151
|
Verma S, Thakur A. Editorial: Intracellular bacterial pathogens: Infection, immunity and interventions. Front Vet Sci 2023; 10:1163008. [PMID: 36992971 PMCID: PMC10040853 DOI: 10.3389/fvets.2023.1163008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/15/2023] Open
Affiliation(s)
- Subhash Verma
- Department of Veterinary Microbiology, Dr. G. C. Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
- *Correspondence: Subhash Verma
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
152
|
Kayingo G. Emerging, Reemerging Infectious Diseases and Global Pandemic Preparedness. PHYSICIAN ASSISTANT CLINICS 2023. [DOI: 10.1016/j.cpha.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
153
|
Koyun OY, Balta I, Corcionivoschi N, Callaway TR. Disease Occurrence in- and the Transferal of Zoonotic Agents by North American Feedlot Cattle. Foods 2023; 12:904. [PMID: 36832978 PMCID: PMC9956193 DOI: 10.3390/foods12040904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
North America is a large producer of beef and contains approximately 12% of the world's cattle inventory. Feedlots are an integral part of modern cattle production in North America, producing a high-quality, wholesome protein food for humans. Cattle, during their final stage, are fed readily digestible high-energy density rations in feedlots. Cattle in feedlots are susceptible to certain zoonotic diseases that impact cattle health, growth performance, and carcass characteristics, as well as human health. Diseases are often transferred amongst pen-mates, but they can also originate from the environment and be spread by vectors or fomites. Pathogen carriage in the gastrointestinal tract of cattle often leads to direct or indirect contamination of foods and the feedlot environment. This leads to the recirculation of these pathogens that have fecal-oral transmission within a feedlot cattle population for an extended time. Salmonella, Shiga toxin-producing Escherichia coli, and Campylobacter are commonly associated with animal-derived foods and can be transferred to humans through several routes such as contact with infected cattle and the consumption of contaminated meat. Brucellosis, anthrax, and leptospirosis, significant but neglected zoonotic diseases with debilitating impacts on human and animal health, are also discussed.
Collapse
Affiliation(s)
- Osman Y. Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
154
|
Pet Ownership in Aotearoa New Zealand: A National Survey of Cat and Dog Owner Practices. Animals (Basel) 2023; 13:ani13040631. [PMID: 36830418 PMCID: PMC9951667 DOI: 10.3390/ani13040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
This study used an online survey distributed between January and March 2019 to adults residing in Aotearoa New Zealand (NZ) to investigate cat and dog owner practices. Of the 2385 respondents, 885 (37%) owned both cat/s and dog/s, while 652 (28%) and 609 (26%) owned cat/s only or dog/s only, respectively. Nine percent of respondents (n = 212) did not own a cat or dog when the survey was administered. Gaps were identified in the practices of NZ pet owners with regard to regular grooming, immunizations, and deworming treatments. It was also found that many pets, especially cats, were allowed to wander freely both inside and outside the house. Collectively, these gaps in practice raise parasitology and infection concerns which may impact negatively on animal welfare and may increase the prevalence of zoonotic diseases. This study also revealed the need to improve desexing practices, particularly in dogs. Respondents in the survey expressed the wish to have pets regardless of the financial strain they may impose, indicating that future research should focus on reducing the financial burden of pet ownership along with promoting positive pet ownership practices. Our findings suggest the need for better education resources about pet ownership which are easily accessible and target diverse populations. The findings of this study will aid in developing appropriate educational resources to promote animal welfare and increase pet-related knowledge among the NZ populace.
Collapse
|
155
|
Li Y, Li P, Zhang W, Zheng X, Gu Q. New Wine in Old Bottle: Caenorhabditis Elegans in Food Science. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Weixi Zhang
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| |
Collapse
|
156
|
Azócar-Aedo L. Basic Aspects and Epidemiological Studies on Leptospirosis Carried Out in Animals in Chile: A Bibliographic Review. Trop Med Infect Dis 2023; 8:tropicalmed8020097. [PMID: 36828513 PMCID: PMC9964289 DOI: 10.3390/tropicalmed8020097] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Leptospirosis is an important zoonosis worldwide. This disease affects numerous animal species, some of them are classified as "maintenance hosts", and others are categorized as "incidental hosts". Humans are at risk of becoming infected by having contact with domestic and wild animals. In this paper, general aspects of the etiology and transmission of leptospirosis are addressed, data regarding the clinical presentation of the pathology in humans and animals are also presented, and the results of some epidemiological studies on leptospirosis carried out in Chile in different animal species and humans are summarized through a bibliographic review of the literature. The research on domestic canines and horses stands out in terms of their number in the country, with prevalences between 12.0% and 59.1% in dogs and from 23.3% to 65.4% in equids. Studies have been performed on domestic felines in recent years with frequencies ranging from 3.0% to 25.2%, as well as on wild animals (mainly in mammals). In pigs, cattle, sheep, and goats, the information is scarce, with little updated research dating back several decades and variable prevalence rates, which are generally high, except for in sheep. Leptospirosis is a disease of varied etiology in terms of infecting species, serovars and serogroups, which influences its epidemiology, and its prevalence is variable in different animals. An increase in the awareness given to this pathology in human and veterinary public health is required, as well as more scientific studies in Chile, to update the existing knowledge.
Collapse
Affiliation(s)
- Lucía Azócar-Aedo
- Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede De La Patagonia, Puerto Montt 5480000, Chile
| |
Collapse
|
157
|
Xie ST, Ding LJ, Huang FY, Zhao Y, An XL, Su JQ, Sun GX, Song YQ, Zhu YG. VFG-Chip: A high-throughput qPCR microarray for profiling virulence factor genes from the environment. ENVIRONMENT INTERNATIONAL 2023; 172:107761. [PMID: 36682204 DOI: 10.1016/j.envint.2023.107761] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
As zoonotic pathogens are threatening public health globally, the virulence factor genes (VFGs) they carry underlie latent risk in the environment. However, profiling VFGs in the environment is still in its infancy due to lack of efficient and reliable quantification tools. Here, we developed a novel high-throughput qPCR (HT-qPCR) chip, termed as VFG-Chip, to comprehensively quantify the abundances of targeted VFGs in the environment. A total of 96 VFGs from four bacterial pathogens including Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, and Salmonella enterica were targeted by 120 primer pairs, which were involved in encoding five types of virulence factors (VFs) like toxin, adherence, secretion system, immune evasion/invasion, and iron uptake. The specificity of VFG-Chip was both verified computationally and experimentally, with high identity of amplicon sequencing and melting curves analysis proving its robust capability. The VFG-Chip also displayed high sensitivity (by plasmid serial dilution test) and amplification efficiency averaging 97.7%. We successfully applied the VFG-Chip to profile the distribution of VFGs along a wastewater treatment system with 69 VFGs detected in total. Overall, the VFG-Chip provides a robust tool for comprehensively quantifying VFGs in the environment, and thus provides novel information in assessing the health risks of zoonotic pathogens in the environment.
Collapse
Affiliation(s)
- Shu-Ting Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yi Zhao
- School of Water Resources and Environment, China, University of Geosciences (Beijing), Beijing 100083, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Jian-Qiang Su
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Guo-Xin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ya-Qiong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
158
|
A Systematic Review on the Occurrence of Antimicrobial-Resistant Escherichia coli in Poultry and Poultry Environments in Bangladesh between 2010 and 2021. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2425564. [PMID: 36778056 PMCID: PMC9908353 DOI: 10.1155/2023/2425564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Antimicrobial resistance (AMR) is a significant public health issue in Bangladesh like many other developing countries where data on resistance trends are scarce. Moreover, the existence of multidrug-resistant (MDR) Escherichia coli exerts an ominous effect on the poultry sector. Therefore, the current systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was conducted to find out the AMR scenarios in E. coli isolates sourced from poultry and poultry environments in Bangladesh between 2010 and 2021. Following the PRISMA guidelines, a total of 17 published scientific articles were selected for this systematic review. This review revealed that 18 out of 64 districts in Bangladesh reported E. coli in poultry, having a higher prevalence (combined prevalence: 69.3%, 95% confidence interval, CI: 67.3-71%). Moreover, the prevalence ranged from 24.3% to 100%. This review found that E. coli isolates showed resistance to 14 antimicrobial classes and 45 different antimicrobial agents, including the last-line (reserve group) antibiotics and banned antimicrobial categories for the treatment of infections in agricultural animals. Phenotypic resistance of E. coli against penicillins and beta-lactamase inhibitors (20.2%-100%), cephalosporins (1.9%-100%), fluoroquinolones (5.98%-100%), aminoglycosides (6%-100%), tetracyclines (17.7%-100%), carbapenems (13.6%-72.7%), macrolides (11.8%-100%), polymyxins (7.9%-100%), phenicols (20%-97.2%), sulfa drugs (44.7%-100%), cephamycins (21.4%-48.8%), nitrofurans (21.4%-63.2%), monobactams (1.2%), and glycylcyclines (2.3%) was recorded in the last decades in Bangladesh. Also, 14 articles reported MDR E. coli in poultry, including a 100% MDR in nine articles and a 92.7% (95% CI: 91.2-94%) combined percentage of MDR E. coli isolates. Twenty-four different AMR genes encoding resistance to beta-lactams (bla TEM, bla CTX-M-1, bla CTX-M-2, bla CTX-M-9, bla OXA-1, bla OXA-47, bla SHV, and CITM), colistin (mcr1 and mcr3), fluoroquinolones (qnrB and qnrS), tetracyclines (tetA, tetB, and tetC), sulfonamides (sulI and sulII), trimethoprim (dfrA1), aminoglycosides (rmtB), streptomycin (aadA1), gentamicin (aac-3-IV), erythromycin (ereA), and chloramphenicol (catA1 and cmlA) were detected in E. coli isolates. The presence of MDR E. coli and their corresponding resistance genes in poultry and poultry environments is an alarming issue for all health communities in Bangladesh. We suggest a regular antimicrobial surveillance program with a strong One Health approach to lessen the hazardous effects of AMR E. coli in poultry industries in Bangladesh.
Collapse
|
159
|
Bansal D, Jaffrey S, Al-Emadi NA, Hassan M, Islam MM, Al-Baker WAA, Radwan E, Hamdani D, Haroun MI, Enan K, Nour M, Coyle PV, Al Marri A, Al-Zeyara AA, Younus NM, Yassine HM, Al Thani AA, Darkhshan F, Khalid M, Marhous H, Tibbo M, Alhosani M, Taha T, Wannous C, Al Hajri M, Bertollini R, Al-Maslamani MA, Al Khal A, Al Romaihi HE, Al Thani SMBHBJ, El Idrissi A, Farag EA. A new One Health Framework in Qatar for future emerging and re-emerging zoonotic diseases preparedness and response. One Health 2023; 16:100487. [PMID: 36683958 PMCID: PMC9851870 DOI: 10.1016/j.onehlt.2023.100487] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
One Health is increasingly recognized as an optimal approach to address the global risk of health threats originating at the human, animal, and ecosystem interface, and their impact. Qatar has successfully practiced One Health approach for investigation and surveillance of zoonotic diseases such as MERS-CoV, and other health threats. However, the current gaps at institution and policy level hinder the sustainment of One Health. In this paper, we have assessed the potential for implementation of One Health Framework to reinforce and sustain One Health capacities in Qatar for 2022-2027. To implement One Health Framework in the country, Qatar Joint External Evaluation (JEE) report, lessons learnt during One Health experiences on zoonotic, vector-borne, and food borne diseases were used to present an outline for multisectoral coordination. In addition, technical capacities of One Health and factors that are required to operationalize it in the country were also assessed in series of meetings and workshops held at Ministry of Public Health on March 2022. Present health care infrastructure and resources were found to be conducive for effective management and response to shared health threats as evident during MERS-CoV, despite being more event based. Regardless, the need for more sustainable capacity development was unanimously emphasized. The consensus between all relevant stakeholders and partners was that there is a need for better communication channels, policies and protocols for data sharing, and the need to invest more resources for better sustainability. The proposed framework is expected to strengthen and facilitate multilateral coordination, enhanced laboratory capacity and network, improve active surveillance and response, risk communication, community engagement, maximize applied research, and build One Health technical work force. This would enable advancement and sustainment of One Health activities to prevent and control health threats shared between humans-animals-ecosystem interface.
