151
|
Jørgensen AS, Larsen O, Uetz-von Allmen E, Lückmann M, Legler DF, Frimurer TM, Veldkamp CT, Hjortø GM, Rosenkilde MM. Biased Signaling of CCL21 and CCL19 Does Not Rely on N-Terminal Differences, but Markedly on the Chemokine Core Domains and Extracellular Loop 2 of CCR7. Front Immunol 2019; 10:2156. [PMID: 31572374 PMCID: PMC6753178 DOI: 10.3389/fimmu.2019.02156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022] Open
Abstract
Chemokine receptors play important roles in the immune system and are linked to several human diseases. Targeting chemokine receptors have so far shown very little success owing to, to some extent, the promiscuity of the immune system and the high degree of biased signaling within it. CCR7 and its two endogenous ligands display biased signaling and here we investigate the differences between the two ligands, CCL21 and CCL19, with respect to their biased activation of CCR7. We use bystander bioluminescence resonance energy transfer (BRET) based signaling assays and Transwell migration assays to determine (A) how swapping of domains between the two ligands affect their signaling patterns and (B) how receptor mutagenesis impacts signaling. Using chimeric ligands we find that the chemokine core domains are central for determining signaling outcome as the lack of β-arrestin-2 recruitment displayed by CCL21 is linked to its core domain and not N-terminus. Through a mutagenesis screen, we identify the extracellular domains of CCR7 to be important for both ligands and show that the two chemokines interact differentially with extracellular loop 2 (ECL-2). By using in silico modeling, we propose a link between ECL-2 interaction and CCR7 signal transduction. Our mutagenesis study also suggests a lysine in the top of TM3, K1303.26, to be important for G protein signaling, but not β-arrestin-2 recruitment. Taken together, the bias in CCR7 between CCL19 and CCL21 relies on the chemokine core domains, where interactions with ECL-2 seem particularly important. Moreover, TM3 selectively regulates G protein signaling as found for other chemokine receptors.
Collapse
Affiliation(s)
- Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olav Larsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edith Uetz-von Allmen
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Michael Lückmann
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Thomas M Frimurer
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christopher T Veldkamp
- Department of Chemistry, University of Wisconsin-Whitewater, Whitewater, WI, United States
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
152
|
Brylka LJ, Schinke T. Chemokines in Physiological and Pathological Bone Remodeling. Front Immunol 2019; 10:2182. [PMID: 31572390 PMCID: PMC6753917 DOI: 10.3389/fimmu.2019.02182] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
The bone matrix is constantly remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. These two cell types are fundamentally different in terms of progenitor cells, mode of action and regulation by specific molecules, acting either systemically or locally. Importantly, there is increasing evidence for an impact of cell types or molecules of the adaptive and innate immune system on bone remodeling. Understanding these influences is the major goal of a novel research area termed osteoimmunology, which is of key relevance in the context of inflammation-induced bone loss, skeletal metastases, and diseases of impaired bone remodeling, such as osteoporosis. This review article aims at summarizing the current knowledge on one particular aspect of osteoimmunology, namely the impact of chemokines on skeletal cells in order to regulate bone remodeling under physiological and pathological conditions. Chemokines have key roles in the adaptive immune system by controlling migration, localization, and function of immune cells during inflammation. The vast majority of chemokines are divided into two subgroups based on the pattern of cysteine residues. More specifically, there are 27 known C-C-chemokines, binding to 10 different C-C receptors, and 17 known C-X-C-chemokines binding to seven different C-X-C receptors. Three additional chemokines do not fall into this category, and only one of them, i.e., CX3CL1, has been shown to influence bone remodeling cell types. There is a large amount of published studies demonstrating specific effects of certain chemokines on differentiation and function of osteoclasts and/or osteoblasts. Chemokine signaling by skeletal cells or by other cells of the bone marrow niche regulates bone formation and resorption through autocrine and paracrine mechanisms. In vivo evidence from mouse deficiency models strongly supports the role of certain chemokine signaling pathways in bone remodeling. We will summarize these data in the present review with a special focus on the most established subsets of chemokines. In combination with the other review articles of this issue, the knowledge presented here confirms that there is a physiologically relevant crosstalk between the innate immune system and bone remodeling cell types, whose molecular understanding is of high clinical relevance.
Collapse
Affiliation(s)
- Laura J Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
153
|
Su Y, Deng Y, Cheng C, Ma H, Guo Z, Feng J. Molecular characterization and expression analysis of the CCR9 gene from cobia (Rachycentron canadum) following bacterial and poly I:C challenge. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1662424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, People’s Republic of China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Hongling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
154
|
Sepuru KM, Rajarathnam K. Structural basis of chemokine interactions with heparan sulfate, chondroitin sulfate, and dermatan sulfate. J Biol Chem 2019; 294:15650-15661. [PMID: 31455633 DOI: 10.1074/jbc.ra119.009879] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Indexed: 11/06/2022] Open
Abstract
Chemokines play diverse roles in human pathophysiology, ranging from trafficking leukocytes and immunosurveillance to the regulation of metabolism and neural function. Chemokine function is intimately coupled to binding tissue glycosaminoglycans (GAGs), heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS). Currently, very little is known about how the structural features and sequences of a given chemokine, the structure and sulfation pattern of a given GAG, and structural differences among GAGs and among chemokines impact binding interactions. In this study, we used solution NMR spectroscopy to characterize the binding interactions of two related neutrophil-activating chemokines, CXCL1 and CXCL5, with HS, CS, and DS. For both chemokines, the dimer bound all three GAGs with higher affinity than did the monomer, and affinities of the chemokines for CS and DS were lower than for HS. NMR-based structural models reveal diverse binding geometries and show that the binding surfaces for each of the three GAGs were different between the two chemokines. However, a given chemokine had similar binding interactions with CS and DS that were different from HS. Considering the fact that CXCL1 and CXCL5 activate the same CXCR2 receptor, we conclude that GAG interactions play a role in determining the nature of chemokine gradients, levels of free chemokine available for receptor activation, how chemokines bind their receptors, and that differences in these interactions determine chemokine-specific function.
Collapse
Affiliation(s)
- Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1055.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1055
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1055 .,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1055.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1055
| |
Collapse
|
155
|
Kazanietz MG, Durando M, Cooke M. CXCL13 and Its Receptor CXCR5 in Cancer: Inflammation, Immune Response, and Beyond. Front Endocrinol (Lausanne) 2019; 10:471. [PMID: 31354634 PMCID: PMC6639976 DOI: 10.3389/fendo.2019.00471] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 12/25/2022] Open
Abstract
It is well-established that the chemokine C-X-C motif ligand 13 (CXCL13) and its receptor, the G-protein coupled receptor (GPCR) CXCR5, play fundamental roles in inflammatory, infectious and immune responses. Originally identified as a B-cell chemoattractant, CXCL13 exerts important functions in lymphoid neogenesis, and has been widely implicated in the pathogenesis of a number of autoimmune diseases and inflammatory conditions, as well as in lymphoproliferative disorders. Current evidence also indicates that the CXCL13:CXCR5 axis orchestrates cell-cell interactions that regulate lymphocyte infiltration within the tumor microenvironment, thereby determining responsiveness to cytotoxic and immune-targeted therapies. In this review, we provide a comprehensive perspective of the involvement of CXCL13 and its receptor in cancer progression. Studies in recent years postulated novel roles for this chemokine in controlling the cancer cell phenotype, and suggest important functions in the growth and metastatic dissemination of solid tumors. Carcinogens have been found to induce CXCL13 production, and production of this chemokine within the tumor milieu has been shown to impact the proliferation, migration, and invasive properties of cancer cells. Thus, the complex networks of cellular interactions involving tumoral CXCL13 and CXCR5 integrate to promote cancer cell autonomous and non-autonomous responses, highlighting the relevance of autocrine and paracrine interactions in dictating the cancer phenotype. Dissecting the molecular and signaling events regulated by CXCL13 and how this chemokine dynamically controls the interaction between the cancer cell and the tumor microenvironment is key to identify novel effectors and therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
| | | | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
156
|
Tok A, Seyithanoğlu M, Ozer A, Erkayıran U, Karaküçük S, Çelebi A. The serum level of soluble CXCL16 is increased in preeclampsia and associated with hepatic/renal damage. J Matern Fetal Neonatal Med 2019; 34:1435-1440. [PMID: 31257958 DOI: 10.1080/14767058.2019.1638361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To compare the serum level of the chemokine, CXCL 16, in preeclamptic and healthy pregnant patients. METHODS This prospective case control study was conducted between January and December 2018 in a tertiary level hospital. The study group was formed of 70 pregnant women diagnosed with preeclampsia, and the control group was formed of 70 healthy pregnant women matched to the study group in respect of age, gestational week and body mass index (BMI). The study group was separated into two subgroups of mild preeclampsia (n = 35) and severe preeclampsia (n = 35). The groups were compared in terms of demographic and clinical parameters and the levels of serum CXCL 16. RESULTS No statistically significant difference was determined between the study and control groups in respect of maternal age, gravida, parity, BMI, and gestational age at sampling. Neonatal birth weight was significantly lower in the study group than in the control group. Mean serum alanine aminotransferase (ALT), aspartate amino transferase (AST) and creatinine levels of the study group were significantly higher than those of the control group (p < .05 for all). There was a statistically significant difference between the study and control groups regarding the mean platelet count. Compared to the control group, the severe and mild preeclampsia groups had a significantly higher serum level of CXCL 16. The serum level of CXCL 16 was significantly higher in patients with severe preeclampsia than in patients with mild preeclampsia (2.94 ± 3.89 pg mL-1 vs. 1.08 ± 1.87 pg mL-1, p = .14). Correlation analysis revealed a significant positive correlation of serum CXCL 16 level with serum ALT level (r = 0.320, p ≤ .001) and serum AST level (r = 0.373, p ≤ .001) and serum creatinine level (r = 0.279, p = .01) in both groups. High values indicated presence of preeclampsia, with a diagnostic cut-off point of 0.225, sensitivity of 75.7% and specificity of 72.9% for CXCL 16 (area under curve: 0.820, p < .001 CI: 0.753-0.888). CONCLUSIONS This is the first study in literature to show a significantly higher level of CXCL 16 in patients with severe preeclampsia compared to those with mild preeclampsia. The study can also be considered of value in respect of showing that CXCL 16 could play a role in the etiopathogenesis of preeclampsia and the emergence of renal-hepatic damage. Blocking the CXCL 16/CXCR six axis in preeclampsia treatment could lay the ground for the development of new drugs which could be used in the treatment of preeclampsia.
