Faculté des Sciences de Tunis; Laboratoire des Microorganismes et Biomolécules Actives; Université de Tunis El Manar; Tunis Tunisia
| | - C. Torres
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| |
Collapse
|
169
|
Lekshmi M, Ammini P, Kumar S, Varela MF. The Food Production Environment and the Development of Antimicrobial Resistance in Human Pathogens of Animal Origin. Microorganisms 2017; 5:E11. [PMID: 28335438 PMCID: PMC5374388 DOI: 10.3390/microorganisms5010011] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 02/08/2023] Open
Abstract
Food-borne pathogens are a serious human health concern worldwide, and the emergence of antibiotic-resistant food pathogens has further confounded this problem. Once-highly-efficacious antibiotics are gradually becoming ineffective against many important pathogens, resulting in severe treatment crises. Among several reasons for the development and spread of antimicrobial resistance, their overuse in animal food production systems for purposes other than treatment of infections is prominent. Many pathogens of animals are zoonotic, and therefore any development of resistance in pathogens associated with food animals can spread to humans through the food chain. Human infections by antibiotic-resistant pathogens such as Campylobacter spp., Salmonella spp., Escherichia coli and Staphylococcus aureus are increasing. Considering the human health risk due to emerging antibiotic resistance in food animal-associated bacteria, many countries have banned the use of antibiotic growth promoters and the application in animals of antibiotics critically important in human medicine. Concerted global efforts are necessary to minimize the use of antimicrobials in food animals in order to control the development of antibiotic resistance in these systems and their spread to humans via food and water.
Collapse
Affiliation(s)
- Manjusha Lekshmi
- QC Laboratory, Harvest and Post Harvest Technology Department, ICAR-Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Parvathi Ammini
- CSIR-National Institute of Oceanography (NIO), Regional Centre, Dr. Salim Ali Road, Kochi 682018, India.
| | - Sanath Kumar
- QC Laboratory, Harvest and Post Harvest Technology Department, ICAR-Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
170
|
Shalayel MHF, Asaad AM, Qureshi MA, Elhussein AB. Anti-bacterial activity of peppermint ( Mentha piperita ) extracts against some emerging multi-drug resistant human bacterial pathogens. J Herb Med 2017. [DOI: 10.1016/j.hermed.2016.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
171
|
Schlundt J, Aarestrup FM. Commentary: Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol 2017; 8:181. [PMID: 28223981 PMCID: PMC5293740 DOI: 10.3389/fmicb.2017.00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/25/2017] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jørgen Schlundt
- NTU Food Technology Centre, Nanyang Technological University Singapore, Singapore
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark Copenhagen, Denmark
| |
Collapse
|
172
|
Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.03.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
173
|
Quan J, Li X, Chen Y, Jiang Y, Zhou Z, Zhang H, Sun L, Ruan Z, Feng Y, Akova M, Yu Y. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study. THE LANCET. INFECTIOUS DISEASES 2017; 17:400-410. [PMID: 28139430 DOI: 10.1016/s1473-3099(16)30528-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Polymyxin antibiotics are used as last-resort therapies to treat infections caused by multidrug-resistant Gram-negative bacteria. The plasmid-mediated colistin resistance determinant MCR-1 has been identified in Enterobacteriaceae in China. We did this study to investigate the prevalence of the mcr-1 gene in clinical isolates from patients with bloodstream infections in China. METHODS Clinical isolates of Escherichia coli and Klebsiella pneumoniae were collected from patients with bloodstream infections at 28 hospitals in China, then screened for colistin resistance by broth microdilution and for the presence of the mcr-1 gene by PCR amplification. We subjected mcr-1-positive isolates to genotyping, susceptibility testing, and clinical data analysis. We established the genetic location of mcr-1 with Southern blot hybridisation, and we analysed plasmids containing mcr-1 with filter mating, electroporation, and DNA sequencing. FINDINGS 2066 isolates, consisting of 1495 E coli isolates and 571 K pneumoniae isolates were collected. Of the 1495 E coli isolates, 20 (1%) were mcr-1-positive, whereas we detected only one (<1%) mcr-1-positive isolate among the 571 K pneumoniae isolates. All mcr-1-positive E coli and K pneumoniae isolates were resistant to colistin, with minimum inhibitory concentrations values in the range of 4-32 mg/L, except for one E coli isolate that had a minimum inhibitory concentration less than or equal to 0·06 mg/L. All 21 mcr-1-positive isolates were susceptible to tigecycline and 20 isolates (95%) were susceptible to the carbapenem and β-lactamase inhibitor combination piperacillin and tazobactam. One mcr-1-positive E coli isolate also produced NDM-5, which confers resistance to beta-lactam antibiotics. The 21 mcr-1-positive isolates were clonally diverse and carried mcr-1 on two types of plasmids, a 33 kb IncX4 plasmid and a 61 kb Inc12 plasmid. The 30 day mortality of the patients with bloodstream infections caused by mcr-1-positive isolates was zero. INTERPRETATION mcr-1-positive isolates from bloodstream infections were rare, sporadic, and remained susceptible to many antimicrobial agents. E coli, rather than K pneumoniae, was the main host of the mcr-1 gene. Further studies are needed to clarify the clinical impact of this novel resistance gene. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huichuan Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Ruan