Collapse
Affiliation(s)
- Devendra Bansal
- Department of Public Health, Ministry of Public Health, Doha, Qatar
| | - Shariq Jaffrey
- Department of Public Health, Ministry of Public Health, Doha, Qatar
| | | | - Mahmoud Hassan
- Department of Animal Resources, Ministry of Municipality, Doha, Qatar
| | | | | | - Eman Radwan
- Health Care Quality Management and Patient Safety, Ministry of Public Health, Doha, Qatar
| | - Dhouha Hamdani
- Health Care Quality Management and Patient Safety, Ministry of Public Health, Doha, Qatar
| | | | - Khalid Enan
- Department of Animal Resources, Ministry of Municipality, Doha, Qatar
| | - Mohammed Nour
- Department of Public Health, Ministry of Public Health, Doha, Qatar
| | | | - Abdulla Al Marri
- Department of Animal Resources, Ministry of Municipality, Doha, Qatar
| | | | - Nidal M. Younus
- Department of Animal Resources, Ministry of Municipality, Doha, Qatar
| | | | | | - Fatima Darkhshan
- Biomedical Sciences and Health, Qatar National Research Fund, Doha, Qatar
| | - Minahil Khalid
- Department of Public Health, Ministry of Public Health, Doha, Qatar
| | - Heba Marhous
- Eastern Mediterranean Office, World Health Organization, Cairo, Egypt
| | - Markos Tibbo
- Food and Agriculture Organization of the United Nations, Subregional Office for the Gulf Cooperation Council States and Yemen, Abu Dhabi, United Arab Emirates
| | - Mohamed Alhosani
- Food and Agriculture Organization of the United Nations, Subregional Office for the Gulf Cooperation Council States and Yemen, Abu Dhabi, United Arab Emirates
| | - Tariq Taha
- One Health, World Organization for Animal Health (OIE) Regional Office for Africa, Nairobi, Kenya
| | - Chadia Wannous
- One Health, World Organization for Animal Health (OIE) Regional Office for Africa, Nairobi, Kenya
| | - Mohamed Al Hajri
- Health Emergency Department, Ministry of Public Health, Doha, Qatar
| | - Roberto Bertollini
- Minister of Public Health Office, Ministry of Public Health, Doha, Qatar
| | | | | | | | | | | | - Elmoubashar Abd Farag
- Department of Public Health, Ministry of Public Health, Doha, Qatar,Corresponding author at: PO Box: 42, Ministry of Public Health, Doha, Qatar.
| |
Collapse
|
160
|
Kasimov V, Wille M, Sarker S, Dong Y, Shao R, Hall C, Potvin D, Conroy G, Valenza L, Gillett A, Timms P, Jelocnik M. Unexpected Pathogen Diversity Detected in Australian Avifauna Highlights Potential Biosecurity Challenges. Viruses 2023; 15:143. [PMID: 36680183 PMCID: PMC9865187 DOI: 10.3390/v15010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Birds may act as hosts for numerous pathogens, including members of the family Chlamydiaceae, beak and feather disease virus (BFDV), avipoxviruses, Columbid alphaherpesvirus 1 (CoAHV1) and Psittacid alphaherpesvirus 1 (PsAHV1), all of which are a significant biosecurity concern in Australia. While Chlamydiaceae and BFDV have previously been detected in Australian avian taxa, the prevalence and host range of avipoxviruses, CoAHV1 and PsAHV1 in Australian birds remain undetermined. To better understand the occurrence of these pathogens, we screened 486 wild birds (kingfisher, parrot, pigeon and raptor species) presented to two wildlife hospitals between May 2019 and December 2021. Utilising various qPCR assays, we detected PsAHV1 for the first time in wild Australian birds (37/486; 7.61%), in addition to BFDV (163/468; 33.54%), Chlamydiaceae (98/468; 20.16%), avipoxviruses (46/486; 9.47%) and CoAHV1 (43/486; 8.85%). Phylogenetic analysis revealed that BFDV sequences detected from birds in this study cluster within two predominant superclades, infecting both psittacine and non-psittacine species. However, BFDV disease manifestation was only observed in psittacine species. All Avipoxvirus sequences clustered together and were identical to other global reference strains. Similarly, PsAHV1 sequences from this study were detected from a series of novel hosts (apart from psittacine species) and identical to sequences detected from Brazilian psittacine species, raising significant biosecurity concerns, particularly for endangered parrot recovery programs. Overall, these results highlight the high pathogen diversity in wild Australian birds, the ecology of these pathogens in potential natural reservoirs, and the spillover potential of these pathogens into novel host species in which these agents cause disease.
Collapse
Affiliation(s)
- Vasilli Kasimov
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Yalun Dong
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Renfu Shao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Clancy Hall
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Dominique Potvin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Gabriel Conroy
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | | | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD 4519, Australia
| | - Peter Timms
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| |
Collapse
|
161
|
Ghosh P, Khandekar P. Infectious human diseases: Regions, habitats, threats, and mitigation strategies: The issues—Part II. MGM JOURNAL OF MEDICAL SCIENCES 2023. [DOI: 10.4103/mgmj.mgmj_16_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
162
|
Ugwu PC, Njoga EO, Njoga UJ, Aronu CJ, Atadiose EO, Okoli CE, Onwumere-Idolor OS, Ajibo FE, Azor NN, Bernard SN, Ozioko IE, Eze IS, Abonyi FO. Indiscriminate slaughter of pregnant goats for meat in Enugu, Nigeria: Causes, prevalence, implications and ways-out. PLoS One 2023; 18:e0280524. [PMID: 36649264 PMCID: PMC9844864 DOI: 10.1371/journal.pone.0280524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The indiscriminate slaughter of pregnant goats (SPGs) undermines meat production and food security especially in developing countries. It also connotes animal cruelty, depletion of goat population and may enhance the spread of zoonotic pathogens inhabiting the female reproductive tract during carcass processing. Consequently, this study determined the causes and prevalence of slaughtering pregnant goats for meat in Enugu, Nigeria. The study also estimated the economic losses associated with SPGs, discussed the negative public health consequences and suggested the ways-out. METHODS Structured, validated and pilot-tested questionnaire was used to ascertain the reasons for SPGs for meat among 78 willing and randomly selected respondents. The questionnaire survey was conducted in the form of interview. Pregnancy statuses of the goats slaughtered were ascertained by visual inspection and palpation of the eviscerated and longitudinally incised uteri and the horns for macroscopic evidence of pregnancy. Ages of the dams were estimated by dentition method. Estimation of the gestational age was performed by crown-rump length method. The study lasted for six months, comprised of three months (December to March) during the dry/hot season and another three months (May to August) during the wet/rainy season. Economic loss estimation was based on the current monetary values of a matured (30 kilogram) goat and one kilogram of chevon in Enugu, Nigeria; which was determined through market survey. Pearson's Chi-square test was used to determine whether there were significant (P<0.05) statistical associations between SPGs and age and season. RESULTS Major reasons adduced for SPGs were: economic hardship (41%), ignorance of the goat's pregnancy status (21%), increased demand for chevon (13%) and feed scarcity during drought (11%). Of the 1,658 does examined during the six months study, 589 (35.5%) were pregnant. The majority (876/1658, 52.8%) of the female goats slaughtered were in their active reproductive age of ≤ 4 years, while 782 (47.2%) were aged > 4 years. Similarly, majority (1007/1658, 60.7%) of the does/nannies were slaughtered during the dry/hot season. A total of 907 foetuses at first (n = 332, 36.6%), second (n = 486, 53.6%) and third (n = 89, 9.8%) trimesters of gestation were recovered from the 589 PGs. Singleton, twin and triplet pregnancies were observed in 312 (53%), 236 (40%) and 41 (7%) PGs, respectively. About ₦34.44 million ($83,390) would have been earned if the foetuses were born alive and raised to maturity. Additionally, 19,136 kg of chevon, valued at ₦47,841, 000 ($115,838), which would have accrued from the wasted foetuses was also lost. CONCLUSION Considering the economic, zoonotic and livestock production implications of this work, frantic efforts to reduce SPGs in Enugu, Nigeria is imperative. This could be achieved through advocacy, goat farmers' enlightenment, ante-mortem pregnancy diagnosis, provision of subsidized feed materials during the dry season and strict enforcement of the Nigerian Meat Edict law, which proscribes unapproved slaughter of gravid animals. These measures may improve food safety and security, improve goat reproduction and production, reduce protein malnutrition, limit dissemination of zoonotic pathogens during carcass processing and hence protect public health in Nigeria.
Collapse
Affiliation(s)
- Patience C. Ugwu
- Department of Animal Health and Production, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Emmanuel O. Njoga
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
- * E-mail: (EON); (UJN)
| | - Ugochinyere J. Njoga
- Department of Veterinary Obstetrics and Reproductive Diseases, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
- * E-mail: (EON); (UJN)
| | - Chinwe J. Aronu
- Department of Animal Health and Production, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Everest O. Atadiose
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Chinwe E. Okoli
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Abuja, Federal Capital Territory, Abuja, Nigeria
| | - Onyinye S. Onwumere-Idolor
- Department of Animal Production, Faculty of Agriculture, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Festus E. Ajibo
- Department of Animal Health and Production, Enugu State Polytechnic, Enugu, Nigeria
| | - Nichodemus N. Azor
- Department of Animal Health and Production, Enugu State Polytechnic, Enugu, Nigeria
| | - Sunday N. Bernard
- Department of Animal Health and Production, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Ikenna E. Ozioko
- Department of Animal Health and Production, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Ikechukwu S. Eze
- Department of Animal Health and Production, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Festus O. Abonyi
- Department of Animal Health and Production, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
163
|
Li D, Zhang Y, Li S, Zheng B. A novel Toxoplasma gondii TGGT1_316290 mRNA-LNP vaccine elicits protective immune response against toxoplasmosis in mice. Front Microbiol 2023; 14:1145114. [PMID: 37025641 PMCID: PMC10070739 DOI: 10.3389/fmicb.2023.1145114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Toxoplasma gondii (T. gondii) can infect almost all warm-blooded animals and is a major threat to global public health. Currently, there is no effective drug or vaccine for T. gondii. In this study, bioinformatics analysis on B and T cell epitopes revealed that TGGT1_316290 (TG290) had superior effects compared with the surface antigen 1 (SAG1). TG290 mRNA-LNP was constructed through the Lipid Nanoparticle (LNP) technology and intramuscularly injected into the BALB/c mice, and its immunogenicity and efficacy were explored. Analysis of antibodies, cytokines (IFN-γ, IL-12, IL-4, and IL-10), lymphocytes proliferation, cytotoxic T lymphocyte activity, dendritic cell (DC) maturation, as well as CD4+ and CD8+ T lymphocytes revealed that TG290 mRNA-LNP induced humoral and cellular immune responses in vaccinated mice. Furthermore, T-Box 21 (T-bet), nuclear factor kappa B (NF-kB) p65, and interferon regulatory factor 8 (IRF8) subunit were over-expressed in the TG290 mRNA-LNP-immunized group. The survival time of mice injected with TG290 mRNA-LNP was significantly longer (18.7 ± 3 days) compared with the survival of mice of the control groups (p < 0.0001). In addition, adoptive immunization using 300 μl serum and lymphocytes (5*107) of mice immunized with TG290 mRNA-LNP significantly prolonged the survival time of these mice. This study demonstrates that TG290 mRNA-LNP induces specific immune response against T. gondii and may be a potential toxoplasmosis vaccine candidate for this infection.