Collapse
Affiliation(s)
- Abdullah Tok
- Kahramanmaras Sutcu Imam University Hospital, Kahramanmaras, Turkey
| | | | - Alev Ozer
- Kahramanmaras Sutcu Imam University Hospital, Kahramanmaras, Turkey
| | | | - Selim Karaküçük
- Kahramanmaras Sutcu Imam University Hospital, Kahramanmaras, Turkey
| | - Ahmet Çelebi
- Kahramanmaras Sutcu Imam University Hospital, Kahramanmaras, Turkey
| |
Collapse
|
157
|
CXCL12 and Its Isoforms: Different Roles in Pancreatic Cancer? JOURNAL OF ONCOLOGY 2019; 2019:9681698. [PMID: 31275385 PMCID: PMC6582792 DOI: 10.1155/2019/9681698] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
CXCL12 is a chemokine that acts through CXCR4 and ACKR3 receptors and plays a physiological role in embryogenesis and haematopoiesis. It has an important role also in tumor development, since it is released by stromal cells of tumor microenvironment and alters the behavior of cancer cells. Many studies investigated the roles of CXCL12 in order to understand if it has an anti- or protumor role. In particular, it seems to promote tumor invasion, proliferation, angiogenesis, epithelial to mesenchymal transition (EMT), and metastasis in pancreatic cancer. Nevertheless, some evidence shows opposite functions; therefore research on CXCL12 is still ongoing. These discrepancies could be due to the presence of at least six CXCL12 splicing isoforms, each with different roles. Interestingly, three out of six variants have the highest levels of expression in the pancreas. Here, we report the current knowledge about the functions of this chemokine and then focus on pancreatic cancer. Moreover, we discuss the methods applied in recent studies in order to understand if they took into account the existence of the CXCL12 isoforms.
Collapse
|
158
|
Sanchez J, Lane JR, Canals M, Stone MJ. Influence of Chemokine N-Terminal Modification on Biased Agonism at the Chemokine Receptor CCR1. Int J Mol Sci 2019; 20:ijms20102417. [PMID: 31096719 PMCID: PMC6566870 DOI: 10.3390/ijms20102417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/05/2023] Open
Abstract
Leukocyte migration, a hallmark of the inflammatory response, is stimulated by the interactions between chemokines, which are expressed in injured or infected tissues, and chemokine receptors, which are G protein-coupled receptors (GPCRs) expressed in the leukocyte plasma membrane. One mechanism for the regulation of chemokine receptor signaling is biased agonism, the ability of different chemokine ligands to preferentially activate different intracellular signaling pathways via the same receptor. To identify features of chemokines that give rise to biased agonism, we studied the activation of the receptor CCR1 by the chemokines CCL7, CCL8, and CCL15(Δ26). We found that, compared to CCL15(Δ26), CCL7 and CCL8 exhibited biased agonism towards cAMP inhibition and away from β-Arrestin 2 recruitment. Moreover, N-terminal substitution of the CCL15(Δ26) N-terminus with that of CCL7 resulted in a chimera with similar biased agonism to CCL7. Similarly, N-terminal truncation of CCL15(Δ26) also resulted in signaling bias between cAMP inhibition and β-Arrestin 2 recruitment signals. These results show that the interactions of the chemokine N-terminal region with the receptor transmembrane region play a key role in selecting receptor conformations coupled to specific signaling pathways.
Collapse
Affiliation(s)
- Julie Sanchez
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - J Robert Lane
- Centre for Membrane Proteins and Receptors, Nottingham University, Nottingham NG7 2RD, UK.
| | - Meritxell Canals
- Centre for Membrane Proteins and Receptors, Nottingham University, Nottingham NG7 2RD, UK.
| | - Martin J Stone
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
159
|
Bazzichetto C, Conciatori F, Falcone I, Cognetti F, Milella M, Ciuffreda L. Advances in Tumor-Stroma Interactions: Emerging Role of Cytokine Network in Colorectal and Pancreatic Cancer. JOURNAL OF ONCOLOGY 2019; 2019:5373580. [PMID: 31191652 PMCID: PMC6525927 DOI: 10.1155/2019/5373580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
Cytokines are a family of soluble factors (Growth Factors (GFs), chemokines, angiogenic factors, and interferons), which regulate a wide range of mechanisms in both physiological and pathological conditions, such as tumor cell growth and progression, angiogenesis, and metastasis. In recent years, the growing interest in developing new cancer targeted therapies has been accompanied by the effort to characterize Tumor Microenvironment (TME) and Tumor-Stroma Interactions (TSI). The connection between tumor and stroma is now well established and, in the last decade, evidence from genetic, pharmacological, and epidemiological data supported the importance of microenvironment in tumor progression. However, several of the mechanisms behind TSI and their implication in tumor progression remain still unclear and it is crucial to establish their potential in determining pharmacological response. Many studies have demonstrated that cytokines network can profoundly affect TME, thus displaying potential therapeutic efficacy in both preclinical and clinical models. The goal of this review is to give an overview of the most relevant cytokines involved in colorectal and pancreatic cancer progression and their implication in drug response.
Collapse
Affiliation(s)
- Chiara Bazzichetto
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona 37126, Italy
| | - Ludovica Ciuffreda
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| |
Collapse
|
160
|
Calcium Dyshomeostasis Alters CCL5 Signaling in Differentiated PC12 Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9616248. [PMID: 31032369 PMCID: PMC6457283 DOI: 10.1155/2019/9616248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2019] [Indexed: 11/22/2022]
Abstract
Background Plasma membrane Ca2+-ATPase (PMCA) is the most sensitive cellular calcium detector. It exists in four main isoforms (PMCA1-4), among which PMCA2 and PMCA3 are considered as fast-acting neuron-specific forms. In the brain, PMCA function declines progressively during aging; thereby impaired calcium homeostasis may contribute to some neurodegenerative diseases. These destructive processes can be propagated by proinflammatory chemokines, including chemokine CCL5, which causes phospholipase C-mediated liberation of Ca2+ from endoplasmic reticulum by IP3-gated channels. Methods To mimic the changes in aged neurons we used stable transfected differentiated PC12 cells with downregulated PMCA2 or PMCA3 and analyzed the effect of CCL5 on calcium transients with Fluo-4 reagent. Chemokine receptors were evaluated using Western blot, and IP3 receptors expression level was assessed using qRT-PCR and Western blot. Results In PMCA-reduced cell lines, CCL5 released more Ca2+ by IP3-sensitive receptors, and the time required for Ca2+ clearance was significantly longer. Also, in these lines we detected altered expression level of CCR5 and IP3 receptors. Conclusion Although modification of PMCAs composition could provide some protection against calcium overload, reduction of PMCA2 appeared to be more detrimental to the cells than deficiency of PMCA3. Under pathological conditions, including inflammatory CCL5 action and long-lasting Ca2+ dyshomeostasis, insufficient cell protection may result in progressive degeneration and death of neurons.
Collapse
|
161
|
Fatima F, Saleem S, Hameed A, Haider G, Ali Zaidi SA, Kanwal M, Zehra S, Azhar A. Association analysis and allelic distribution of deletion in CC chemokine receptor 5 gene (CCR5Δ32) among breast cancer patients of Pakistan. Mol Biol Rep 2019; 46:2387-2394. [DOI: 10.1007/s11033-019-04699-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/12/2019] [Indexed: 12/17/2022]
|
162
|
Pudełko A, Wisowski G, Olczyk K, Koźma EM. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J 2019; 286:1815-1837. [PMID: 30637950 PMCID: PMC6850286 DOI: 10.1111/febs.14748] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/14/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
Abstract
The remarkable structural heterogeneity of chondroitin sulfate (CS) and dermatan sulfate (DS) generates biological information that can be unique to each of these glycosaminoglycans (GAGs), and changes in their composition are translated into alterations in the binding profiles of these molecules. CS/DS can bind to various cytokines and growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillar glycoproteins of the extracellular matrix, thereby influencing both cell behavior and the biomechanical and biochemical properties of the matrix. In this review, we summarize the current knowledge concerning CS/DS metabolism in the human cancer stroma. The remodeling of the GAG profile in the tumor niche is manifested as a substantial increase in the CS content and a gradual decrease in the proportion between DS and CS. Furthermore, the composition of CS and DS is also affected, which results in a substantial increase in the 6‐O‐sulfated and/or unsulfated disaccharide content, which is concomitant with a decrease in the 4‐O‐sulfation level. Here, we discuss the possible impact of alterations in the CS/DS sulfation pattern on the binding capacity and specificity of these GAGs. Moreover, we propose potential consequences of the stromal accumulation of chondroitin‐6‐sulfate for the progression and metastasis of cancer.
