151
|
Mitochondrial and Peroxisomal Alterations Contribute to Energy Dysmetabolism in Riboflavin Transporter Deficiency. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6821247. [PMID: 32855765 PMCID: PMC7443020 DOI: 10.1155/2020/6821247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Riboflavin transporter deficiency (RTD) is a childhood-onset neurodegenerative disorder characterized by progressive pontobulbar palsy, sensory and motor neuron degeneration, sensorineural hearing loss, and optic atrophy. As riboflavin (RF) is the precursor of FAD and FMN, we hypothesize that both mitochondrial and peroxisomal energy metabolism pathways involving flavoproteins could be directly affected in RTD, thus impacting cellular redox status. In the present work, we used induced pluripotent stem cells (iPSCs) from RTD patients to investigate morphofunctional features, focusing on mitochondrial and peroxisomal compartments. Using this model, we document the following RTD-associated alterations: (i) abnormal colony-forming ability and loss of cell-cell contacts, revealed by light, electron, and confocal microscopy, using tight junction marker ZO-1; (ii) mitochondrial ultrastructural abnormalities, involving shape, number, and intracellular distribution of the organelles, as assessed by focused ion beam/scanning electron microscopy (FIB/SEM); (iii) redox imbalance, with high levels of superoxide anion, as assessed by MitoSOX assay accompanied by abnormal mitochondrial polarization state, evaluated by JC-1 staining; (iv) altered immunofluorescence expression of antioxidant systems, namely, glutathione, superoxide dismutase 1 and 2, and catalase, as assessed by quantitatively evaluated confocal microscopy; and (v) peroxisomal downregulation, as demonstrated by levels and distribution of fatty acyl β-oxidation enzymes. RF supplementation results in amelioration of cell phenotype and rescue of redox status, which was associated to improved ultrastructural features of mitochondria, thus strongly supporting patient treatment with RF, to restore mitochondrial- and peroxisomal-related aspects of energy dysmetabolism and oxidative stress in RTD syndrome.
Collapse
|
152
|
Silva BSC, DiGiovanni L, Kumar R, Carmichael RE, Kim PK, Schrader M. Maintaining social contacts: The physiological relevance of organelle interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118800. [PMID: 32712071 PMCID: PMC7377706 DOI: 10.1016/j.bbamcr.2020.118800] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Membrane-bound organelles in eukaryotic cells form an interactive network to coordinate and facilitate cellular functions. The formation of close contacts, termed "membrane contact sites" (MCSs), represents an intriguing strategy for organelle interaction and coordinated interplay. Emerging research is rapidly revealing new details of MCSs. They represent ubiquitous and diverse structures, which are important for many aspects of cell physiology and homeostasis. Here, we provide a comprehensive overview of the physiological relevance of organelle contacts. We focus on mitochondria, peroxisomes, the Golgi complex and the plasma membrane, and discuss the most recent findings on their interactions with other subcellular organelles and their multiple functions, including membrane contacts with the ER, lipid droplets and the endosomal/lysosomal compartment.
Collapse
Affiliation(s)
- Beatriz S C Silva
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Laura DiGiovanni
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
153
|
Shokry E, Sadiq K, Soofi S, Habib A, Bhutto N, Rizvi A, Ahmad I, Demmelmair H, Uhl O, Bhutta ZA, Koletzko B. Impact of Treatment with RUTF on Plasma Lipid Profiles of Severely Malnourished Pakistani Children. Nutrients 2020; 12:nu12072163. [PMID: 32708260 PMCID: PMC7401247 DOI: 10.3390/nu12072163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Little is known on impacts of ready-to-use therapeutic food (RUTF) treatment on lipid metabolism in children with severe acute malnutrition (SAM). (2) Methods: We analyzed glycerophospholipid fatty acids (FA) and polar lipids in plasma of 41 Pakistani children with SAM before and after 3 months of RUTF treatment using gas chromatography and flow-injection analysis tandem mass spectrometry, respectively. Statistical analysis was performed using univariate, multivariate tests and evaluated for the impact of age, sex, breastfeeding status, hemoglobin, and anthropometry. (3) Results: Essential fatty acid (EFA) depletion at baseline was corrected by RUTF treatment which increased EFA. In addition, long-chain polyunsaturated fatty acids (LC-PUFA) and the ratio of arachidonic acid (AA)/linoleic acid increased reflecting greater EFA conversion to LC-PUFA, whereas Mead acid/AA decreased. Among phospholipids, lysophosphatidylcholines (lyso.PC) were most impacted by treatment; in particular, saturated lyso.PC decreased. Higher child age and breastfeeding were associated with great decrease in total saturated FA (ΣSFA) and lesser decrease in monounsaturated FA and total phosphatidylcholines (ΣPC). Conclusions: RUTF treatment improves EFA deficiency in SAM, appears to enhance EFA conversion to biologically active LC-PUFA, and reduces lipolysis reflected in decreased ΣSFA and saturated lyso.PC. Child age and breastfeeding modify treatment-induced changes in ΣSFA and ΣPC.
Collapse
Affiliation(s)
- Engy Shokry
- Department of Pediatrics, Ludwig-Maximilians-University Paediatrics, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany; (E.S.); (H.D.); (O.U.)
| | - Kamran Sadiq
- Department of Pediatrics & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (K.S.); (S.S.)
| | - Sajid Soofi
- Department of Pediatrics & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (K.S.); (S.S.)
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
| | - Atif Habib
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
| | - Naveed Bhutto
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
| | - Arjumand Rizvi
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
| | - Imran Ahmad
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
| | - Hans Demmelmair
- Department of Pediatrics, Ludwig-Maximilians-University Paediatrics, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany; (E.S.); (H.D.); (O.U.)
| | - Olaf Uhl
- Department of Pediatrics, Ludwig-Maximilians-University Paediatrics, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany; (E.S.); (H.D.); (O.U.)
| | - Zulfiqar A. Bhutta
- Center of Excellence in Women & Child Health, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan; (A.H.); (N.B.); (A.R.); (I.A.)
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Correspondence: (Z.A.B.); (B.K.); Tel.: +17-573248424 (Z.A.B.); +49-89-44005-2826 (B.K.); Fax: +49-89-44005-7742 (B.K.)
| | - Berthold Koletzko
- Department of Pediatrics, Ludwig-Maximilians-University Paediatrics, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany; (E.S.); (H.D.); (O.U.)
- Correspondence: (Z.A.B.); (B.K.); Tel.: +17-573248424 (Z.A.B.); +49-89-44005-2826 (B.K.); Fax: +49-89-44005-7742 (B.K.)
| |
Collapse
|
154
|
Abstract
Peroxisomes are metabolic organelles involved in lipid metabolism and cellular redox balance. Peroxisomal function is central to fatty acid oxidation, ether phospholipid synthesis, bile acid synthesis, and reactive oxygen species homeostasis. Human disorders caused by genetic mutations in peroxisome genes have led to extensive studies on peroxisome biology. Peroxisomal defects are linked to metabolic dysregulation in diverse human diseases, such as neurodegeneration and age-related disorders, revealing the significance of peroxisome metabolism in human health. Cancer is a disease with metabolic aberrations. Despite the critical role of peroxisomes in cell metabolism, the functional effects of peroxisomes in cancer are not as well recognized as those of other metabolic organelles, such as mitochondria. In addition, the significance of peroxisomes in cancer is less appreciated than it is in degenerative diseases. In this review, I summarize the metabolic pathways in peroxisomes and the dysregulation of peroxisome metabolism in cancer. In addition, I discuss the potential of inactivating peroxisomes to target cancer metabolism, which may pave the way for more effective cancer treatment.
Collapse
|
155
|
Kim EH, Kim GA, Taweechaipaisankul A, Ridlo MR, Lee SH, Ra K, Ahn C, Lee BC. Phytanic acid-derived peroxisomal lipid metabolism in porcine oocytes. Theriogenology 2020; 157:276-285. [PMID: 32823023 DOI: 10.1016/j.theriogenology.2020.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Lipid metabolism plays an important role in oocyte maturation. The peroxisome is the fundamental mediator for this mechanism. In this study, we investigated the peroxisomal lipid metabolism in porcine oocytes. Phytanic acid (PA) was chosen as an activator of alpha-oxidation in peroxisomes. Oocyte maturation, embryo development, immunocytochemistry of peroxisomal lipid activities, and staining of mitochondrial potentials were assessed. We found that 40 μM PA not only increased porcine oocyte maturation and embryonic development, but also upregulated the expression of genes and proteins related to activities of the peroxisomal lipid metabolism (PHYH, PEX19, and PEX subfamilies) and mitochondrial potentials (NRF1 and PGC1α). Moreover, PA upregulated the lipid droplet and fatty acid content in the oocytes. Moreover, mitochondria were activated and the mitochondrial membrane potential was increased after PA treatment, resulting in the production of more ATPs in the oocytes. Our findings suggest that the degradation of PA via alpha-oxidation in the peroxisome may potentiate oocyte maturation processes, peroxisomal lipid oxidation, and mitochondria activities.