Collapse
Affiliation(s)
- Dan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yizhuo Zhang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shiyu Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Bin Zheng,
| |
Collapse
|
164
|
Abdullahi IN, Lozano C, Zarazaga M, Saidenberg ABS, Stegger M, Torres C. Clonal relatedness of coagulase-positive staphylococci among healthy dogs and dog-owners in Spain. Detection of multidrug-resistant-MSSA-CC398 and novel linezolid-resistant-MRSA-CC5. Front Microbiol 2023; 14:1121564. [PMID: 36937268 PMCID: PMC10017961 DOI: 10.3389/fmicb.2023.1121564] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Nasal carriage of coagulase-positive staphylococci (CoPS) in healthy dogs could indicate increased risks of colonization for in-contact people or vice versa. This study determined the nasal carriage rate of CoPS among healthy dogs and in-contact people, their genotypic characteristics and phylogenetic relatedness. Methods Nasal samples were collected from 27 households (34 dogs and 41 humans) in Spain. Staphylococci were identified by MALDI-TOF-MS, their antimicrobial resistance (AMR) genes and spa-types were tested by PCR/sequencing. The relatedness of CoPS from the same households was assessed by core genome single nucleotide polymorphisms (SNPs) analyses. Results Staphylococcus aureus carriage was found in 34.1% of humans (including one methicillin-resistant S. aureus MRSA-CC5-t2220-SCCmec type-IV2B) and 5.9% of dogs; Staphylococcus pseudintermedius in 2.4% of humans and 32.4% of dogs; while Staphylococcus coagulans was only detected in dogs (5.4%). Remarkably, one human co-carried S. aureus/S. pseudintermedius, while a dog co-carried the three CoPS species. Household density was significantly associated with S. pseudintermedius carriage in households with > than 1 dog and >than 1 human (OR = 18.10, 95% CI: 1.24-260.93, p = 0.034). Closely related (<15 SNPs) S. aureus or S. pseudintermedius were found in humans or dogs in three households. About 56.3% S. aureus carriers (dog or human) harboured diverse within-host spa-types or AMR genotypes. Ten clonal complexes (CCs) were detected among the S. aureus, of which methicillin-susceptible S. aureus-CC398-IEC-type C (t1451 and t571) was the most frequent, but exclusive to humans. S. aureus and S. pseudintermedius isolates harboured resistance genes or mutations associated to 9 classes of antimicrobials including linezolid (G2261A & T1584A point mutations in 23S rDNA). The S. coagulans isolates were susceptible to all antimicrobials. Most of the S. pseudintermedius carried lukS/F-I, siet, and sient genes, and all S. aureus were negative for lukS/F-PV, tst-1, eta and etb genes. Discussion Clonally related human-to-human MSSA and dog-to-human MSSP were found. The detection of the MSSA-CC398 clade highlights the need for its continuous surveillance from One Health perspective.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Andre Becker Simoes Saidenberg
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Section for Food Safety and Zoonoses, Institute for Veterinary and Companion Animal Science, Københavns Universitet, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
- *Correspondence: Carmen Torres,
| |
Collapse
|
165
|
Wang L, Tang JW, Li F, Usman M, Wu CY, Liu QH, Kang HQ, Liu W, Gu B. Identification of Bacterial Pathogens at Genus and Species Levels through Combination of Raman Spectrometry and Deep-Learning Algorithms. Microbiol Spectr 2022; 10:e0258022. [PMID: 36314973 PMCID: PMC9769533 DOI: 10.1128/spectrum.02580-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid and accurate identification of the causing agents during bacterial infections would greatly improve pathogen transmission, prevention, patient care, and medical treatments in clinical settings. Although many conventional and molecular methods have been proven to be efficient and reliable, some of them suffer technical biases and limitations that require the development and application of novel and advanced techniques. Recently, due to its cost affordability, noninvasiveness, and label-free feature, Raman spectroscopy (RS) is emerging as a potential technique for fast bacterial detection. However, the method is still hampered by many technical issues, such as low signal intensity, poor reproducibility, and standard data set insufficiency, among others. Thus, it should be cautiously claimed that Raman spectroscopy could provide practical applications in real-world settings. In order to evaluate the implementation potentials of Raman spectroscopy in the identification of bacterial pathogens, we investigated 30 bacterial species belonging to 9 different bacterial genera that were isolated from clinical samples via surfaced enhanced Raman spectroscopy (SERS). A total of 17,149 SERS spectra were harvested from a Raman spectrometer and were further analyzed via machine learning approaches, which showed that a convolutional neural network (CNN) deep learning algorithm achieved the highest prediction accuracy for recognizing pathogenic bacteria at both the genus and species levels. In summary, the SERS technique holds a promising potential for fast bacterial pathogen identification in clinical laboratories with the integration of machine learning algorithms, which might be further developed and sharpened for the direct identification and prediction of bacterial pathogens from clinical samples. IMPORTANCE In this study, we investigated 30 bacterial species belonging to 9 different bacterial genera that were isolated from clinical samples via surfaced enhanced Raman spectroscopy (SERS). A total of 17,149 SERS spectra were harvested from a Raman spectrometer and were further analyzed via machine learning approaches, the results of which showed that the convolutional neural network (CNN) deep learning algorithm could achieve the highest prediction accuracy for recognizing pathogenic bacteria at both the genus and species levels. Taken together, we concluded that the SERS technique held a promising potential for fast bacterial pathogen diagnosis in clinical laboratories with the integration of deep learning algorithms, which might be further developed and sharpened for the direct identification and prediction of bacterial pathogens from clinical samples.
Collapse
Affiliation(s)
- Liang Wang
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Jia-Wei Tang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Fen Li
- Laboratory Medicine, The Fifth People’s Hospital of Huai’an, Huai’an, Jiangsu Province, China
| | - Muhammad Usman
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chang-Yu Wu
- Department of Biomedical Engineering, School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hai-Quan Kang
- Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Liu
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
166
|
Mariappan V, Vellasamy KM, Anpalagar RR, Lim YM, Zainal Abidin N, Subramaniam S, Nathan S. One Health surveillance approaches for melioidosis and glanders: The Malaysian perspective. Front Vet Sci 2022; 9:1056723. [PMID: 36590813 PMCID: PMC9798326 DOI: 10.3389/fvets.2022.1056723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The One Health concept was initiated to promote the integration of human, animal, and environmental ecosystems into healthcare to ensure effective control and the sustainable governance of multifaceted health matters. Climate change, deforestation, and rigorous farming disrupt the environment, which serves as the natural habitat for many animals and microbes, increasing the likelihood of disease transmission between humans and animals. Melioidosis (neglected tropical diseases) and glanders are of humans and animals caused by the gram-negative bacteria Burkholderia pseudomallei and its close relative Burkholderia mallei, respectively. In Malaysia, although melioidosis is endemic, it is not a notifiable disease. Hence, the true prevalence of melioidosis in Malaysia is unknown and varies in different regions of the country, with reported hotspots associated with agriculture-related activities. To date, no incidence of human glanders has been reported in Malaysia, although occupational exposure for equine handlers and veterinary professionals remains a concern. Additionally, antibiotics are widely used in the healthcare and veterinary sectors to treat or prevent B. pseudomallei and B. mallei infections, leading to the emergence of resistance in B. pseudomallei. Lack of surveillance, research, assessment, and management of glanders and melioidosis is a major issue in Malaysia. Proper assessment systems and cross-discipline cooperation are vital to recognize and manage both diseases. Experts and practitioners from clinical and veterinary disciplines, environmentalists, law enforcement, policymakers, researchers, local communities, and other experts need to communicate, collaborate, and coordinate activities to fill the knowledge gap on glanders and melioidosis to reduce morbidity and mortality rates in the country. This review aims to define the organizational and functional characteristics of One Health surveillance approaches for glanders and melioidosis from a Malaysian perspective.
Collapse
Affiliation(s)
- Vanitha Mariappan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rohan Raaj Anpalagar
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yue-Min Lim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nurhamimah Zainal Abidin
- Faculty of Applied Sciences, School of Biology, Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kuala Pilah, Negeri Sembilan, Malaysia
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, Penang, Malaysia
- Chemical Centre Biology, Universiti Sains Malaysia (USM), Bayan Lepas, Penang, Malaysia
- National Poison Centre, Universiti Sains Malaysia (USM), Georgetown, Penang, Malaysia
| | - Sheila Nathan
- Faculty of Science and Technology, School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
167
|
Xu X, Fu H, Wan G, Huang J, Zhou Z, Rao Y, Liu L, Wen C. Prevalence and genetic diversity of Aeromonas veronii isolated from aquaculture systems in the Poyang Lake area, China. Front Microbiol 2022; 13:1042007. [PMID: 36578578 PMCID: PMC9791064 DOI: 10.3389/fmicb.2022.1042007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The area around Poyang Lake is the main aquaculture area in Jiangxi Province, China, and an important base for the supply of freshwater aquatic products. Aquaculture in the Poyang Lake area is severely threatened by diseases caused by bacterial pathogens, and Aeromonas veronii has been the main pathogen in recent years. In this paper, ERIC-PCR genotyping, virulence gene and antimicrobial resistance gene detection, and drug susceptibility tests were carried out on 46 A. veronii isolates obtained from aquaculture systems in the Poyang Lake area from 2016 to 2020. The results showed that the A. veronii strains in the Poyang Lake area had high genetic diversity, and 46 strains produced 36 ERIC genotypes. There were no geographical and temporal differences in the cluster analysis results and no dominant clones. All 13 virulence genes tested were detected, and all isolates had harbored 2 or more virulence genes, with a maximum of 12 virulence genes detected. Among the 22 antimicrobial resistance genes selected, 15 were detected; 97.8% of the isolates contained 2 or more antimicrobial resistance genes, with a maximum of 9 antimicrobial resistance genes. Drug susceptibility tests showed that some strains were resistant to a variety of traditionally effective drugs for Aeromomas, such as enrofloxacin and florfenicol. This study provides a reference for exploring the impact of aquaculture in the Poyang Lake area on public health.
Collapse
Affiliation(s)
- Xiandong Xu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China,Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Huiyun Fu
- Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Guoyuan Wan
- Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Jiangfeng Huang
- Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Zhiyong Zhou
- Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Yi Rao
- Fisheries Research Institute of Jiangxi Province, Nanchang, China
| | - Lihui Liu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China,*Correspondence: Chungen Wen,
| |
Collapse
|
168
|
Nomenclature of cell-cultivated meat & seafood products. NPJ Sci Food 2022; 6:56. [PMID: 36496502 PMCID: PMC9734853 DOI: 10.1038/s41538-022-00172-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Cell-cultivated meat and seafood is getting closer to a reality for consumers in the US and around the world. However, regulators are still largely lagging behind on regulating production and labelling of these products. In a large experimental study using a representative US sample (N = 2653), we tested 9 different names for 3 different types of meat and seafood products in terms of their clarity, consumer appeal, and communication of safety and allergenicity. We found that terms proposed by the conventional meat and seafood industry including 'artificial' and 'lab-grown' tended to score low in terms of consumer appeal, purchase intent, and perceived safety, while 'artificial' also had the lowest score on clarity and communicating allergenicity. On the other hand, terms proposed by the cell-cultivated industry including 'Novari' scored high in terms of appeal and purchase intent but scored low in terms of clarity. The terms 'cell-cultured' and 'cell-cultivated' were the best all round labels in terms of clarity, appeal, and communicating safety and allergenicity - in particular, the addition of the prefix 'cell-' increased understanding compared to 'cultured' or 'cultivated' labels. The most-understood label was a short descriptive phrase ('grown from [animal] cells, not farmed [or fished]'), suggesting that additional wording on packaging could aid consumer understanding in this early stage. A high proportion of consumers were uncertain about the allergen status of cell-cultivated products under all names, suggesting that cell-cultivated products should be labelled as the type of meat they are, and carry applicable allergen information.
Collapse
|
169
|
Ghasemi A, Latifian M, Esmaeili S, Naddaf SR, Mostafavi E. Molecular surveillance for Rickettsia spp. and Bartonella spp. in ticks from Northern Iran. PLoS One 2022; 17:e0278579. [PMID: 36476750 PMCID: PMC9728842 DOI: 10.1371/journal.pone.0278579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Tick-borne zoonotic diseases pose a threat to public health; hence, identifying the pathogenic agents associated with them is critical. The prevalence of Bartonella and Rickettsia in Iran is unknown. This study aimed to detect Rickettsia spp. and Bartonella species in ticks in northeast Iran and conduct phylogenetic analysis on these bacteria. Ticks from the sample bank in the Research Center for Emerging and Re-emerging Diseases were included in this study. The ticks were collected in 2017 and 2018 from domestic animals (sheep, goats, cows, camels, horses, dogs, and donkeys) and rodents in Golestan, Mazandaran, and Guilan provinces. Molecular methods were used to examine the DNA extracted from these samples to detect Rickettsia spp. and Bartonella species. The study examined a total of 3999 ticks. Ixodes ricinus (46.4%), Rhipicephalus turanicus (26.3%), and Rhipicephalus sanguineus (17.1%) were the most prevalent species. Among 638 DNA pools, real-time-PCR detected Rickettsia spp. in 161 (25.2%), mostly belonging to Rh. sanguineus (48.9%) and Rh. turanicus (41.9%). Golestan Province had the highest number of positive pools (29.7%). No positive samples for Bartonella were detected in a 638 pooled samples. Eight distinct Rickettsia species were detected in 65 sequenced samples, the majority of which were R. massiliae (n = 32, 49.2%) and R. sibirica (n = 20, 30.8%). Other species included R. rhipicephali (n = 3), R. aeschlimannii (n = 5), R. helvetica (n = 5), R. asiatica (n = 4), R. monacensis (n = 6), and R. raoultii (n = 1). The research findings may provide helpful information about tick-borne Rickettsiae in Iran and help to clarify the role of these arthropods in maintaining these agents. Rickettsia species were found to be circulating in three Northern provinces; thus, it is recommended that this disease be considered in the differential diagnosis of febrile diseases caused by tick bites and febrile diseases with skin rashes such as Crimean-Congo hemorrhagic fever (CCHF).