Collapse
Affiliation(s)
- Adam Pudełko
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Wisowski
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Ewa Maria Koźma
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
163
|
Ford J, Hughson A, Lim K, Bardina SV, Lu W, Charo IF, Lim JK, Fowell DJ. CCL7 Is a Negative Regulator of Cutaneous Inflammation Following Leishmania major Infection. Front Immunol 2019; 9:3063. [PMID: 30671055 PMCID: PMC6331479 DOI: 10.3389/fimmu.2018.03063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022] Open
Abstract
The chemokine CCL7 (MCP3) is known to promote the recruitment of many innate immune cell types including monocytes and neutrophils to sites of bacterial and viral infection and eosinophils and basophils to sites of allergic inflammation. CCL7 upregulation has been associated with many inflammatory settings including infection, cardiovascular disease, and the tumor microenvironment. CCL7's pleotropic effects are due in part to its ability to bind numerous chemokine receptors, namely CCR1, CCR2, CCR3, CCR5, and CCR10. CCL7-blockade or CCL7-deficiency is often marked by decreased inflammation and poor pathogen control. In the context of Leishmania major infection, CCL7 is specifically upregulated in the skin one-2 weeks after infection but its role in L. major control is unclear. To determine CCL7's impact on the response to L. major we infected WT and CCL7-/- C57BL/6 mice. L. major infection of CCL7-deficient mice led to an unexpected increase in inflammation in the infected skin 2 weeks post-infection. A broad increase in immune cell subsets was observed but was dominated by enhanced neutrophilic infiltration. Increased neutrophil recruitment was associated with an enhanced IL-17 gene profile in the infected skin. CCL7 was shown to directly antagonize neutrophil migration in vitro and CCL7 add-back in vivo specifically reduced neutrophil influx into the infected skin revealing an unexpected role for CCL7 in limiting neutrophil recruitment during L. major infection. Enhanced neutrophilic infiltration in CCL7-deficient mice changed the balance of L. major infected host cells with an increase in the ratio of infected neutrophils over monocytes/macrophages. To determine the consequence of CCL7 deficiency on L. major control we analyzed parasite load cutaneously at the site of infection and viscerally in the draining LN and spleen. The CCL7-/- mice supported robust cutaneous parasite control similar to their WT C57BL/6 counterparts. In contrast, CCL7-deficiency led to greater parasite dissemination and poor parasite control in the spleen. Our studies reveal a novel role for CCL7 in negatively regulating cutaneous inflammation, specifically neutrophils, early during L. major infection. We propose that CCL7-mediated dampening of the early immune response in the skin may limit the ability of the parasite to disseminate without compromising cutaneous control.
Collapse
Affiliation(s)
- Jill Ford
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| | - Angela Hughson
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| | - Kihong Lim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| | - Susana V Bardina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Israel F Charo
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deborah J Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
164
|
Zhang K, Luo J. Role of MCP-1 and CCR2 in alcohol neurotoxicity. Pharmacol Res 2019; 139:360-366. [PMID: 30472461 PMCID: PMC6360095 DOI: 10.1016/j.phrs.2018.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2018] [Accepted: 11/21/2018] [Indexed: 01/08/2023]
Abstract
Alcohol abuse causes profound damage to both the developing brain and the adult brain. Prenatal exposure to alcohol results in a wide range of deficits known as fetal alcohol spectrum disorders (FASD). Alcohol abuse in adults is associated with brain shrinkage, memory and attention deficits, communication disorders and physical disabilities. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate the recruitment and activation of monocytes and microglia. Both MCP-1 and its receptor C-C chemokine receptor type 2 (CCR2) expressed in the brain are involved in various neuroinflammatory disorders, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). However, the role of MCP-1/CCR2 in alcohol-induced brain damage is unclear. Recent evidence indicates that alcohol exposure increased the activity of MCP-1/CCR2 in both mature and developing central nervous systems (CNS). MCP-1/CCR2 signaling in the brain was involved in alcohol drinking behavior. MCP-1/CCR2 inhibition alleviated alcohol neurotoxicity by reducing microglia activation/neuroinflammation in the developing brain and spinal cord. In this review, we discussed the role of MCP-1/CCR2 signaling in alcohol-induced neuroinflammation and brain damage. We also discussed the signaling cascades that are involved in the activation of MCP-1/CCR2 in response to alcohol exposure.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lexington VA Health Care System, Research & Development, 1101 Veterans Drive, Lexington, KY 40502, USA.
| |
Collapse
|
165
|
Sanchez J, E Huma Z, Lane JR, Liu X, Bridgford JL, Payne RJ, Canals M, Stone MJ. Evaluation and extension of the two-site, two-step model for binding and activation of the chemokine receptor CCR1. J Biol Chem 2018; 294:3464-3475. [PMID: 30567735 DOI: 10.1074/jbc.ra118.006535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Indexed: 11/06/2022] Open
Abstract
Interactions between secreted immune proteins called chemokines and their cognate G protein-coupled receptors regulate the trafficking of leukocytes in inflammatory responses. The two-site, two-step model describes these interactions. It involves initial binding of the chemokine N-loop/β3 region to the receptor's N-terminal region and subsequent insertion of the chemokine N-terminal region into the transmembrane helical bundle of the receptor concurrent with receptor activation. Here, we test aspects of this model with C-C motif chemokine receptor 1 (CCR1) and several chemokine ligands. First, we compared the chemokine-binding affinities of CCR1 with those of peptides corresponding to the CCR1 N-terminal region. Relatively low affinities of the peptides and poor correlations between CCR1 and peptide affinities indicated that other regions of the receptor may contribute to binding affinity. Second, we evaluated the contributions of the two CCR1-interacting regions of the cognate chemokine ligand CCL7 (formerly monocyte chemoattractant protein-3 (MCP-3)) using chimeras between CCL7 and the non-cognate ligand CCL2 (formerly MCP-1). The results revealed that the chemokine N-terminal region contributes significantly to binding affinity but that differences in binding affinity do not completely account for differences in receptor activation. On the basis of these observations, we propose an elaboration of the two-site, two-step model-the "three-step" model-in which initial interactions of the first site result in low-affinity, nonspecific binding; rate-limiting engagement of the second site enables high-affinity, specific binding; and subsequent conformational rearrangement gives rise to receptor activation.
Collapse
Affiliation(s)
- Julie Sanchez
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,the Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Zil E Huma
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,the Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - J Robert Lane
- the Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,the Centre for Membrane Proteins and Receptors, Nottingham University, Nottingham NG7 2UH, United Kingdom
| | - Xuyu Liu
- the School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - Jessica L Bridgford
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,the Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Richard J Payne
- the School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - Meritxell Canals
- the Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia, .,the Centre for Membrane Proteins and Receptors, Nottingham University, Nottingham NG7 2UH, United Kingdom
| | - Martin J Stone
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia,
| |
Collapse
|
166
|
Colin P, Zhou Z, Staropoli I, Garcia-Perez J, Gasser R, Armani-Tourret M, Benureau Y, Gonzalez N, Jin J, Connell BJ, Raymond S, Delobel P, Izopet J, Lortat-Jacob H, Alcami J, Arenzana-Seisdedos F, Brelot A, Lagane B. CCR5 structural plasticity shapes HIV-1 phenotypic properties. PLoS Pathog 2018; 14:e1007432. [PMID: 30521629 PMCID: PMC6283471 DOI: 10.1371/journal.ppat.1007432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/24/2018] [Indexed: 01/20/2023] Open
Abstract
CCR5 plays immune functions and is the coreceptor for R5 HIV-1 strains. It exists in diverse conformations and oligomerization states. We interrogated the significance of the CCR5 structural diversity on HIV-1 infection. We show that envelope glycoproteins (gp120s) from different HIV-1 strains exhibit divergent binding levels to CCR5 on cell lines and primary cells, but not to CD4 or the CD4i monoclonal antibody E51. This owed to differential binding of the gp120s to different CCR5 populations, which exist in varying quantities at the cell surface and are differentially expressed between different cell types. Some, but not all, of these populations are antigenically distinct conformations of the coreceptor. The different binding levels of gp120s also correspond to differences in their capacity to bind CCR5 dimers/oligomers. Mutating the CCR5 dimerization interface changed conformation of the CCR5 homodimers and modulated differentially the binding of distinct gp120s. Env-pseudotyped viruses also use particular CCR5 conformations for entry, which may differ between different viruses and represent a subset of those binding gp120s. In particular, even if gp120s can bind both CCR5 monomers and oligomers, impairment of CCR5 oligomerization improved viral entry, suggesting that HIV-1 prefers monomers for entry. From a functional standpoint, we illustrate that the nature of the CCR5 molecules to which gp120/HIV-1 binds shapes sensitivity to inhibition by CCR5 ligands and cellular tropism. Differences exist in the CCR5 populations between T-cells and macrophages, and this is associated with differential capacity to bind gp120s and to support viral entry. In macrophages, CCR5 structural plasticity is critical for entry of blood-derived R5 isolates, which, in contrast to prototypical M-tropic strains from brain tissues, cannot benefit from enhanced affinity for CD4. Collectively, our results support a role for CCR5 heterogeneity in diversifying the phenotypic properties of HIV-1 isolates and provide new clues for development of CCR5-targeting drugs.
