151
|
Mutchie TR, Yu OB, Di Milo ES, Arnold LA. Alternative binding sites at the vitamin D receptor and their ligands. Mol Cell Endocrinol 2019; 485:1-8. [PMID: 30654005 PMCID: PMC6444937 DOI: 10.1016/j.mce.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 01/02/2023]
Abstract
In recent decades, the majority of ligands developed for the vitamin D receptor (VDR) bind at its deeply buried genomic ligand binding pocket. Theses ligands can be categorized into agonists and partial agonists/antagonists. A limited number of ligands, most of them peptides, bind the VDR‒coactivator binding site that is formed in the presence of an agonist and inhibit coactivator recruitment, and therefore transcription. Another solvent exposed VDR‒ligand binding pocket was identified for lithocholic acid, improving the overall stability of the VDR complex. Additional proposed interactions with VDR are discussed herein that include the alternative VDR‒ligand binding pocket that may mediate both non-genomic cellular responses and binding function 3 that was identified for the androgen receptor. Many VDR ligands increase blood calcium levels at therapeutic concentrations in vivo, thus the identification of alternative VDR‒ligand binding pockets might be crucial to develop non-calcemic and potent ligands for VDR to treat cancer and inflammatory disease.
Collapse
Affiliation(s)
- Tania R Mutchie
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Olivia B Yu
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Elliot S Di Milo
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, Milwaukee, WI, 53211, USA.
| |
Collapse
|
152
|
Yamamoto E, Jørgensen TN. Immunological effects of vitamin D and their relations to autoimmunity. J Autoimmun 2019; 100:7-16. [PMID: 30853311 DOI: 10.1016/j.jaut.2019.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Vitamin D deficiency is an established risk factor for many autoimmune diseases and the anti-inflammatory properties of vitamin D underscore its potential therapeutic value for these diseases. However, results of vitamin D3 supplementation clinical trials have been varied. To understand the clinical heterogeneity, we reviewed the pre-clinical data on vitamin D activity in four common autoimmune diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD), in which patients are commonly maintained on oral vitamin D3 supplementation. In contrast, many pre-clinical studies utilize other methods of manipulation (i.e. genetic, injection). Given the many actions of vitamin D3 and data supporting a vitamin D-independent role of the Vitamin D receptor (VDR), a more detailed mechanistic understanding of vitamin D3 activity is needed to properly translate pre-clinical findings into the clinic. Therefore, we assessed studies based on route of vitamin D3 administration, and identified where discrepancies in results exist and where more research is needed to establish the benefit of vitamin D supplementation.
Collapse
Affiliation(s)
- Erin Yamamoto
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Trine N Jørgensen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA.
| |
Collapse
|
153
|
Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm Sin B 2019; 9:203-219. [PMID: 30972274 PMCID: PMC6437556 DOI: 10.1016/j.apsb.2018.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor cells along with a small proportion of cancer stem cells exist in a stromal microenvironment consisting of vasculature, cancer-associated fibroblasts, immune cells and extracellular components. Recent epidemiological and clinical studies strongly support that vitamin D supplementation is associated with reduced cancer risk and favorable prognosis. Experimental results suggest that vitamin D not only suppresses cancer cells, but also regulates tumor microenvironment to facilitate tumor repression. In this review, we have outlined the current knowledge on epidemiological studies and clinical trials of vitamin D. Notably, we summarized and discussed the anticancer action of vitamin D in cancer cells, cancer stem cells and stroma cells in tumor microenvironment, providing a better understanding of the role of vitamin D in cancer. We presently re-propose vitamin D to be a novel and economical anticancer agent.
Collapse
Key Words
- 1,25(OH)2D3, 1α,25-dihydroxyvitamin D3
- 1α,25-Dihydroxyvitamin D3
- 25(OH)D, 25-hydroxyvitamin D
- CAF, cancer-associated fibroblast
- CRC, colorectal cancer
- CSC, cancer stem cell
- Cancer stem cell
- Cancer-associated fibroblast
- DBP/GC, vitamin D-binding protein
- ESCC, esophageal squamous cell carcinoma
- GI, gastrointestinal
- NSCLC, non-small cell lung cancer
- PC, pancreatic adenocarcinoma
- PG, prostaglandin
- PSC, pancreatic stellate cells
- TDEC, tumor derived endothelial cell
- TIC, tumor initiating cell
- TIL, tumor-infiltrating lymphocyte
- TME, tumor microenvironment
- Tumor microenvironment
- Tumor-derived endothelial cell
- Tumor-infiltrating lymphocyte
- VDR, vitamin D receptor
- VDRE, VDR element
- VEGF, vascular endothelial growth factor
- Vitamin D
Collapse
|
154
|
Vitamin D in Synaptic Plasticity, Cognitive Function, and Neuropsychiatric Illness. Trends Neurosci 2019; 42:293-306. [PMID: 30795846 DOI: 10.1016/j.tins.2019.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Over a billion people worldwide are affected by vitamin D deficiency. Although vitamin D deficiency is associated with impaired cognition, the mechanisms mediating this link are poorly understood. The extracellular matrix (ECM) has now emerged as an important participant of synaptic plasticity and a new hypothesis is that vitamin D may interact with aggregates of the ECM, perineuronal nets (PNNs), to regulate brain plasticity. Dysregulation of PNNs caused by vitamin D deficiency may contribute to the presentation of cognitive deficits. Understanding the molecular mechanisms underpinning the role of vitamin D in brain plasticity and cognition could help identify ways to treat cognitive symptoms in schizophrenia and other neuropsychiatric conditions.
Collapse
|
155
|
|
156
|
Abstract
Resistance to vitamin D has been known for decades as vitamin D resistant rickets, caused by mutations of the gene encoding for vitamin D receptor (VDR). Findings of extra-skeletal effects of vitamin D and learning of the molecular mechanisms used by its biologically active metabolite calcitriol revealed other ways leading to its impaired sensitivity. Calcitriol takes advantage of both genomic and non-genomic mechanisms through its binding to vitamin D receptor, located not only in the cell nuclei but also in a perinuclear space. On the genomic level the complex of calcitriol bound to VDR binds to the DNA responsive elements of the controlled gene in concert with another nuclear receptor, retinoid X receptor, and expression of the VDR itself is controlled by its own ligand. These elements were found not only in the promotor region, but are scattered over the gene DNA. The gene expression includes a number of nuclear transcription factors which interact with the responsive elements and with each other and learning how they operate would further contribute to revealing causes of the impaired vitamin D sensitivity. Finally, the examples of major disorders are provided, associated with impairment of the vitamin D function and its receptor.