- Clinical Laboratory Department, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Feng
- Institute of Translational Medicine, College of Medicine, Zhejiang University, Hangzhou, China
| | - Murat Akova
- Department of Infectious Diseases, Hacettepe University School of Medicine, Ankara, Turkey
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
174
|
Granados-Chinchilla F, Rodríguez C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1315497. [PMID: 28168081 PMCID: PMC5266830 DOI: 10.1155/2017/1315497] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/17/2016] [Accepted: 11/08/2016] [Indexed: 05/15/2023]
Abstract
Antibiotics are widely used as growth promoters in animal husbandry; among them, the tetracyclines are a chemical group of relevance, due to their wide use in agriculture, surpassing in quantities applied almost every other antibiotic family. Seeing the considerable amounts of tetracyclines used worldwide, monitoring of these antibiotics is paramount. Advances must be made in the analysis of antibiotics to assess correct usage and dosage of tetracyclines in food and feedstuffs and possible residues in pertinent environmental samples. The tetracyclines are still considered a clinically relevant group of antibiotics, though dissemination of tolerance and resistance determinants have limited their use. This review focuses on four different aspects: (i) tetracyclines, usage, dosages, and regulatory issues that govern their food-related application, with particular attention to the prohibitions and restrictions that several countries have enforced in recent years by agencies from both the United States and the European Union, (ii) analytical methods for tetracyclines, determination, and residues thereof in feedstuffs and related matrices with an emphasis on the most relevant and novel techniques, including both screening and confirmatory methods, (iii) tetracycline resistance and tetracycline-resistant bacteria in feedstuff, and (iv) environmental and health risks accompanying the use of tetracyclines in animal nutrition. In the last two cases, we discuss the more relevant undesirable effects that tetracyclines exert over bacterial communities and nontarget species including unwanted effects in farmers.
Collapse
Affiliation(s)
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
175
|
Carvalho C, Costa AR, Silva F, Oliveira A. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol 2017; 43:583-601. [DOI: 10.1080/1040841x.2016.1271309] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carla Carvalho
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Ana Rita Costa
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Filipe Silva
- CECAV-UTAD, Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ana Oliveira
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
176
|
How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int J Infect Dis 2017; 54:77-84. [DOI: 10.1016/j.ijid.2016.11.415] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/08/2016] [Accepted: 11/22/2016] [Indexed: 01/29/2023] Open
|
177
|
Hu Y, Cheng H. Health risk from veterinary antimicrobial use in China's food animal production and its reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:993-997. [PMID: 27180067 DOI: 10.1016/j.envpol.2016.04.099] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
The overuse and misuse of veterinary drugs, particularly antimicrobials, in food animal production in China cause environmental pollution and wide food safety concerns, and pose public health risk with the selection of antimicrobial resistance (AMR) that can spread from animal populations to humans. Elevated abundance and diversity of antimicrobial resistance genes (ARGs) and resistant bacteria (including multi-drug resistant strains) in food-producing animals, food products of animal origin, microbiota of human gut, and environmental media impacted by intensive animal farming have been reported. To rein in drug use in food animal production and protect public health, the government made a total of 227 veterinary drugs, including 150 antimicrobial products, available only by prescription from licensed veterinarians for curing, controlling, and preventing animal diseases in March 2014. So far the regulatory ban on non-therapeutic use has failed to bring major changes to the long-standing practice of drug overuse and misuse in animal husbandry and aquaculture, and significant improvement in its implementation and enforcement is necessary. A range of measures, including improving access to veterinary services, strengthening supervision on veterinary drug production and distribution, increasing research and development efforts, and enhancing animal health management, are recommended to facilitate transition toward rational use of veterinary drugs, particularly antimicrobials, and to reduce the public health risk arising from AMR development in animal agriculture.