Collapse
Affiliation(s)
- Philippe Colin
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, Paris, France
| | - Zhicheng Zhou
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Isabelle Staropoli
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | | | - Romain Gasser
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Marie Armani-Tourret
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Yann Benureau
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Nuria Gonzalez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Jun Jin
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Bridgette J. Connell
- Grenoble Alpes University, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Stéphanie Raymond
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Pierre Delobel
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Hugues Lortat-Jacob
- Grenoble Alpes University, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Arenzana-Seisdedos
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Anne Brelot
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Bernard Lagane
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
167
|
Vacchini A, Mortier A, Proost P, Locati M, Metzemaekers M, Borroni EM. Differential Effects of Posttranslational Modifications of CXCL8/Interleukin-8 on CXCR1 and CXCR2 Internalization and Signaling Properties. Int J Mol Sci 2018; 19:E3768. [PMID: 30486423 PMCID: PMC6321254 DOI: 10.3390/ijms19123768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
CXCL8 or interleukin (IL)-8 directs neutrophil migration and activation through interaction with CXCR1 and CXCR2 that belong to the family of G protein-coupled receptors (GPCRs). Naturally occurring posttranslational modifications of the NH₂-terminal region of CXCL8 affect its biological activities, but the underlying molecular mechanisms are only partially understood. Here, we studied the implications of site-specific citrullination and truncation for the signaling potency of CXCL8. Native CXCL8(1-77), citrullinated [Cit5]CXCL8(1-77) and the major natural isoform CXCL8(6-77) were chemically synthesized and tested in internalization assays using human neutrophils. Citrullinated and truncated isoforms showed a moderately enhanced capacity to induce internalization of CXCR1 and CXCR2. Moreover, CXCL8-mediated activation of Gαi-dependent signaling through CXCR1 and CXCR2 was increased upon modification to [Cit5]CXCL8(1-77) or CXCL8(6-77). All CXCL8 variants promoted recruitment of β-arrestins 1 and 2 to CXCR1 and CXCR2. Compared to CXCL8(1-77), CXCL8(6-77) showed an enhanced potency to recruit β-arrestin 2 to both receptors, while for [Cit5]CXCL8(1-77) only the capacity to induce β-arrestin 2 recruitment to CXCR2 was increased. Both modifications had no biasing effect, i.e., did not alter the preference of CXCL8 to activate either Gαi-protein or β-arrestin-dependent signaling through its receptors. Our results support the concept that specific chemokine activities are fine-tuned by posttranslational modifications.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Massimo Locati
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Elena Monica Borroni
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| |
Collapse
|
168
|
Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, Zhao K, Zhang Q, Liu X, Liu J, Liu B, Cao X. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell 2018; 175:1336-1351.e17. [PMID: 30318148 DOI: 10.1016/j.cell.2018.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 08/04/2018] [Accepted: 09/07/2018] [Indexed: 01/20/2023]
Abstract
As a critical step during innate response, the cytoplasmic β subunit (IFN-γR2) of interferon-γ receptor (IFN-γR) is induced and translocates to plasma membrane to join α subunit to form functional IFN-γR to mediate IFN-γ signaling. However, the mechanism driving membrane translocation and its significance remain largely unknown. We found, unexpectedly, that mice deficient in E-selectin, an endothelial cell-specific adhesion molecule, displayed impaired innate activation of macrophages upon Listeria monocytogenes infection yet had increased circulating IFN-γ. Inflammatory macrophages from E-selectin-deficient mice had less surface IFN-γR2 and impaired IFN-γ signaling. BTK elicited by extrinsic E-selectin engagement phosphorylates cytoplasmic IFN-γR2, facilitating EFhd2 binding and promoting IFN-γR2 trafficking from Golgi to cell membrane. Our findings demonstrate that membrane translocation of cytoplasmic IFN-γR2 is required to activate macrophage innate response against intracellular bacterial infection, identifying the assembly of functional cytokine receptors on cell membrane as an important layer in innate activation and cytokine signaling.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Jia Xu
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Jiacheng Wu
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Ye Hu
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Yanmei Han
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Yan Gu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Kai Zhao
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Juan Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Bing Liu
- Translational Medicine Center, Academy of Military Medical Sciences, 100024 Beijing, China
| | - Xuetao Cao
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China; College of Life Science, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
169
|
Wedemeyer MJ, Mueller BK, Bender BJ, Meiler J, Volkman BF. Modeling the complete chemokine-receptor interaction. Methods Cell Biol 2018; 149:289-314. [PMID: 30616825 DOI: 10.1016/bs.mcb.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemokines are soluble, secreted proteins that induce chemotaxis of leukocytes and other cells. Migratory cells can sense the chemokine concentration gradient following chemokine binding and activation of chemokine receptors, a subset of the G protein-coupled receptor (GPCR) superfamily. Chemokine receptor signaling plays a central role in cell migration during inflammatory responses as well as in cancer and other diseases. Given their important role in mediating essential pathologic and physiologic processes, chemokines and their receptors are attractive targets for therapeutic development. A better understanding of the molecular basis of chemokine-GPCR interactions will aid in the understanding of the mechanistic basis for chemokine function in disease-related processes, as well as aid in the design of new therapeutics. High resolution protein structures are critical for determining these mechanisms and investigating the interactions between approximately 50 chemokines and 20 chemokine receptors. Currently, three unique structures of chemokine-GPCR complexes have been determined and have greatly broadened our knowledge of this large protein-protein interaction. While these structures represent only a small fraction of clinically relevant chemokines and receptors, they can be exploited as scaffolds for homology modeling to understand the chemokine-GPCR interactions. This chapter presents a specialized methodology to construct and validate models of chemokine-GPCR complexes using the Rosetta software suite.
Collapse
Affiliation(s)
- Michael J Wedemeyer
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Benjamin K Mueller
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Brian J Bender
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
170
|
Xue W, Fan Z, Li L, Lu J, Zhai Y, Zhao J. The chemokine system and its role in obesity. J Cell Physiol 2018; 234:3336-3346. [PMID: 30375006 DOI: 10.1002/jcp.27293] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/31/2018] [Indexed: 12/27/2022]
Abstract
The chemokine system is a complex arrangement of molecules that attract leukocytes to the site of injury or inflammation. This chemotactic behavior gives the system the name "Chemokine." The intricate and redundant nature of the chemokine system has made it a subject of ongoing scientific investigation. Obesity is characterized as low-grade systemic or chronic inflammation that is responsible for the release of cytokines, adipokines, and chemokines. Excessive tissue fat expansion triggers the release of chemokines, which in turn attract various leukocytes and activate the resident immune surveillance system, eventually leading to worsening of obesity and other related comorbidities. To date, 50 chemokines and 20 chemokine receptors that belong to the G-protein-coupled receptor family have been discovered, and over the past two decades, the physiological and pathological roles of many of these chemokines and their receptors have been elucidated. The objective of this review is to present an update on the link between chemokines and obesity under the light of recent knowledge.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhirui Fan
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lifeng Li
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunkai Zhai
- Center of Telemedicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Engineering Laboratory for Digital Telemedicine Service, Zhengzhou, Henan, China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Center of Telemedicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Engineering Laboratory for Digital Telemedicine Service, Zhengzhou, Henan, China
| |
Collapse
|
171
|
Zahran A, Attia A, Mansell H, Shoker A. Contribution of diminished kidney transplant GFR to increased circulating chemokine ligand 27 level. JOURNAL OF INFLAMMATION-LONDON 2018; 15:18. [PMID: 30214382 PMCID: PMC6131940 DOI: 10.1186/s12950-018-0194-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
Abstract
Background Inflammatory chemokine ligands (CCLs) play an important role in cardiovascular disease and allograft injury. CCLs may independently associate with diminished estimated glomerular filtration rate (eGFR) in stable renal transplant recipients (RTR). Methods Plasma levels of 19 CCLs (1, 2, 3, 4, 5, 8, 11, 13, 15, 17, 21, 24, 26, 27, CXCL5, 8, 10, 12 and 13) were measured in a cohort of 101 RTR. The cohort was divided according to CKD-EPI equation into three groups; group 1: eGFR ≥ 60 ml/min, group 2: eGFR 30–59.9 ml/min and group 3 eGFR ≤ 29.9 ml/min. ANOVA, Krusklwallis, Mann- Whitney Spearman correlation and regression analysis tests were used to determine association between reduced eGFR and inflammatory CCLs plasma levels measured by multiplex techniques. 20 healthy subjects with eGFR above 90 ml/min were included as control. Significance was sat at < 0.05. Results Levels of CCLs 1, 4, 15, 27, CXCL8 and CXCL10 were significantly different among the four studied groups. Multivariate regression analysis (MVA) between eGFR and all CCLs demonstrated that CCL27 was the only ligand to remain significantly associated with diminished eGFR {P = 0.021 and r = − 0.35,(P = 0.001)}. In a second MVA between CCL 27 and patient’s demographics and laboratory variables, diminished eGFR, and elevated PTH, out of the twenty one available variables remained significantly associated with elevated CCL27levels. Conclusion Diminished eGFR in stable RTR is associated with elevated plasma levels of CCL27. This association may explain, at least in part, the independent contribution of reduced eGFR to enhanced inflammation in RTR.
Collapse
Affiliation(s)
- Ahmed Zahran
- 1Nephrology Unit, Department of Medicine, Faculty of Medicine, University of Menoufia, Shibin El Kom, Egypt
| | - Ahmed Attia
- 2National Liver Institute, University of Menoufia, Shibin El Kom, Egypt
| | - Holly Mansell
- 3College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK Canada
| | - Ahmed Shoker
- 4Department of Medicine, University of Saskatchewan, Saskatoon, SK Canada.,5Saskatchewan Transplant Program, St Paul's Hospital, 1702- 20th Street West, Saskatoon, SK S7M 0Z9 Canada
| |
Collapse
|
172
|
Luoreng ZM, Wang XP, Mei CG, Zan LS. Expression profiling of peripheral blood miRNA using RNAseq technology in dairy cows with Escherichia coli-induced mastitis. Sci Rep 2018; 8:12693. [PMID: 30140010 PMCID: PMC6107498 DOI: 10.1038/s41598-018-30518-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/01/2018] [Indexed: 01/25/2023] Open
Abstract
E. coli is the main causative agent of mastitis in dairy cows, but the mechanism of molecular regulation underlying the occurrence and development of mastitis has not yet been fully elucidated. In this study, an E. coli-induced mastitis model was created and RNASeq technology was used to measure the miRNA expression profiles at different times post-infection (0, 1, 3, 5, 7 dpi), as well as to screen for differentially expressed miRNA. The results show detection of 2416 miRNAs, including 628 known miRNAs and 1788 newly discovered miRNAs. A total of 200 differentially expressed miRNAs were found at different time points. Bioinformatics analysis showed that these differentially expressed miRNAs may regulate the occurrence and development of mastitis in dairy cows through seven signal transduction pathways, namely cytokine-cytokine receptor interaction, MAPK signaling pathway, chemokine signaling pathway, leukocyte transendothelial migration, T cell receptor signaling pathway, Toll-like receptor signaling pathway, and cell adhesion molecules. In addition, bta-miR-200a, bta-miR-205, bta-miR-122, bta-miR-182 and the newly discovered conservative_15_7229 might be involved in immune process in late stage of E. coli-induced mastitis. The results of this study lay the foundation for molecular network analysis of mastitis and molecular breeding of dairy cows.