Collapse
Affiliation(s)
- L Máčová
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | |
Collapse
|
157
|
Bivona G, Agnello L, Ciaccio M. The immunological implication of the new vitamin D metabolism. Cent Eur J Immunol 2018; 43:331-334. [PMID: 30588177 PMCID: PMC6305614 DOI: 10.5114/ceji.2018.80053] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Vitamin D is a neuro-hormone regulating calcium-phosphate homeostasis, cell proliferation, and immunomodulation. Exogenous and endogenous vitamin D is inactive, and two hydroxylations are required to produce the active hormone. The first hydroxylation is unique to the liver, while the second step occurs in kidney, brain, lung, prostate, placenta, and immune cells. Kidney-derived calcitriol regulates calcium homeostasis. Active hormone produced by brain and immune cells mediates immune system response; lung calcitriol is involved in fighting respiratory tract infections; finally, prostate and placenta vitamin D regulates cells growth and proliferation within such tissues. Immune modulation by vitamin D includes enhancing innate immune response, attenuating and stimulating Th1 and Th2 cell proliferation, respectively, and promoting self-tolerance. Hypovitaminosis D is a common finding in several autoimmune diseases. It is unclear whether hypovitaminosis D could be a consequence or a cause of autoimmune diseases and whether vitamin D supplementation has an impact on these patients. Moreover, there is no consensus on oral cholecalciferol dosage for supplementation. More interventional studies are required to better define how vitamin D could represent both a causation agent in autoimmunity and a target for therapeutic strategies in autoimmune patients.
Collapse
Affiliation(s)
- Giulia Bivona
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Luisa Agnello
- Department and U.O.C. Laboratory Medicine, University Hospital “Paolo Giaccone” of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
- Department and U.O.C. Laboratory Medicine, University Hospital “Paolo Giaccone” of Palermo, Palermo, Italy
| |
Collapse
|
158
|
Murayama A, Saitoh H, Takeuchi A, Yamada N, Matsumura T, Shiina M, Muramatsu M, Wakita T, Imawari M, Kato T. Vitamin D derivatives inhibit hepatitis C virus production through the suppression of apolipoprotein. Antiviral Res 2018; 160:55-63. [PMID: 30339849 DOI: 10.1016/j.antiviral.2018.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/21/2018] [Accepted: 10/14/2018] [Indexed: 01/28/2023]
Abstract
Supplementation with vitamin D (VD) has been reported to improve the efficacy of interferon-based therapy for chronic hepatitis C. We found that 25-hydroxyvitamin D3 (25-(OH)D3), one of the metabolites of VD, has antiviral effects by inhibiting the infectious virus production of the hepatitis C virus (HCV). In this study, to clarify the underlying mechanisms of the anti-HCV effects, we searched VD derivatives that have anti-HCV effects and identified the common target molecule in the HCV life cycle by using an HCV cell culture system. After infection of Huh-7.5.1 cells with cell culture-generated HCV, VD derivatives were added to culture media, and the propagation of HCV was assessed by measuring the HCV core antigen levels in culture media and cell lysates. To determine the step in the HCV life cycle affected by these compounds, the single-cycle virus production assay was used with a CD81-negative cell line. Of the 14 structural derivatives of VD, an anti-HCV effect was detected in 9 compounds. Cell viability was not affected by these effective compounds. The 2 representative VD derivatives inhibited the infectious virus production in the single-cycle virus production assay. Treatment with these compounds and 25-(OH)D3 suppressed the expression of apolipoprotein A1 and C3, which are known to be involved in infectious virus production of HCV, and the knockdown of these apolipoproteins reduced infectious virus production. In conclusion, we identified several compounds with anti-HCV activity by screening VD derivatives. These compounds reduce the infectious virus production of HCV by suppressing the expression of apolipoproteins in host cells.
Collapse
Affiliation(s)
- Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Saitoh
- Teijin Institute for Bio-medical Research, Teijin Pharma Ltd., Tokyo, Japan
| | - Akiko Takeuchi
- Teijin Institute for Bio-medical Research, Teijin Pharma Ltd., Tokyo, Japan
| | - Norie Yamada
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuya Matsumura
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masaaki Shiina
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Gastroenterology and Hepatology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michio Imawari
- Research Institute for Gastrointestinal and Liver Diseases, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
159
|
Walker GE, Follenzi A, Bruscaggin V, Manfredi M, Bellone S, Marengo E, Maiuri L, Prodam F, Bona G. Fetuin B links vitamin D deficiency and pediatric obesity: Direct negative regulation by vitamin D. J Steroid Biochem Mol Biol 2018; 182:37-49. [PMID: 29684480 PMCID: PMC6092561 DOI: 10.1016/j.jsbmb.2018.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Vitamin D (VD) deficiency (VDD) correlates to obesity, with VD a recognized mediator of metabolic diseases. From a previous proteomic study identifying adiponectin as a link between VDD and pediatric obesity, herein we analysed another protein (SSP2301) increased with VDD. A focused 2D-electrophoretic analysis identified 4 corresponding plasma proteins, with one predicted to be fetuin B (FETUB). FETUB was studied due to its emerging role in metabolic diseases and cytogenetic location (3q27.3) with adiponectin. Results were confirmed in obese children, where plasma FETUB was higher with VDD. A direct effect by 1α,25-(OH)2D3 on hepatocellular FETUB synthesis was observed, with a time and dose dependent reduction. Further, we demonstrated the VD-receptor (VDR) is key, with FETUB "released" with VDR silencing. Finally, VD supplementation (6weeks) to juvenile mice fed a standard diet, reduced plasma FETUB. Only at 22weeks did liver FETUB correspond to plasma FETUB, highlighting the contribution of other VD-responsive tissues. Overall, FETUB is a key protein linking VDD to pediatric obesity. With an emerging role in metabolic diseases, we demonstrate that VD/VDR directly regulate FETUB.
Collapse
Affiliation(s)
- Gillian E Walker
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Marcello Manfredi
- Isalit S.R.L., Department of Science Innovation and Technology, Università del Piemonte Orientale, Novara, Italy
| | - Simonetta Bellone
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Division of Pediatrics, Università del Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Isalit S.R.L., Department of Science Innovation and Technology, Università del Piemonte Orientale, Novara, Italy
| | - Luigi Maiuri
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Division of Pediatrics, Università del Piemonte Orientale, Novara, Italy
| | - Flavia Prodam
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Division of Pediatrics, Università del Piemonte Orientale, Novara, Italy
| | - Gianni Bona
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Division of Pediatrics, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
160
|
Antiproliferative Activity of Non-Calcemic Vitamin D Analogs on Human Melanoma Lines in Relation to VDR and PDIA3 Receptors. Int J Mol Sci 2018; 19:ijms19092583. [PMID: 30200275 PMCID: PMC6163194 DOI: 10.3390/ijms19092583] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 01/02/2023] Open
Abstract
Vitamin D is a precursor for secosteroidal hormones, which demonstrate pleiotropic biological activities, including the regulation of growth and the differentiation of normal and malignant cells. Our previous studies have indicated that the inhibition of melanoma proliferation by a short side-chain, low calcemic analog of vitamin D—21(OH)pD is not fully dependent on the expression of vitamin D receptor (VDR). We have examined the effects of classic vitamin D metabolites, 1,25(OH)2D3 and 25(OH)D3, and two low calcemic vitamin D analogs, (21(OH)pD and calcipotriol), on proliferation, mRNA expression and vitamin D receptor (VDR) translocation in three human melanoma cell lines: WM98, A375 and SK-MEL-188b (subline b of SK-MEL-188, which lost responsiveness to 1,25(OH)2D3 and became VDR−/−CYP27B1−/−). All tested compounds efficiently inhibited the proliferation of WM98 and A375 melanoma cells except SK-MEL-188b, in which only the short side-chain vitamin D analog—21(OH)pD was effective. Overall, 21(OH)pD was the most potent compound in all three melanoma cell lines in the study. The lack of responsiveness of SK-MEL-188b to 1,25(OH)2D3, 25(OH)D3 and calcipotriol is explained by a lack of characteristic transcripts for the VDR, its splicing variants as well as for vitamin D-activating enzyme CYP27B1. On the other hand, the expression of VDR and its splicing variants and other vitamin D related genes (RXR, PDIA3, CYP3A4, CYP2R1, CYP27B1, CYP24A1 and CYP11A1) was detected in WM98 and A375 melanomas with the transcript levels being modulated by vitamin D analogs. The expression of VDR isoforms in WM98 cells was stimulated strongly by calcipotriol. The antiproliferative activities of 21(OH)pD appear not to require VDR translocation to the nucleus, which explains the high efficacy of this noncalcemic pregnacalciferol analog in SK-MEL-188b melanoma, that is, VDR−/−. Therefore, we propose that 21(OH)pD is a good candidate for melanoma therapy, although the mechanism of its action remains to be defined.