Collapse
Affiliation(s)
- Eui Hyun Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Muhammad Rosyid Ridlo
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Department of Bioresource Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Seok Hee Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kihae Ra
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Curie Ahn
- Division of Nephrology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
156
|
Demarest TG, Varma VR, Estrada D, Babbar M, Basu S, Mahajan UV, Moaddel R, Croteau DL, Thambisetty M, Mattson MP, Bohr VA. Biological sex and DNA repair deficiency drive Alzheimer's disease via systemic metabolic remodeling and brain mitochondrial dysfunction. Acta Neuropathol 2020; 140:25-47. [PMID: 32333098 DOI: 10.1007/s00401-020-02152-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease that is more prevalent in women. The increased risk of AD in women is not well understood. It is well established that there are sex differences in metabolism and that metabolic alterations are an early component of AD. We utilized a cross-species approach to evaluate conserved metabolic alterations in the serum and brain of human AD subjects, two AD mouse models, a human cell line, and two Caenorhabditis elegans AD strains. We found a mitochondrial complex I-specific impairment in cortical synaptic brain mitochondria in female, but not male, AD mice. In the hippocampus, Polβ haploinsufficiency caused synaptic complex I impairment in male and female mice, demonstrating the critical role of DNA repair in mitochondrial function. In non-synaptic, glial-enriched, mitochondria from the cortex and hippocampus, complex II-dependent respiration increased in female, but not male, AD mice. These results suggested a glial upregulation of fatty acid metabolism to compensate for neuronal glucose hypometabolism in AD. Using an unbiased metabolomics approach, we consistently observed evidence of systemic and brain metabolic remodeling with a shift from glucose to lipid metabolism in humans with AD, and in AD mice. We determined that this metabolic shift is necessary for cellular and organismal survival in C. elegans, and human cell culture AD models. We observed sex-specific, systemic, and brain metabolic alterations in humans with AD, and that these metabolite changes significantly correlate with amyloid and tau pathology. Among the most significant metabolite changes was the accumulation of glucose-6-phosphate in AD, an inhibitor of hexokinase and rate-limiting metabolite for the pentose phosphate pathway (PPP). Overall, we identified novel mechanisms of glycolysis inhibition, PPP, and tricarboxylic acid cycle impairment, and a neuroprotective augmentation of lipid metabolism in AD. These findings support a sex-targeted metabolism-modifying strategy to prevent and treat AD.
Collapse
Affiliation(s)
- Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vijay R Varma
- Unit of Clinical and Translational Neuroscience, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Darlene Estrada
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sambuddha Basu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Uma V Mahajan
- Unit of Clinical and Translational Neuroscience, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Madhav Thambisetty
- Unit of Clinical and Translational Neuroscience, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
157
|
Affiliation(s)
- Francesca Di Cara
- Department of Microbiology and Immunology-IWK Health Centre- Dalhousie University, Halifax (NS), Canada
| |
Collapse
|
158
|
The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep 2020; 47:5587-5620. [PMID: 32564227 DOI: 10.1007/s11033-020-05590-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Nitro-oxidative stress and lowered antioxidant defences play a key role in neuropsychiatric disorders such as major depression, bipolar disorder and schizophrenia. The first part of this paper details mitochondrial antioxidant mechanisms and their importance in reactive oxygen species (ROS) detoxification, including details of NO networks, the roles of H2O2 and the thioredoxin/peroxiredoxin system, and the relationship between mitochondrial respiration and NADPH production. The second part highlights and identifies the causes of the multiple pathological sequelae arising from self-amplifying increases in mitochondrial ROS production and bioenergetic failure. Particular attention is paid to NAD+ depletion as a core cause of pathology; detrimental effects of raised ROS and reactive nitrogen species on ATP and NADPH generation; detrimental effects of oxidative and nitrosative stress on the glutathione and thioredoxin systems; and the NAD+-induced signalling cascade, including the roles of SIRT1, SIRT3, PGC-1α, the FOXO family of transcription factors, Nrf1 and Nrf2. The third part discusses proposed therapeutic interventions aimed at mitigating such pathology, including the use of the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside, both of which rapidly elevate levels of NAD+ in the brain and periphery following oral administration; coenzyme Q10 which, when given with the aim of improving mitochondrial function and reducing nitro-oxidative stress in the brain, may be administered via the use of mitoquinone, which is in essence ubiquinone with an attached triphenylphosphonium cation; and N-acetylcysteine, which is associated with improved mitochondrial function in the brain and produces significant decreases in oxidative and nitrosative stress in a dose-dependent manner.
Collapse
|
159
|
Eberhardt EL, Ludlam AV, Tan Z, Cianfrocco MA. Miro: A molecular switch at the center of mitochondrial regulation. Protein Sci 2020; 29:1269-1284. [PMID: 32056317 PMCID: PMC7255519 DOI: 10.1002/pro.3839] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
The orchestration of mitochondria within the cell represents a critical aspect of cell biology. At the center of this process is the outer mitochondrial membrane protein, Miro. Miro coordinates diverse cellular processes by regulating connections between organelles and the cytoskeleton that range from mediating contacts between the endoplasmic reticulum and mitochondria to the regulation of both actin and microtubule motor proteins. Recently, a number of cell biological, biochemical, and protein structure studies have helped to characterize the myriad roles played by Miro. In addition to answering questions regarding Miro's function, these studies have opened the door to new avenues in the study of Miro in the cell. This review will focus on summarizing recent findings for Miro's structure, function, and activity while highlighting key questions that remain unanswered.
Collapse
Affiliation(s)
- Emily L. Eberhardt
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
- Cellular and Molecular Biology ProgramUniversity of MichiganAnn ArborMichigan
| | - Anthony V. Ludlam
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Zhenyu Tan
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
- Biophysics ProgramUniversity of MichiganAnn ArborMichigan
| | - Michael A. Cianfrocco
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
160
|
Stehlik T, Kremp M, Kahnt J, Bölker M, Freitag J. Peroxisomal targeting of a protein phosphatase type 2C via mitochondrial transit. Nat Commun 2020; 11:2355. [PMID: 32398688 PMCID: PMC7217942 DOI: 10.1038/s41467-020-16146-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/16/2020] [Indexed: 11/16/2022] Open
Abstract
Correct intracellular distribution of proteins is critical for the function of eukaryotic cells. Certain proteins are targeted to more than one cellular compartment, e.g. to mitochondria and peroxisomes. The protein phosphatase Ptc5 from Saccharomyces cerevisiae contains an N-terminal mitochondrial presequence followed by a transmembrane domain, and has been detected in the mitochondrial intermembrane space. Here we show mitochondrial transit of Ptc5 to peroxisomes. Translocation of Ptc5 to peroxisomes depended both on the C-terminal peroxisomal targeting signal (PTS1) and N-terminal cleavage by the mitochondrial inner membrane peptidase complex. Indirect targeting of Ptc5 to peroxisomes prevented deleterious effects of its phosphatase activity in the cytosol. Sorting of Ptc5 involves simultaneous interaction with import machineries of both organelles. We identify additional mitochondrial proteins with PTS1, which localize in both organelles and can increase their physical association. Thus, a tug-of-war-like mechanism can influence the interaction and communication of two cellular compartments.
Collapse
Affiliation(s)
- Thorsten Stehlik
- Department of Biology, Philipps University Marburg, Marburg, Germany
| | - Marco Kremp
- Department of Biology, Philipps University Marburg, Marburg, Germany
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps University Marburg, Marburg, Germany.
- LOEWE Center for Synthetic Microbiology, Marburg, Germany.
| | - Johannes Freitag
- Department of Biology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
161
|
Yang L, Li Y, Feng X, Zhang S, Xie Y. WITHDRAWN: HMGB1 and COX2 are regulated during organ damage following obesity-induced hypertension in a metabolic syndrome mouse model. Mol Cell Probes 2020:101592. [PMID: 32389788 DOI: 10.1016/j.mcp.2020.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Lingchao Yang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yigang Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xiangfei Feng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Song Zhang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|
162
|
The Swing of Lipids at Peroxisomes and Endolysosomes in T Cell Activation. Int J Mol Sci 2020; 21:ijms21082859. [PMID: 32325900 PMCID: PMC7215844 DOI: 10.3390/ijms21082859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The immune synapse (IS) is a well-known intercellular communication platform, organized at the interphase between the antigen presenting cell (APC) and the T cell. After T cell receptor (TCR) stimulation, signaling from plasma membrane proteins and lipids is amplified by molecules and downstream pathways for full synapse formation and maintenance. This secondary signaling event relies on intracellular reorganization at the IS, involving the cytoskeleton and components of the secretory/recycling machinery, such as the Golgi apparatus and the endolysosomal system (ELS). T cell activation triggers a metabolic reprogramming that involves the synthesis of lipids, which act as signaling mediators, and an increase of mitochondrial activity. Then, this mitochondrial activity results in elevated reactive oxygen species (ROS) production that may lead to cytotoxicity. The regulation of ROS levels requires the concerted action of mitochondria and peroxisomes. In this review, we analyze this reprogramming and the signaling implications of endolysosomal, mitochondrial, peroxisomal, and lipidic systems in T cell activation.
Collapse
|
163
|
Can We Prevent Mitochondrial Dysfunction and Diabetic Cardiomyopathy in Type 1 Diabetes Mellitus? Pathophysiology and Treatment Options. Int J Mol Sci 2020; 21:ijms21082852. [PMID: 32325880 PMCID: PMC7215501 DOI: 10.3390/ijms21082852] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus is a disease involving changes to energy metabolism. Chronic hyperglycemia is a major cause of diabetes complications. Hyperglycemia induces mechanisms that generate the excessive production of reactive oxygen species, leading to the development of oxidative stress. Studies with animal models have indicated the involvement of mitochondrial dysfunction in the pathogenesis of diabetic cardiomyopathy. In the current review, we aimed to collect scientific reports linking disorders in mitochondrial functioning with the development of diabetic cardiomyopathy in type 1 diabetes mellitus. We also aimed to present therapeutic approaches counteracting the development of mitochondrial dysfunction and diabetic cardiomyopathy in type 1 diabetes mellitus.