Collapse
Affiliation(s)
- Yuanan Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hefa Cheng
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
178
|
Singh SK, Mishra M, Sahoo M, Patole S, Mohapatra H. Efflux mediated colistin resistance in diverse clones of Klebsiella pneumoniae from aquatic environment. Microb Pathog 2016; 102:109-112. [PMID: 27914962 DOI: 10.1016/j.micpath.2016.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 01/15/2023]
Abstract
The peptide drug colistin is commonly used to treat carbapenem resistant gram negative bacterial infections. In the present study, we report efflux mediated colistin resistance in multidrug resistant Klebsiella pneumoniae isolates belonging to ST200 and ST1296, isolated from a fresh water environment. The isolates exhibited intermediate resistance to human serum, possessed Type 1 fimbriae and harbored blaSHV-34 and blaTEM-1 genes. Our results highlight the evolving nature of these clones in the country. These observations emphasize the need for judicious usage of antibiotics to prevent the imminent danger of losing out on currently available therapeutic options.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Room No. 407, 3rd Floor, Khurda, Jatni, 752050, India
| | - Mitali Mishra
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Room No. 407, 3rd Floor, Khurda, Jatni, 752050, India
| | - Minu Sahoo
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Room No. 407, 3rd Floor, Khurda, Jatni, 752050, India
| | - Shashank Patole
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Room No. 407, 3rd Floor, Khurda, Jatni, 752050, India
| | - Harapriya Mohapatra
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Room No. 407, 3rd Floor, Khurda, Jatni, 752050, India.
| |
Collapse
|
179
|
Rhouma M, Beaudry F, Thériault W, Letellier A. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front Microbiol 2016; 7:1789. [PMID: 27891118 PMCID: PMC5104958 DOI: 10.3389/fmicb.2016.01789] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023] Open
Abstract
Colistin (Polymyxin E) is one of the few cationic antimicrobial peptides commercialized in both human and veterinary medicine. For several years now, colistin has been considered the last line of defense against infections caused by multidrug-resistant Gram-negative such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Colistin has been extensively used orally since the 1960s in food animals and particularly in swine for the control of Enterobacteriaceae infections. However, with the recent discovery of plasmid-mediated colistin resistance encoded by the mcr-1 gene and the higher prevalence of samples harboring this gene in animal isolates compared to other origins, livestock has been singled out as the principal reservoir for colistin resistance amplification and spread. Co-localization of the mcr-1 gene and Extended-Spectrum-β-Lactamase genes on a unique plasmid has been also identified in many isolates from animal origin. The use of colistin in pigs as a growth promoter and for prophylaxis purposes should be banned, and the implantation of sustainable measures in pig farms for microbial infection prevention should be actively encouraged and financed. The scientific research should be encouraged in swine medicine to generate data helping to reduce the exacerbation of colistin resistance in pigs and in manure. The establishment of guidelines ensuring a judicious therapeutic use of colistin in pigs, in countries where this drug is approved, is of crucial importance. The implementation of a microbiological withdrawal period that could reduce the potential contamination of consumers with colistin resistant bacteria of porcine origin should be encouraged. Moreover, the management of colistin resistance at the human-pig-environment interface requires the urgent use of the One Health approach for effective control and prevention. This approach needs the collaborative effort of multiple disciplines and close cooperation between physicians, veterinarians, and other scientific health and environmental professionals. This review is an update on the chemistry of colistin, its applications and antibacterial mechanism of action, and on Enterobacteriaceae resistance to colistin in pigs. We also detail and discuss the One Health approach and propose guidelines for colistin resistance management.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - Francis Beaudry
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche en Pharmacologie Animale du Québec, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - William Thériault
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - Ann Letellier
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche en Pharmacologie Animale du Québec, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| |
Collapse
|
180
|
Walsh TR, Wu Y. China bans colistin as a feed additive for animals. THE LANCET. INFECTIOUS DISEASES 2016; 16:1102-1103. [PMID: 27676338 DOI: 10.1016/s1473-3099(16)30329-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/16/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Timothy R Walsh
- Department of Medical Microbiology and Infectious Disease, Institute of Infection and Immunity, UHW Main Building, Heath Park Hospital, Cardiff CF14 4XN, UK.