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Department of Microbiology, Research Center of Reference Health Laboratories, Ministry of Health and Medical Education, Tehran, Iran
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
| | - Mina Latifian
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ehsan Mostafavi
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
170
|
Badenes‐Pérez FR. The impacts of free‐roaming cats cannot be generalized and their role in rodent management should not be overlooked. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
171
|
Widyasari K, Jang J, Lee S, Kang T, Kim S. Evaluation of the T cell and B cell response following the administration of COVID-19 vaccines in Korea. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1013-1024. [PMID: 36261313 PMCID: PMC9516877 DOI: 10.1016/j.jmii.2022.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND The coronavirus disease (COVID-19) has been a worldwide concern since 2019. Vaccines are predicted to be crucial in preventing further outbreaks. The development and kinetics of immune responses determine the efficacy of COVID-19 vaccines. METHODS We measured interferon-gamma (IFN-γ) levels upon administering homologous adenovirus vector-based (ChAdOx1-S [AZ], Ad26.COV2.S [JAN]), mRNA-based (BNT162b2 [PF]; mRNA-1273 [MO]), and heterologous (AZ/PF) vaccines in healthy Korean individuals using two IFN-γ release assays: the Covi-FERON ELISA and T-SPOT Discovery SARS-CoV-2 assay. B cell responses were evaluated by assessing the production of neutralizing antibodies by surrogate virus neutralization assay. The immune response among the vaccine groups was compared after adjusting the vaccination dose and interactions between each group. RESULTS AZ triggered the highest T cell response after the first dose but showed instability after the second. PF and MO yielded stable and higher increments of T and B cell responses compared to AZ. MO yielded a higher immune response than PF. JAN yielded T and B cell responses at lower levels than the other vaccines. The booster dose triggered significant increases in the T and B cell responses and is therefore needed to protect against SARS-CoV-2 given the possibility of waning immune responses. CONCLUSION Administering two doses of mRNA vaccines provides the most effective results among the administered vaccines in triggering the immune response specific to SARS-CoV-2 in healthy Korean individuals. Administration of booster doses demonstrated a significant increase in the immune response and may provide longer protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Kristin Widyasari
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, 51472, South Korea
| | - Jieun Jang
- Gyeongnam Center for Infectious Disease Control and Prevention, Changwon 51154, South Korea
| | - Seungjun Lee
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, 51472, South Korea,Gyeongsang National University College of Medicine, Gyeongsang Institute of Health Sciences, Jinju 52727, South Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea,School of Pharmacy, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, 51472, South Korea,Gyeongnam Center for Infectious Disease Control and Prevention, Changwon 51154, South Korea,Gyeongsang National University College of Medicine, Gyeongsang Institute of Health Sciences, Jinju 52727, South Korea,Corresponding author. Department of Laboratory Medicine, Gyeongsang University Changwon Hospital, Samjungja-ro 11, Seongsan-gu, Changwon-si, Gyeongnam 51472, South Korea. Fax: +82 55 214 3087
| |
Collapse
|
172
|
Chavda V, Bezbaruah R, Kalita T, Sarma A, Devi JR, Bania R, Apostolopoulos V. Variant influenza: connecting the missing dots. Expert Rev Anti Infect Ther 2022; 20:1567-1585. [PMID: 36346383 DOI: 10.1080/14787210.2022.2144231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND In June 2009, the World Health Organization declared a new pandemic, the 2009 swine influenza pandemic (swine flu). The symptoms of the swine flu pandemic causing strain were comparable to most of the symptoms noted by seasonal influenza. AREA COVERED Zoonotic viruses that caused the swine flu pandemic and its preventive measures. EXPERT OPINION As per Centers for Disease Control and Prevention (CDC), the clinical manifestations in humans produced by the 2009 H1N1 'swine flu' virus were equivalent to the manifestations caused by related flu strains. The H1N1 vaccination was the most successful prophylactic measure since it prevented the virus from spreading and reduced the intensity and consequences of the pandemic. Despite the availability of therapeutics, the ongoing evolution and appearance of new strains have made it difficult to develop effective vaccines and therapies. Currently, the CDC recommends yearly flu immunization for those aged 6 months and above. The lessons learned from the A/2009/H1N1 pandemic in 2009 indicated that readiness of mankind toward new illnesses caused by mutant viral subtypes that leap from animals to people must be maintained.
Collapse
Affiliation(s)
- Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Tutumoni Kalita
- Department of Pharmaceutical Chemistry, Regional College of Pharmaceutical Sciences, RIPT Group of Institution, Sonapur, Guwahati, India
| | - Anupam Sarma
- Department of Pharmaceutics, Girijananda Chowdhury Institute of Pharmaceutical Science, Hatkhowapara, Azara, Guwahati, Assam, India
| | - Juti Rani Devi
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati, India
| | - Ratnali Bania
- Pratiksha Institute of Pharmaceutical Sciences, India
| | | |
Collapse
|
173
|
Ballah FM, Islam MS, Rana ML, Ullah MA, Ferdous FB, Neloy FH, Ievy S, Sobur MA, Rahman AMMT, Khatun MM, Rahman M, Rahman MT. Virulence Determinants and Methicillin Resistance in Biofilm-Forming Staphylococcus aureus from Various Food Sources in Bangladesh. Antibiotics (Basel) 2022; 11:antibiotics11111666. [PMID: 36421310 PMCID: PMC9686753 DOI: 10.3390/antibiotics11111666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
The eradication of staphylococcal infections has become more difficult due to the development of antibiotic resistance and virulence in biofilm-forming Staphylococcus aureus. The presence of the life-threatening zoonotic pathogen, methicillin-resistant S. aureus (MRSA), in foods indicates a public health issue. This study, therefore, aimed to determine virulence factors and methicillin resistance in biofilm-forming S. aureus isolates from different foods and food handlers. A total of 100 PCR-positive S. aureus isolates (97 biofilm formers and three non-biofilm formers) were screened using the disk diffusion method and PCR assay. By PCR, genes encoding virulence factors, e.g., enterotoxin (sea, 30%, 95% CI: 21.90−39.59%), toxic shock syndrome toxin (tst, 20%, 95% CI: 13.34−28.88%), and Panton−Valentine leukocidin toxin (PVL, 15%, 95% CI: 9.31−23.28%), were detected in the S. aureus isolates. By the disk diffusion method, 100% (95% CI: 96.30−100.00%) of S. aureus isolates were phenotypically MRSA in nature, showing 100% resistance to oxacillin and cefoxitin. Moreover, the methicillin-resistant gene mecA was found in 61 (61%, 95% CI: 51.20−69.98%) MRSA isolates. Furthermore, all the S. aureus isolates were phenotypically resistant to ampicillin and penicillin, 30% to erythromycin, and 11% to gentamycin. Among them, 51% (95% CI: 41.35−60.58%) of S. aureus isolates were phenotypically multidrug-resistant in nature, and the multiple antibiotic resistance index varied from 0.33 to 0.55. Genes encoding resistance to beta-lactams (blaZ, 100%, 95% CI: 96.30−100.00%) and tetracyclines (tetA and tetC, 3%, 95% CI: 0.82−8.45%) were found positive in the S. aureus isolates. Genes encoding virulence determinants and MRSA were significantly (p < 0.05) higher in strong biofilm-forming S. aureus than in moderate and non-biofilm-forming isolates. To our knowledge, this is the first study in Bangladesh to incorporate preliminary data on the occurrence of virulence determinants and methicillin resistance, including resistance to clinically important antibiotics, in biofilm-forming S. aureus isolates from different foods and food handlers in Bangladesh, emphasizing a potential threat to human health.
Collapse
Affiliation(s)
- Fatimah Muhammad Ballah
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Department of Veterinary Public Health and Preventive Medicine, Usmanu Danfodiyo University, Sokoto 840004, Nigeria
| | - Md. Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Liton Rana
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Ashek Ullah
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Farhana Binte Ferdous
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Fahim Haque Neloy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Samina Ievy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Abdus Sobur
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | | | - Mst. Minara Khatun
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marzia Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Correspondence:
| |
Collapse
|
174
|
Tazerji SS, Nardini R, Safdar M, Shehata AA, Duarte PM. An Overview of Anthropogenic Actions as Drivers for Emerging and Re-Emerging Zoonotic Diseases. Pathogens 2022; 11:1376. [PMID: 36422627 PMCID: PMC9692567 DOI: 10.3390/pathogens11111376] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 08/05/2023] Open
Abstract
Population growth and industrialization have led to a race for greater food and supply productivity. As a result, the occupation and population of forest areas, contact with wildlife and their respective parasites and vectors, the trafficking and consumption of wildlife, the pollution of water sources, and the accumulation of waste occur more frequently. Concurrently, the agricultural and livestock production for human consumption has accelerated, often in a disorderly way, leading to the deforestation of areas that are essential for the planet's climatic and ecological balance. The effects of human actions on other ecosystems such as the marine ecosystem cause equally serious damage, such as the pollution of this habitat, and the reduction of the supply of fish and other animals, causing the coastal population to move to the continent. The sum of these factors leads to an increase in the demands such as housing, basic sanitation, and medical assistance, making these populations underserved and vulnerable to the effects of global warming and to the emergence of emerging and re-emerging diseases. In this article, we discuss the anthropic actions such as climate changes, urbanization, deforestation, the trafficking and eating of wild animals, as well as unsustainable agricultural intensification which are drivers for emerging and re-emerging of zoonotic pathogens such as viral (Ebola virus, hantaviruses, Hendravirus, Nipah virus, rabies, and severe acute respiratory syndrome coronavirus disease-2), bacterial (leptospirosis, Lyme borreliosis, and tuberculosis), parasitic (leishmaniasis) and fungal pathogens, which pose a substantial threat to the global community. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to raise awareness and educate people about the science behind and the battle against zoonotic pathogens to mitigate the threat for both humans and animals.
Collapse
Affiliation(s)
- Sina Salajegheh Tazerji
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran P.O. Box. 1477893855, Iran
- Young Researchers and Elites Club Science and Research Branch, Islamic Azad University; Tehran P.O. Box. 1477893855, Iran
| | - Roberto Nardini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, 59159 Bönen, Germany
| | - Phelipe Magalhães Duarte
- Postgraduate Program in Animal Bioscience, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco 52171-900, Brazil
| |
Collapse
|
175
|
The Innovative Informatics Approaches of High-Throughput Technologies in Livestock: Spearheading the Sustainability and Resiliency of Agrigenomics Research. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111893. [PMID: 36431028 PMCID: PMC9695872 DOI: 10.3390/life12111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
For more than a decade, next-generation sequencing (NGS) has been emerging as the mainstay of agrigenomics research. High-throughput technologies have made it feasible to facilitate research at the scale and cost required for using this data in livestock research. Scale frameworks of sequencing for agricultural and livestock improvement, management, and conservation are partly attributable to innovative informatics methodologies and advancements in sequencing practices. Genome-wide sequence-based investigations are often conducted worldwide, and several databases have been created to discover the connections between worldwide scientific accomplishments. Such studies are beginning to provide revolutionary insights into a new era of genomic prediction and selection capabilities of various domesticated livestock species. In this concise review, we provide selected examples of the current state of sequencing methods, many of which are already being used in animal genomic studies, and summarize the state of the positive attributes of genome-based research for cattle (Bos taurus), sheep (Ovis aries), pigs (Sus scrofa domesticus), horses (Equus caballus), chickens (Gallus gallus domesticus), and ducks (Anas platyrhyncos). This review also emphasizes the advantageous features of sequencing technologies in monitoring and detecting infectious zoonotic diseases. In the coming years, the continued advancement of sequencing technologies in livestock agrigenomics will significantly influence the sustained momentum toward regulatory approaches that encourage innovation to ensure continued access to a safe, abundant, and affordable food supplies for future generations.
Collapse
|
176
|
Tîrziu A, Herman V, Imre K, Degi DM, Boldea M, Florin V, Bochiș TA, Adela M, Degi J. Occurrence of Chlamydia spp. in Conjunctival Samples of Stray Cats in Timișoara Municipality, Western Romania. Microorganisms 2022; 10:microorganisms10112187. [PMID: 36363779 PMCID: PMC9693150 DOI: 10.3390/microorganisms10112187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Despite the widespread public health concern about stray cats serving as reservoirs for zoonotic agents, little is known about the effect of urban and peri-urban landscapes on exposure risk. We conducted this study to monitor the presence of Chlamydia spp. in stray cats, with or without conjunctivitis, living in Timișoara Municipality, Western Romania, using staining and PCR methods. A total of 95 cats were enrolled, and conjunctival samples were harvested from 68 clinically healthy cats and another 27 cats presenting with clinical signs of conjunctivitis. Overall, we found that 65.3% (62/95) of the cats tested positive for Chlamydia spp. by PCR. Chlamydia spp. were detected in 45/95 conjunctival samples using a standard Giemsa stain, compared with 62/95 using PCR (Cohen’s kappa index = 0.308; p = 0.0640). Of the cats that tested positive by PCR, 72.6% (45/62) were asymptomatic, and another 27.4% (17/62) expressed clinical signs of conjunctivitis. We found no significant difference between (p > 0.05) the distribution of infection and the recorded epidemiological data (sex, breed, age, territorial distribution, or sampling season). However, the Chlamydia spp. detection frequency was significantly higher in asymptomatic than in symptomatic cats (p = 0.0383). The obtained results increase the level of concern and awareness about the possible zoonotic potential of this pathogen and highlight that urban stray cats can be essential sources of feline chlamydiosis.