Collapse
|
164
|
Keenan SN, Watt MJ, Montgomery MK. Inter-organelle Communication in the Pathogenesis of Mitochondrial Dysfunction and Insulin Resistance. Curr Diab Rep 2020; 20:20. [PMID: 32306181 DOI: 10.1007/s11892-020-01300-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Impairments in mitochondrial function in patients with insulin resistance and type 2 diabetes have been disputed for decades. This review aims to briefly summarize the current knowledge on mitochondrial dysfunction in metabolic tissues and to particularly focus on addressing a new perspective of mitochondrial dysfunction, the altered capacity of mitochondria to communicate with other organelles within insulin-resistant tissues. RECENT FINDINGS Organelle interactions are temporally and spatially formed connections essential for normal cell function. Recent studies have shown that mitochondria interact with various cellular organelles, such as the endoplasmic reticulum, lysosomes and lipid droplets, forming inter-organelle junctions. We will discuss the current knowledge on alterations in these mitochondria-organelle interactions in insulin resistance and diabetes, with a focus on changes in mitochondria-lipid droplet communication as a major player in ectopic lipid accumulation, lipotoxicity and insulin resistance.
Collapse
Affiliation(s)
- Stacey N Keenan
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Matthew J Watt
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Magdalene K Montgomery
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
165
|
Navarro-Espíndola R, Takano-Rojas H, Suaste-Olmos F, Peraza-Reyes L. Distinct Contributions of the Peroxisome-Mitochondria Fission Machinery During Sexual Development of the Fungus Podospora anserina. Front Microbiol 2020; 11:640. [PMID: 32351478 PMCID: PMC7175800 DOI: 10.3389/fmicb.2020.00640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria and peroxisomes are organelles whose activity is intimately associated and that play fundamental roles in development. In the model fungus Podospora anserina, peroxisomes and mitochondria are required for different stages of sexual development, and evidence indicates that their activity in this process is interrelated. Additionally, sexual development involves precise regulation of peroxisome assembly and dynamics. Peroxisomes and mitochondria share the proteins mediating their division. The dynamin-related protein Dnm1 (Drp1) along with its membrane receptors, like Fis1, drives this process. Here we demonstrate that peroxisome and mitochondrial fission in P. anserina depends on FIS1 and DNM1. We show that FIS1 and DNM1 elimination affects the dynamics of both organelles throughout sexual development in a developmental stage-dependent manner. Moreover, we discovered that the segregation of peroxisomes, but not mitochondria, is affected upon elimination of FIS1 or DNM1 during the division of somatic hyphae and at two central stages of sexual development—the differentiation of meiocytes (asci) and of meiotic-derived spores (ascospores). Furthermore, we found that FIS1 and DNM1 elimination results in delayed karyogamy and defective ascospore differentiation. Our findings reveal that sexual development relies on complex remodeling of peroxisomes and mitochondria, which is driven by their common fission machinery.
Collapse
Affiliation(s)
- Raful Navarro-Espíndola
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Harumi Takano-Rojas
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Suaste-Olmos
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
166
|
|
167
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
168
|
Aceto GM, Catalano T, Curia MC. Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1726309. [PMID: 32258104 PMCID: PMC7102468 DOI: 10.1155/2020/1726309] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
The development of colorectal cancer (CRC) is a multistep process initiated by a benign polyp that has the potential to evolve into in situ carcinoma through the interactions between environmental and genetic factors. CRC incidence rates are constantly increased for young adult patients presenting an advanced tumor stage. The majority of CRCs arise from colonic adenomas originating from aberrant cell proliferation of colon epithelium. Endoscopic polypectomy represents a tool for early detection and removal of polyps, although the occurrence of cancers after negative colonoscopy shows a significant incidence. It has long been recognized that the aberrant regulation of Wingless/It (Wnt)/β-Catenin signaling in the pathogenesis of colorectal cancer is supported by its critical role in the differentiation of stem cells in intestinal crypts and in the maintenance of intestinal homeostasis. For this review, we will focus on the development of adenomatous polyps through the interplay between renewal signaling in the colon epithelium and reactive oxygen species (ROS) production. The current knowledge of molecular pathology allows us to deepen the relationships between oxidative stress and other risk factors as lifestyle, microbiota, and predisposition. We underline that the chronic inflammation and ROS production in the colon epithelium can impair the Wnt/β-catenin and/or base excision repair (BER) pathways and predispose to polyp development. In fact, the coexistence of oxidative DNA damage and errors in DNA polymerase can foster C>T transitions in various types of cancer and adenomas, leading to a hypermutated phenotype of tumor cells. Moreover, the function of Adenomatous Polyposis Coli (APC) protein in regulating DNA repair is very important as therapeutic implication making DNA damaging chemotherapeutic agents more effective in CRC cells that tend to accumulate mutations. Additional studies will determine whether approaches based on Wnt inhibition would provide long-term therapeutic value in CRC, but it is clear that APC disruption plays a central role in driving and maintaining tumorigenesis.
Collapse
Affiliation(s)
- Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
169
|
Pisetsky DS, Spencer DM, Mobarrez F, Fuzzi E, Gunnarsson I, Svenungsson E. The binding of SLE autoantibodies to mitochondria. Clin Immunol 2020; 212:108349. [PMID: 31982644 PMCID: PMC10538439 DOI: 10.1016/j.clim.2020.108349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by immune complexes. Because these complexes contain mitochondrial components, we assessed the presence of antibodies to whole mitochondria (wMITO) using an ELISA in which mitochondria from mouse liver are bound to microtiter plates pre-coated with poly-l-lysine. Studies with this ELISA demonstrated that SLE plasmas contain abundant anti-wMITO activity. While digestion with DNase 1 did not affect anti-wMITO activity, adsorption of plasma on DNA affinity columns could reduce binding activity. Assay for anti-mitochondrial antibodies (AMA) by immunofluorescence and an ELISA with the M2 antigen (2-oxo-acid dehydrogenase protein complex) showed a low frequency of positivity, indicating that AMA and anti-wMITO are distinct specificities. In the study of 204 patients with SLE, the levels of anti-wMITO were higher in active SLE and correlated with levels of anti-DNA. These findings suggest that anti-wMITO can form immune complexes with mitochondria which may drive pathogenesis.
Collapse
Affiliation(s)
- David S Pisetsky
- Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC, United States of America; Medical Research Service, VA Medical Center, Durham, NC, United States of America.
| | - Diane M Spencer
- Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC, United States of America
| | - Fariborz Mobarrez
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Enrico Fuzzi
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Division of Rheumatology, Department of Medicine, University of Padua, Padua, Italy
| | - Iva Gunnarsson
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
170
|
Vejux A, Abed-Vieillard D, Hajji K, Zarrouk A, Mackrill JJ, Ghosh S, Nury T, Yammine A, Zaibi M, Mihoubi W, Bouchab H, Nasser B, Grosjean Y, Lizard G. 7-Ketocholesterol and 7β-hydroxycholesterol: In vitro and animal models used to characterize their activities and to identify molecules preventing their toxicity. Biochem Pharmacol 2020; 173:113648. [DOI: 10.1016/j.bcp.2019.113648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
171
|
Abstract
Owing to their ability to efficiently generate ATP required to sustain normal cell function, mitochondria are often considered the 'powerhouses of the cell'. However, our understanding of the role of mitochondria in cell biology recently expanded when we recognized that they are key platforms for a plethora of cell signalling cascades. This functional versatility is tightly coupled to constant reshaping of the cellular mitochondrial network in a series of processes, collectively referred to as mitochondrial membrane dynamics and involving organelle fusion and fission (division) as well as ultrastructural remodelling of the membrane. Accordingly, mitochondrial dynamics influence and often orchestrate not only metabolism but also complex cell signalling events, such as those involved in regulating cell pluripotency, division, differentiation, senescence and death. Reciprocally, mitochondrial membrane dynamics are extensively regulated by post-translational modifications of its machinery and by the formation of membrane contact sites between mitochondria and other organelles, both of which have the capacity to integrate inputs from various pathways. Here, we discuss mitochondrial membrane dynamics and their regulation and describe how bioenergetics and cellular signalling are linked to these dynamic changes of mitochondrial morphology.
Collapse
|
172
|
Quiñones W, Acosta H, Gonçalves CS, Motta MCM, Gualdrón-López M, Michels PAM. Structure, Properties, and Function of Glycosomes in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:25. [PMID: 32083023 PMCID: PMC7005584 DOI: 10.3389/fcimb.2020.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
Glycosomes are peroxisome-related organelles that have been identified in kinetoplastids and diplonemids. The hallmark of glycosomes is their harboring of the majority of the glycolytic enzymes. Our biochemical studies and proteome analysis of Trypanosoma cruzi glycosomes have located, in addition to enzymes of the glycolytic pathway, enzymes of several other metabolic processes in the organelles. These analyses revealed many aspects in common with glycosomes from other trypanosomatids as well as features that seem specific for T. cruzi. Their enzyme content indicates that T. cruzi glycosomes are multifunctional organelles, involved in both several catabolic processes such as glycolysis and anabolic ones. Specifically discussed in this minireview are the cross-talk between glycosomal metabolism and metabolic processes occurring in other cell compartments, and the importance of metabolite translocation systems in the glycosomal membrane to enable the coordination between the spatially separated processes. Possible mechanisms for metabolite translocation across the membrane are suggested by proteins identified in the organelle's membrane-homologs of the ABC and MCF transporter families-and the presence of channels as inferred previously from the detection of channel-forming proteins in glycosomal membrane preparations from the related parasite T. brucei. Together, these data provide insight in the way in which different parts of T. cruzi metabolism, although uniquely distributed over different compartments, are integrated and regulated. Moreover, this information reveals opportunities for the development of drugs against Chagas disease caused by these parasites and for which currently no adequate treatment is available.