| | - Yongning Wu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
181
|
Guetiya Wadoum RE, Zambou NF, Anyangwe FF, Njimou JR, Coman MM, Verdenelli MC, Cecchini C, Silvi S, Orpianesi C, Cresci A, Colizzi V. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. Br Poult Sci 2016; 57:483-93. [PMID: 27113432 DOI: 10.1080/00071668.2016.1180668] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The types and methods of use of antibiotics in poultry farms in Cameroon, residual levels and potential microbial resistance were determined. A questionnaire-based survey identified the different antibiotics used and high-performance liquid chromatography (HPLC) was used to determine residual levels of antibiotics. Pathogens were isolated, identified by use of commercial API kits and minimum inhibition concentration (MIC) was determined. Oxytetracyclin, tylocip and TCN (oxytetracycline, chloramphenicol and neomycin) were the most frequently used antibiotics. Antibiotics screened by HPLC were chloramphenicol, tetracycline and vancomycin. All of them except vancomycin were detected, and the concentration of these antibiotics was higher than the maximum residual limits (MRL) set by regulatory authorities. No residues of various antibiotics were found in egg albumen or yolk. The concentration of tetracycline was significantly higher in liver (150 ± 30 µg/g) than in other tissues. Foodborne pathogens, including Salmonella spp., Staphylococcus spp., Listeria spp., Clostridium spp. and Escherichia spp., were identified. Most of the pathogens were resistant to these various antibiotics tested. These findings imply the need for better management of antibiotic use to control sources of food contamination and reduce health risks associated with the presence of residues and the development of resistant pathogens by further legislation and enforcement of regulations on food hygiene and use of antibiotics.
Collapse
Affiliation(s)
- R E Guetiya Wadoum
- b Department of Biology , University of Rome II "Tor Vergata Rome" , Rome , Italy.,c Department of Comparative Morphology and Biochemistry , University of Camerino , Camerino , Italy
| | - N F Zambou
- a Department of Biochemistry, Faculty of Sciences , University of Dschang , Dschang , Cameroon
| | - F F Anyangwe
- d Department of Animal Production, Faculty of Agronomy and Agricultural Sciences , University of Dschang , Dschang , Cameroon
| | - J R Njimou
- e Department of Chemical Materials , Environmental Engineering, University of Rome I "Sapienza" , Rome , Italy
| | - M M Coman
- c Department of Comparative Morphology and Biochemistry , University of Camerino , Camerino , Italy
| | - M C Verdenelli
- c Department of Comparative Morphology and Biochemistry , University of Camerino , Camerino , Italy
| | - C Cecchini
- c Department of Comparative Morphology and Biochemistry , University of Camerino , Camerino , Italy
| | - S Silvi
- c Department of Comparative Morphology and Biochemistry , University of Camerino , Camerino , Italy
| | - C Orpianesi
- c Department of Comparative Morphology and Biochemistry , University of Camerino , Camerino , Italy
| | - A Cresci
- c Department of Comparative Morphology and Biochemistry , University of Camerino , Camerino , Italy
| | - V Colizzi
- b Department of Biology , University of Rome II "Tor Vergata Rome" , Rome , Italy
| |
Collapse
|
182
|
Hathroubi S, Mekni MA, Domenico P, Nguyen D, Jacques M. Biofilms: Microbial Shelters Against Antibiotics. Microb Drug Resist 2016; 23:147-156. [PMID: 27214143 DOI: 10.1089/mdr.2016.0087] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biofilms are communities of aggregated bacterial cells embedded in a self-produced extracellular polymeric matrix. Biofilms are recalcitrant to antibiotic treatment and immune defenses and are implicated in many chronic bacterial and fungal infections. In this review, we provide an overview of the contribution of biofilms to persistent infections resistant to antibiotic treatment, the impact of multispecies biofilms on drug resistance and tolerance, and recent advances in the development of antibiofilm agents. Understanding the mechanisms of antibiotic resistance and tolerance in biofilms is essential for developing new preventive and therapeutic strategies and curbing drug resistance.