Collapse
|
161
|
Cermisoni GC, Alteri A, Corti L, Rabellotti E, Papaleo E, Viganò P, Sanchez AM. Vitamin D and Endometrium: A Systematic Review of a Neglected Area of Research. Int J Mol Sci 2018; 19:E2320. [PMID: 30096760 PMCID: PMC6122064 DOI: 10.3390/ijms19082320] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 01/27/2023] Open
Abstract
Growing evidence supports a role of vitamin D (VD) in reproductive health. Vitamin D receptor (VDR) is expressed in the ovary, endometrium, and myometrium. The biological actions of VD in fertility and reproductive tissues have been investigated but mainly using animal models. Conversely, the molecular data addressing the mechanisms underlying VD action in the physiologic endometrium and in endometrial pathologies are still scant. Levels of VDR expression according to the menstrual cycle are yet to be definitively clarified, possibly being lower in the proliferative compared to the secretory phase and in mid-secretory compared to early secretory phase. Endometrial tissue also expresses the enzymes involved in the metabolism of VD. The potential anti-proliferative and anti-inflammatory effects of VD for the treatment of endometriosis have been investigated in recent years. Treatment of ectopic endometrial cells with 1,25(OH)₂D₃ could significantly reduce cytokine-mediated inflammatory responses. An alteration of VD metabolism in terms of increased 24-hydroxylase mRNA and protein expression has been demonstrated in endometrial cancer, albeit not consistently. The effect of the active form of the vitamin as an anti-proliferative, pro-apoptotic, anti-inflammatory, and differentiation-inducing agent has been demonstrated in various endometrial cancer cell lines.
Collapse
Affiliation(s)
- Greta Chiara Cermisoni
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy.
| | - Alessandra Alteri
- Obstetrics and Gynaecology Department, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy.
| | - Laura Corti
- Obstetrics and Gynaecology Department, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy.
| | - Elisa Rabellotti
- Obstetrics and Gynaecology Department, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy.
| | - Enrico Papaleo
- Obstetrics and Gynaecology Department, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy.
| | - Paola Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy.
| | - Ana Maria Sanchez
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy.
| |
Collapse
|
162
|
Hu K, Callen DF, Li J, Zheng H. Circulating Vitamin D and Overall Survival in Breast Cancer Patients: A Dose-Response Meta-Analysis of Cohort Studies. Integr Cancer Ther 2018; 17:217-225. [PMID: 28589744 PMCID: PMC6041929 DOI: 10.1177/1534735417712007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/02/2017] [Accepted: 04/14/2017] [Indexed: 12/28/2022] Open
Abstract
Studies have shown that vitamin D could have a role in breast cancer survival; however, the evidence of the relationship between patients' vitamin D levels and their survival has been inconsistent. This meta-analysis explores possible dose-response relationships between vitamin D levels and overall survival by allowing for differences in vitamin D levels among populations of the various studies. Studies relating vitamin D (25-OH-D [25-hydroxyvitamin D]) levels in breast cancer patients with their survival were identified by searching PubMed and Embase. A pooled HR (hazard ratio) comparing the highest with the lowest category of circulating 25-OH-D levels were synthesized using the Mantel-Haenszel method under a fixed-effects model. A two-stage fixed-effects dose-response model including both linear (a log-linear dose-response regression) and nonlinear (a restricted cubic spline regression) models were used to further explore possible dose-response relationships. Six studies with a total number of 5984 patients were identified. A pooled HR comparing the highest with the lowest category of circulating 25-OH-D levels under a fixed-effects model was 0.67 (95% confidence interval = 0.56-0.79, P < .001). Utilizing a dose-response meta-analysis, the pooled HR for overall survival in breast cancer patients was 0.994 (per 1 nmol/L), Pfor linear trend < .001. At or above a 23.3 nmol/L threshold, for a 10 nmol/L, 20 nmol/L, or 25 nmol/L increment in circulating 25-OH-D levels, the risk of breast cancer overall mortality decreased by 6%, 12%, and 14%, respectively. There was no significant nonlinearity in the relationship between overall survival and circulating 25-OH-D levels. Our findings suggest that there is a highly significant linear dose-response relationship between circulating 25-OH-D levels and overall survival in patients with breast cancer. However, better designed prospective cohort studies and clinical trials are needed to further confirm these findings.
Collapse
Affiliation(s)
- Kejia Hu
- Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | | | - Jiayuan Li
- Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Hong Zheng
- Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
163
|
Gorman S, Buckley AG, Ling KM, Berry LJ, Fear VS, Stick SM, Larcombe AN, Kicic A, Hart PH. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiol Rep 2018; 5:5/15/e13371. [PMID: 28774952 PMCID: PMC5555896 DOI: 10.14814/phy2.13371] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D3‐supplemented (2280 IU/kg, VitD+) or nonsupplemented (0 IU/kg, VitD−) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD− diet were switched to a VitD+ diet from 8 weeks of age (VitD−/+). At 12 weeks of age, signs of low‐level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD− mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D3. There was no difference in the level of expression of the tight junction proteins occludin or claudin‐1 in lung epithelial cells of VitD+ mice compared to VitD− mice; however, claudin‐1 levels were reduced when initially vitamin D‐deficient mice were fed the vitamin D3‐containing diet (VitD−/+). Reduced total IgM levels were detected in BALF and serum of VitD−/+ mice compared to VitD+ mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD−/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D3‐containing diet, which may be explained by increased activation of B cells in airway‐draining lymph nodes. These findings suggest that supplementation of initially vitamin D‐deficient mice with vitamin D3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Alysia G Buckley
- Centre of Microscopy, Characterisation and Analysis The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Luke J Berry
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Vanessa S Fear
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| |
Collapse
|
164
|
Irazoqui AP, De Genaro P, Buitrago C, Bachmann H, González-Pardo V, Russo de Boland A. 1α,25(OH) 2D 3-glycosides from Solanum glaucophyllum leaves extract induce myoblasts differentiation through p38 MAPK and AKT activation. Biol Open 2018; 7:bio.033670. [PMID: 29685991 PMCID: PMC5992525 DOI: 10.1242/bio.033670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that Solanum glaucophyllum leaf extract (SGE) increases VDR protein levels and promotes myoblast differentiation. Here, we investigated whether p38 MAPK and AKT are involved in SGE actions. Cell-cycle studies showed that SGE prompted a peak of S-phase followed by an arrest in the G0/G1-phase through p38 MAPK. Time course studies showed that p38 MAPK and AKT phosphorylation were statistically increased by SGE (10 nM) or synthetic 1α,25(OH)2D3 (1 nM) treatment. Furthermore, p38 MAPK and AKT inhibitors, SB203580 and LY294002 respectively, suppressed myoblasts fusion induced by SGE or synthetic 1α,25(OH)2D3 We have also studied differentiation genes by qRT-PCR. myoD1 mRNA increased significantly by SGE (24-72 h) or 1α,25(OH)2D3 (24 h) treatment. mRNA expression of myogenin also increased upon SGE or 1α,25(OH)2D3 treatment. Finally, MHC2b mRNA expression, a late differentiation marker, was increased significantly by both compounds at 72 h compared to control. Taken together, these results suggest that SGE, as synthetic 1α,25(OH)2D3, promotes myotube formation through p38 MAPK and AKT activation.