Collapse
Affiliation(s)
- Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
173
|
Boutari C, Bouzoni E, Joshi A, Stefanakis K, Farr OM, Mantzoros CS. Metabolism updates: new directions, techniques, and exciting research that is broadening the horizons. Metabolism 2020; 102:154009. [PMID: 31715175 DOI: 10.1016/j.metabol.2019.154009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Chrysoula Boutari
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Eirini Bouzoni
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aditya Joshi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Olivia M Farr
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA.
| |
Collapse
|
174
|
Fransen M, Revenco I, Li H, Costa CF, Lismont C, Van Veldhoven PP. Peroxisomal Dysfunction and Oxidative Stress in Neurodegenerative Disease: A Bidirectional Crosstalk. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:19-30. [PMID: 33417204 DOI: 10.1007/978-3-030-60204-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peroxisomes are multifunctional organelles best known for their role in cellular lipid and hydrogen peroxide metabolism. In this chapter, we review and discuss the diverse functions of this organelle in brain physiology and neurodegeneration, with a particular focus on oxidative stress. We first briefly summarize what is known about the various nexuses among peroxisomes, the central nervous system, oxidative stress, and neurodegenerative disease. Next, we provide a comprehensive overview of the complex interplay among peroxisomes, oxidative stress, and neurodegeneration in patients suffering from primary peroxisomal disorders. Particular examples that are discussed include the prototypic Zellweger spectrum disorders and X-linked adrenoleukodystrophy, the most prevalent peroxisomal disorder. Thereafter, we elaborate on secondary peroxisome dysfunction in more common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Finally, we highlight some issues and challenges that need to be addressed to progress towards therapies and prevention strategies preserving, normalizing, or improving peroxisome activity in patients suffering from neurodegenerative conditions.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium.
| | - Iulia Revenco
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium
| | - Hongli Li
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium
| | - Cláudio F Costa
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium
| | - Celien Lismont
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium
| | - Paul P Van Veldhoven
- Department of Cellular and Molecular Medicine, Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium
| |
Collapse
|
175
|
Schrader M, Kamoshita M, Islinger M. Organelle interplay-peroxisome interactions in health and disease. J Inherit Metab Dis 2020; 43:71-89. [PMID: 30864148 PMCID: PMC7041636 DOI: 10.1002/jimd.12083] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Peroxisomes are multifunctional, dynamic, membrane-bound organelles with important functions in cellular lipid metabolism, rendering them essential for human health and development. Important roles for peroxisomes in signaling and the fine-tuning of cellular processes are emerging, which integrate them in a complex network of interacting cellular compartments. Like many other organelles, peroxisomes communicate through membrane contact sites. For example, peroxisomal growth, positioning, and lipid metabolism involves contacts with the endoplasmic reticulum (ER). Here, we discuss the most recent findings on peroxisome-organelle interactions including peroxisome-ER interplay at membrane contacts sites, and functional interplay with mitochondria, lysosomes, and lipid droplets in mammalian cells. We address tether proteins, metabolic cooperation, and the impact of peroxisome interactions on human health and disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, BiosciencesUniversity of ExeterExeterUK
| | - Maki Kamoshita
- College of Life and Environmental Sciences, BiosciencesUniversity of ExeterExeterUK
| | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty ManheimUniversity of HeidelbergMannheimGermany
| |
Collapse
|
176
|
Chiba T, Peasley KD, Cargill KR, Maringer KV, Bharathi SS, Mukherjee E, Zhang Y, Holtz A, Basisty N, Yagobian SD, Schilling B, Goetzman ES, Sims-Lucas S. Sirtuin 5 Regulates Proximal Tubule Fatty Acid Oxidation to Protect against AKI. J Am Soc Nephrol 2019; 30:2384-2398. [PMID: 31575700 PMCID: PMC6900790 DOI: 10.1681/asn.2019020163] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The primary site of damage during AKI, proximal tubular epithelial cells, are highly metabolically active, relying on fatty acids to meet their energy demands. These cells are rich in mitochondria and peroxisomes, the two organelles that mediate fatty acid oxidation. Emerging evidence shows that both fatty acid pathways are regulated by reversible posttranslational modifications, particularly by lysine acylation. Sirtuin 5 (Sirt5), which localizes to both mitochondria and peroxisomes, reverses post-translational lysine acylation on several enzymes involved in fatty acid oxidation. However, the role of the Sirt5 in regulating kidney energy metabolism has yet to be determined. METHODS We subjected male Sirt5-deficient mice (either +/- or -/-) and wild-type controls, as well as isolated proximal tubule cells, to two different AKI models (ischemia-induced or cisplatin-induced AKI). We assessed kidney function and injury with standard techniques and measured fatty acid oxidation by the catabolism of 14C-labeled palmitate to 14CO2. RESULTS Sirt5 was highly expressed in proximal tubular epithelial cells. At baseline, Sirt5 knockout (Sirt5-/- ) mice had modestly decreased mitochondrial function but significantly increased fatty acid oxidation, which was localized to the peroxisome. Although no overt kidney phenotype was observed in Sirt5-/- mice, Sirt5-/- mice had significantly improved kidney function and less tissue damage compared with controls after either ischemia-induced or cisplatin-induced AKI. This coincided with higher peroxisomal fatty acid oxidation compared with mitochondria fatty acid oxidation in the Sirt5-/- proximal tubular epithelial cells. CONCLUSIONS Our findings indicate that Sirt5 regulates the balance of mitochondrial versus peroxisomal fatty acid oxidation in proximal tubular epithelial cells to protect against injury in AKI. This novel mechanism might be leveraged for developing AKI therapies.
Collapse
Affiliation(s)
- Takuto Chiba
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Kevin D Peasley
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Kasey R Cargill
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Katherine V Maringer
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Sivakama S Bharathi
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Elina Mukherjee
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Yuxun Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Anja Holtz
- Buck Institute for Research on Aging, Novato, California
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, California
| | - Shiva D Yagobian
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | | | - Eric S Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
177
|
Staying in Healthy Contact: How Peroxisomes Interact with Other Cell Organelles. Trends Mol Med 2019; 26:201-214. [PMID: 31727543 DOI: 10.1016/j.molmed.2019.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/24/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022]
Abstract
Peroxisomes share extensive metabolic connections with other cell organelles. Membrane contact sites (MCSs) establish and maintain such interactions, and they are vital for organelle positioning and motility. In the past few years peroxisome interactions and MCSs with other cellular organelles have been explored extensively, resulting in the identification of new MCSs, the tethering molecules involved, and their functional characterization. Defective tethering and compartmental communication can lead to pathological conditions that can be termed 'organelle interaction diseases'. We review peroxisome-organelle interactions in mammals and summarize the most recent knowledge of mammalian peroxisomal organelle contacts in health and disease.
Collapse
|
178
|
Hahn I, Voelzmann A, Liew YT, Costa-Gomes B, Prokop A. The model of local axon homeostasis - explaining the role and regulation of microtubule bundles in axon maintenance and pathology. Neural Dev 2019; 14:11. [PMID: 31706327 PMCID: PMC6842214 DOI: 10.1186/s13064-019-0134-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Axons are the slender, cable-like, up to meter-long projections of neurons that electrically wire our brains and bodies. In spite of their challenging morphology, they usually need to be maintained for an organism's lifetime. This makes them key lesion sites in pathological processes of ageing, injury and neurodegeneration. The morphology and physiology of axons crucially depends on the parallel bundles of microtubules (MTs), running all along to serve as their structural backbones and highways for life-sustaining cargo transport and organelle dynamics. Understanding how these bundles are formed and then maintained will provide important explanations for axon biology and pathology. Currently, much is known about MTs and the proteins that bind and regulate them, but very little about how these factors functionally integrate to regulate axon biology. As an attempt to bridge between molecular mechanisms and their cellular relevance, we explain here the model of local axon homeostasis, based on our own experiments in Drosophila and published data primarily from vertebrates/mammals as well as C. elegans. The model proposes that (1) the physical forces imposed by motor protein-driven transport and dynamics in the confined axonal space, are a life-sustaining necessity, but pose a strong bias for MT bundles to become disorganised. (2) To counterbalance this risk, MT-binding and -regulating proteins of different classes work together to maintain and protect MT bundles as necessary transport highways. Loss of balance between these two fundamental processes can explain the development of axonopathies, in particular those linking to MT-regulating proteins, motors and transport defects. With this perspective in mind, we hope that more researchers incorporate MTs into their work, thus enhancing our chances of deciphering the complex regulatory networks that underpin axon biology and pathology.
Collapse
Affiliation(s)
- Ines Hahn
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - André Voelzmann
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Yu-Ting Liew
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Beatriz Costa-Gomes
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK.
| |
Collapse
|
179
|
Lu J, Lam SM, Wan Q, Shi L, Huo Y, Chen L, Tang X, Li B, Wu X, Peng K, Li M, Wang S, Xu Y, Xu M, Bi Y, Ning G, Shui G, Wang W. High-Coverage Targeted Lipidomics Reveals Novel Serum Lipid Predictors and Lipid Pathway Dysregulation Antecedent to Type 2 Diabetes Onset in Normoglycemic Chinese Adults. Diabetes Care 2019; 42:2117-2126. [PMID: 31455687 DOI: 10.2337/dc19-0100] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/29/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Comprehensive assessment of serum lipidomic aberrations before type 2 diabetes mellitus (T2DM) onset has remained lacking in Han Chinese. We evaluated changes in lipid coregulation antecedent to T2DM and identified novel lipid predictors for T2DM in individuals with normal glucose regulation (NGR). RESEARCH DESIGN AND METHODS In the discovery study, we tested 667 baseline serum lipids in subjects with incident diabetes and propensity score-matched control subjects (n = 200) from a prospective cohort comprising 3,821 Chinese adults with NGR. In the validation study, we tested 250 lipids in subjects with incident diabetes and matched control subjects (n = 724) from a pooled validation cohort of 14,651 individuals with NGR covering five geographical regions across China. Differential correlation network analyses revealed perturbed lipid coregulation antecedent to diabetes. The predictive value of a serum lipid panel independent of serum triglycerides and 2-h postload glucose was also evaluated. RESULTS At the level of false-discovery rate <0.05, 38 lipids, including triacylglycerols (TAGs), lyso-phosphatidylinositols, phosphatidylcholines, polyunsaturated fatty acid (PUFA)-plasmalogen phosphatidylethanolamines (PUFA-PEps), and cholesteryl esters, were significantly associated with T2DM risk in the discovery and validation cohorts. A preliminary study found most of the lipid predictors were also significantly associated with the risk of prediabetes. Differential correlation network analysis revealed that perturbations in intraclass (i.e., non-PUFA-TAG and PUFA-TAGs) and interclass (i.e., TAGs and PUFA-PEps) lipid coregulation preexisted before diabetes onset. Our lipid panel further improved prediction of incident diabetes over conventional clinical indices. CONCLUSIONS These findings revealed novel changes in lipid coregulation existing before diabetes onset and expanded the current panel of serum lipid predictors for T2DM in normoglycemic Chinese individuals.