Collapse
Affiliation(s)
- Andreea Tîrziu
- Ophthalmology Department, “Victor Babes” University of Medicine and Pharmacy, Piața Eftimiu Murgu No. 2, 300041 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Science “King Michael I” from Timișoara, 300645 Timisoara, Romania
| | - Kálmán Imre
- Department of Public Health, Faculty of Veterinary Medicine, University of Life Science “King Michael I” from Timișoara, 300645 Timisoara, Romania
| | - Diana Maria Degi
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Life Science “King Michael I” from Timișoara, 300645 Timisoara, Romania
| | - Marius Boldea
- Department of Exact Sciences, Faculty of Agriculture, University of Life Science “King Michael I” from Timișoara, 300645 Timisoara, Romania
| | - Vlad Florin
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Science “King Michael I” from Timișoara, 300645 Timisoara, Romania
| | - Timea Andrea Bochiș
- Department of Semiology—Preclinical I, Faculty of Veterinary Medicine, University of Life Science “King Michael I” from Timișoara, 300645 Timisoara, Romania
| | - Marcu Adela
- Department of Animal Production Engineering, Faculty of Bioengineering of Animal Recourses, University of Life Science “King Michael I” from Timișoara, 300645 Timisoara, Romania
| | - János Degi
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Science “King Michael I” from Timișoara, 300645 Timisoara, Romania
- Correspondence:
| |
Collapse
|
177
|
Roy T, Sharma K, Dhall A, Patiyal S, Raghava GPS. In silico method for predicting infectious strains of influenza A virus from its genome and protein sequences. J Gen Virol 2022; 103. [PMID: 36318663 DOI: 10.1099/jgv.0.001802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Influenza A is a contagious viral disease responsible for four pandemics in the past and a major public health concern. Being zoonotic in nature, the virus can cross the species barrier and transmit from wild aquatic bird reservoirs to humans via intermediate hosts. In this study, we have developed a computational method for the prediction of human-associated and non-human-associated influenza A virus sequences. The models were trained and validated on proteins and genome sequences of influenza A virus. Firstly, we have developed prediction models for 15 types of influenza A proteins using composition-based and one-hot-encoding features. We have achieved a highest AUC of 0.98 for HA protein on a validation dataset using dipeptide composition-based features. Of note, we obtained a maximum AUC of 0.99 using one-hot-encoding features for protein-based models on a validation dataset. Secondly, we built models using whole genome sequences which achieved an AUC of 0.98 on a validation dataset. In addition, we showed that our method outperforms a similarity-based approach (i.e., blast) on the same validation dataset. Finally, we integrated our best models into a user-friendly web server 'FluSPred' (https://webs.iiitd.edu.in/raghava/fluspred/index.html) and a standalone version (https://github.com/raghavagps/FluSPred) for the prediction of human-associated/non-human-associated influenza A virus strains.
Collapse
Affiliation(s)
- Trinita Roy
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Khushal Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Gajendra Pal Singh Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| |
Collapse
|
178
|
Affiliation(s)
- Thomas R Vetter
- From the Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, Texas
| |
Collapse
|
179
|
Beaumelle C, Redman E, Verheyden H, Jacquiet P, Bégoc N, Veyssière F, Benabed S, Cargnelutti B, Lourtet B, Poirel MT, de Rijke J, Yannic G, Gilleard JS, Bourgoin G. Generalist nematodes dominate the nemabiome of roe deer in sympatry with sheep at a regional level. Int J Parasitol 2022; 52:751-761. [PMID: 36183847 DOI: 10.1016/j.ijpara.2022.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/26/2022]
Abstract
The growth of livestock farming and the recent expansion of wild ungulate populations in Europe favor opportunities for direct and/or indirect cross-transmission of pathogens. Comparatively few studies have investigated the epidemiology of gastro-intestinal nematode parasites, an ubiquitous and important community of parasites of ungulates, at the wildlife/livestock interface. In this study, we aimed to assess the influence of livestock proximity on the gastrointestinal nematode community of roe deer in a rural landscape located in southern France. Using ITS-2 rDNA nemabiome metabarcoding on fecal larvae, we analysed the gastrointestinal nematode communities of roe deer and sheep. In addition, we investigated Haemonchus contortus nad4 mtDNA diversity to specifically test parasite circulation among domestic and wild host populations. The dominant gastrointestinal nematode species found in both the roe deer and sheep were generalist species commonly found in small ruminant livestock (e.g. H. contortus), whereas the more specialised wild cervid nematode species (e.g. Ostertagia leptospicularis) were only present at low frequencies. This is in marked contrast with previous studies that found the nemabiomes of wild cervid populations to be dominated by cervid specialist nematode species. In addition, the lack of genetic structure of the nad4 mtDNA of H. contortus populations between host species suggests circulation of gastrointestinal nematodes between roe deer and sheep. The risk of contact with livestock only has a small influence on the nemabiome of roe deer, suggesting the parasite population of roe deer has been displaced by generalist livestock parasites due to many decades of sheep farming, not only for deer grazing close to pastures, but also at a larger regional scale. We also observed some seasonal variation in the nemabiome composition of roe deer. Overall, our results demonstrate significant exchange of gastrointestinal nematodes between domestic and wild ungulates, with generalist species spilling over from domestic ungulates dominating wild cervid parasite communities.
Collapse
Affiliation(s)
- Camille Beaumelle
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69100 Villeurbanne, France; Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France; Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Elizabeth Redman
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program (HPI) University of Calgary, Calgary, Alberta, Canada
| | - Hélène Verheyden
- Université de Toulouse, INRAE, Comportement et Ecologie de la Faune Sauvage, F-31326 Castanet-Tolosan, France; LTSER ZA PYRénées GARonne, F-31326 Auzeville-Tolosane, France
| | - Philippe Jacquiet
- Université de Toulouse, UMT Pilotage de la Santé des Ruminants, Ecole Nationale Vétérinaire de Toulouse, France
| | - Noémie Bégoc
- Université de Toulouse, UMT Pilotage de la Santé des Ruminants, Ecole Nationale Vétérinaire de Toulouse, France
| | - Florence Veyssière
- Université de Toulouse, UMT Pilotage de la Santé des Ruminants, Ecole Nationale Vétérinaire de Toulouse, France
| | - Slimania Benabed
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69100 Villeurbanne, France; Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France
| | - Bruno Cargnelutti
- Université de Toulouse, INRAE, Comportement et Ecologie de la Faune Sauvage, F-31326 Castanet-Tolosan, France; LTSER ZA PYRénées GARonne, F-31326 Auzeville-Tolosane, France
| | - Bruno Lourtet
- Université de Toulouse, INRAE, Comportement et Ecologie de la Faune Sauvage, F-31326 Castanet-Tolosan, France; LTSER ZA PYRénées GARonne, F-31326 Auzeville-Tolosane, France
| | - Marie-Thérèse Poirel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69100 Villeurbanne, France; Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France
| | - Jill de Rijke
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program (HPI) University of Calgary, Calgary, Alberta, Canada
| | - Glenn Yannic
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - John S Gilleard
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program (HPI) University of Calgary, Calgary, Alberta, Canada.
| | - Gilles Bourgoin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69100 Villeurbanne, France; Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France
| |
Collapse
|
180
|
Pajohesh R, Tajbakhsh E, Momtaz H, Rahimi E. Relationship between Biofilm Formation and Antibiotic Resistance and Adherence Genes in Staphylococcus aureus Strains Isolated from Raw Cow Milk in Shahrekord, Iran. Int J Microbiol 2022; 2022:6435774. [PMID: 36329896 PMCID: PMC9626243 DOI: 10.1155/2022/6435774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 09/11/2023] Open
Abstract
The production of biofilms by S. aureus contributes significantly to treatment failures. The present study aims to establish the relationship between biofilm formation and antibiotic resistance and adhesion genes in Staphylococcus aureus strains isolated from raw cow milk in Shahrekord, Iran. A total of 90 samples of raw cow's milk were collected. Presumptive S. aureus strains were obtained using Baird-Parker plates after enrichment in tryptone soy broth, and final colonies were selected from brain heart infusion. Additional tests such as coagulase were done, and the identification was confirmed by the detection of the aroA gene. Biofilm producing strains were screened using a spectrophotometry method applied to microplates. Crystal violet staining was used to quantify the formation of biofilm. An antibiotic susceptibility test was performed using the Kirby-Bauer disc diffusion method. PCR was used to detect several biofilm and antibiotics resistance related genes. The chi-square test and Fisher's exact test were used to establish a statistically significant relationship between biofilm reaction and antibiotic resistance (p value <0.05). Results show a moderate (38.88%) recovery rate of S. aureus in milk and 65.71% of the isolates were strong biofilm producers. Antibiotic susceptibility tests show an alarming rate of resistance to beta-lactam antibiotics, especially penicillin (100%), ampicillin (91.42%), and oxacillin (71.42%). This finding correlates with antibiotic resistance gene detection, in which the gene blaZ was most found (71.42%), followed by mecA and Aac-D (42.85%). Detection of biofilm-related genes shows that all the genes targeted were found among S. aureus isolates. Statistical tests show a significant correlation between biofilm production and antibiotic resistance in S. aureus. This study revealed that there is a significant correlation between biofilm production and antibiotic resistance in S. aureus isolated from raw milk. These results highlight the need for regular surveillance of the occurrence of S. aureus strains in milk and milk products in Iran.
Collapse
Affiliation(s)
- Rasul Pajohesh
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Elahe Tajbakhsh
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hassan Momtaz
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ebrahim Rahimi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
181
|
Zhao HQ, Fei SW, Yin JX, Li Q, Jiang TG, Guo ZY, Xue JB, Han LF, Zhang XX, Xia S, Zhang Y, Guo XK, Kassegne K. Assessment of performance for a key indicator of One Health: evidence based on One Health index for zoonoses in Sub-Saharan Africa. Infect Dis Poverty 2022; 11:109. [PMID: 36273213 PMCID: PMC9588233 DOI: 10.1186/s40249-022-01020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Zoonoses are public health threats that cause severe damage worldwide. Zoonoses constitute a key indicator of One Health (OH) and the OH approach is being applied for zoonosis control programmes of zoonotic diseases. In a very recent study, we developed an evaluation system for OH performance through the global OH index (GOHI). This study applied the GOHI to evaluate OH performance for zoonoses in sub-Saharan Africa. METHODS The framework for the OH index on zoonoses (OHIZ) was constructed including five indicators, 15 subindicators and 28 datasets. Publicly available data were referenced to generate the OHIZ database which included both qualitative and quantitative indicators for all sub-Sahara African countries (n = 48). The GOHI algorithm was used to estimate scores for OHIZ. Indicator weights were calculated by adopting the fuzzy analytical hierarchy process. RESULTS Overall, five indicators associated with weights were generated as follows: source of infection (23.70%), route of transmission (25.31%), targeted population (19.09%), capacity building (16.77%), and outcomes/case studies (15.13%). Following the indicators, a total of 37 sub-Sahara African countries aligned with OHIZ validation, while 11 territories were excluded for unfit or missing data. The OHIZ average score of sub-Saharan Africa was estimated at 53.67/100. The highest score was 71.99 from South Africa, while the lowest score was 40.51 from Benin. It is also worth mentioning that Sub-Sahara African countries had high performance in many subindicators associated with zoonoses, e.g., surveillance and response, vector and reservoir interventions, and natural protected areas, which suggests that this region had a certain capacity in control and prevention or responses to zoonotic events. CONCLUSIONS This study reveals that it is possible to perform OH evaluation for zoonoses in sub-Saharan Africa by OHIZ. Findings from this study provide preliminary research information in advancing knowledge of the evidenced risks to strengthen strategies for effective control of zoonoses and to support the prevention of zoonotic events.
Collapse
Affiliation(s)
- Han-Qing Zhao
- Department of Infectious and Tropical Diseases, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, People's Republic of China
| | - Si-Wei Fei
- Department of Infectious and Tropical Diseases, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, People's Republic of China
| | - Jing-Xian Yin
- Department of Infectious and Tropical Diseases, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, People's Republic of China
| | - Qin Li
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Tian-Ge Jiang
- Department of Infectious and Tropical Diseases, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, People's Republic of China
| | - Zhao-Yu Guo
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Le-Fei Han
- Department of Infectious and Tropical Diseases, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, People's Republic of China
| | - Xiao-Xi Zhang
- Department of Infectious and Tropical Diseases, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, People's Republic of China
| | - Shang Xia
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Yi Zhang
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Xiao-Kui Guo
- Department of Infectious and Tropical Diseases, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, People's Republic of China
| | - Kokouvi Kassegne
- Department of Infectious and Tropical Diseases, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
182
|
Influence of COVID-19 on the sustainability of livestock performance and welfare on a global scale. Trop Anim Health Prod 2022; 54:309. [PMID: 36114917 PMCID: PMC9483476 DOI: 10.1007/s11250-022-03256-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently spreading worldwide. The pandemic has already had significant adverse effects on human civilization, the environment, and the ecosystem at national and global levels. Moreover, the various sectors of the food production chain, particularly agriculture and livestock, have also been significantly affected in terms of production sustainability and economic losses. The global pandemic has already resulted in a sharp drop in meat, milk, and egg production. Restrictions of movement at national and international levels, implemented as a part of control strategies by public health sectors, have negatively impacted business related to the supply of raw materials for livestock farmers and farm outputs, veterinary services, farmworkers, and animal welfare. This review highlights the significant impacts of COVID-19 on the sustainability of livestock performance, welfare on a global scale, and strategies for mitigating these adverse effects.