Collapse
Affiliation(s)
- Ana Paula Irazoqui
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Argentina
| | - Pablo De Genaro
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Argentina
| | - Claudia Buitrago
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | | | - Verónica González-Pardo
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Argentina .,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | - Ana Russo de Boland
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, 8000 Bahía Blanca, Argentina
| |
Collapse
|
165
|
Caccamo D, Ricca S, Currò M, Ientile R. Health Risks of Hypovitaminosis D: A Review of New Molecular Insights. Int J Mol Sci 2018; 19:ijms19030892. [PMID: 29562608 PMCID: PMC5877753 DOI: 10.3390/ijms19030892] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Hypovitaminosis D has become a pandemic, being observed in all ethnicities and age groups worldwide. Environmental factors, such as increased air pollution and reduced ultraviolet B (UVB) irradiation, as well as lifestyle factors, i.e., decreased outdoor activities and/or poor intake of vitamin D-rich food, are likely involved in the etiology of a dramatic reduction of vitamin D circulating levels. The insufficiency/deficiency of vitamin D has long been known for its association with osteoporosis and rickets. However, in the last few decades it has become a serious public health concern since it has been shown to be independently associated with various chronic pathological conditions such as cancer, coronary heart disease, neurological diseases, type II diabetes, autoimmune diseases, depression, with various inflammatory disorders, and with increased risk for all-cause mortality in the general population. Prevention strategies for these disorders have recently involved supplementation with either vitamin D2 or vitamin D3 or their analogs at required daily doses and tolerable upper-limit levels. This review will focus on the emerging evidence about non-classical biological functions of vitamin D in various disorders.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences, and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Sergio Ricca
- Department of Biomedical Sciences, Dental Sciences, and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Monica Currò
- Department of Biomedical Sciences, Dental Sciences, and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Riccardo Ientile
- Department of Biomedical Sciences, Dental Sciences, and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
166
|
Jiménez-Sousa MÁ, Martínez I, Medrano LM, Fernández-Rodríguez A, Resino S. Vitamin D in Human Immunodeficiency Virus Infection: Influence on Immunity and Disease. Front Immunol 2018; 9:458. [PMID: 29593721 PMCID: PMC5857570 DOI: 10.3389/fimmu.2018.00458] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
People living with human immunodeficiency virus (HIV) infection typically have hypovitaminosis D, which is linked to a large number of pathologies, including immune disorders and infectious diseases. Vitamin D (VitD) is a key regulator of host defense against infections by activating genes and pathways that enhance innate and adaptive immunity. VitD mediates its biological effects by binding to the Vitamin D receptor (VDR), and activating and regulating multiple cellular pathways. Single nucleotide polymorphisms in genes from those pathways have been associated with protection from HIV-1 infection. High levels of VitD and VDR expression are also associated with natural resistance to HIV-1 infection. Conversely, VitD deficiency is linked to more inflammation and immune activation, low peripheral blood CD4+ T-cells, faster progression of HIV disease, and shorter survival time in HIV-infected patients. VitD supplementation and restoration to normal values in HIV-infected patients may improve immunologic recovery during combination antiretroviral therapy, reduce levels of inflammation and immune activation, and increase immunity against pathogens. Additionally, VitD may protect against the development of immune reconstitution inflammatory syndrome events, pulmonary tuberculosis, and mortality among HIV-infected patients. In summary, this review suggests that VitD deficiency may contribute to the pathogenesis of HIV infection. Also, VitD supplementation seems to reverse some alterations of the immune system, supporting the use of VitD supplementation as prophylaxis, especially in individuals with more severe VitD deficiency.
Collapse
Affiliation(s)
- María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Luz María Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
167
|
Effects of human interleukins in the transgenic gene reporter cell lines IZ-VDRE and IZ-CYP24 designed to assess the transcriptional activity of vitamin D receptor. PLoS One 2018; 13:e0193655. [PMID: 29489902 PMCID: PMC5831414 DOI: 10.1371/journal.pone.0193655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/15/2018] [Indexed: 12/28/2022] Open
Abstract
The role of vitamin D receptor (VDR) in immune responses has been broadly studied and it has been shown that activated VDR alters the levels of some interleukins (ILs). In this study, we studied the opposite, i.e. whether 13 selected pro-inflammatory and anti-inflammatory ILs influence the transcriptional activity of human VDR. The experimental models of choice were two human stably transfected gene reporter cell lines IZ-VDRE and IZ-CYP24, which were designed to evaluate the transcriptional activity of VDR. The gene reporter assays revealed inhibition of calcitriol-induced luciferase activity by IL-4 and IL-13, when 1 ng/mL of these two compounds decreased the effect of calcitriol down to 60% of the control value. Consistently, calcitriol-induced expression of CYP24A1 mRNA was also significantly decreased by IL-4 and IL-13. The expression of VDR and CYP27B1 mRNAs was not influenced by any of the 13 tested ILs. These data suggest possible cross-talk between the VDR signalling pathway and IL-4- and IL-13-mediated cell signalling.
Collapse
|
168
|
Landel V, Annweiler C, Millet P, Morello M, Féron F. Vitamin D, Cognition and Alzheimer's Disease: The Therapeutic Benefit is in the D-Tails. J Alzheimers Dis 2018; 53:419-44. [PMID: 27176073 PMCID: PMC4969697 DOI: 10.3233/jad-150943] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since its discovery during the epidemic of rickets in the early 1920s, the physiological effects of vitamin D on calcium/phosphorus homeostasis have been thoroughly studied. Along with the understanding of its actions on skeletal diseases and advances in cellular and molecular biology, this misnamed vitamin has gained attention as a potential player in a growing number of physiological processes and a variety of diseases. During the last 25 years, vitamin D has emerged as a serious candidate in nervous system development and function and a therapeutic tool in a number of neurological pathologies. More recently, experimental and pre-clinical data suggest a link between vitamin D status and cognitive function. Human studies strongly support a correlation between low levels of circulating 25-hydroxyvitamin D (25(OH)D) and cognitive impairment or dementia in aging populations. In parallel, animal studies show that supplementation with vitamin D is protective against biological processes associated with Alzheimer’s disease (AD) and enhances learning and memory performance in various animal models of aging and AD. These experimental observations support multiple mechanisms by which vitamin D can act against neurodegenerative processes. However, clinical interventional studies are disappointing and fail to associate increased 25(OH)D levels with improved cognitive outcomes. This review collects the current available data from both animal and human studies and discusses the considerations that future studies examining the effects of vitamin D status on neurocognitive function might consider.