Collapse
Affiliation(s)
- Zhuo-Ma Luoreng
- College of Animal Science and Technology, National Beef Cattle Improvement Center, Northwest A & F University, Yangling, Shaanxi, China.,Key Laboratory of Zoology in Hunan Higher Education, College of Life Science, Hunan University of Arts and Science, Changde, Hunan, China
| | - Xing-Ping Wang
- College of Animal Science and Technology, National Beef Cattle Improvement Center, Northwest A & F University, Yangling, Shaanxi, China.,Key Laboratory of Zoology in Hunan Higher Education, College of Life Science, Hunan University of Arts and Science, Changde, Hunan, China
| | - Chu-Gang Mei
- College of Animal Science and Technology, National Beef Cattle Improvement Center, Northwest A & F University, Yangling, Shaanxi, China
| | - Lin-Sen Zan
- College of Animal Science and Technology, National Beef Cattle Improvement Center, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
173
|
Grünberg M, Quandt D, Cynis H, Demuth HU, Kindermann A, Magdolen V, Forssmann WG, Seliger B, Mägert HJ. Kallikrein-related peptidases are activators of the CC chemokine CCL14. Eur J Immunol 2018; 48:1592-1594. [PMID: 30028015 DOI: 10.1002/eji.201747452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/22/2018] [Accepted: 07/18/2018] [Indexed: 11/06/2022]
Abstract
Chemokine CCL14 is inactive in its proform. Here, we show that inflammation- and cancer-associated kallikrein-related peptidases KLK5 and KLK8 remove the N-terminal eight amino acids from the proform thereby converting CCL14 to its active state. Activity of the chemokine is demonstrated by migration of myeloid cells expressing relevant receptors.
Collapse
Affiliation(s)
- Mario Grünberg
- Anhalt University of Applied Sciences, Molecular Biotechnology, Köthen, Germany
| | - Dagmar Quandt
- Martin Luther University Halle, Medical Faculty, Institute for Medical Immunology, Halle, Germany.,Martin Luther University Halle, Medical Faculty, Institute for Anatomy and Cell Biology, Halle, Germany
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Department of Molecular Drug Biochemistry and Therapy Development, Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Department of Molecular Drug Biochemistry and Therapy Development, Halle, Germany
| | - Andrea Kindermann
- Martin Luther University Halle, Medical Faculty, Institute for Anatomy and Cell Biology, Halle, Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Technical University Munich, Munich, Germany
| | | | - Barbara Seliger
- Martin Luther University Halle, Medical Faculty, Institute for Medical Immunology, Halle, Germany
| | - Hans-Jürgen Mägert
- Anhalt University of Applied Sciences, Molecular Biotechnology, Köthen, Germany
| |
Collapse
|
174
|
Thomas MA, Kleist AB, Volkman BF. Decoding the chemotactic signal. J Leukoc Biol 2018; 104:359-374. [PMID: 29873835 PMCID: PMC6099250 DOI: 10.1002/jlb.1mr0218-044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/25/2018] [Indexed: 12/20/2022] Open
Abstract
From an individual bacterium to the cells that compose the human immune system, cellular chemotaxis plays a fundamental role in allowing cells to navigate, interpret, and respond to their environments. While many features of cellular chemotaxis are shared among systems as diverse as bacteria and human immune cells, the machinery that guides the migration of these model organisms varies widely. In this article, we review current literature on the diversity of chemoattractant ligands, the cell surface receptors that detect and process chemotactic gradients, and the link between signal recognition and the regulation of cellular machinery that allow for efficient directed cellular movement. These facets of cellular chemotaxis are compared among E. coli, Dictyostelium discoideum, and mammalian neutrophils to derive organizational principles by which diverse cell systems sense and respond to chemotactic gradients to initiate cellular migration.
Collapse
Affiliation(s)
- Monica A. Thomas
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Andrew B. Kleist
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Brian F. Volkman
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
175
|
Thomas MA, He J, Peterson FC, Huppler AR, Volkman BF. The Solution Structure of CCL28 Reveals Structural Lability that Does Not Constrain Antifungal Activity. J Mol Biol 2018; 430:3266-3282. [PMID: 29913161 DOI: 10.1016/j.jmb.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/18/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
The chemokine CCL28 is constitutively expressed in mucosal tissues and is abundant in low-salt mucosal secretions. Beyond its traditional role as a chemoattractant, CCL28 has been shown to act as a potent and broad-spectrum antimicrobial agent with particular efficacy against the commensal fungus and opportunistic pathogen Candida albicans. However, the structural features that allow CCL28 to perform its chemotactic and antimicrobial functions remain unknown. Here, we report the structure of CCL28, solved using nuclear magnetic resonance spectroscopy. CCL28 adopts the canonical chemokine tertiary fold, but also has a disordered C-terminal domain that is partially tethered to the core by a non-conserved disulfide bond. Structure-function analysis reveals that removal of the C-terminal tail reduces the antifungal activity of CCL28 without disrupting its structural integrity. Conversely, removal of the non-conserved disulfide bond destabilizes the tertiary fold of CCL28 without altering its antifungal effects. Moreover, we report that CCL28 unfolds in response to low pH but is stabilized by the presence of salt. To explore the physiologic relevance of the observed structural lability of CCL28, we investigated the effects of pH and salt on the antifungal activity of CCL28 in vitro. We found that low pH enhances the antifungal potency of CCL28, but also that this pH effect is independent of CCL28's tertiary fold. Given its dual role as a chemoattractant and antimicrobial agent, our results suggest that changes in the salt concentration or pH at mucosal sites may fine-tune CCL28's functional repertoire by adjusting the thermostability of its structure.
Collapse
Affiliation(s)
- Monica A Thomas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jie He
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anna R Huppler
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
176
|
Taddese B, Deniaud M, Garnier A, Tiss A, Guissouma H, Abdi H, Henrion D, Chabbert M. Evolution of chemokine receptors is driven by mutations in the sodium binding site. PLoS Comput Biol 2018; 14:e1006209. [PMID: 29912865 PMCID: PMC6037435 DOI: 10.1371/journal.pcbi.1006209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/09/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Chemokines and their receptors (members of the GPCR super-family) are involved in a wide variety of physiological processes and diseases; thus, understanding the specificity of the chemokine receptor family could help develop new receptor specific drugs. Here, we explore the evolutionary mechanisms that led to the emergence of the chemokine receptors. Based on GPCR hierarchical classification, we analyzed nested GPCR sets with an eigen decomposition approach of the sequence covariation matrix and determined three key residues whose mutation was crucial for the emergence of the chemokine receptors and their subsequent divergence into homeostatic and inflammatory receptors. These residues are part of the allosteric sodium binding site. Their structural and functional roles were investigated by molecular dynamics simulations of CXCR4 and CCR5 as prototypes of homeostatic and inflammatory chemokine receptors, respectively. This study indicates that the three mutations crucial for the evolution of the chemokine receptors dramatically altered the sodium binding mode. In CXCR4, the sodium ion is tightly bound by four protein atoms and one water molecule. In CCR5, the sodium ion is mobile within the binding pocket and moves between different sites involving from one to three protein atoms and two to five water molecules. Analysis of chemokine receptor evolution reveals that a highly constrained sodium binding site characterized most ancient receptors, and that the constraints were subsequently loosened during the divergence of this receptor family. We discuss the implications of these findings for the evolution of the chemokine receptor functions and mechanisms of action.
Collapse
Affiliation(s)
- Bruck Taddese
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
| | - Madeline Deniaud
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
| | - Antoine Garnier
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
| | - Asma Tiss
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Hajer Guissouma
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Hervé Abdi
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Dallas, Texas, United States of America
| | - Daniel Henrion
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
| | - Marie Chabbert
- Laboratoire MITOVASC, UMR CNRS 6015 – INSERM 1083, Université d’Angers, Angers, France
| |
Collapse
|
177
|
Oxaloacetate Ameliorates Chemical Liver Injury via Oxidative Stress Reduction and Enhancement of Bioenergetic Fluxes. Int J Mol Sci 2018; 19:ijms19061626. [PMID: 29857490 PMCID: PMC6032239 DOI: 10.3390/ijms19061626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
Chemical injury is partly due to free radical lipid peroxidation, which can induce oxidative stress and produce a large number of reactive oxygen species (ROS). Oxaloacetic acid is an important intermediary in the tricarboxylic acid cycle (TCA cycle) and participates in metabolism and energy production. In our study, we found that oxaloacetate (OA) effectively alleviated liver injury which was induced by hydrogen peroxide (H₂O₂) in vitro and carbon tetrachloride (CCl₄) in vivo. OA scavenged ROS, prevented oxidative damage and maintained the normal structure of mitochondria. We further confirmed that OA increased adenosine triphosphate (ATP) by promoting the TCA production cycle and oxidative phosphorylation (OXPHOS). Finally, OA inhibited the mitogen-activated protein kinase (MAPK) and apoptotic pathways by suppressing tumor necrosis factor-α (TNF-α). Our findings reveal a mechanism for OA ameliorating chemical liver injury and suggest a possible implementation for preventing the chemical liver injury.
Collapse
|
178
|
Kozireva S, Rudevica Z, Baryshev M, Leonciks A, Kashuba E, Kholodnyuk I. Upregulation of the Chemokine Receptor CCR2B in Epstein‒Barr Virus-Positive Burkitt Lymphoma Cell Lines with the Latency III Program. Viruses 2018; 10:v10050239. [PMID: 29751565 PMCID: PMC5977232 DOI: 10.3390/v10050239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 12/19/2022] Open
Abstract
CCR2 is the cognate receptor to the chemokine CCL2. CCR2–CCL2 signaling mediates cancer progression and metastasis dissemination. However, the role of CCR2–CCL2 signaling in pathogenesis of B-cell malignancies is not clear. Previously, we showed that CCR2B was upregulated in ex vivo peripheral blood B cells upon Epstein‒Barr virus (EBV) infection and in established lymphoblastoid cell lines with the EBV latency III program. EBV latency III is associated with B-cell lymphomas in immunosuppressed patients. The majority of EBV-positive Burkitt lymphoma (BL) tumors are characterized by latency I, but the BL cell lines drift towards latency III during in vitro culture. In this study, the CCR2A and CCR2B expression was assessed in the isogenic EBV-positive BL cell lines with latency I and III using RT-PCR, immunoblotting, and immunostaining analyses. We found that CCR2B is upregulated in the EBV-positive BL cells with latency III. Consequently, we detected the migration of latency III cells toward CCL2. Notably, the G190A mutation, corresponding to SNP CCR2-V64I, was found in one latency III cell line with a reduced migratory response to CCL2. The upregulation of CCR2B may contribute to the enhanced migration of malignant B cells into CCL2-rich compartments.