Collapse
|
183
|
Yeo D, Hossain MI, Jung S, Wang Z, Seo Y, Woo S, Park S, Seo DJ, Rhee MS, Choi C. Prevalence and phylogenetic analysis of human enteric emerging viruses in porcine stool samples in the Republic of Korea. Front Vet Sci 2022; 9:913622. [PMID: 36246307 PMCID: PMC9563253 DOI: 10.3389/fvets.2022.913622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases (EID) in humans and animals are proving to be a serious health concern. This study investigated the prevalence of emerging or re-emerging human enteric viruses in porcine stools and swabs. Eleven enteric EID viruses were selected as target viruses for the current study and ranked based on their impact on public health and food safety: enterovirus (EV), hepatitis E virus, norovirus GI and GII, sapovirus (SaV), adenovirus (AdV), astrovirus, rotavirus, hepatitis A virus, aichivirus, and bocavirus. Using real-time RT-PCR or real-time PCR, EID viruses were detected in 129 (86.0%) of 150 samples. The most prevalent virus was EV, which was detected in 68.0% of samples, followed by AdV with a detection rate of 38.0%. In following sequencing and phylogenetic analyses, 33.0% (58/176) of the detected viruses were associated with human enteric EID viruses, including AdV-41, coxsackievirus-A2, echovirus-24, and SaV. Our results show that porcine stools frequently contain human enteric viruses, and that few porcine enteric viruses are genetically related to human enteric viruses. These findings suggest that enteric re-emerging or EID viruses could be zoonoses, and that continuous monitoring and further studies are needed to ensure an integrated "One Health" approach that aims to balance and optimize the health of humans, animals, and ecosystems.
Collapse
Affiliation(s)
- Daseul Yeo
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Md. Iqbal Hossain
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Soontag Jung
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Zhaoqi Wang
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Yeeun Seo
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Seoyoung Woo
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Sunho Park
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
| | - Dong Joo Seo
- Department of Food and Nutrition, Gwangju University, Gwangju, South Korea
| | - Min Suk Rhee
- Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Changsun Choi
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, South Korea
- Bio and Environmental Technology Research Institute, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
184
|
Irfan M, Khan S, Hameed AR, Al-Harbi AI, Abideen SA, Ismail S, Ullah A, Abbasi SW, Ahmad S. Computational Based Designing of a Multi-Epitopes Vaccine against Burkholderia mallei. Vaccines (Basel) 2022; 10:vaccines10101580. [PMID: 36298444 PMCID: PMC9607922 DOI: 10.3390/vaccines10101580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of antibiotic resistance in bacterial species is a major threat to public health and has resulted in high mortality as well as high health care costs. Burkholderia mallei is one of the etiological agents of health care-associated infections. As no licensed vaccine is available against the pathogen herein, using reverse vaccinology, bioinformatics, and immunoinformatics approaches, a multi-epitope-based vaccine against B. mallei was designed. In completely sequenced proteomes of B. mallei, 18,405 core, 3671 non-redundant, and 14,734 redundant proteins were predicted. Among the 3671 non-redundant proteins, 3 proteins were predicted in the extracellular matrix, 11 were predicted as outer membrane proteins, and 11 proteins were predicted in the periplasmic membrane. Only two proteins, type VI secretion system tube protein (Hcp) and type IV pilus secretin proteins, were selected for epitope prediction. Six epitopes, EAMPERMPAA, RSSPPAAGA, DNRPISINL, RQRFDAHAR, AERERQRFDA, and HARAAQLEPL, were shortlisted for multi-epitopes vaccine design. The predicted epitopes were linked to each other via a specific GPGPG linker and the epitopes peptide was then linked to an adjuvant molecule through an EAAAK linker to make the designed vaccine more immunologically potent. The designed vaccine was also found to have favorable physicochemical properties with a low molecular weight and fewer transmembrane helices. Molecular docking studies revealed vaccine construct stable binding with MHC-I, MHC-II, and TLR-4 with energy scores of −944.1 kcal/mol, −975.5 kcal/mol, and −1067.3 kcal/mol, respectively. Molecular dynamic simulation assay noticed stable dynamics of the docked vaccine-receptors complexes and no drastic changes were observed. Binding free energies estimation revealed a net value of −283.74 kcal/mol for the vaccine-MHC-I complex, −296.88 kcal/mol for the vaccine-MHC-II complex, and −586.38 kcal/mol for the vaccine-TLR-4 complex. These findings validate that the designed vaccine construct showed promising ability in terms of binding to immune receptors and may be capable of eliciting strong immune responses once administered to the host. Further evidence from experimentations in mice models is required to validate real immune protection of the designed vaccine construct against B. mallei.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24461, Pakistan
| | - Alaa R. Hameed
- Department of Medical Laboratory Techniques, School of Life Sciences, Dijlah University College, Baghdad 00964, Iraq
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 41477, Saudi Arabia
| | - Syed Ainul Abideen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
- Correspondence: (S.I.); (S.A.)
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
- Correspondence: (S.I.); (S.A.)
| |
Collapse
|
185
|
McDuie F, Matchett EL, Prosser DJ, Takekawa JY, Pitesky ME, Lorenz AA, McCuen MM, T OC, Ackerman JT, De La Cruz SEW, Casazza ML. Pathways for avian influenza virus spread: GPS reveals wild waterfowl in commercial livestock facilities and connectivity with the natural wetland landscape. Transbound Emerg Dis 2022; 69:2898-2912. [PMID: 34974641 PMCID: PMC9788224 DOI: 10.1111/tbed.14445] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/30/2022]
Abstract
Zoonotic diseases are of considerable concern to the human population and viruses such as avian influenza (AIV) threaten food security, wildlife conservation and human health. Wild waterfowl and the natural wetlands they use are known AIV reservoirs, with birds capable of virus transmission to domestic poultry populations. While infection risk models have linked migration routes and AIV outbreaks, there is a limited understanding of wild waterfowl presence on commercial livestock facilities, and movement patterns linked to natural wetlands. We documented 11 wild waterfowl (three Anatidae species) in or near eight commercial livestock facilities in Washington and California with GPS telemetry data. Wild ducks used dairy and beef cattle feed lots and facility retention ponds during both day and night suggesting use for roosting and foraging. Two individuals (single locations) were observed inside poultry facility boundaries while using nearby wetlands. Ducks demonstrated high site fidelity, returning to the same areas of habitats (at livestock facilities and nearby wetlands), across months or years, showed strong connectivity with surrounding wetlands, and arrived from wetlands up to 1251 km away in the week prior. Telemetry data provides substantial advantages over observational data, allowing assessment of individual movement behaviour and wetland connectivity that has significant implications for outbreak management. Telemetry improves our understanding of risk factors for waterfowl-livestock virus transmission and helps identify factors associated with coincident space use at the wild waterfowl-domestic livestock interface. Our research suggests that even relatively small or isolated natural and artificial water or food sources in/near facilities increases the likelihood of attracting waterfowl, which has important consequences for managers attempting to minimize or prevent AIV outbreaks. Use and interpretation of telemetry data, especially in near-real-time, could provide key information for reducing virus transmission risk between waterfowl and livestock, improving protective barriers between wild and domestic species, and abating outbreaks.
Collapse
Affiliation(s)
- Fiona McDuie
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field StationSuite D DixonCaliforniaUSA,San Jose State University Research FoundationMoss Landing Marine LaboratoriesCaliforniaUSA
| | - Elliott L Matchett
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field StationSuite D DixonCaliforniaUSA
| | - Diann J Prosser
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge (formerly USGS Patuxent Wildlife Research Center)LaurelMarylandUSA
| | - John Y Takekawa
- Suisun Resource Conservation District, Suisun Marsh ProgramWest SacramentoCaliforniaUSA
| | - Maurice E Pitesky
- University of California Davis, School of Veterinary Medicine, Poultry Health and Food Safety Epidemiology, One Shields AvenueDavisCaliforniaUSA
| | - Austen A Lorenz
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field StationSuite D DixonCaliforniaUSA
| | - Madeline M McCuen
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field StationSuite D DixonCaliforniaUSA
| | - Overton Cory T
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field StationSuite D DixonCaliforniaUSA
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field StationSuite D DixonCaliforniaUSA
| | - Susan E. W. De La Cruz
- U.S. Geological Survey Western Ecological Research Center, San Francisco Bay Estuary Field StationMoffett FieldCaliforniaUSA
| | - Michael L Casazza
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field StationSuite D DixonCaliforniaUSA
| |
Collapse
|
186
|
Virus Diversity, Abundance, and Evolution in Three Different Bat Colonies in Switzerland. Viruses 2022; 14:v14091911. [PMID: 36146717 PMCID: PMC9505930 DOI: 10.3390/v14091911] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Bats are increasingly recognized as reservoirs for many different viruses that threaten public health, such as Hendravirus, Ebolavirus, Nipahvirus, and SARS- and MERS-coronavirus. To assess spillover risk, viromes of bats from different parts of the world have been investigated in the past. As opposed to most of these prior studies, which determined the bat virome at a single time point, the current work was performed to monitor changes over time. Specifically, fecal samples of three endemic Swiss bat colonies consisting of three different bat species were collected over three years and analyzed using next-generation sequencing. Furthermore, single nucleotide variants of selected DNA and RNA viruses were analyzed to investigate virus genome evolution. In total, sequences of 22 different virus families were found, of which 13 are known to infect vertebrates. Most interestingly, in a Vespertilio murinus colony, sequences from a MERS-related beta-coronavirus were consistently detected over three consecutive years, which allowed us to investigate viral genome evolution in a natural reservoir host.
Collapse
|
187
|
Chen B, Li D, Leng D, Kui H, Bai X, Wang T. Gut microbiota and meat quality. Front Microbiol 2022; 13:951726. [PMID: 36081790 PMCID: PMC9445620 DOI: 10.3389/fmicb.2022.951726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sustainable meat production is important to providing safe and quality protein sources for humans worldwide. Intensive artificial selection and high energy input into the diet of many commercial animals for the last decade has significantly increased the daily gain of body weight and shortened the raising period, but unexpectedly decreased the meat quality. The gastrointestinal tract of animals harbors a diverse and complex microbial community that plays a vital role in the digestion and absorption of nutrients, immune system development, pathogen exclusion, and meat quality. Fatty acid composition and oxidative stress in adipose and muscle tissue influences meat quality in livestock and poultry. Recent studies showed that nutraceuticals are receiving increased attention, which could alter the intestinal microbiota and regulate the fat deposition and immunity of hosts to improve their meat quality. Understanding the microbiota composition, the functions of key bacteria, and the host-microbiota interaction is crucial for the development of knowledge-based strategies to improve both animal meat quality and host health. This paper reviews the microorganisms that affect the meat quality of livestock and poultry. A greater understanding of microbial changes that accompany beneficial dietary changes will lead to novel strategies to improve livestock and poultry meat product quality.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li,
| | - Dong Leng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Kui
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang,
| |
Collapse
|
188
|
Evidence of co-exposure with Brucella spp, Coxiella burnetii, and Rift Valley fever virus among various species of wildlife in Kenya. PLoS Negl Trop Dis 2022; 16:e0010596. [PMID: 35939503 PMCID: PMC9359551 DOI: 10.1371/journal.pntd.0010596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Background Co-infection, especially with pathogens of dissimilar genetic makeup, may result in a more devastating impact on the host. Investigations on co-infection with neglected zoonotic pathogens in wildlife are necessary to inform appropriate prevention and control strategies to reduce disease burden in wildlife and the potential transmission of these pathogens between wildlife, livestock and humans. This study assessed co-exposure of various Kenyan wildflife species with Brucella spp, Coxiella burnetii and Rift Valley fever virus (RVFV). Methodology A total of 363 sera from 16 different wildlife species, most of them (92.6%) herbivores, were analysed by Enzyme-linked immunosorbent assay (ELISA) for IgG antibodies against Brucella spp, C. burnetii and RVFV. Further, 280 of these were tested by PCR to identify Brucella species. Results Of the 16 wildlife species tested, 15 (93.8%) were seropositive for at least one of the pathogens. Mean seropositivities were 18.9% (95% CI: 15.0–23.3) for RVFV, 13.7% (95% CI: 10.3–17.7) for Brucella spp and 9.1% (95% CI: 6.3–12.5) for C. burnetii. Buffaloes (n = 269) had higher seropositivity for Brucella spp. (17.1%, 95% CI: 13.0–21.7%) and RVFV (23.4%, 95% CI: 18.6–28.6%), while giraffes (n = 36) had the highest seropositivity for C. burnetii (44.4%, 95% CI: 27.9–61.9%). Importantly, 23 of the 93 (24.7%) animals positive for at least one pathogen were co-exposed, with 25.4% (18/71) of the positive buffaloes positive for brucellosis and RVFV. On molecular analysis, Brucella DNA was detected in 46 (19.5%, CI: 14.9–24.7) samples, with 4 (8.6%, 95% CI: 2.2–15.8) being identified as B. melitensis. The Fisher’s Exact test indicated that seropositivity varied significantly within the different animal families, with Brucella (p = 0.013), C. burnetii (p = <0.001) and RVFV (p = 0.007). Location was also significantly associated (p = <0.001) with Brucella spp. and C. burnetii seropositivities. Conclusion Of ~20% of Kenyan wildlife that are seropositive for Brucella spp, C. burnetii and RVFV, almost 25% indicate co-infections with the three pathogens, particularly with Brucella spp and RVFV. Infection of an animal with more than one pathogen may result into a more devastating impact. Only few studies have investigated co-infection with multiple pathogens in wildlife, despite their key role as reservoirs of zoonotic diseases. Therefore, there is need for investigations on co-infection with neglected zoonotic pathogens in wildlife to inform prevention and control approaches and reduce disease impact in wildlife and potential transmission of these pathogens between wildlife, livestock, and humans. This study assessed co-exposure of various Kenyan wildlife species with three zoonotic pathogens, including Brucella spp, Coxiella burnetii and Rift Valley fever virus (RVFV). Results from this study revealed widespread, but varied exposure levels to the three individual pathogens within the several wildlife species. Likewise, the study also found the presence of co-exposure with the three pathogens. The findings from this study points to the need for establishment of surveillance and control programmes that target multiple pathogens in the wildlife populations to reduce the risk of transmission of infectious pathogens in wildlife and their zoonotic transmission.