Collapse
Affiliation(s)
- Véréna Landel
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| | - Cédric Annweiler
- Department of Neuroscience, Division of Geriatric Medicine, Angers University Hospital; UPRES EA 4638, University of Angers, UNAM, Angers, France.,Robarts Research Institute, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, ON, Canada
| | - Pascal Millet
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France.,APHP, Groupe hospitalier universitaire Saint Louis-Lariboisière-Fernand Widal, Centre Mémoire de Ressources et de Recherche, Hôpital Fernand Widal, Paris, France
| | - Maria Morello
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France.,Clinical Biochemistry, Department of Experimental Medicine and Surgery, University Hospital of Tor Vergata, Faculty of Medicine, Rome, Italy.,Division of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention Faculty of Medicine, University of Tor Vergata, Rome, Italy
| | - François Féron
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| |
Collapse
|
169
|
Kim J, Kim GJ, Lee D, Ko J, Lim I, Bang H, Koes BW, Seong B, Lee D. Higher maternal vitamin D concentrations are associated with longer leukocyte telomeres in newborns. MATERNAL & CHILD NUTRITION 2018; 14:e12475. [PMID: 28598004 PMCID: PMC6865968 DOI: 10.1111/mcn.12475] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/07/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
Gestational vitamin D insufficiency is related with increased risks of various diseases and poor health outcomes later in life. Telomere length at birth or early in life is known to be a predictor of individual health. Both vitamin D and telomere length are related with various health conditions, and vitamin D concentrations are associated with leukocyte telomere lengths in women. We investigated the association between maternal vitamin D concentrations and newborn leukocyte telomere lengths. This cross-sectional study included 106 healthy pregnant women without adverse obstetric outcomes and their offspring. We examined the maternal age, weight before pregnancy, health behaviours, and nutritional intakes, along with each newborn's sex and birthweight, and we measured maternal height, telomere length, total white blood cell count, and glycosylated haemoglobin as covariates. Pearson's correlation coefficients were calculated to evaluate the relationship between the baseline variables and newborn leukocyte telomere lengths. To confirm that there was an independent association between newborn leukocyte telomere lengths and maternal vitamin D concentrations, we performed a stepwise multiple linear regression analysis. Newborn leukocyte telomere lengths correlated positively with maternal leukocyte telomere lengths (r = .76, p < .01), maternal 25-hydroxyvitamin D concentrations (r = .72, p < .01), maternal energy intakes (r = .22, p = .03), and newborn body weights (r = .51, p < .01). In the multivariate model, newborn leukocyte telomere lengths were associated with maternal vitamin D concentrations (β = .33, p < .01). These findings suggest that the maternal vitamin D concentration during pregnancy may be a significant determinant of the offspring's telomere length.
Collapse
Affiliation(s)
- Jung‐Ha Kim
- Department of Family MedicineChung‐Ang University Medical CenterSeoulKorea
- Department of Family MedicineYonsei University Graduate SchoolSeoulKorea
| | - Gwang Jun Kim
- Department of Obstetrics & GynecologyChung‐Ang University Medical CenterSeoulKorea
| | - Donghee Lee
- Department of Physiology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Jae‐Hong Ko
- Department of Physiology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Inja Lim
- Department of Physiology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Hyoweon Bang
- Department of Physiology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Bart W. Koes
- Department of General Practice, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | | | - Duk‐Chul Lee
- Department of Family Medicine, Severance HospitalYonsei University College of MedicineSeoulKorea
| |
Collapse
|
170
|
Jamali N, Wang S, Darjatmoko SR, Sorenson CM, Sheibani N. Vitamin D receptor expression is essential during retinal vascular development and attenuation of neovascularization by 1, 25(OH)2D3. PLoS One 2017; 12:e0190131. [PMID: 29272316 PMCID: PMC5741250 DOI: 10.1371/journal.pone.0190131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022] Open
Abstract
Vitamin D provides a significant benefit to human health, and its deficiency has been linked to a variety of diseases including cancer. Vitamin D exhibits anticancer effects perhaps through inhibition of angiogenesis. We previously showed that the active form of vitamin D (1, 25(OH)2D3; calcitriol) is a potent inhibitor of angiogenesis in mouse model of oxygen-induced ischemic retinopathy (OIR). Many of vitamin D's actions are mediated through vitamin D receptor (VDR). However, the role VDR expression plays in vascular development and inhibition of neovascularization by 1, 25(OH)2D3 remains unknown. Here using wild type (Vdr +/+) and Vdr-deficient (Vdr -/-) mice, we determined the impact of Vdr expression on postnatal development of retinal vasculature and retinal neovascularization during OIR. We observed no significant effect on postnatal retinal vascular development in Vdr -/- mice up to postnatal day 21 (P21) compared with Vdr +/+ mice. However, we observed an increase in density of pericytes (PC) and a decrease in density of endothelial cells (EC) in P42 Vdr -/- mice compared with Vdr +/+ mice, resulting in a significant decrease in the EC/PC ratio. Although we observed no significant impact on vessel obliteration and retinal neovascularization in Vdr -/- mice compared with Vdr +/+ mice during OIR, the VDR expression was essential for inhibition of retinal neovascularization by 1, 25(OH)2D3. In addition, the adverse impact of 1, 25(OH)2D3 treatment on the mouse bodyweight was also dependent on VDR expression. Thus, VDR expression plays a significant role during retinal vascular development, especially during maturation of retinal vasculature by promoting PC quiescence and EC survival, and inhibition of ischemia-mediated retinal neovascularization by 1, 25(OH)2D3.
Collapse
Affiliation(s)
- Nasim Jamali
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Shoujian Wang
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Soesiawati R Darjatmoko
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States of America
| |
Collapse
|
171
|
Jamali N, Sorenson CM, Sheibani N. Vitamin D and regulation of vascular cell function. Am J Physiol Heart Circ Physiol 2017; 314:H753-H765. [PMID: 29351464 DOI: 10.1152/ajpheart.00319.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitamin D deficiency is linked to pathogenesis of many diseases including cardiovascular, cancer, and various eye diseases. In recent years, important roles for vitamin D in regulation of immune function, inflammation, angiogenesis, and aging have been demonstrated. Thus, vitamin D and its analogs have been evaluated for the treatment of various types of cancer and chronic diseases. We have previously shown that the active form of vitamin D [1,25(OH)2D3] is a potent inhibitor of angiogenesis. This activity is consistent with the important role proposed for vitamin D and its analogs in the mitigation of tumor growth through inhibition of angiogenesis. Here, we review the important nutritional value of vitamin D and the abnormalities linked to its deficiency. We will explore its potential role as a regulator of angiogenesis and vascular cell function and the role vitamin D receptor (VDR) expression plays in these activities during vascular development and neovascularization. Our studies have established an important role for 1,25(OH)2D3 and VDR in the regulation of perivascular supporting cell function. In addition, the interaction of 1,25(OH)2D3 and VDR is essential for these activities and inhibition of neovascularization. Delineating the signaling pathways involved and identification of genes that are the target of 1,25(OH)2D3 regulation in vascular cells will allow us to identify novel pathways that are targets for regulation of vascular function and angiogenesis.