Collapse
Affiliation(s)
- Skander Hathroubi
- 1 Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal , Montréal, Canada
| | - Mohamed A Mekni
- 2 The National Bone Marrow Transplant Centre , UR12ES02, Faculty of Medicine, Tunis, Tunisia
| | | | - Dao Nguyen
- 4 Meakins Christie Laboratories, Department of Medicine, Research Institute of the McGill University Health Centre , Montréal, Canada
| | - Mario Jacques
- 1 Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal , Montréal, Canada
| |
Collapse
|
183
|
Knoblock-Hahn A, Brown K, Medrow L. A Balanced Approach to Understanding the Science of Antibiotics in Animal Agriculture. J Acad Nutr Diet 2016; 116:1332-5. [PMID: 27161026 DOI: 10.1016/j.jand.2016.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 11/30/2022]
|
184
|
Walther BA, Boëte C, Binot A, By Y, Cappelle J, Carrique-Mas J, Chou M, Furey N, Kim S, Lajaunie C, Lek S, Méral P, Neang M, Tan BH, Walton C, Morand S. Biodiversity and health: Lessons and recommendations from an interdisciplinary conference to advise Southeast Asian research, society and policy. INFECTION GENETICS AND EVOLUTION 2016; 40:29-46. [PMID: 26903421 DOI: 10.1016/j.meegid.2016.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/01/2023]
Abstract
Southeast Asia is an economic, biodiverse, cultural and disease hotspot. Due to rapid socio-economic and environmental changes, the role of biodiversity and ecosystems for human health ought to be examined and communicated to decision-makers and the public. We therefore summarized the lessons and recommendations from an interdisciplinary conference convened in Cambodia in 2014 to advise Southeast Asian societies on current research efforts, future research needs, and to provide suggestions for improved education, training and science-policy interactions. First, we reviewed several examples of the important role of ecosystems as 'sentinels' in the sense that potentially harmful developments for human health become first apparent in ecosystem components. Other ecosystem services which also benefit human well-being are briefly summarized. Second, we summarized the recommendations of the conference's roundtable discussions and added recent developments in the science-policy interface. The recommendations were organized along five themes: Ethical and legal considerations; implementation of the One Health approach; education, training, and capacity building; future research priorities; and potential science-policy interactions. While the role of biodiversity for human health needs further research, especially for zoonoses and emerging diseases, many direct and indirect benefits to human health are already apparent, but have yet to filter down to the science-policy interface in order to influence legislation and enforcement. Therefore, efforts to strengthen the interface in Southeast Asia should become a high priority in order to strengthen the health and resilience of Southeast Asian societies.
Collapse
Affiliation(s)
- Bruno Andreas Walther
- Master Program in Global Health and Development, College of Public Health and Nutrition, Taipei Medical University, 250 Wu-Hsing St., Taipei 110, Taiwan, R.O.C.
| | - Christophe Boëte
- UMR_D 190 Unité des Virus Emergents Aix-Marseille Université - Institut de Recherche pour le Développement - Ecole des Hautes Etudes en Santé Publique, 27 Bd Jean Moulin, 13005, Marseille cedex 05, France
| | - Aurélie Binot
- CIRAD-ES, UPR AGIRs, F-34398, Montpellier, France; Kasetsart University, Faculty of Veterinary Medicine, Bangkok, Thailand
| | - Youlet By
- Fondation Mérieux, 73 Boulevard Monivong, Phnom Penh, Cambodia
| | - Julien Cappelle
- CIRAD-ES, UPR AGIRs, F-34398, Montpellier, France; Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, BP, 983, Phnom Penh, Cambodia
| | - Juan Carrique-Mas
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit - Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Old Road Campus Oxford, OX3 7BN, United Kingdom
| | - Monidarin Chou
- University of Health Sciences, 73 Boulevard Monivong, Phnom Penh, Cambodia
| | - Neil Furey
- Fauna & Flora International, PO Box 1380, No. 19, Street 360, Boeng Keng Kang 1, Phnom Penh, Cambodia, 12000
| | - Sothea Kim
- University of Health Sciences, 73 Boulevard Monivong, Phnom Penh, Cambodia
| | - Claire Lajaunie
- UMR URMITE, U1095 INSERM - Aix-Marseille Université - Institut de Recherche pour le Développement - CNRS, 27 Bd Jean Moulin, 13385, Marseille cedex 05, France
| | - Sovan Lek
- Université de Toulouse, Lab. Evolution & Diversité Biologique, UMR 5174 CNRS - Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 9, France
| | - Philippe Méral
- UMR GRED (IRD - University Paul Valery Montpellier 3), 911 av. agropolis, BP, 64501 34 394 Montpellier Cedex 5, France; Ecoland Research Centre - Royal University of Agriculture (RUA) Faculty of Agricultural Economics and Rural Development Dangkor district, Phnom Penh, Cambodia
| | - Malyne Neang
- Ecoland Research Centre - Royal University of Agriculture (RUA) Faculty of Agricultural Economics and Rural Development Dangkor district, Phnom Penh, Cambodia
| | - Boon-Huan Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
| | - Catherine Walton
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Serge Morand
- CIRAD-ES, UPR AGIRs, F-34398, Montpellier, France; CNRS, Centre d'Infectiologie Christophe Mérieux du Laos, Vientiane, Laos; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
185
|
Premanandh J, Samara BS, Mazen AN. Race Against Antimicrobial Resistance Requires Coordinated Action - An Overview. Front Microbiol 2016; 6:1536. [PMID: 26869998 PMCID: PMC4736432 DOI: 10.3389/fmicb.2015.01536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/21/2015] [Indexed: 01/21/2023] Open
Abstract
Resistance developed by microbes is challenging success stories of treatment of infectious diseases with anti-microbials. Developing new antimicrobials against these resistant organisms does not progress at the same speed. In an effort to address this key issue, this work overviews the role of different stakeholders and discusses preventative and control measures for effective management of available resources. Roles and concerns of physicians, pharmacists and the public are also discussed. More than anything, this situation requires immediate action to establish antimicrobial stewardship program, control over the counter sale and promote public awareness. The paper also confronts the idea of curbing the use of antimicrobials using mass media, while detailing the consequences of non-therapeutic use. The role of policy makers in taking global action is essential to establishing authority or agency for formulating national guidelines and regulations for prudently using antimicrobials. To do this, this paper recommend the establishment of a global fund. In conclusion, the race against resistance is a collective responsibility requiring coordinated action at local, national, regional and international levels to ensure sustained utilization of antimicrobials.