Collapse
Affiliation(s)
- Jieli Lu
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the People's Republic of China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qin Wan
- Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lixin Shi
- Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Yanan Huo
- Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Lulu Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xulei Tang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Bowen Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xueyan Wu
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the People's Republic of China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Kui Peng
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the People's Republic of China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the People's Republic of China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the People's Republic of China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the People's Republic of China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the People's Republic of China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the People's Republic of China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the People's Republic of China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Weiqing Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commision of the People's Republic of China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
180
|
Ahmed N, Tcheng M, Roma A, Buraczynski M, Jayanth P, Rea K, Akhtar TA, Spagnuolo PA. Avocatin B Protects Against Lipotoxicity and Improves Insulin Sensitivity in Diet‐Induced Obesity. Mol Nutr Food Res 2019; 63:e1900688. [DOI: 10.1002/mnfr.201900688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/30/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Nawaz Ahmed
- Department of Food ScienceUniversity of Guelph Guelph Ontario Canada N1G 2W1
| | - Matthew Tcheng
- Department of Food ScienceUniversity of Guelph Guelph Ontario Canada N1G 2W1
| | - Alessia Roma
- Department of Food ScienceUniversity of Guelph Guelph Ontario Canada N1G 2W1
| | - Michael Buraczynski
- Department of Food ScienceUniversity of Guelph Guelph Ontario Canada N1G 2W1
| | - Preethi Jayanth
- Department of Food ScienceUniversity of Guelph Guelph Ontario Canada N1G 2W1
| | - Kevin Rea
- Department of Molecular and Cellular BiologyUniversity of Guelph Guelph Ontario Canada N1G 2W1
| | - Tariq A. Akhtar
- Department of Molecular and Cellular BiologyUniversity of Guelph Guelph Ontario Canada N1G 2W1
| | - Paul A. Spagnuolo
- Department of Food ScienceUniversity of Guelph Guelph Ontario Canada N1G 2W1
| |
Collapse
|
181
|
Metherel AH, Bazinet RP. Updates to the n-3 polyunsaturated fatty acid biosynthesis pathway: DHA synthesis rates, tetracosahexaenoic acid and (minimal) retroconversion. Prog Lipid Res 2019; 76:101008. [PMID: 31626820 DOI: 10.1016/j.plipres.2019.101008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
N-3 polyunsaturated fatty acids (PUFA) and the numerous families of lipid mediators derived from them collectively regulate numerous biological processes. The mechanisms by which n-3 PUFA regulate biological processes begins with an understanding of the n-3 biosynthetic pathway that starts with alpha-linolenic acid (18:3n-3) and is commonly thought to end with the production of docosahexaenoic acid (DHA, 22:6n-3). However, our understanding of this pathway is not as complete as previously believed. In the current review we provide a background of the evidence supporting the pathway as currently understood and provide updates from recent studies challenging three central dogma of n-3 PUFA metabolism. By building on nearly three decades of research primarily in cell culture and oral dosing studies, recent evidence presented focuses on in vivo kinetic modelling and compound-specific isotope abundance studies in rodents and humans that have been instrumental in expanding our knowledge of the pathway. Specifically, we highlight three main updates to the n-3 PUFA biosynthesis pathway: (1) DHA synthesis rates cannot be as low as previously believed, (2) DHA is both a product and a precursor to tetracosahexaenoic acid (24:6n-3) and (3) increases in EPA in response to DHA supplementation are not the result of increased retroconversion.
Collapse
Affiliation(s)
- Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
182
|
Namsi A, Nury T, Khan AS, Leprince J, Vaudry D, Caccia C, Leoni V, Atanasov AG, Tonon MC, Masmoudi-Kouki O, Lizard G. Octadecaneuropeptide (ODN) Induces N2a Cells Differentiation through a PKA/PLC/PKC/MEK/ERK-Dependent Pathway: Incidence on Peroxisome, Mitochondria, and Lipid Profiles. Molecules 2019; 24:molecules24183310. [PMID: 31514417 PMCID: PMC6767053 DOI: 10.3390/molecules24183310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative diseases are characterized by oxidative stress, mitochondrial damage, and death of neuronal cells. To counteract such damage and to favor neurogenesis, neurotrophic factors could be used as therapeutic agents. Octadecaneuropeptide (ODN), produced by astrocytes, is a potent neuroprotective agent. In N2a cells, we studied the ability of ODN to promote neuronal differentiation. This parameter was evaluated by phase contrast microscopy, staining with crystal violet, cresyl blue, and Sulforhodamine 101. The effect of ODN on cell viability and mitochondrial activity was determined with fluorescein diacetate and DiOC6(3), respectively. The impact of ODN on the topography of mitochondria and peroxisomes, two tightly connected organelles involved in nerve cell functions and lipid metabolism, was evaluated by transmission electron microscopy and fluorescence microscopy: detection of mitochondria with MitoTracker Red, and peroxisome with an antibody directed against the ABCD3 peroxisomal transporter. The profiles in fatty acids, cholesterol, and cholesterol precursors were determined by gas chromatography, in some cases coupled with mass spectrometry. Treatment of N2a cells with ODN (10-14 M, 48 h) induces neurite outgrowth. ODN-induced neuronal differentiation was associated with modification of topographical distribution of mitochondria and peroxisomes throughout the neurites and did not affect cell viability and mitochondrial activity. The inhibition of ODN-induced N2a differentiation with H89, U73122, chelerythrine and U0126 supports the activation of a PKA/PLC/PKC/MEK/ERK-dependent signaling pathway. Although there is no difference in fatty acid profile between control and ODN-treated cells, the level of cholesterol and some of its precursors (lanosterol, desmosterol, lathosterol) was increased in ODN-treated cells. The ability of ODN to induce neuronal differentiation without cytotoxicity reinforces the interest for this neuropeptide with neurotrophic properties to overcome nerve cell damage in major neurodegenerative diseases.
Collapse
Affiliation(s)
- Amira Namsi
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
- Faculty of Science of Tunis, University Tunis El Manar, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Thomas Nury
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
| | - Amira S Khan
- Physiology of Nutrition & Toxicology (NUTox), Inserm U1231, University UBFC, 21000 Dijon, France.
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
- UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie University, 76000 Rouen, France.
| | - David Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
- UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie University, 76000 Rouen, France.
| | - Claudio Caccia
- Laboratory of Medical Genetics and Neurogenetics, Foundation IRCCS Istituto Neurologico Carlo Besta, 20100 Milan, Italy.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, 20100 Milan, Italy.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, University of Vienna, 1010 Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Marie-Christine Tonon
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
| | - Olfa Masmoudi-Kouki
- Faculty of Science of Tunis, University Tunis El Manar, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
| |
Collapse
|
183
|
Rezende TMT, Rezende AM, Luz Wallau G, Santos Vasconcelos CR, de-Melo-Neto OP, Silva-Filha MHNL, Romão TP. A differential transcriptional profile by Culex quinquefasciatus larvae resistant to Lysinibacillus sphaericus IAB59 highlights genes and pathways associated with the resistance phenotype. Parasit Vectors 2019; 12:407. [PMID: 31429782 PMCID: PMC6702717 DOI: 10.1186/s13071-019-3661-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/09/2019] [Indexed: 01/17/2023] Open
Abstract
Background The study of the mechanisms by which larvae of the Culex quinquefasciatus mosquito survive exposure to the entomopathogen Lysinibacillus sphaericus has benefited substantially from the generation of laboratory-selected colonies resistant to this bacterium. One such colony, RIAB59, was selected after regular long-term exposure of larvae to the L. sphaericus IAB59 strain. This strain is characterized by its ability to produce the well known Binary (Bin) toxin, and the recently characterized Cry48Aa/Cry49Aa toxin, able to kill Bin-resistant larvae. Resistance to Bin is associated with the depletion of its receptor, Cqm1 α-glucosidase, from the larvae midgut. This study aimed to identify novel molecules and pathways associated with survival of the RIAB59 larvae and the resistance phenotype. Methods A transcriptomic approach and bioinformatic tools were used to compare the profiles derived from the midguts of larvae resistant and susceptible to L. sphaericus IAB59. Results The RNA-seq profiles identified 1355 differentially expressed genes (DEGs), with 673 down- and 682 upregulated transcripts. One of the most downregulated DEGs was cqm1, which validates the approach. Other strongly downregulated mRNAs encode the enzyme pantetheinase, apolipoprotein D, lipases, heat-shock proteins and a number of lesser known and hypothetical polypeptides. Among the upregulated DEGs, the top most encodes a peroxisomal enzyme involved in lipid metabolism, while others encode enzymes associated with juvenile hormone synthesis, ion channels, DNA binding proteins and defense polypeptides. Further analyses confirmed a strong downregulation of several enzymes involved in lipid catabolism while the assignment of DEGs into metabolic pathways highlighted the upregulation of those related to DNA synthesis and maintenance, confirmed by their clustering into related protein networks. Several other pathways were also identified with mixed profiles of down- and upregulated transcripts. Quantitative RT-PCR confirmed the changes in levels seen for selected mRNAs. Conclusions Our transcriptome-wide dataset revealed that the RIAB59 colony, found to be substantially more resistant to Bin than to the Cry48Aa/Cry49Aa toxin, developed a differential expression profile as well as metabolic features co-selected during the long-term adaptation to IAB59 and that are most likely linked to Bin resistance.![]() Electronic supplementary material The online version of this article (10.1186/s13071-019-3661-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Antonio Mauro Rezende
- Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Gabriel Luz Wallau
- Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n Cidade Universitária, Recife, PE, 50740-465, Brazil
| | | | | | | | - Tatiany Patrícia Romão
- Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n Cidade Universitária, Recife, PE, 50740-465, Brazil.