Collapse
Affiliation(s)
- Nasim Jamali
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| |
Collapse
|
172
|
Wu HY, Chen JX, Tian HQ, Zhang XL, Bian HY, Cheng L. Serum 25-hydroxyvitamin D inversely associated with blood eosinophils in patients with persistent allergic rhinitis. Asia Pac Allergy 2017; 7:213-220. [PMID: 29094019 PMCID: PMC5663749 DOI: 10.5415/apallergy.2017.7.4.213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022] Open
Abstract
Objective The relationship between vitamin D and allergic rhinitis (AR) remains unclear. The present study investigated their association by examining serum 25-hydroxyvitamin D (25(OH)D) levels, blood eosinophils, and the expression of vitamin D receptors (VDR) on nasal mucosa in patients with AR. Methods A total of 32 patients with persistent AR and 25 controls were enrolled in this study. Serum 25(OH)D levels were detected by enzyme-linked immunosorbent assay, and eosinophils in the peripheral blood were examined by an automated hematology system, while VDR expression on inferior turbinate mucosa was assessed by immunohistochemistry. Furthermore, the correlation of serum 25(OH)D levels with blood eosinophils in persistent AR was analyzed. Results No significant difference in serum 25(OH)D levels was detected between the AR and control groups (p = 0.371). Interestingly, the serum 25(OH)D levels of the AR group were negatively correlated with blood eosinophil count and its proportion (p = 0.019 and p = 0.010, respectively) even when adjusting confounding factors including age, sex, body mass index, and the season of blood sampling. On the other hand, no significant difference in the expression levels of VDR on nasal mucosa was found between the AR group and the control group (p = 0.231). Conclusion These results suggest that the serum 25(OH)D might be inversely associated with blood eosinophils in patients with persistent AR. However, the relationship between vitamin D and AR still requires further clarification.
Collapse
Affiliation(s)
- Hai-Yan Wu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Department of Otorhinolaryngology, Affiliated Jiangyin Hospital, Medical College of Southeast University, Jiangyin 214400, Jiangsu, China
| | - Jin-Xiang Chen
- Department of Otorhinolaryngology, Affiliated Jiangyin Hospital, Medical College of Southeast University, Jiangyin 214400, Jiangsu, China
| | - Hui-Qin Tian
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiu-Ling Zhang
- Department of Otorhinolaryngology, Affiliated Jiangyin Hospital, Medical College of Southeast University, Jiangyin 214400, Jiangsu, China
| | - Hai-Yan Bian
- Department of Otorhinolaryngology, Affiliated Jiangyin Hospital, Medical College of Southeast University, Jiangyin 214400, Jiangsu, China
| | - Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu, China.,International Centre for Allergy Research, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
173
|
Uberti F, Morsanuto V, Aprile S, Ghirlanda S, Stoppa I, Cochis A, Grosa G, Rimondini L, Molinari C. Biological effects of combined resveratrol and vitamin D3 on ovarian tissue. J Ovarian Res 2017; 10:61. [PMID: 28915830 PMCID: PMC5602920 DOI: 10.1186/s13048-017-0357-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural antioxidant polyphenol able to exert a wide range of biological effect on several tissues. Despite its important beneficial properties, it has a low water solubility, which limits its therapeutic applications in humans. Resveratrol also acts as a phytoestrogen that modulates estrogen receptor (ER)-mediated transcription. In addition, it has been shown that ovarian tissues benefit greatly from vitamin D3, which exerts its beneficial effects through VDR receptors. The aim was to evaluate the cooperative effects of resveratrol combined with vitamin D3 on ovarian cells and tissues and some other organs as well. Moreover, the modulation of specific intracellular pathways involving ER and VDR receptors has been studied. METHODS The experiments were performed both in vitro and in vivo, to analyze cell viability, radical oxygen species production, signal transductions through Western Blot, and resveratrol quantification by HPLC. RESULTS Cell viability, radical oxygen species production, and intracellular pathways have been studied on CHO-K1 cells. Also, the relative mechanism activated following oral intake in female Wistar rats as animal model was investigated, evaluating bioavailability, biodistribution and signal transduction in heart, kidney, liver and ovarian tissues. Both in in vitro and in vivo experiments, resveratrol exerts more evident effects when administered in combination with vitD in ovarian cells, showing a common biphasic cooperative effect: The role of vitamin D3 in maintaining and supporting the biological activity of resveratrol has been clearly observed. Moreover, resveratrol plus vitamin D3 blood concentrations showed a biphasic absorption rate. CONCLUSIONS Such results could be used as a fundamental data for the development of new therapies for gynecological conditions, such as hot-flashes.
Collapse
Affiliation(s)
- Francesca Uberti
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Vera Morsanuto
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences and Drug and Food Biotechnology Center, UPO, Novara, Italy
| | - Sabrina Ghirlanda
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Ian Stoppa
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Andrea Cochis
- Department of Health Sciences, Medical School, UPO, Novara, Italy
| | - Giorgio Grosa
- Department of Pharmaceutical Sciences and Drug and Food Biotechnology Center, UPO, Novara, Italy
| | - Lia Rimondini
- Department of Health Sciences, Medical School, UPO, Novara, Italy
| | - Claudio Molinari
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| |
Collapse
|
174
|
Tirabassi G, Salvio G, Altieri B, Ronchi CL, Della Casa S, Pontecorvi A, Balercia G. Adrenal disorders: Is there Any role for vitamin D? Rev Endocr Metab Disord 2017; 18:355-362. [PMID: 27761790 DOI: 10.1007/s11154-016-9391-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An emerging branch of research is examining the linkage between Vitamin D and nonskeletal disorders, including endocrine diseases. In this regard, a still little studied aspect concerns the involvement of vitamin D in adrenal gland disorders. Adrenal gland disorders, which might be theoretically affected by vitamin D unbalance, include adrenal insufficiency, Cushing's syndrome, adrenocortical tumors and hyperaldosteronism. In this review, we provide an updated document, which tries to collect and discuss the limited evidence to be found in the literature about the relationship between vitamin D and adrenal disorders. We conclude that there is insufficient evidence proving a causal relationship between vitamin D levels and adrenal disorders. Evidence coming from cross-sectional clinical studies can hardly clarify what comes first between vitamin D unbalance and adrenal disease. On the other hand, longitudinal studies monitoring the levels of vitamin D in patients with adrenal disorders or, conversely, the possible development of adrenal pathologies in subjects affected by impaired vitamin D levels would be able to elucidate this still unclear issue.