Collapse
Affiliation(s)
- Svetlana Kozireva
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| | - Zhanna Rudevica
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str k-1, 1067 Riga, Latvia.
| | - Mikhail Baryshev
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| | - Ainars Leonciks
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str k-1, 1067 Riga, Latvia.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 16 Nobelsväg, Box 280, 171 77 Stockholm, Sweden.
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NASU, 45 Vasylkivska str, 03022 Kyiv, Ukraine.
| | - Irina Kholodnyuk
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| |
Collapse
|
179
|
Batista AM, Alvarado-Arnez LE, Alves SM, Melo G, Pereira IR, Ruivo LADS, da Silva AA, Gibaldi D, da Silva TDESP, de Lorena VMB, de Melo AS, de Araújo Soares AK, Barros MDS, Costa VMA, Cardoso CC, Pacheco AG, Carrazzone C, Oliveira W, Moraes MO, Lannes-Vieira J. Genetic Polymorphism at CCL5 Is Associated With Protection in Chagas' Heart Disease: Antagonistic Participation of CCR1 + and CCR5 + Cells in Chronic Chagasic Cardiomyopathy. Front Immunol 2018; 9:615. [PMID: 29696014 PMCID: PMC5904358 DOI: 10.3389/fimmu.2018.00615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/12/2018] [Indexed: 12/26/2022] Open
Abstract
Chronic cardiomyopathy is the main clinical manifestation of Chagas disease (CD), a disease caused by Trypanosoma cruzi infection. A hallmark of chronic chagasic cardiomyopathy (CCC) is a fibrogenic inflammation mainly composed of CD8+ and CD4+ T cells and macrophages. CC-chemokine ligands and receptors have been proposed to drive cell migration toward the heart tissue of CD patients. Single nucleotide polymorphisms (SNPs) in CC-chemokine ligand and receptor genes may determine protein expression. Herein, we evaluated the association of SNPs in the CC-chemokines CCL2 (rs1024611) and CCL5 (rs2107538, rs2280788) and the CCL5/RANTES receptors CCR1 (rs3181077, rs1491961, rs3136672) and CCR5 (rs1799987) with risk and progression toward CCC. We performed a cross-sectional association study of 406 seropositive patients from endemic areas for CD in the State of Pernambuco, Northeast Brazil. The patients were classified as non-cardiopathic (A, n = 110) or cardiopathic (mild, B1, n = 163; severe, C, n = 133). Serum levels of CCL5 and CCL2/MCP-1 were elevated in CD patients but were neither associated with risk/severity of CCC nor with SNP genotypes. After logistic regression analysis with adjustment for the covariates gender and ethnicity, CCL5 -403 (rs2107538) CT heterozygotes (OR = 0.5, P-value = 0.04) and T carriers (OR = 0.5, P-value = 0.01) were associated with protection against CCC. To gain insight into the participation of the CCL5-CCR5/CCR1 axis in CCC, mice were infected with the Colombian T. cruzi strain. Increased CCL5 concentrations were detected in cardiac tissue. In spleen, frequencies of CCR1+ CD8+ T cells and CD14+ macrophages were decreased, while frequencies of CCR5+ cells were increased. Importantly, CCR1+CD14+ macrophages were mainly IL-10+, while CCR5+ cells were mostly TNF+. CCR5-deficient infected mice presented reduced TNF concentrations and injury in heart tissue. Selective blockade of CCR1 (Met-RANTES therapy) in infected Ccr5-/- mice supported a protective role for CCR1 in CCC. Furthermore, parasite antigen stimulation of CD patient blood cells increased the frequency of CCR1+CD8+ T cells and CCL5 production. Collectively, our data support that a genetic variant of CCL5 and CCR1+ cells confer protection against Chagas heart disease, identifying the CCL5-CCR1 axis as a target for immunostimulation.
Collapse
Affiliation(s)
- Angelica Martins Batista
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Lucia Elena Alvarado-Arnez
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Silvia Marinho Alves
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE/UPE), Recife, Brazil
| | - Gloria Melo
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE/UPE), Recife, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Andrea Alice da Silva
- Laboratório Multiusuário de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Virginia Maria Barros de Lorena
- Laboratório de Imunoparasitologia, Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Adriene Siqueira de Melo
- Laboratório de Imunoparasitologia, Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Ana Karine de Araújo Soares
- Laboratório de Imunoparasitologia, Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Michelle da Silva Barros
- Laboratório de Imunoparasitologia, Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Vláudia Maria Assis Costa
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Brazil.,Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
| | - Cynthia C Cardoso
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio G Pacheco
- Programa de Computação Científica, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cristina Carrazzone
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE/UPE), Recife, Brazil
| | - Wilson Oliveira
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE/UPE), Recife, Brazil
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
180
|
Pranzatelli MR. Advances in Biomarker-Guided Therapy for Pediatric- and Adult-Onset Neuroinflammatory Disorders: Targeting Chemokines/Cytokines. Front Immunol 2018; 9:557. [PMID: 29670611 PMCID: PMC5893838 DOI: 10.3389/fimmu.2018.00557] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 12/26/2022] Open
Abstract
The concept and recognized components of “neuroinflammation” are expanding at the intersection of neurobiology and immunobiology. Chemokines (CKs), no longer merely necessary for immune cell trafficking and positioning, have multiple physiologic, developmental, and modulatory functionalities in the central nervous system (CNS) through neuron–glia interactions and other mechanisms affecting neurotransmission. They issue the “help me” cry of neurons and astrocytes in response to CNS injury, engaging invading lymphoid cells (T cells and B cells) and myeloid cells (dendritic cells, monocytes, and neutrophils) (adaptive immunity), as well as microglia and macrophages (innate immunity), in a cascade of events, some beneficial (reparative), others destructive (excitotoxic). Human cerebrospinal fluid (CSF) studies have been instrumental in revealing soluble immunobiomarkers involved in immune dysregulation, their dichotomous effects, and the cells—often subtype specific—that produce them. CKs/cytokines continue to be attractive targets for the pharmaceutical industry with varying therapeutic success. This review summarizes the developing armamentarium, complexities of not compromising surveillance/physiologic functions, and insights on applicable strategies for neuroinflammatory disorders. The main approach has been using a designer monoclonal antibody to bind directly to the chemo/cytokine. Another approach is soluble receptors to bind the chemo/cytokine molecule (receptor ligand). Recombinant fusion proteins combine a key component of the receptor with IgG1. An additional approach is small molecule antagonists (protein therapeutics, binding proteins, and protein antagonists). CK neutralizing molecules (“neutraligands”) that are not receptor antagonists, high-affinity neuroligands (“decoy molecules”), as well as neutralizing “nanobodies” (single-domain camelid antibody fragment) are being developed. Simultaneous, more precise targeting of more than one cytokine is possible using bispecific agents (fusion antibodies). It is also possible to inhibit part of a signaling cascade to spare protective cytokine effects. “Fusokines” (fusion of two cytokines or a cytokine and CK) allow greater synergistic bioactivity than individual cytokines. Another promising approach is experimental targeting of the NLRP3 inflammasome, amply expressed in the CNS and a key contributor to neuroinflammation. Serendipitous discovery is not to be discounted. Filling in knowledge gaps between pediatric- and adult-onset neuroinflammation by systematic collection of CSF data on CKs/cytokines in temporal and clinical contexts and incorporating immunobiomarkers in clinical trials is a challenge hereby set forth for clinicians and researchers.
Collapse
Affiliation(s)
- Michael R Pranzatelli
- National Pediatric Neuroinflammation Organization, Inc., Orlando, FL, United States.,College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
181
|
Gahbauer S, Pluhackova K, Böckmann RA. Closely related, yet unique: Distinct homo- and heterodimerization patterns of G protein coupled chemokine receptors and their fine-tuning by cholesterol. PLoS Comput Biol 2018; 14:e1006062. [PMID: 29529028 PMCID: PMC5864085 DOI: 10.1371/journal.pcbi.1006062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/22/2018] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
Chemokine receptors, a subclass of G protein coupled receptors (GPCRs), play essential roles in the human immune system, they are involved in cancer metastasis as well as in HIV-infection. A plethora of studies show that homo- and heterodimers or even higher order oligomers of the chemokine receptors CXCR4, CCR5, and CCR2 modulate receptor function. In addition, membrane cholesterol affects chemokine receptor activity. However, structural information about homo- and heterodimers formed by chemokine receptors and their interplay with cholesterol is limited. Here, we report homo- and heterodimer configurations of the chemokine receptors CXCR4, CCR5, and CCR2 at atomistic detail, as obtained from thousands of molecular dynamics simulations. The observed homodimerization patterns were similar for the closely related CC chemokine receptors, yet they differed significantly between the CC receptors and CXCR4. Despite their high sequence identity, cholesterol modulated the CC homodimer interfaces in a subtype-specific manner. Chemokine receptor heterodimers display distinct dimerization patterns for CXCR4/CCR5 and CXCR4/CCR2. Furthermore, associations between CXCR4 and CCR5 reveal an increased cholesterol-sensitivity as compared to CXCR4/CCR2 heterodimerization patterns. This work provides a first comprehensive structural overview over the complex interaction network between chemokine receptors and indicates how heterodimerization and the interaction with the membrane environment diversifies the function of closely related GPCRs.