| |
Collapse
|
184
|
Basov A, Fedulova L, Baryshev M, Dzhimak S. Deuterium-Depleted Water Influence on the Isotope 2H/ 1H Regulation in Body and Individual Adaptation. Nutrients 2019; 11:E1903. [PMID: 31443167 PMCID: PMC6723318 DOI: 10.3390/nu11081903] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/28/2022] Open
Abstract
This review article presents data about the influence of deuterium-depleted water (DDW) on biological systems. It is known that the isotope abundances of natural and bottled waters are variable worldwide. That is why different drinking rations lead to changes of stable isotopes content in body water fluxes in human and animal organisms. Also, intracellular water isotope ratios in living systems depends on metabolic activity and food consumption. We found the 2H/1H gradient in human fluids (δ2H saliva >> δ2H blood plasma > δ2Hbreast milk), which decreases significantly during DDW intake. Moreover, DDW induces several important biological effects in organism (antioxidant, metabolic detoxification, anticancer, rejuvenation, behavior, etc.). Changing the isotope 2H/1H gradient from "2H blood plasma > δ2H visceral organs" to "δ2H blood plasma << δ2H visceral organs" via DDW drinking increases individual adaptation by isotopic shock. The other possible mechanisms of long-term adaptation is DDW influence on the growth rate of cells, enzyme activity and cellular energetics (e.g., stimulation of the mitochondrion activity). In addition, DDW reduces the number of single-stranded DNA breaks and modifies the miRNA profile.
Collapse
Affiliation(s)
- Alexander Basov
- Kuban State Medical University, 350063 Krasnodar, Russia
- Kuban State University, 350040 Krasnodar, Russia
| | - Liliia Fedulova
- The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| | | | - Stepan Dzhimak
- Kuban State University, 350040 Krasnodar, Russia.
- The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia.
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia.
| |
Collapse
|
185
|
Di Cara F, Andreoletti P, Trompier D, Vejux A, Bülow MH, Sellin J, Lizard G, Cherkaoui-Malki M, Savary S. Peroxisomes in Immune Response and Inflammation. Int J Mol Sci 2019; 20:ijms20163877. [PMID: 31398943 PMCID: PMC6721249 DOI: 10.3390/ijms20163877] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
The immune response is essential to protect organisms from infection and an altered self. An organism’s overall metabolic status is now recognized as an important and long-overlooked mediator of immunity and has spurred new explorations of immune-related metabolic abnormalities. Peroxisomes are essential metabolic organelles with a central role in the synthesis and turnover of complex lipids and reactive species. Peroxisomes have recently been identified as pivotal regulators of immune functions and inflammation in the development and during infection, defining a new branch of immunometabolism. This review summarizes the current evidence that has helped to identify peroxisomes as central regulators of immunity and highlights the peroxisomal proteins and metabolites that have acquired relevance in human pathologies for their link to the development of inflammation, neuropathies, aging and cancer. This review then describes how peroxisomes govern immune signaling strategies such as phagocytosis and cytokine production and their relevance in fighting bacterial and viral infections. The mechanisms by which peroxisomes either control the activation of the immune response or trigger cellular metabolic changes that activate and resolve immune responses are also described.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Pierre Andreoletti
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Doriane Trompier
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Anne Vejux
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Margret H Bülow
- Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Julia Sellin
- Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Gérard Lizard
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Mustapha Cherkaoui-Malki
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France.
| |
Collapse
|
186
|
Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease. Int J Mol Sci 2019; 20:ijms20153673. [PMID: 31357514 PMCID: PMC6695606 DOI: 10.3390/ijms20153673] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022] Open
Abstract
Hydrogen peroxide (H2O2), a non-radical reactive oxygen species generated during many (patho)physiological conditions, is currently universally recognized as an important mediator of redox-regulated processes. Depending on its spatiotemporal accumulation profile, this molecule may act as a signaling messenger or cause oxidative damage. The focus of this review is to comprehensively evaluate the evidence that peroxisomes, organelles best known for their role in cellular lipid metabolism, also serve as hubs in the H2O2 signaling network. We first briefly introduce the basic concepts of how H2O2 can drive cellular signaling events. Next, we outline the peroxisomal enzyme systems involved in H2O2 metabolism in mammals and reflect on how this oxidant can permeate across the organellar membrane. In addition, we provide an up-to-date overview of molecular targets and biological processes that can be affected by changes in peroxisomal H2O2 metabolism. Where possible, emphasis is placed on the molecular mechanisms and factors involved. From the data presented, it is clear that there are still numerous gaps in our knowledge. Therefore, gaining more insight into how peroxisomes are integrated in the cellular H2O2 signaling network is of key importance to unravel the precise role of peroxisomal H2O2 production and scavenging in normal and pathological conditions.
Collapse
|
187
|
Metabolomics Analyses in High-Low Feed Efficient Dairy Cows Reveal Novel Biochemical Mechanisms and Predictive Biomarkers. Metabolites 2019; 9:metabo9070151. [PMID: 31340509 PMCID: PMC6680417 DOI: 10.3390/metabo9070151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/08/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023] Open
Abstract
Residual feed intake (RFI) is designed to estimate net efficiency of feed use, so low RFI animals are considered for selection to reduce feeding costs. However, metabolic profiling of cows and availability of predictive metabolic biomarkers for RFI are scarce. Therefore, this study aims to generate a better understanding of metabolic mechanisms behind low and high RFI in Jerseys and Holsteins and identify potential predictive metabolic biomarkers. Each metabolite was analyzed to reveal their associations with two RFIs in two breeds by a linear regression model. An integrative analysis of metabolomics and transcriptomics was performed to explore interactions between functionally related metabolites and genes in the created metabolite networks. We found that three main clusters were detected in the heat map and all identified fatty acids (palmitoleic, hexadecanoic, octadecanoic, heptadecanoic, and tetradecanoic acid) were grouped in a cluster. The lower cluster were all from fatty acids, including palmitoleic acid, hexadecanoic acid, octadecanoic acid, heptadecanoic acid, and tetradecanoic acid. The first component of the partial least squares-discriminant analysis (PLS-DA) explained a majority (61.5%) of variations of all metabolites. A good division between two breeds was also observed. Significant differences between low and high RFIs existed in the fatty acid group (P < 0.001). Statistical results revealed clearly significant differences between breeds; however, the association of individual metabolites (leucine, ornithine, pentadecanoic acid, and valine) with the RFI status was only marginally significant or not significant due to a lower sample size. The integrated gene-metabolite pathway analysis showed that pathway impact values were higher than those of a single metabolic pathway. Both types of pathway analyses revealed three important pathways, which were aminoacyl-tRNA biosynthesis, alanine, aspartate, and glutamate metabolism, and the citrate cycle (TCA cycle). Finally, one gene (2-hydroxyacyl-CoA lyase 1 (+HACL1)) associated with two metabolites (-α-ketoglutarate and succinic acid) were identified in the gene-metabolite interaction network. This study provided novel metabolic pathways and integrated metabolic-gene expression networks in high and low RFI Holstein and Jersey cattle, thereby providing a better understanding of novel biochemical mechanisms underlying variation in feed efficiency.
Collapse
|
188
|
Cook KC, Moreno JA, Jean Beltran PM, Cristea IM. Peroxisome Plasticity at the Virus-Host Interface. Trends Microbiol 2019; 27:906-914. [PMID: 31331665 DOI: 10.1016/j.tim.2019.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
Peroxisomes are multifunctional organelles with roles in cellular metabolism, cytotoxicity, and signaling. The plastic nature of these organelles allows them to respond to diverse biological processes, such as virus infections, by remodeling their biogenesis, morphology, and composition to enhance specific functions. During virus infections in humans, peroxisomes act as important immune signaling organelles, aiding the host by orchestrating antiviral signaling. However, more recently it was discovered that peroxisomes can also benefit the virus, facilitating virus-host interactions that rewire peroxisomes to support cellular processes for virus replication and spread. Here, we describe recent studies that uncovered this double-edged character of peroxisomes during infection, highlighting mechanisms that viruses have coevolved to take advantage of peroxisome plasticity. We also provide a perspective for future studies by comparing the established roles of peroxisomes in plant infections and discussing the promise of virology studies as a venue to reveal the uncharted biology of peroxisomes.