Collapse
Affiliation(s)
- Giacomo Tirabassi
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Ancona, Italy.
| | - Gianmaria Salvio
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Ancona, Italy
| | - Barbara Altieri
- Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart, Rome, Italy
| | - Cristina L Ronchi
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Silvia Della Casa
- Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart, Rome, Italy
| | - Alfredo Pontecorvi
- Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart, Rome, Italy
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
175
|
Colotta F, Jansson B, Bonelli F. Modulation of inflammatory and immune responses by vitamin D. J Autoimmun 2017; 85:78-97. [PMID: 28733125 DOI: 10.1016/j.jaut.2017.07.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Vitamin D (VitD) is a prohormone most noted for the regulation of calcium and phosphate levels in circulation, and thus of bone metabolism. Inflammatory and immune cells not only convert inactive VitD metabolites into calcitriol, the active form of VitD, but also express the nuclear receptor of VitD that modulates differentiation, activation and proliferation of these cells. In vitro, calcitriol upregulates different anti-inflammatory pathways and downregulates molecules that activate immune and inflammatory cells. Administration of VitD has beneficial effects in a number of experimental models of autoimmune disease. Epidemiologic studies have indicated that VitD insufficiency is frequently associated with immune disorders and infectious diseases, exacerbated by increasing evidence of suboptimal VitD status in populations worldwide. To date, however, most interventional studies in human inflammatory and immune diseases with VitD supplementation have proven to be inconclusive. One of the reasons could be that the main VitD metabolite measured in these studies was the 25-hydroxyVitD (25OHD) rather than its active form calcitriol. Although our knowledge of calcitriol as modulator of immune and inflammatory reactions has dramatically increased in the past decades, further in vivo and clinical studies are needed to confirm the potential benefits of VitD in the control of immune and inflammatory conditions.
Collapse
|
176
|
Silvagno F, Pescarmona G. Spotlight on vitamin D receptor, lipid metabolism and mitochondria: Some preliminary emerging issues. Mol Cell Endocrinol 2017; 450:24-31. [PMID: 28414049 DOI: 10.1016/j.mce.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 12/19/2022]
Abstract
Transcriptional control and modulation of calcium fluxes underpin the differentiating properties of vitamin D (1,25(OH)2D3). In the latest years however few studies have pointed out the relevance of the mitochondrial effects of the hormone. It is now time to focus on the metabolic results of vitamin D receptor (VDR) action in mitochondria, which can explain the pleiotropic effects of 1,25(OH)2D3 and may elucidate few contrasting aspects of its activity. The perturbation of lipid metabolism described in VDR knockout mice and vitamin D deficient animals can be revisited based on the newly identified mechanism of action of 1,25(OH)2D3 in mitochondria. From the same point of view, the controversial role of 1,25(OH)2D3 in adipogenesis can be better interpreted.
Collapse
Affiliation(s)
- Francesca Silvagno
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Gianpiero Pescarmona
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| |
Collapse
|
177
|
Nanjappa MK, Mesa AM, Tevosian SG, de Armas L, Hess RA, Bagchi IC, Cooke PS. Membrane estrogen receptor 1 is required for normal reproduction in male and female mice. JOURNAL OF ENDOCRINOLOGY AND REPRODUCTION : JER 2017; 21:1-14. [PMID: 34321782 PMCID: PMC8315114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Steroid hormones, acting through their cognate nuclear receptors, are critical for many reproductive and non-reproductive functions. Over the past two decades, it has become increasingly clear that in addition to cytoplasmic/nuclear steroid receptors that alter gene transcription when liganded, a small fraction of cellular steroid receptors are localized to the cell membranes, where they mediate rapid steroid hormone effects. 17β-Estradiol (E2), a key steroid hormone for both male and female reproduction, acts predominately through its main receptor, estrogen receptor 1 (ESR1). Most ESR1 is nuclear; however, 5-10% of ESR1 is localized to the cell membrane after being palmitoylated at cysteine 451 in mice. This review discusses reproductive phenotypes of a newly-developed mouse model with a C451A point mutation that precludes membrane targeting of ESR1. This transgenic mouse, termed the nuclear-only ESR1 (NOER) mouse, shows extensive male and female reproductive abnormalities and infertility despite normally functional nuclear ESR1 (nESR1). These results provide the first in vivo evidence that membrane-initiated E2/ESR1 signaling is required for normal male and female reproductive functions and fertility. Signaling mechanisms for membrane ESR1 (mESR1), as well as how mESR1 works with nESR1 to mediate estrogen effects, are still being established. We discuss some possible mechanisms by which mESR1 might facilitate nESR1 signaling, as well as the emerging evidence that mESR1 might be a major mediator of epigenetic effects of estrogens, which are potentially linked to various adult-onset pathologies.
Collapse
Affiliation(s)
| | - Ana M. Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Sergei G. Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Laura de Armas
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Rex A. Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
178
|
Pitetzis DA, Spilioti MG, Yovos JG, Yavropoulou MP. The effect of VPA on bone: From clinical studies to cell cultures—The molecular mechanisms revisited. Seizure 2017; 48:36-43. [DOI: 10.1016/j.seizure.2017.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 01/10/2023] Open
|
179
|
Garcia‐Gil M, Pierucci F, Vestri A, Meacci E. Crosstalk between sphingolipids and vitamin D3: potential role in the nervous system. Br J Pharmacol 2017; 174:605-627. [PMID: 28127747 PMCID: PMC6398521 DOI: 10.1111/bph.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are both structural and bioactive compounds. In particular, ceramide and sphingosine 1-phosphate regulate cell fate, inflammation and excitability. 1-α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) is known to play an important physiological role in growth and differentiation in a variety of cell types, including neural cells, through genomic actions mediated by its specific receptor, and non-genomic effects that result in the activation of specific signalling pathways. 1,25(OH)2 D3 and sphingolipids, in particular sphingosine 1-phosphate, share many common effectors, including calcium regulation, growth factors and inflammatory cytokines, but it is still not known whether they can act synergistically. Alterations in the signalling and concentrations of sphingolipids and 1,25(OH)2 D3 have been found in neurodegenerative diseases and fingolimod, a structural analogue of sphingosine, has been approved for the treatment of multiple sclerosis. This review, after a brief description of the role of sphingolipids and 1,25(OH)2 D3 , will focus on the potential crosstalk between sphingolipids and 1,25(OH)2 D3 in neural cells.
Collapse
Affiliation(s)
- Mercedes Garcia‐Gil
- Department of BiologyUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood ‘Nutraceuticals and Food for Health’University of PisaPisaItaly
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| |
Collapse
|
180
|
Pike JW, Meyer MB, Lee SM, Onal M, Benkusky NA. The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights. J Clin Invest 2017; 127:1146-1154. [PMID: 28240603 DOI: 10.1172/jci88887] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vitamin D receptor (VDR) is the single known regulatory mediator of hormonal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in higher vertebrates. It acts in the nucleus of vitamin D target cells to regulate the expression of genes whose products control diverse, cell type-specific biological functions that include mineral homeostasis. In this Review we describe progress that has been made in defining new cellular sites of action of this receptor, the mechanisms through which this mediator controls the expression of genes, the biology that ensues, and the translational impact of this receptor on human health and disease. We conclude with a brief discussion of what comes next in understanding vitamin D biology and the mechanisms that underlie its actions.