Collapse
Affiliation(s)
- J Premanandh
- Central Testing Laboratories, Quality and Conformity Council Abu Dhabi, UAE
| | - B S Samara
- Central Testing Laboratories, Quality and Conformity Council Abu Dhabi, UAE
| | - A N Mazen
- Central Testing Laboratories, Quality and Conformity Council Abu Dhabi, UAE
| |
Collapse
|
186
|
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. THE LANCET. INFECTIOUS DISEASES 2016; 16:161-8. [PMID: 26603172 DOI: 10.1016/s1473-3099(15)00424-7] [Citation(s) in RCA: 3548] [Impact Index Per Article: 443.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Until now, polymyxin resistance has involved chromosomal mutations but has never been reported via horizontal gene transfer. During a routine surveillance project on antimicrobial resistance in commensal Escherichia coli from food animals in China, a major increase of colistin resistance was observed. When an E coli strain, SHP45, possessing colistin resistance that could be transferred to another strain, was isolated from a pig, we conducted further analysis of possible plasmid-mediated polymyxin resistance. Herein, we report the emergence of the first plasmid-mediated polymyxin resistance mechanism, MCR-1, in Enterobacteriaceae. METHODS The mcr-1 gene in E coli strain SHP45 was identified by whole plasmid sequencing and subcloning. MCR-1 mechanistic studies were done with sequence comparisons, homology modelling, and electrospray ionisation mass spectrometry. The prevalence of mcr-1 was investigated in E coli and Klebsiella pneumoniae strains collected from five provinces between April, 2011, and November, 2014. The ability of MCR-1 to confer polymyxin resistance in vivo was examined in a murine thigh model. FINDINGS Polymyxin resistance was shown to be singularly due to the plasmid-mediated mcr-1 gene. The plasmid carrying mcr-1 was mobilised to an E coli recipient at a frequency of 10(-1) to 10(-3) cells per recipient cell by conjugation, and maintained in K pneumoniae and Pseudomonas aeruginosa. In an in-vivo model, production of MCR-1 negated the efficacy of colistin. MCR-1 is a member of the phosphoethanolamine transferase enzyme family, with expression in E coli resulting in the addition of phosphoethanolamine to lipid A. We observed mcr-1 carriage in E coli isolates collected from 78 (15%) of 523 samples of raw meat and 166 (21%) of 804 animals during 2011-14, and 16 (1%) of 1322 samples from inpatients with infection. INTERPRETATION The emergence of MCR-1 heralds the breach of the last group of antibiotics, polymyxins, by plasmid-mediated resistance. Although currently confined to China, MCR-1 is likely to emulate other global resistance mechanisms such as NDM-1. Our findings emphasise the urgent need for coordinated global action in the fight against pan-drug-resistant Gram-negative bacteria. FUNDING Ministry of Science and Technology of China, National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Yi-Yun Liu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Timothy R Walsh
- Department of Medical Microbiology and Infectious Disease, Institute of Infection & Immunity, Heath Park Hospital, Cardiff, UK
| | - Ling-Xian Yi
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol, UK
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Guobao Tian
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Baolei Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianhui Huang
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Lin-Feng Yu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Danxia Gu
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Hongwei Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaojie Chen
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Luchao Lv
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Dandan He
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Hongwei Zhou
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Zisen Liang
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China.