Collapse
Affiliation(s)
- Katelyn C Cook
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Jorge A Moreno
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Pierre M Jean Beltran
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
189
|
Argyriou C, Polosa A, Cecyre B, Hsieh M, Di Pietro E, Cui W, Bouchard JF, Lachapelle P, Braverman N. A longitudinal study of retinopathy in the PEX1-Gly844Asp mouse model for mild Zellweger Spectrum Disorder. Exp Eye Res 2019; 186:107713. [PMID: 31254513 DOI: 10.1016/j.exer.2019.107713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/17/2019] [Accepted: 06/25/2019] [Indexed: 02/03/2023]
Abstract
Zellweger Spectrum Disorder (ZSD) is an autosomal recessive disease caused by mutations in any one of 13 PEX genes whose protein products are required for peroxisome assembly. Retinopathy leading to blindness is one of the major untreatable handicaps faced by patients with ZSD but is not well characterized, and the requirement for peroxisomes in retinal health is unknown. To address this, we examined the progression of retinopathy from 2 to 32 weeks of age in our murine model for the common human PEX1-p.Gly843Asp allele (PEX1-p.Gly844Asp) using electrophysiology, histology, immunohistochemistry, electron microscopy, biochemistry, and visual function tests. We found that retinopathy in male and female PEX1-G844D mice was marked by an attenuated cone function and abnormal cone morphology early in life, with gradually decreasing rod function. Structural defects at the inner retina occurred later in the form of bipolar cell degradation (between 13 and 32 weeks). Inner segment disorganization and enlarged mitochondria were seen at 32 weeks, while other inner retinal cells appeared preserved. Visual acuity was diminished by 11 weeks of age, while signal transmission from the retina to the brain was relatively intact from 7 to 32 weeks of age. Molecular analyses showed that PEX1-G844D is a subfunctional but stable protein, contrary to human PEX1-G843D. Finally, C26:0 lysophosphatidylcholine was elevated in the PEX1-G844D retina, while phopshoethanolamine plasmalogen lipids were present at normal levels. These characterization studies identify therapeutic endpoints for future preclinical trials, including improving or preserving the electroretinogram response, improving visual acuity, and/or preventing loss of bipolar cells.
Collapse
Affiliation(s)
- Catherine Argyriou
- Department of Human Genetics, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Anna Polosa
- Department of Ophthalmology, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Bruno Cecyre
- School of Optometry, Université de Montréal, Pavillon 3744 Jean-Brillant, Bureau 260-39, Montréal, Québec, H3T 1P1, Canada.
| | - Monica Hsieh
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Erminia Di Pietro
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Wei Cui
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Jean-François Bouchard
- School of Optometry, Université de Montréal, Pavillon 3744 Jean-Brillant, Bureau 260-39, Montréal, Québec, H3T 1P1, Canada.
| | - Pierre Lachapelle
- Department of Ophthalmology, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Nancy Braverman
- Department of Human Genetics, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada; Department of Pediatrics, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
190
|
Kim YI, Nam IK, Lee DK, Bhandari S, Charton L, Kwak S, Lim JY, Hong K, Kim SJ, Lee JN, Kwon SW, So HS, Linka N, Park R, Choe SK. Slc25a17 acts as a peroxisomal coenzyme A transporter and regulates multiorgan development in zebrafish. J Cell Physiol 2019; 235:151-165. [PMID: 31187491 DOI: 10.1002/jcp.28954] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023]
Abstract
Slc25a17 is known as a peroxisomal solute carrier, but the in vivo role of the protein has not been demonstrated. We found that the zebrafish genome contains two slc25a17 genes that function redundantly, but additively. Notably, peroxisome function in slc25a17 knockdown embryos is severely compromised, resulting in an altered lipid composition. Along the defects found in peroxisome-associated phenotypic presentations, we highlighted that development of the swim bladder is also highly dependent on Slc25a17 function. As Slc25a17 showed substrate specificity towards coenzyme A (CoA), injecting CoA, but not NAD+ , rescued the defective swim bladder induced by slc25a17 knockdown. These results indicated that Slc25a17 acts as a CoA transporter, involved in the maintenance of functional peroxisomes that are essential for the development of multiple organs during zebrafish embryogenesis. Given high homology in protein sequences, the role of zebrafish Slc25a17 may also be applicable to the mammalian system.
Collapse
Affiliation(s)
- Yong-Il Kim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - In-Koo Nam
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Dong-Kyu Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sushil Bhandari
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Lennart Charton
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - SeongAe Kwak
- Zoonosis Research Center, Wonkwang University School of Medicine, Iksan, South Korea
| | - Jae-Young Lim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - KwangHeum Hong
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Se-Jin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Joon No Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Hong-Seob So
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Wonkwang Medical Institute, Wonkwang University School of Medicine, Iksan, South Korea
| |
Collapse
|
191
|
A new class of protein biomarkers based on subcellular distribution: application to a mouse liver cancer model. Sci Rep 2019; 9:6913. [PMID: 31061415 PMCID: PMC6502816 DOI: 10.1038/s41598-019-43091-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
To-date, most proteomic studies aimed at discovering tissue-based cancer biomarkers have compared the quantity of selected proteins between case and control groups. However, proteins generally function in association with other proteins to form modules localized in particular subcellular compartments in specialized cell types and tissues. Sub-cellular mislocalization of proteins has in fact been detected as a key feature in a variety of cancer cells. Here, we describe a strategy for tissue-biomarker detection based on a mitochondrial fold enrichment (mtFE) score, which is sensitive to protein abundance changes as well as changes in subcellular distribution between mitochondria and cytosol. The mtFE score integrates protein abundance data from total cellular lysates and mitochondria-enriched fractions, and provides novel information for the classification of cancer samples that is not necessarily apparent from conventional abundance measurements alone. We apply this new strategy to a panel of wild-type and mutant mice with a liver-specific gene deletion of Liver receptor homolog 1 (Lrh-1hep−/−), with both lines containing control individuals as well as individuals with liver cancer induced by diethylnitrosamine (DEN). Lrh-1 gene deletion attenuates cancer cell metabolism in hepatocytes through mitochondrial glutamine processing. We show that proteome changes based on mtFE scores outperform protein abundance measurements in discriminating DEN-induced liver cancer from healthy liver tissue, and are uniquely robust against genetic perturbation. We validate the capacity of selected proteins with informative mtFE scores to indicate hepatic malignant changes in two independent mouse models of hepatocellular carcinoma (HCC), thus demonstrating the robustness of this new approach to biomarker research. Overall, the method provides a novel, sensitive approach to cancer biomarker discovery that considers contextual information of tested proteins.
Collapse
|
192
|
Xia M, Zhang Y, Jin K, Lu Z, Zeng Z, Xiong W. Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer. Cell Biosci 2019; 9:27. [PMID: 30931098 PMCID: PMC6425566 DOI: 10.1186/s13578-019-0289-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/09/2019] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are energy factories of cells and are important pivots for intracellular interactions with other organelles. They interact with the endoplasmic reticulum, peroxisomes, and nucleus through signal transduction, vesicle transport, and membrane contact sites to regulate energy metabolism, biosynthesis, immune response, and cell turnover. However, when the communication between organelles fails and the mitochondria are dysfunctional, it may induce tumorigenesis. In this review, we elaborate on how mitochondria interact with the endoplasmic reticulum, peroxisomes, and cell nuclei, as well as the relation between organelle communication and tumor development .
Collapse
Affiliation(s)
- MengFang Xia
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - YaZhuo Zhang
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Ke Jin
- 2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China
| | - ZiTong Lu
- 2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China
| | - Zhaoyang Zeng
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Wei Xiong
- 1NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan China.,2The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
193
|
Ghareghani M, Scavo L, Jand Y, Farhadi N, Sadeghi H, Ghanbari A, Mondello S, Arnoult D, Gharaghani S, Zibara K. Melatonin Therapy Modulates Cerebral Metabolism and Enhances Remyelination by Increasing PDK4 in a Mouse Model of Multiple Sclerosis. Front Pharmacol 2019; 10:147. [PMID: 30873027 PMCID: PMC6403148 DOI: 10.3389/fphar.2019.00147] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022] Open
Abstract
Metabolic disturbances have been implicated in demyelinating diseases including multiple sclerosis (MS). Melatonin, a naturally occurring hormone, has emerged as a potent neuroprotective candidate to reduce myelin loss and improve MS outcomes. In this study, we evaluated the effect of melatonin, at both physiological and pharmacological doses, on oligodendrocytes metabolism in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Results showed that melatonin decreased neurological disability scores and enhanced remyelination, significantly increasing myelin protein levels including MBP, MOG, and MOBP. In addition, melatonin attenuated inflammation by reducing pro-inflammatory cytokines (IL-1β and TNF-α) and increasing anti-inflammatory cytokines (IL-4 and IL-10). Moreover, melatonin significantly increased brain concentrations of lactate, N-acetylaspartate (NAA), and 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR). Pyruvate dehydrogenase kinase-4 (PDK-4) mRNA and protein expression levels were also increased in melatonin-treated, compared to untreated EAE mice. However, melatonin significantly inhibited active and total pyruvate dehydrogenase complex (PDC), an enzyme under the control of PDK4. In summary, although PDC activity was reduced by melatonin, it caused a reduction in inflammatory mediators while stimulating oligodendrogenesis, suggesting that oligodendrocytes are forced to use an alternative pathway to synthesize fatty acids for remyelination. We propose that combining melatonin and PDK inhibitors may provide greater benefits for MS patients than the use of melatonin therapy alone.
Collapse
Affiliation(s)
- Majid Ghareghani
- CERVO Brain Research Center, Quebec City, QC, Canada.,Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Linda Scavo
- Platform of Research and Analysis in Sciences and Environment (PRASE), Lebanese University, Beirut, Lebanon.,INSERM U 1197, Laboratory of Stem Cells, Transplantation and Immunoregulation, Villejuif, France
| | - Yahya Jand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Farhadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Ghanbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,Oasi Research Institute - IRCCS, Troina, Italy
| | - Damien Arnoult
- INSERM U 1197, Laboratory of Stem Cells, Transplantation and Immunoregulation, Villejuif, France
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Kazem Zibara
- Platform of Research and Analysis in Sciences and Environment (PRASE), Lebanese University, Beirut, Lebanon.,Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
194
|
Abstract
SIGNIFICANCE NAD+ and NADP+ are important cosubstrates in redox reactions and participate in regulatory networks operating in adjustment of metabolic pathways. Moreover, NAD+ is a cosubstrate in post-translational modification of proteins and is involved in DNA repair. NADPH is indispensable for reductive syntheses and the redox chemistry involved in attaining and maintaining correct protein conformation. Recent Advances: Within a couple of decades, a wealth of information has been gathered on NAD(H)+/NADP(H) redox imaging, regulatory role of redox potential in assembly of spatial protein structures, and the role of ADP-ribosylation of regulatory proteins affecting both gene expression and metabolism. All these have a bearing also on disease, healthy aging, and longevity. CRITICAL ISSUES Knowledge of the signal propagation pathways of NAD+-dependent post-translational modifications is still fragmentary for explaining the mechanism of cellular stress effects and nutritional state on these actions. Evaluation of the cosubstrate and regulator roles of NAD(H) and NADP(H) still suffers from some controversies in experimental data. FUTURE DIRECTIONS Activating or inhibiting interventions in NAD+-dependent protein modifications for medical purposes has shown promise, but restraining tumor growth by inhibiting DNA repair in tumors by means of interference in sirtuins is still in the early stage. The same is true for the use of this technology in improving health and healthy aging. New genetically encoded specific NAD and NADP probes are expected to modernize the research on redox biology.