Collapse
|
189
|
Zupin L, dos Santos-Silva CA, Al Mughrbi ARH, Vilela LMB, Benko-Iseppon AM, Crovella S. Bioactive Antimicrobial Peptides: A New Weapon to Counteract Zoonosis. Microorganisms 2022; 10:1591. [PMID: 36014009 PMCID: PMC9414035 DOI: 10.3390/microorganisms10081591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Zoonoses have recently become the center of attention of the general population and scientific community. Notably, more than 30 new human pathogens have been identified in the last 30 years, 75% of which can be classified as zoonosis. The complete eradication of such types of infections is far out of reach, considering the limited understanding of animal determinants in zoonoses and their causes of emergence. Therefore, efforts must be doubled in examining the spread, persistence, and pathogenicity of zoonosis and studying possible clinical interventions and antimicrobial drug development. The search for antimicrobial bioactive compounds has assumed great emphasis, considering the emergence of multi-drug-resistant microorganisms. Among the biomolecules of emerging scientific interest are antimicrobial peptides (AMPs), potent biomolecules that can potentially act as important weapons against infectious diseases. Moreover, synthetic AMPs are easily tailored (bioinformatically) to target specific features of the pathogens to hijack, inducing no or very low resistance. Although very promising, previous studies on SAMPs' efficacy are still at their early stages. Indeed, further studies and better characterization on their mechanism of action with in vitro and in vivo assays are needed so as to proceed to their clinical application on human beings.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | | | | | - Livia Maria Batista Vilela
- Centro de Biociências, Departamento de Genética, Universidade Federal de Pernambuco, Recife 50670-420, Brazil
| | - Ana Maria Benko-Iseppon
- Centro de Biociências, Departamento de Genética, Universidade Federal de Pernambuco, Recife 50670-420, Brazil
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
190
|
Collen EJ, Johar AS, Teixeira JC, Llamas B. The immunogenetic impact of European colonization in the Americas. Front Genet 2022; 13:918227. [PMID: 35991555 PMCID: PMC9388791 DOI: 10.3389/fgene.2022.918227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The introduction of pathogens originating from Eurasia into the Americas during early European contact has been associated with high mortality rates among Indigenous peoples, likely contributing to their historical and precipitous population decline. However, the biological impacts of imported infectious diseases and resulting epidemics, especially in terms of pathogenic effects on the Indigenous immunity, remain poorly understood and highly contentious to this day. Here, we examine multidisciplinary evidence underpinning colonization-related immune genetic change, providing contextualization from anthropological studies, paleomicrobiological evidence of contrasting host-pathogen coevolutionary histories, and the timings of disease emergence. We further summarize current studies examining genetic signals reflecting post-contact Indigenous population bottlenecks, admixture with European and other populations, and the putative effects of natural selection, with a focus on ancient DNA studies and immunity-related findings. Considering current genetic evidence, together with a population genetics theoretical approach, we show that post-contact Indigenous immune adaptation, possibly influenced by selection exerted by introduced pathogens, is highly complex and likely to be affected by multifactorial causes. Disentangling putative adaptive signals from those of genetic drift thus remains a significant challenge, highlighting the need for the implementation of population genetic approaches that model the short time spans and complex demographic histories under consideration. This review adds to current understandings of post-contact immunity evolution in Indigenous peoples of America, with important implications for bettering our understanding of human adaptation in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Evelyn Jane Collen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Angad Singh Johar
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Culture History and Language, The Australian National University, Canberra, ACT, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Telethon Kids Institute, Indigenous Genomics Research Group, Adelaide, SA, Australia
| |
Collapse
|
191
|
Yar A, Choudary MA, Rehman A, Hussain A, Elahi A, ur Rehman F, Waqar AB, Alshammari A, Alharbi M, Nisar MA, Khurshid M, Khan Z. Genetic Diversity and Virulence Profiling of Multi-Drug Resistant Escherichia coli of Human, Animal, and Environmental Origins. Antibiotics (Basel) 2022; 11:antibiotics11081061. [PMID: 36009929 PMCID: PMC9405421 DOI: 10.3390/antibiotics11081061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/04/2022] Open
Abstract
Rapid urbanization has increased human-animal interaction and consequently enhanced the chances to acquire zoonotic diseases. The current investigation is focused to uncover the genetic diversity of multidrug-resistant E. coli strains between different ecologies (i.e., humans, livestock, and environment) at the molecular level by employing antimicrobial resistance profiling, virulence genes profiling, and microbial typing approach using ERIC PCR. Based on multiple antibiotic resistance, overall, 19 antibiotic resistance patterns (R1–R19) were observed. Most of the strains (49/60) were detected to have the combinations of stx, eaeA, and hlyA genes and considered STEC/EPEC/EHEC. A total of 18 unique genetic profiles were identified based on ERIC-PCR fingerprints and most of the strains (13) belong to P1 whereas the least number of strains were showing profiles P7 and P8-P11 (one member each profile). The calculated values for Shannon index (H) for human, animal, and environment are 1.70, 1.82, and 1.78, respectively revealing the highest genetic diversity among the E. coli strains of animal origin. The study revealed that drug-resistant pathogenic E. coli strains could be transmitted bidirectionally among the environment, humans, and animals.
Collapse
Affiliation(s)
- Asfand Yar
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | | | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54000, Pakistan
| | - Abid Hussain
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara, Okara 56300, Pakistan
| | - Amina Elahi
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Farooq ur Rehman
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Ahmed Bilal Waqar
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Atif Nisar
- College of Science and Engineering, Flinders University, Adelaide 5042, Australia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad 38000, Pakistan
| | - Zaman Khan
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
- Correspondence:
| |
Collapse
|
192
|
Barrientos K, Arango JP, Moncada MS, Placido J, Patiño J, Macías SL, Maldonado C, Torijano S, Bustamante S, Londoño ME, Jaramillo M. Carbon dot-based biosensors for the detection of communicable and non -communicable diseases. Talanta 2022; 251:123791. [DOI: 10.1016/j.talanta.2022.123791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
193
|
Vidhamaly V, Bellingham K, Newton PN, Caillet C. The quality of veterinary medicines and their implications for One Health. BMJ Glob Health 2022; 7:bmjgh-2022-008564. [PMID: 35918072 PMCID: PMC9351321 DOI: 10.1136/bmjgh-2022-008564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/03/2022] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Substandard and falsified (SF) veterinary medicines affect animal health, agricultural production and food security and will influence antimicrobial resistance (AMR) in both animals and humans. Yet, our understanding of their extent and impact is poor. We assess the available public domain evidence on the epidemiology of SF veterinary medicines, to better understand their prevalence and distribution and their public health impact on animals and humans. METHODS Searches were conducted in Embase, PubMed, MEDLINE, Global Health, Web of Science, CAB Abstracts, Scopus, Google Scholar, Google and websites with interest in veterinary medicines quality up to 28 February 2021. Identified articles in English and French were screened for eligibility. The Medicine Quality Assessment Reporting Guidelines were used to assess the quality of prevalence surveys. RESULTS Three hundred and fourteen publications were included with a failure frequency (the percentage of samples that failed at least one quality test) of 6.5% (2335/35 733). The majority of samples were from post-marketing surveillance by medicines regulatory authorities of the Republic of Korea and China. A small proportion (3.5%) of samples, all anti-infectives, were from 20 prevalence surveys, with more than half (53.1%, 662/1246) collected in low-income and lower middle-income countries in Africa and Asia. The prevalence survey sample size ranged from 4 to 310 samples (median (Q1-Q3): 50 (27-80)); 55.0% of surveys used convenience outlet sampling methods. In 20 prevalence surveys more than half of the samples (52.0%, 648/1246) failed at least one quality test. The most common defects reported were out-of-specification active pharmaceutical ingredient(s) (API) content, failure of uniformity of units and disintegration tests. Almost half of samples (49.7%, 239/481) that failed API content tests contained at least one of the stated APIs below pharmacopoeial limits. Fifty-two samples (4.2% of all samples) contained one or more incorrect API. One hundred and twenty-three publications described incidents (recalls/seizures/case reports) of SF veterinary medicines in 29 countries. CONCLUSION The data suggest that SF veterinary products are likely to be a serious animal and public health problem that has received limited attention. However, few studies of SF veterinary medicines are available and are geographically restricted. Lower API content and disintegration/dissolution than recommended by pharmacopoeial standards risks treatment failure, animal suffering and contribute to AMR. Our findings highlight the need of more research, with robust methodology, to better inform policy and implement measures to assure the quality of veterinary medicines within supply chains. The mechanism and impact of SF veterinary products on animal and human health, agricultural production, their economy and AMR need more transdisciplinary research.
Collapse
Affiliation(s)
- Vayouly Vidhamaly
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Medicine Quality Research Group, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic.,Nuffield Department of Medicine, Medicine Quality Research Group, University of Oxford Centre for Tropical Medicine and Global Health, Oxford, UK.,Nuffield Department of Medicine, Infectious Diseases Data Observatory (IDDO)/WorldWide Antimalarial Resistance Network (WWARN), Medicine Quality Research Group, University of Oxford, Oxford, UK
| | - Konnie Bellingham
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Medicine Quality Research Group, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic.,Nuffield Department of Medicine, Medicine Quality Research Group, University of Oxford Centre for Tropical Medicine and Global Health, Oxford, UK.,Nuffield Department of Medicine, Infectious Diseases Data Observatory (IDDO)/WorldWide Antimalarial Resistance Network (WWARN), Medicine Quality Research Group, University of Oxford, Oxford, UK
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Medicine Quality Research Group, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic.,Nuffield Department of Medicine, Medicine Quality Research Group, University of Oxford Centre for Tropical Medicine and Global Health, Oxford, UK.,Nuffield Department of Medicine, Infectious Diseases Data Observatory (IDDO)/WorldWide Antimalarial Resistance Network (WWARN), Medicine Quality Research Group, University of Oxford, Oxford, UK
| | - Céline Caillet
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Medicine Quality Research Group, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic .,Nuffield Department of Medicine, Medicine Quality Research Group, University of Oxford Centre for Tropical Medicine and Global Health, Oxford, UK.,Nuffield Department of Medicine, Infectious Diseases Data Observatory (IDDO)/WorldWide Antimalarial Resistance Network (WWARN), Medicine Quality Research Group, University of Oxford, Oxford, UK
| |
Collapse
|
194
|
Yang J, Okyere SK, Zheng J, Cao B, Hu Y. Seasonal Prevalence of Gastrointestinal Parasites in Macaques ( Macaca thibetana) at Mount Emei Scenic Area in China. Animals (Basel) 2022; 12:1816. [PMID: 35883363 PMCID: PMC9311871 DOI: 10.3390/ani12141816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to elucidate the prevalence of intestinal parasites in macaques at the Mt. Emei Scenic Area of Sichuan, China. A total of 168 fecal samples were collected from yellow (n = 31), black (n = 19), new (n = 57), Leidongping (n = 57) and Wuxiangang (n = 4) macaques from 2019 to 2020. The fecal samples were tested for various gastrointestinal parasites following the microscopic detection method. The results showed that the total prevalence rate of the intestinal parasite was 51.19% (86/168), whereas the intestinal parasite with the highest prevalence was Gongylonema spp. (26.79%) for helminth and Entamoeba spp. (18.45%) for protozoa. Interestingly, the highest prevalence of intestinal parasites was observed during the summer season (86.21%), and the lowest was observed during the winter season (7.14%). There was a positive correlation observed between the human contact frequency and total prevalence rate of the intestinal parasites (p < 0.05); however, there was no correlation between the human contact frequency and total prevalence of the intestinal parasites at different seasons (p > 0.05). In conclusion, the dominant parasites Gongylonema spp. and Entamoeba spp. cause various diseases that may be transmitted to humans and other animals; therefore, there is a need for a proper management system, such as parasite control measures and population protection in the Mt. Emei Scenic Area of Sichuan, China.