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
187
|
Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine as Exemplified by the Swine Pathogen Streptococcus suis. Curr Top Microbiol Immunol 2016; 398:103-121. [PMID: 27738916 DOI: 10.1007/82_2016_506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Use of antimicrobial agents in veterinary medicine is essential to control infectious diseases, thereby keeping animals healthy and animal products safe for the consumer. On the other hand, development and spread of antimicrobial resistance is of major concern for public health. Streptococcus (S.) suis reflects a typical bacterial pathogen in modern swine production due to its facultative pathogenic nature and wide spread in the pig population. Thus, in the present review we focus on certain current aspects and problems related to antimicrobial use and resistance in S. suis as a paradigm for a bacterial pathogen affecting swine husbandry worldwide. The review includes (i) general aspects of antimicrobial use and resistance in veterinary medicine with emphasis on swine, (ii) genetic resistance mechanisms of S. suis known to contribute to bacterial survival under antibiotic selection pressure, and (iii) possible other factors which may contribute to problems in antimicrobial therapy of S. suis infections, such as bacterial persister cell formation, biofilm production, and co-infections. The latter shows that we hardly understand the complexity of factors affecting the success of antimicrobial treatment of (porcine) infectious diseases and underlines the need for further research in this field.
Collapse
|
188
|
Ojo OE, Fabusoro E, Majasan AA, Dipeolu MA. Antimicrobials in animal production: usage and practices among livestock farmers in Oyo and Kaduna States of Nigeria. Trop Anim Health Prod 2015; 48:189-97. [PMID: 26526955 DOI: 10.1007/s11250-015-0939-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022]
Abstract
Antimicrobials have proven to be important for sustainable livestock production by their use as growth promoters and in the control of animal infections. However, injudicious use of antimicrobials could accelerate the emergence and spread of resistant bacterial strains with attendant socioeconomic and public health issues. This work assessed antimicrobial usage in animal production with emphasis on usage and practices by livestock producers in Oyo and Kaduna States of Nigeria. Data on antimicrobial usage were collected through interviews, questionnaire and focus group discussions. Four hundred and fifty-four farmers in 11 communities within 11 Local Government Areas of Oyo and Kaduna States of Nigeria were sampled in a multi-stage sampling procedure. The study showed that antimicrobial agents were widely distributed, readily accessible and commonly used in animal production. Fluoroquinolones and other critically important antimicrobials for human medicine were widely used in animals as prophylactics. Potentially harmful antimicrobials including furazolidones and chloramphenicol already banned for use in humans and animals were freely marketed and used in livestock production. Most of the respondents believed that veterinarians should be responsible for the administration of antimicrobials to animals, but in practice, they buy and administer antimicrobials without consulting veterinary professionals. It was observed that the ready availability of antimicrobial agents promoted the use of antimicrobials in livestock production and may encourage non-adherence to hygienic principles and management laxity in farm operations. The non-involvement of veterinary professionals and laboratory investigations in disease diagnosis prior to antimicrobial use could lead to improper usage that contribute to the development of antimicrobial resistance in bacterial strains. Responsible antimicrobial stewardship and strict regulations are vital to prolonging the benefits derivable from the use of antimicrobials.
Collapse
Affiliation(s)
- Olufemi Ernest Ojo
- Department of Veterinary Microbiology and Parasitology, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria.
| | - Eniola Fabusoro
- Department of Agricultural Extension and Rural Development, College of Agricultural Management and Rural Development, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | | | - Morenike Atinuke Dipeolu
- Department of Veterinary Public Health and Reproduction, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| |
Collapse
|
189
|
Fletcher S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ Health Prev Med 2015; 20:243-52. [PMID: 25921603 DOI: 10.1007/s12199-015-0468-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
The overuse and abuse of antibiotics have contributed to the global epidemic of antibiotic resistance. Current evidence suggests that widespread dependency on antibiotics and complex interactions between human health, animal husbandry and veterinary medicine, have contributed to the propagation and spread of resistant organisms. The lack of information on pathogens of major public health importance, limited surveillance, and paucity of standards for a harmonised and coordinated approach, further complicates the issue. Despite the widespread nature of antimicrobial resistance, limited focus has been placed on the role of environmental factors in propagating resistance. There are limited studies that examine the role of the environment, specifically water, sanitation and hygiene factors that contribute to the development of resistant pathogens. Understanding these elements is necessary to identify any modifiable interactions to reduce or interrupt the spread of resistance from the environment into clinical settings. This paper discusses some environmental issues that contribute to antimicrobial resistance, including soil related factors, animal husbandry and waste management, potable and wastewater, and food safety, with examples drawn mainly from the Asian region. The discussion concludes that some of the common issues are often overlooked and whilst there are numerous opportunities for environmental factors to contribute to the growing burden of antimicrobial resistance, a renewed focus on innovative and traditional environmental approaches is needed to tackle the problem.