Collapse
Affiliation(s)
- Ilmo E Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
195
|
Jo DS, Cho DH. Peroxisomal dysfunction in neurodegenerative diseases. Arch Pharm Res 2019; 42:393-406. [PMID: 30739266 DOI: 10.1007/s12272-019-01131-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/03/2019] [Indexed: 01/06/2023]
Abstract
Peroxisomes and their (patho-)physiological importance in heath and disease have attracted increasing interest during last few decades. Together with mitochondria, peroxisomes comprise key metabolic platforms for oxidation of various fatty acids and redox regulation. In addition, peroxisomes contribute to bile acid, cholesterol, and plasmalogen biosynthesis. The importance of functional peroxisomes for cellular metabolism is demonstrated by the marked brain and systemic organ abnormalities occuring in peroxisome biogenesis disorders and peroxisomal enzyme deficiencies. Current evidences indicate that peroxisomal function is declined with aging, with peroxisomal dysfunction being linked to early onset of multiple age-related diseases including neurodegenerative diseases. Herein, we review recent progress toward understanding the physiological roles and pathological implications of peroxisomal dysfunctions, focusing on neurodegenerative disease.
Collapse
Affiliation(s)
- Doo Sin Jo
- School of Life Sciences, Kyungpook National University, 80 Daehakro Bukgu, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, 80 Daehakro Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
196
|
Baboota RK, Shinde AB, Lemaire K, Fransen M, Vinckier S, Van Veldhoven PP, Schuit F, Baes M. Functional peroxisomes are required for β-cell integrity in mice. Mol Metab 2019; 22:71-83. [PMID: 30795913 PMCID: PMC6437690 DOI: 10.1016/j.molmet.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives Peroxisomes play a crucial role in lipid and reactive oxygen species metabolism, but their importance for pancreatic β-cell functioning is presently unknown. To examine the contribution of peroxisomal metabolism to β-cell homeostasis in mice, we inactivated PEX5, the import receptor for peroxisomal matrix proteins, in an inducible and β-cell restricted manner (Rip-Pex5−/− mice). Methods After tamoxifen-induced recombination of the Pex5 gene at the age of 6 weeks, mice were fed either normal chow or a high-fat diet for 12 weeks and were subsequently phenotyped. Results Increased levels of very long chain fatty acids and reduced levels of plasmalogens in islets confirmed impairment of peroxisomal fatty acid oxidation and ether lipid synthesis, respectively. The Rip-Pex5−/− mice fed on either diet exhibited glucose intolerance associated with impaired insulin secretion. Ultrastructural and biochemical analysis revealed a decrease in the density of mature insulin granules and total pancreatic insulin content, which was further accompanied by mitochondrial disruptions, reduced complex I activity and massive vacuole overload in β-cells. RNAseq analysis suggested that cell death pathways were affected in islets from HFD-fed Rip-Pex5−/− mice. Consistent with this change we observed increased β-cell apoptosis in islets and a decrease in β-cell mass. Conclusions Our data indicate that normal peroxisome metabolism in β-cells is crucial to preserve their structure and function. Pex5 deletion in β-cells impairs glucose tolerance and reduces β-cell mass. Pex5-deficient β-cells display increased apoptosis. Peroxisomal loss causes mitochondrial deterioration and cytoplasmic vacuolization.
Collapse
Affiliation(s)
- Ritesh Kumar Baboota
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, B-3000, Leuven, Belgium
| | - Abhijit Babaji Shinde
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, B-3000, Leuven, Belgium
| | - Katleen Lemaire
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Gene Expression Unit, B-3000, Leuven, Belgium
| | - Marc Fransen
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory for Lipid Biochemistry and Protein Interactions, KU Leuven, B-3000, Leuven, Belgium
| | - Stefan Vinckier
- VIB-KULeuven Centre for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, B-3000, Leuven, Belgium
| | - Paul P Van Veldhoven
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory for Lipid Biochemistry and Protein Interactions, KU Leuven, B-3000, Leuven, Belgium
| | - Frans Schuit
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Gene Expression Unit, B-3000, Leuven, Belgium
| | - Myriam Baes
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, B-3000, Leuven, Belgium.
| |
Collapse
|
197
|
Tanaka H, Okazaki T, Aoyama S, Yokota M, Koike M, Okada Y, Fujiki Y, Gotoh Y. Peroxisomes control mitochondrial dynamics and the mitochondrion-dependent pathway of apoptosis. J Cell Sci 2019; 132:jcs.224766. [DOI: 10.1242/jcs.224766] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/01/2019] [Indexed: 01/03/2023] Open
Abstract
Peroxisomes cooperate with mitochondria in the performance of cellular metabolic functions such as fatty acid oxidation and maintenance of redox homeostasis. Whether peroxisomes also regulate mitochondrial fission-fusion dynamics or mitochondrion-dependent apoptosis has remained unclear, however. We now show that genetic ablation of the peroxins Pex3 or Pex5, which are essential for peroxisome biogenesis, resulted in mitochondrial fragmentation in MEFs in a manner dependent on Drp1. Conversely, treatment with 4-PBA, a peroxisome proliferator, resulted in mitochondrial elongation in wild-type MEFs, but not in Pex3-deficient MEFs. We further found that peroxisome deficiency increased the levels of cytosolic cytochrome c and caspase activity under basal conditions without inducing apoptosis. It also greatly enhanced etoposide-induced caspase activation and apoptosis, indicative of an enhanced cellular sensitivity to death signals. Together, our data unveil a previously unrecognized role of peroxisomes in the regulation of mitochondrial dynamics and mitochondrion-dependent apoptosis. Effects of peroxin genes mutations on mitochondrion-dependent apoptosis may contribute to pathogenesis of peroxisome biogenesis disorders.
Collapse
Affiliation(s)
- Hideaki Tanaka
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomohiko Okazaki
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| | - Saeko Aoyama
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yasushi Okada
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka 565-0874, Japan
- Department of Physics, Universal Biology Institute (UBI), and the International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, IRCN, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
198
|
Farré JC, Mahalingam SS, Proietto M, Subramani S. Peroxisome biogenesis, membrane contact sites, and quality control. EMBO Rep 2018; 20:embr.201846864. [PMID: 30530632 DOI: 10.15252/embr.201846864] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Peroxisomes are conserved organelles of eukaryotic cells with important roles in cellular metabolism, human health, redox homeostasis, as well as intracellular metabolite transfer and signaling. We review here the current status of the different co-existing modes of biogenesis of peroxisomal membrane proteins demonstrating the fascinating adaptability in their targeting and sorting pathways. While earlier studies focused on peroxisomes as autonomous organelles, the necessity of the ER and potentially even mitochondria as sources of peroxisomal membrane proteins and lipids has come to light in recent years. Additionally, the intimate physical juxtaposition of peroxisomes with other organelles has transitioned from being viewed as random encounters to a growing appreciation of the expanding roles of such inter-organellar membrane contact sites in metabolic and regulatory functions. Peroxisomal quality control mechanisms have also come of age with a variety of mechanisms operating both during biogenesis and in the cellular response to environmental cues.
Collapse
Affiliation(s)
- Jean-Claude Farré
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Shanmuga S Mahalingam
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Marco Proietto
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, CA, USA
| |
Collapse
|
199
|
Mohamad MI, Aboelhussein MM, Elayat WM, Elshormilisy AA. Aberrant renal expression of peroxisome coactivator PGC-1α and its regulators (Sirt1 & GSK3β) in rats with diabetic nephropathy. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
200
|
Knoblach B, Rachubinski RA. Reconstitution of human peroxisomal β-oxidation in yeast. FEMS Yeast Res 2018; 18:5075582. [PMID: 30124827 DOI: 10.1093/femsyr/foy092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/14/2018] [Indexed: 11/14/2022] Open
Abstract
We report the permanent introduction of the human peroxisomal β-oxidation enzymatic machinery required for straight chain degradation of fatty acids into the yeast, Saccharomyces cerevisiae. Peroxisomal β-oxidation encompasses four sequential reactions that are confined to three enzymes. The genes encoding human acyl-CoA oxidase 1, peroxisomal multifunctional enzyme type 2 and 3-ketoacyl-CoA thiolase were introduced into the genomic loci of their yeast gene equivalents. The human β-oxidation genes were individually tagged with sequence coding for GFP and expression of the protein chimeras as well as their targeting to peroxisomes was confirmed. Functional complementation of the β-oxidation pathway was assessed by growth on media containing fatty acids of different chain lengths. Yeast cells exhibited distinctive substrate specificities depending on whether they expressed the human or their endogenous β-oxidation machinery. The genetic engineering of yeast to contain a 'humanized' organelle is a first step for the in vivo study of human peroxisome disorders in a model organism.
Collapse
Affiliation(s)
- Barbara Knoblach
- Department of Cell Biology, University of Alberta, Edmonton, MSB 5-14, Edmonton, Alberta T6G 2H7, Canada
| | - Richard A Rachubinski
- Department of Cell Biology, University of Alberta, Edmonton, MSB 5-14, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|