Collapse
MESH Headings
- Animals
- Chemokines/metabolism
- Cholesterol/metabolism
- Computer Simulation
- Dimerization
- Humans
- Molecular Dynamics Simulation
- Receptors, CCR2/chemistry
- Receptors, CCR2/metabolism
- Receptors, CCR2/ultrastructure
- Receptors, CCR5/chemistry
- Receptors, CCR5/metabolism
- Receptors, CCR5/ultrastructure
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/ultrastructure
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/genetics
- Receptors, G-Protein-Coupled/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Stefan Gahbauer
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
182
|
Gao T, Shen Z, Ma C, Li Y, Kang X, Sun M. The CCL5/CCR5 Chemotactic Pathway Promotes Perineural Invasion in Salivary Adenoid Cystic Carcinoma. J Oral Maxillofac Surg 2018; 76:1708-1718. [PMID: 29549020 DOI: 10.1016/j.joms.2018.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE Perineural invasion (PNI) is a hallmark of salivary adenoid cystic carcinoma (SACC) and represents an important risk factor for local recurrence and poor survival. However, the mechanism of PNI has yet to be explored. We sought to examine the CCL5-CCR5 ligand-receptor interaction between nerves and SACC cells. MATERIALS AND METHODS CCL5/CCR5 expression was determined by immunohistochemistry in SACC tissue specimens. The correlations between CCL5/CCR5 expression and clinicopathologic features were investigated. Dorsal root ganglia (DRG) and SACC cells cocultured in vitro were used to evaluate the effects of CCL5/CCR5 on PNI progression and pathogenesis. RESULTS CCR5 expression was significantly elevated in SACC tissues and associated with distant metastasis, PNI, and TNM grade (P < .05). DRG and SACC cells cocultured in vitro showed that the activation of the CCL5/CCR5 axis significantly increased SACC cell invasion and promoted the outgrowth of the DRG. SACC cell lines expressing CCR5 migrated in response to CCL5 derived from DRG, eventually leading to PNI. More importantly, further study showed that blocking of CCL5 or CCR5 effectively inhibited the invasive capacity and PNI activity of SACC cells (P < .05). CONCLUSIONS Our results suggest a pivotal role of CCL5/CCR5 axis in tumor-nerve interactions during PNI of SACC. The CCL5/CCR5 pathway might prove to be an attractive new target for the treatment of SACC with PNI.
Collapse
Affiliation(s)
- Tao Gao
- Attending Physician, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; and Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zhiyuan Shen
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; and Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Oral and Maxillofacial surgery, Stomatological Hospital of Shandong University, Jinan, China
| | - Chao Ma
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; and Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yun Li
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; and Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiangfeng Kang
- Resident, Department of Pediatrics, The First Hospital of Yulin, Shaanxi, China
| | - Moyi Sun
- Professor, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; and Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
183
|
Relative distribution and biological characterization of CXCL4L1 isoforms in platelets from healthy donors. Biochem Pharmacol 2017; 145:123-131. [DOI: 10.1016/j.bcp.2017.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
|
184
|
Regulation of Chemokine-Receptor Interactions and Functions. Int J Mol Sci 2017; 18:ijms18112415. [PMID: 29135930 PMCID: PMC5713383 DOI: 10.3390/ijms18112415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammation is the body's response to injury or infection. As early as 2000 years ago, the Roman encyclopaedist Aulus Cornelius Celsus recognised four cardinal signs of this response-redness, heat, swelling and pain; a fifth sign is loss of function.[...].
Collapse
|
185
|
Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model. Proc Natl Acad Sci U S A 2017; 114:12460-12465. [PMID: 29109267 DOI: 10.1073/pnas.1704958114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the infiltration of T cell and other immune cells to the skin in response to injury or autoantigens. Conventional, as well as unconventional, γδ T cells are recruited to the dermis and epidermis by CCL20 and other chemokines. Together with its receptor CCR6, CCL20 plays a critical role in the development of psoriasiform dermatitis in mouse models. We screened a panel of CCL20 variants designed to form dimers stabilized by intermolecular disulfide bonds. A single-atom substitution yielded a CCL20 variant (CCL20 S64C) that acted as a partial agonist for the chemokine receptor CCR6. CCL20 S64C bound CCR6 and induced intracellular calcium release, consistent with G-protein activation, but exhibited minimal chemotactic activity. Instead, CCL20 S64C inhibited CCR6-mediated T cell migration with nominal impact on other chemokine receptor signaling. When given in an IL-23-dependent mouse model for psoriasis, CCL20 S64C prevented psoriatic inflammation and the up-regulation of IL-17A and IL-22. Our results validate CCR6 as a tractable therapeutic target for psoriasis and demonstrate the value of CCL20 S64C as a lead compound.
Collapse
|
186
|
Wang Z, Shang H, Jiang Y. Chemokines and Chemokine Receptors: Accomplices for Human Immunodeficiency Virus Infection and Latency. Front Immunol 2017; 8:1274. [PMID: 29085362 PMCID: PMC5650658 DOI: 10.3389/fimmu.2017.01274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
Chemokines are small chemotactic cytokines that are involved in the regulation of immune cell migration. Multiple functional properties of chemokines, such as pro-inflammation, immune regulation, and promotion of cell growth, angiogenesis, and apoptosis, have been identified in many pathological and physiological contexts. Human immunodeficiency virus (HIV) infection is characterized by persistent inflammation and immune activation during both acute and chronic phases, and the "cytokine storm" is one of the hallmarks of HIV infection. Along with immune activation after HIV infection, an extensive range of chemokines and other cytokines are elevated, thereby generating the so-called "cytokine storm." In this review, the effects of the upregulated chemokines and chemokine receptors on the processes of HIV infection are discussed. The objective of this review was to focus on the main chemokines and chemokine receptors that have been found to be associated with HIV infection and latency. Elevated chemokines and chemokine receptors have been shown to play important roles in the HIV life cycle, disease progression, and HIV reservoir establishment. Thus, targeting these chemokines and receptors and the other proteins of related signaling pathways might provide novel therapeutic strategies, and the evidence indicates a promising future regarding the development of a functional cure for HIV.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
187
|
Kholodnyuk I, Rudevica Z, Leonciks A, Ehlin-Henriksson B, Kashuba E. Expression of the chemokine receptors CCR1 and CCR2B is up-regulated in peripheral blood B cells upon EBV infection and in established lymphoblastoid cell lines. Virology 2017; 512:1-7. [PMID: 28892735 DOI: 10.1016/j.virol.2017.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/06/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022]
Abstract
In immunocompetent individuals, EBV establishes in B cells an asymptomatic lifelong latent infection controlled by the immune system. Chemokine receptors regulate immune system function. CCR1 and CCR2 share protein sequence similarity and exert responses to multiple chemokines. The role of these receptors in B cells is largely unknown. We show that the mRNA and functional protein expression of CCR1 and CCR2 is induced in ex vivo B cells upon EBV infection and in established lymphoblastoid cell lines (LCLs). The CCR1 and CCR2B ORF transcripts were determined in LCLs. In contrast, in both the EBV-negative and EBV-positive Burkitt lymphoma cell lines, neither the CCR1, CCR2A, and CCR2B ORF transcripts nor their corresponding proteins were detected. Our data suggest that CCR1/CCR2B could be involved in clearing EBV-infected latency III B cells in immunocompetent individuals via directing the migration of these cells and attracting the chemokines-expressing immune cells.
Collapse
Affiliation(s)
- Irina Kholodnyuk
- A. Kirchenstein Institute of Microbiology and Virology, Riga Stradins University (RSU), 5 Ratsupites str, 1067 Riga, Latvia; Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 16 Nobels väg, Box 280, 171 77 Stockholm, Sweden.
| | - Zanna Rudevica
- Latvian Biomedical Research and Study Center, 1-1k Ratsupites str, 1067 Riga, Latvia
| | - Ainars Leonciks
- Latvian Biomedical Research and Study Center, 1-1k Ratsupites str, 1067 Riga, Latvia.
| | - Barbro Ehlin-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 16 Nobels väg, Box 280, 171 77 Stockholm, Sweden.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 16 Nobels väg, Box 280, 171 77 Stockholm, Sweden; R. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology of NASU, 45 Vasylkivska str, 03022 Kyiv, Ukraine.
| |
Collapse
|
188
|
Qi Z, Holland JW, Jiang Y, Secombes CJ, Nie P, Wang T. Molecular characterization and expression analysis of four fish-specific CC chemokine receptors CCR4La, CCR4Lc1, CCR4Lc2 and CCR11 in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2017; 68:411-427. [PMID: 28732768 DOI: 10.1016/j.fsi.2017.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/08/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
The chemokine and chemokine receptor networks regulate leukocyte trafficking, inflammation, immune cell differentiation, cancer and other biological processes. Comparative immunological studies have revealed that both chemokines and their receptors have expanded greatly in a species/lineage specific way. Of the 10 human CC chemokine receptors (CCR1-10) that bind CC chemokines, orthologues only to CCR6, 7, 9 and 10 are present in teleost fish. In this study, four fish-specific CCRs, termed as CCR4La, CCR4Lc1, CCR4Lc2 and CCR11, with a close link to human CCR1-5 and 8, in terms of amino acid homology and syntenic conservation, have been identified and characterized in rainbow trout (Oncorhynchus mykiss). These CCRs were found to possess the conserved features of the G protein-linked receptor family, including an extracellular N-terminal, seven TM domains, three extracellular loops and three intracellular loops, and a cytoplasmic carboxyl tail with multiple potential serine/threonine phosphorylation sites. Four cysteine residues known to be involved in forming two disulfide bonds are present in the extracellular domains and a DRY motif is present in the second intracellular loop. Signaling mediated by these receptors might be regulated by N-glycosylation, tyrosine sulfation, S-palmitoylation, a PDZ ligand motif and di-leucine motifs. Studies of intron/exon structure revealed distinct fish-specific CCR gene organization in different fish species/lineages that might contribute to the diversification of the chemokine ligand-receptor networks in different fish lineages. Fish-specific trout CCRs are highly expressed in immune tissues/organs, such as thymus, spleen, head kidney and gills. Their expression can be induced by the pro-inflammatory cytokines, IL-1β, IL-6 and IFNγ, by the pathogen associated molecular patterns, PolyIC and peptidoglycan, and by bacterial infection. These data suggest that fish-specific CCRs are likely to have an important role in immune regulation in fish.