Collapse
Affiliation(s)
- Jiandong Yang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.K.O.); (B.C.)
| | - Jie Zheng
- Forestry Management Agency of Mount Meishan, Meishan 614200, China;
| | - Buyuan Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.K.O.); (B.C.)
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.K.O.); (B.C.)
| |
Collapse
|
195
|
Rutherford C, Kafle P, Soos C, Epp T, Bradford L, Jenkins E. Investigating SARS-CoV-2 Susceptibility in Animal Species: A Scoping Review. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221107786. [PMID: 35782319 PMCID: PMC9247998 DOI: 10.1177/11786302221107786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In the early stages of response to the SARS-CoV-2 pandemic, it was imperative for researchers to rapidly determine what animal species may be susceptible to the virus, under low knowledge and high uncertainty conditions. In this scoping review, the animal species being evaluated for SARS-CoV-2 susceptibility, the methods used to evaluate susceptibility, and comparing the evaluations between different studies were conducted. Using the PRISMA-ScR methodology, publications and reports from peer-reviewed and gray literature sources were collected from databases, Google Scholar, the World Organization for Animal Health (OIE), snowballing, and recommendations from experts. Inclusion and relevance criteria were applied, and information was subsequently extracted, categorized, summarized, and analyzed. Ninety seven sources (publications and reports) were identified which investigated 649 animal species from eight different classes: Mammalia, Aves, Actinopterygii, Reptilia, Amphibia, Insecta, Chondrichthyes, and Coelacanthimorpha. Sources used four different methods to evaluate susceptibility, in silico, in vitro, in vivo, and epidemiological analysis. Along with the different methods, how each source described "susceptibility" and evaluated the susceptibility of different animal species to SARS-CoV-2 varied, with conflicting susceptibility evaluations evident between different sources. Early in the pandemic, in silico methods were used the most to predict animal species susceptibility to SARS-CoV-2 and helped guide more costly and intensive studies using in vivo or epidemiological analyses. However, the limitations of all methods must be recognized, and evaluations made by in silico and in vitro should be re-evaluated when more information becomes available, such as demonstrated susceptibility through in vivo and epidemiological analysis.
Collapse
Affiliation(s)
- Connor Rutherford
- School of Public Health, University of
Saskatchewan, Saskatoon, SK, Canada
| | - Pratap Kafle
- Department of Veterinary Microbiology,
Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK,
Canada
- Department of Veterinary Biomedical
Sciences, Long Island University Post Campus, Brookville, NY, USA
| | - Catherine Soos
- Ecotoxicology and Wildlife Health
Division, Science & Technology Branch, Environment and Climate Change Canada,
Saskatoon, SK, Canada
- Department of Veterinary Pathology,
Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK,
Canada
| | - Tasha Epp
- Department of Large Animal Clinical
Sciences, Western College of Veterinary Medicine, University of Saskatchewan,
Saskatoon, SK, Canada
| | - Lori Bradford
- Ron and Jane Graham School of
Professional Development, College of Engineering, and School of Environment and
Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Emily Jenkins
- Department of Veterinary Microbiology,
Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK,
Canada
| |
Collapse
|
196
|
Grujović MŽ, Mladenović KG, Marković SM, Đukić NN, Stajić JM, Ostojić AM, Zlatić NM. Chemical, radiological and microbiological characterization of a drinking water source: a case study. Lett Appl Microbiol 2022; 75:1136-1150. [PMID: 35765797 DOI: 10.1111/lam.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
This study examined water samples from a local stream in Central Serbia, which was consumed as drinking water. The chemical parameters (chemical oxygen demand, pH, total concentration of dissolved substances and electrical conductivity), the concentration of major, trace, and radioactive elements in the water as well as the content of those from the environment, were examined. In addition, the microbiological quality of the water was inspected. The water samples were acidic (pH from 5.27 to 5.69) and chemical oxygen demand ranged in upper permissible limits (up to 6.25 mg O2 l-1 (WR)). The concentrations of major, trace and radioactive elements, including radon, were below maximum contaminant levels. The water contained a higher number of total coliform bacteria than it was allowed (˃10 colony forming units (CFU) in 100 ml of water) as well as enterococci and Escherichia coli. The characterization of the isolated bacteria indicated that two isolates demonstrated proteolytic activity, while full antibiotic resistance was not detected. The isolates showed moderate to strong ability to produce biofilm, while the isolates of E. coli were nonpathogenic. The results indicated that examined water samples were not microbiologically and chemically safe, therefore, the usage of analyzed water was not recommended as a water supply. Further research needs to include more frequent monitoring in order to propose measures for the improvement of the water quality and prevention of health risks for consumers.
Collapse
Affiliation(s)
- M Ž Grujović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia
| | - K G Mladenović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia
| | - S M Marković
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanović 12, 34000 Kragujevac, Republic of Serbia
| | - N N Đukić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanović 12, 34000 Kragujevac, Republic of Serbia
| | - J M Stajić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia
| | - A M Ostojić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanović 12, 34000 Kragujevac, Republic of Serbia
| | - N M Zlatić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanović 12, 34000 Kragujevac, Republic of Serbia
| |
Collapse
|
197
|
Race, Zoonoses and Animal Assisted Interventions in Pediatric Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137772. [PMID: 35805427 PMCID: PMC9265881 DOI: 10.3390/ijerph19137772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Emerging evidence accumulates regarding the benefits of animal-assisted interventions (AAIs) in facilitating pediatric cancer treatment and alleviating symptomatology through positive changes in the patients’ emotional, mental, and even physical status. A major concern expressed by healthcare providers and parents in implementing AAIs in hospital settings is the transmission of disease from animals to patients. Immunocompromised children, such as pediatric cancer patients are at increased risk for pet-associated diseases. Furthermore, existing disparities among the racial and ethnic minority groups of pediatric cancer patients can potentially exacerbate their risk for zoonoses. This literature review highlights the most common human infections from therapy animals, connections to the race and ethnic background of pediatric oncology patients, as well as means of prevention. The discussion is limited to dogs, which are typically the most commonly used species in hospital-based animal-assisted therapy. The aim is to highlight specific preventive measures, precautions and recommendations that must be considered in hospitals’ protocols and best practices, particularly given the plethora of benefits provided by AAI for pediatric cancer patients, staff and families.
Collapse
|
198
|
Bukha KK, Sharif EA, Eldaghayes IM. The One Health concept for the threat of severe acute respiratory syndrome coronavirus-2 to marine ecosystems. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.48-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health threat. This virus is the causative agent for coronavirus disease 2019 (COVID-19). Pandemic prevention is best addressed through an integrated One Health (OH) approach. Understanding zoonotic pathogen fatality and spillover from wildlife to humans are effective for controlling and preventing zoonotic outbreaks. The OH concept depends on the interface of humans, animals, and their environment. Collaboration among veterinary medicine, public health workers and clinicians, and veterinary public health is necessary for rapid response to emerging zoonotic pathogens. SARS-CoV-2 affects aquatic environments, primarily through untreated sewage. Patients with COVID-19 discharge the virus in urine and feces into residential wastewater. Thus, marine organisms may be infected with SARS-CoV-2 by the subsequent discharge of partially treated or untreated wastewater to marine waters. Viral loads can be monitored in sewage and surface waters. Furthermore, shellfish are vulnerable to SARS-CoV-2 infection. Filter-feeding organisms might be monitored to protect consumers. Finally, the stability of SARS-CoV-2 to various environmental factors aids in viral studies. This article highlights the presence and survival of SARS-CoV-2 in the marine environment and its potential to enter marine ecosystems through wastewater. Furthermore, the OH approach is discussed for improving readiness for successive outbreaks. This review analyzes information from public health and epidemiological monitoring tools to control COVID-19 transmission.
Collapse
Affiliation(s)
- Khawla K. Bukha
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Ehab A. Sharif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Ibrahim M. Eldaghayes
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
199
|
Ballah FM, Islam MS, Rana ML, Ferdous FB, Ahmed R, Pramanik PK, Karmoker J, Ievy S, Sobur MA, Siddique MP, Khatun MM, Rahman M, Rahman MT. Phenotypic and Genotypic Detection of Biofilm-Forming Staphylococcus aureus from Different Food Sources in Bangladesh. BIOLOGY 2022; 11:biology11070949. [PMID: 36101330 PMCID: PMC9311614 DOI: 10.3390/biology11070949] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Staphylococcus aureus is a major foodborne pathogen. The ability of S. aureus to produce biofilm is a significant virulence factor, triggering its persistence in hostile environments. In this study, we screened a total of 420 different food samples and human hand swabs to detect S. aureus and to determine their biofilm formation ability. Samples analyzed were meat, milk, eggs, fish, fast foods, and hand swabs. S. aureus were detected by culturing, staining, biochemical, and PCR. Biofilm formation ability was determined by Congo Red Agar (CRA) plate and Crystal Violet Microtiter Plate (CVMP) tests. The icaA, icaB, icaC, icaD, and bap genes involved in the synthesis of biofilm-forming intracellular adhesion compounds were detected by PCR. About 23.81% (100/420; 95% CI: 14.17−29.98%) of the samples harbored S. aureus, as revealed by detection of the nuc gene. The CRA plate test revealed 20% of S. aureus isolates as strong biofilm producers and 69% and 11% as intermediate and non-biofilm producers, respectively. By the CVMP staining method, 20%, 77%, and 3% of the isolates were found to be strong, intermediate, and non-biofilm producers. Furthermore, 21% of S. aureus isolates carried at least one biofilm-forming gene, where icaA, icaB, icaC, icaD, and bap genes were detected in 15%, 20%, 7%, 20%, and 10% of the S. aureus isolates, respectively. Bivariate analysis showed highly significant correlations (p < 0.001) between any of the two adhesion genes of S. aureus isolates. To the best of our knowledge, this is the first study in Bangladesh describing the detection of biofilm-forming S. aureus from foods and hand swabs using molecular-based evidence. Our findings suggest that food samples should be deemed a potential reservoir of biofilm-forming S. aureus, which indicates a potential public health significance.
Collapse
|
200
|
Ma Z(S, Zhang YP. Ecology of Human Medical Enterprises: From Disease Ecology of Zoonoses, Cancer Ecology Through to Medical Ecology of Human Microbiomes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, the interaction between pathogens and their hosts is only one of a handful of interaction relationships between species, including parasitism, predation, competition, symbiosis, commensalism, and among others. From a non-anthropocentric view, parasitism has relatively fewer essential differences from the other relationships; but from an anthropocentric view, parasitism and predation against humans and their well-beings and belongings are frequently related to heinous diseases. Specifically, treating (managing) diseases of humans, crops and forests, pets, livestock, and wildlife constitute the so-termed medical enterprises (sciences and technologies) humans endeavor in biomedicine and clinical medicine, veterinary, plant protection, and wildlife conservation. In recent years, the significance of ecological science to medicines has received rising attentions, and the emergence and pandemic of COVID-19 appear accelerating the trend. The facts that diseases are simply one of the fundamental ecological relationships in nature, and the study of the relationships between species and their environment is a core mission of ecology highlight the critical importance of ecological science. Nevertheless, current studies on the ecology of medical enterprises are highly fragmented. Here, we (i) conceptually overview the fields of disease ecology of wildlife, cancer ecology and evolution, medical ecology of human microbiome-associated diseases and infectious diseases, and integrated pest management of crops and forests, across major medical enterprises. (ii) Explore the necessity and feasibility for a unified medical ecology that spans biomedicine, clinical medicine, veterinary, crop (forest and wildlife) protection, and biodiversity conservation. (iii) Suggest that a unified medical ecology of human diseases is both necessary and feasible, but laissez-faire terminologies in other human medical enterprises may be preferred. (iv) Suggest that the evo-eco paradigm for cancer research can play a similar role of evo-devo in evolutionary developmental biology. (v) Summarized 40 key ecological principles/theories in current disease-, cancer-, and medical-ecology literatures. (vi) Identified key cross-disciplinary discovery fields for medical/disease ecology in coming decade including bioinformatics and computational ecology, single cell ecology, theoretical ecology, complexity science, and the integrated studies of ecology and evolution. Finally, deep understanding of medical ecology is of obvious importance for the safety of human beings and perhaps for all living things on the planet.
Collapse
|