Collapse
Affiliation(s)
- Stephanie Fletcher
- Public Health Unit, South Western Sydney Local Health District, P.O. Box 38, Liverpool BC, NSW, 1871, Australia,
| |
Collapse
|
190
|
The use of antimicrobial agents in broiler chickens. Vet J 2015; 205:21-7. [PMID: 25981931 DOI: 10.1016/j.tvjl.2015.04.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/20/2022]
Abstract
Antimicrobial agents are essential tools for treating and controlling bacterial infections in poultry production. Veterinarians have a huge responsibility when using antimicrobials in poultry producing meat and eggs for human consumption. The term 'judicious use' of antimicrobials implies the optimal selection of drug, dose and duration of antimicrobial treatment, along with a reduction in inappropriate and excessive use as a means of slowing the emergence of antimicrobial resistance. The proper use of antimicrobials depends on the knowledge of interrelationships between bacteria, antimicrobial, host and consumer. This article reviews the anatomical-physiological features of poultry relating to drug disposition as well as the pharmacological and therapeutic characteristics of the most commonly used antimicrobials in broiler chickens. Doses frequently employed for flock treatment are presented as are accepted withdrawal times.
Collapse
|
191
|
Done HY, Venkatesan AK, Halden RU. Does the Recent Growth of Aquaculture Create Antibiotic Resistance Threats Different from those Associated with Land Animal Production in Agriculture? AAPS JOURNAL 2015; 17:513-24. [PMID: 25700799 DOI: 10.1208/s12248-015-9722-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/17/2015] [Indexed: 11/30/2022]
Abstract
Important antibiotics in human medicine have been used for many decades in animal agriculture for growth promotion and disease treatment. Several publications have linked antibiotic resistance development and spread with animal production. Aquaculture, the newest and fastest growing food production sector, may promote similar or new resistance mechanisms. This review of 650+ papers from diverse sources examines parallels and differences between land-based agriculture of swine, beef, and poultry and aquaculture. Among three key findings was, first, that of 51 antibiotics commonly used in aquaculture and agriculture, 39 (or 76%) are also of importance in human medicine; furthermore, six classes of antibiotics commonly used in both agriculture and aquaculture are also included on the World Health Organization's (WHO) list of critically important/highly important/important antimicrobials. Second, various zoonotic pathogens isolated from meat and seafood were observed to feature resistance to multiple antibiotics on the WHO list, irrespective of their origin in either agriculture or aquaculture. Third, the data show that resistant bacteria isolated from both aquaculture and agriculture share the same resistance mechanisms, indicating that aquaculture is contributing to the same resistance issues established by terrestrial agriculture. More transparency in data collection and reporting is needed so the risks and benefits of antibiotic usage can be adequately assessed.
Collapse
Affiliation(s)
- Hansa Y Done
- Center for Environmental Security, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, Arizona, 85287, USA
| | | | | |
Collapse
|
192
|
Sun J, Li L, Liu B, Xia J, Liao X, Liu Y. Development of aminoglycoside and β-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin. Front Microbiol 2014; 5:580. [PMID: 25408688 PMCID: PMC4219486 DOI: 10.3389/fmicb.2014.00580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/14/2014] [Indexed: 01/28/2023] Open
Abstract
Lincomycin, chlortetracycline, and amoxicillin are commonly used antimicrobials for growth promotion and infectious disease prophylaxis in swine production. In this study, we investigated the shifts and resistance development among intestinal microbiota in pregnant sows before and after lincomycin, chlortetracycline, and amoxicillin treatment by using phylogenetic analysis, bacterial enumeration, and PCR. After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed. Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed. These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Yahong Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
193
|
Nosanchuk JD, Lin J, Hunter RP, Aminov RI. Low-dose antibiotics: current status and outlook for the future. Front Microbiol 2014; 5:478. [PMID: 25309518 PMCID: PMC4159977 DOI: 10.3389/fmicb.2014.00478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/25/2014] [Indexed: 01/02/2023] Open
Affiliation(s)
- Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine of Yeshiva University Bronx, NY, USA ; Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University Bronx, NY, USA
| | - Jun Lin
- Department of Animal Science, The University of Tennessee Knoxville, TN, USA
| | | | - Rustam I Aminov
- Section for Bacteriology, Pathology, and Parasitology, National Veterinary Institute, Technical University of Denmark Frederiksberg, Denmark
| |
Collapse
|