Collapse
Affiliation(s)
- Zhitao Qi
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, Yancheng, 224051, China
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Yousheng Jiang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; College of Fishery and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei province 430072, China
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
189
|
Dyskova T, Gallo J, Kriegova E. The Role of the Chemokine System in Tissue Response to Prosthetic By-products Leading to Periprosthetic Osteolysis and Aseptic Loosening. Front Immunol 2017; 8:1026. [PMID: 28883822 PMCID: PMC5573717 DOI: 10.3389/fimmu.2017.01026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022] Open
Abstract
Millions of total joint replacements are performed annually worldwide, and the number is increasing every year. The overall proportion of patients achieving a successful outcome is about 80–90% in a 10–20-years time horizon postoperatively, periprosthetic osteolysis (PPOL) and aseptic loosening (AL) being the most frequent reasons for knee and hip implant failure and reoperations. The chemokine system (chemokine receptors and chemokines) is crucially involved in the inflammatory and osteolytic processes leading to PPOL/AL. Thus, the modulation of the interactions within the chemokine system may influence the extent of PPOL. Indeed, recent studies in murine models reported that (i) blocking the CCR2–CCL2 or CXCR2–CXCL2 axis or (ii) activation of the CXCR4–CXCL12 axis attenuate the osteolysis of artificial joints. Importantly, chemokines, inhibitory mutant chemokines, antagonists of chemokine receptors, or neutralizing antibodies to the chemokine system attached to or incorporated into the implant surface may influence the tissue responses and mitigate PPOL, thus increasing prosthesis longevity. This review summarizes the current state of the art of the knowledge of the chemokine system in human PPOL/AL. Furthermore, the potential for attenuating cell trafficking to the bone–implant interface and influencing tissue responses through modulation of the chemokine system is delineated. Additionally, the prospects of using immunoregenerative biomaterials (including chemokines) for the prevention of failed implants are discussed. Finally, this review highlights the need for a more sophisticated understanding of implant debris-induced changes in the chemokine system to mitigate this response effectively.
Collapse
Affiliation(s)
- Tereza Dyskova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| | - Jiri Gallo
- Faculty of Medicine and Dentistry, Department of Orthopaedics, Palacky University Olomouc, University Hospital Olomouc, Olomouc, Czechia
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| |
Collapse
|
190
|
Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Pharmaceuticals (Basel) 2017; 10:ph10030070. [PMID: 28792472 PMCID: PMC5620614 DOI: 10.3390/ph10030070] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Chemokines have two types of interactions that function cooperatively to control cell migration. Chemokine receptors on migrating cells integrate signals initiated upon chemokine binding to promote cell movement. Interactions with glycosaminoglycans (GAGs) localize chemokines on and near cell surfaces and the extracellular matrix to provide direction to the cell movement. The matrix of interacting chemokine–receptor partners has been known for some time, precise signaling and trafficking properties of many chemokine–receptor pairs have been characterized, and recent structural information has revealed atomic level detail on chemokine–receptor recognition and activation. However, precise knowledge of the interactions of chemokines with GAGs has lagged far behind such that a single paradigm of GAG presentation on surfaces is generally applied to all chemokines. This review summarizes accumulating evidence which suggests that there is a great deal of diversity and specificity in these interactions, that GAG interactions help fine-tune the function of chemokines, and that GAGs have other roles in chemokine biology beyond localization and surface presentation. This suggests that chemokine–GAG interactions add complexity to the already complex functions of the receptors and ligands.
Collapse
|
191
|
Jeng KS, Jeng CJ, Jeng WJ, Chang CF, Sheen IS. Role of C-X-C chemokine ligand 12/C-X-C chemokine receptor 4 in the progression of hepatocellular carcinoma. Oncol Lett 2017; 14:1905-1910. [PMID: 28789425 DOI: 10.3892/ol.2017.6396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
The efficacy of the current non-surgical treatments for advanced hepatocellular carcinoma (HCC) remains limited and novel treatments are required to improve patient outcomes. The majority of HCCs develop from chronically damaged tissue that contains a high degree of inflammation and fibrosis, which promotes tumor progression and resistance to therapy. Understanding the interaction between stromal components and cancer cells (and the signaling pathways involved in this interaction) could aid the identification of novel therapeutic targets. Numerous studies have demonstrated a marked association between high C-X-C chemokine receptor 4 (CXCR4) expression and the invasiveness, progression and metastasis of HCC. The present review will investigate the different roles of CXCR4 in the progression of HCC and discuss possible future treatments. Through the C-X-C chemokine ligand 12 (CXCL12)/CXCR4 signaling pathway, ephrin A1 activation enhances the migration of endothelial progenitor cells to HCC to enable the neovascularization of tumors. There is an association between nuclear CXCR4 expression and the lymph node metastasis of HCC to distant areas. CXCR4 enhances cell migration in vitro and cell homing in vivo. CXCR4 levels are concentrated at the border of a tumor and in perivascular areas, inducing invasive behavior. The binding of CXCL12 to CXCR4 activates intracellular signaling pathways and induces crosstalk with transforming growth factor-β signaling, which enhances the migration of cancer cells. The CXCL12/CXCR4 axis also activates expression of matrix metalloproteinase 10, which further stimulates migration. CXCR4 is likely to crosstalk with the sonic hedgehog signaling pathway, contributing to tumor invasiveness and supporting the cancer stem-cell population; as a result, CXCR4 can be regarded as a cancer stem-cell marker. CXCR4 influences interstitial fluid flow-induced invasion. CXCR4 expression and HCC cell migration are promoted by α-fetoprotein, which activates AKT/mechanistic target of rapamycin signaling. CXCR4 also has the potential to affect sorafenib treatment for HCC. Targeting the CXCL12/CXCR4 signaling pathway may, therefore, be a promising strategy in HCC treatment.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei 220, Taiwan, R.O.C.,Department of Medical Research, Far Eastern Memorial Hospital, New Taipei 220, Taiwan, R.O.C
| | - Chi-Juei Jeng
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10048, Taiwan, R.O.C
| | - Wen-Juei Jeng
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital Lin Kau Medical Center, Chang Gung University, Taoyuan 33, Taiwan, R.O.C
| | - Chiung-Fang Chang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei 220, Taiwan, R.O.C.,Department of Medical Research, Far Eastern Memorial Hospital, New Taipei 220, Taiwan, R.O.C
| | - I-Shyan Sheen
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital Lin Kau Medical Center, Chang Gung University, Taoyuan 33, Taiwan, R.O.C
| |
Collapse
|
192
|
Wang X, Sanchez J, Stone MJ, Payne RJ. Sulfation of the Human Cytomegalovirus Protein UL22A Enhances Binding to the Chemokine RANTES. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyi Wang
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Julie Sanchez
- Department of Biochemistry and Molecular Biology Monash University Melbourne VIC 3800 Australia
| | - Martin J. Stone
- Department of Biochemistry and Molecular Biology Monash University Melbourne VIC 3800 Australia
| | - Richard J. Payne
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
193
|
Wang X, Sanchez J, Stone MJ, Payne RJ. Sulfation of the Human Cytomegalovirus Protein UL22A Enhances Binding to the Chemokine RANTES. Angew Chem Int Ed Engl 2017; 56:8490-8494. [DOI: 10.1002/anie.201703059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoyi Wang
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Julie Sanchez
- Department of Biochemistry and Molecular Biology Monash University Melbourne VIC 3800 Australia
| | - Martin J. Stone
- Department of Biochemistry and Molecular Biology Monash University Melbourne VIC 3800 Australia
| | - Richard J. Payne
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
194
|
Brown AJ, Joseph PRB, Sawant KV, Rajarathnam K. Chemokine CXCL7 Heterodimers: Structural Insights, CXCR2 Receptor Function, and Glycosaminoglycan Interactions. Int J Mol Sci 2017; 18:ijms18040748. [PMID: 28368308 PMCID: PMC5412333 DOI: 10.3390/ijms18040748] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 11/16/2022] Open
Abstract
Chemokines mediate diverse fundamental biological processes, including combating infection. Multiple chemokines are expressed at the site of infection; thus chemokine synergy by heterodimer formation may play a role in determining function. Chemokine function involves interactions with G-protein-coupled receptors and sulfated glycosaminoglycans (GAG). However, very little is known regarding heterodimer structural features and receptor and GAG interactions. Solution nuclear magnetic resonance (NMR) and molecular dynamics characterization of platelet-derived chemokine CXCL7 heterodimerization with chemokines CXCL1, CXCL4, and CXCL8 indicated that packing interactions promote CXCL7-CXCL1 and CXCL7-CXCL4 heterodimers, and electrostatic repulsive interactions disfavor the CXCL7-CXCL8 heterodimer. As characterizing the native heterodimer is challenging due to interference from monomers and homodimers, we engineered a “trapped” disulfide-linked CXCL7-CXCL1 heterodimer. NMR and modeling studies indicated that GAG heparin binding to the heterodimer is distinctly different from the CXCL7 monomer and that the GAG-bound heterodimer is unlikely to bind the receptor. Interestingly, the trapped heterodimer was highly active in a Ca2+ release assay. These data collectively suggest that GAG interactions play a prominent role in determining heterodimer function in vivo. Further, this study provides proof-of-concept that the disulfide trapping strategy can serve as a valuable tool for characterizing the structural and functional features of a chemokine heterodimer.
Collapse
Affiliation(s)
- Aaron J Brown
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Prem Raj B Joseph
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Kirti V Sawant
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|