Collapse
|
181
|
Duffy MJ, Murray A, Synnott NC, O'Donovan N, Crown J. Vitamin D analogues: Potential use in cancer treatment. Crit Rev Oncol Hematol 2017; 112:190-197. [PMID: 28325259 DOI: 10.1016/j.critrevonc.2017.02.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/15/2016] [Accepted: 02/14/2017] [Indexed: 01/06/2023] Open
Abstract
The vitamin D receptor (VDR) is a member of the thyroid-steroid family of nuclear transcription factors. Following binding of the active form of vitamin D, i.e., 1,25(OH)2D3 (also known as calcitriol) and interaction with co-activators and co-repressors, VDR regulates the expression of several different genes. Although relatively little work has been carried out on VDR in human cancers, several epidemiological studies suggest that low circulating levels of vitamin D are associated with both an increased risk of developing specific cancer types and poor outcome in patients with specific diagnosed cancers. These associations apply especially in colorectal and breast cancer. Consistent with these findings, calcitriol as well as several of its synthetic analogues have been shown to inhibit tumor cell growth in vitro and in diverse animal model systems. Indeed, some of these vitamin D analogues with low calcemic inducing activity (e.g., EB1089, inecalcitol, paricalcitol) have progressed to clinical trials in patients with cancer. Preliminary results from these trials suggest that these vitamin D analogues have minimal toxicity, but clear evidence of efficacy remains to be shown. Although evidence of efficacy for mono-treatment with vitamin D analogues is currently lacking, several studies have reported that supplementation with calcitriol or the presence of high endogenous circulating levels of vitamin D enhances response to standard therapies.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland; UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | - Alyson Murray
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland; UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Naoise C Synnott
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland; UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
182
|
Chen YY, Powell TL, Jansson T. 1,25-Dihydroxy vitamin D 3 stimulates system A amino acid transport in primary human trophoblast cells. Mol Cell Endocrinol 2017; 442:90-97. [PMID: 27956114 PMCID: PMC5673492 DOI: 10.1016/j.mce.2016.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Vitamin D deficiency during pregnancy is linked to adverse perinatal outcomes such as small for gestational age infants. Recent evidence suggests that changes in placental amino acid transport contribute to altered fetal growth. We tested the hypothesis that 1,25-dihydroxy vitamin D3 increases the gene expression of System A and L amino acid transporter isoforms and stimulates placental amino acid transport activity in cultured primary human trophoblast cells mediated by mTOR signaling. Treatment with 1,25-dihydroxy vitamin D3 significantly increased mRNA expression of the System A isoform SNAT2 and System A activity, but had no effect on System L and did not affect mTOR signaling. siRNA silencing of the vitamin D receptor prevented 1,25-dihydroxy vitamin D3-stimulated System A transport. In conclusion, 1,25-dihydroxy vitamin D3 regulates System A activity through increased mRNA expression of SNAT2 transporters. Effects on placental amino acid transport may be the mechanism underlying the association between maternal vitamin D status and fetal growth.
Collapse
Affiliation(s)
- Yi-Yung Chen
- Division of Reproductive Science, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of High-risk Pregnancy, Department of Obstetrics & Gynecology, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Theresa L Powell
- Division of Reproductive Science, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Division of Reproductive Science, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
183
|
Karpiński M, Galicka A, Milewski R, Popko J, Badmaev V, Stohs SJ. Association between Vitamin D Receptor Polymorphism and Serum Vitamin D Levels in Children with Low-Energy Fractures. J Am Coll Nutr 2017; 36:64-71. [PMID: 28067591 DOI: 10.1080/07315724.2016.1218803] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Fractures of bones, especially forearm fractures, are very common in children and their number is increasing. This study was designed to determine the impact of vitamin D serum levels and vitamin D receptor (VDR) polymorphisms on the occurrence of low-energy fractures in children. METHODS The study group consisted of 100 children with clinically relevant bone fractures and a control group consisted of 127 children without fractures. Total vitamin D [25(OH)D3 plus 25(OH)D2] serum concentrations were evaluated in every patient. Genotypes for 4 restriction fragment length polymorphisms of the vitamin D receptor gene (FokI, ApaI, TaqI, and BsmI) were determined by standard polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques. RESULTS Differences in concentrations of vitamin D were observed between the group with bone fractures (median = 12 ng/ml) and the control group (median = 16 ng/ml; p = 0.000044). Higher levels of vitamin D reduced the risk of fracture by 1.06 times (p = 0.0005). No impact of particular VDR polymorphism on the occurrence of low-energy fractures in children was detected. However, there were significant differences in the prevalence of FokI polymorphism genotypes between the fracture and control groups (p = 0.05). Furthermore, the recessive "aa" genotype of ApaI polymorphism and the dominant "TT" genotype of TaqI polymorphism were associated with higher levels of vitamin D (p = 0.005 and p = 0.036, respectively). CONCLUSIONS Vitamin D deficiency is an independent risk factor for fractures in children. ApaI polymorphism recessive "aa" and TaqI polymorphism dominant "TT" genotypes are associated with higher levels of vitamin D in serum.
Collapse
Affiliation(s)
- Michal Karpiński
- a Department of Pediatric Orthopedics and Traumatology , Medical University of Bialystok , Białystok , POLAND
| | - Anna Galicka
- b Department of Medical Chemistry , Medical University of Bialystok , Białystok , POLAND
| | - Robert Milewski
- c Department of Statistics and Medical Informatics , Medical University of Bialystok , Białystok , POLAND
| | - Janusz Popko
- a Department of Pediatric Orthopedics and Traumatology , Medical University of Bialystok , Białystok , POLAND
| | | | - Sidney J Stohs
- e School of Pharmacy and Health Professions, Creighton University , Omaha , Nebraska
| |
Collapse
|
184
|
Datta P, Philipsen PA, Olsen P, Bogh MK, Johansen P, Schmedes AV, Morling N, Wulf HC. The half-life of 25(OH)D after UVB exposure depends on gender and vitamin D receptor polymorphism but mainly on the start level. Photochem Photobiol Sci 2017; 16:985-995. [DOI: 10.1039/c6pp00258g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The 25(OH)D decrease over time in a group (N= 22) with high 25(OH)D start levels was exponential. The half-life (T1/2) was 89 days and prolonged in materials with lower 25(OH)D start levels.
Collapse
Affiliation(s)
- Pameli Datta
- Department of Dermatology
- Copenhagen University Hospital
- Bispebjerg Hospital
- 2400 Copenhagen NV
- Denmark
| | - Peter A. Philipsen
- Department of Dermatology
- Copenhagen University Hospital
- Bispebjerg Hospital
- 2400 Copenhagen NV
- Denmark
| | - Peter Olsen
- Department of Dermatology
- Copenhagen University Hospital
- Bispebjerg Hospital
- 2400 Copenhagen NV
- Denmark
| | - Morten K. Bogh
- Department of Dermatology
- Copenhagen University Hospital
- Bispebjerg Hospital
- 2400 Copenhagen NV
- Denmark
| | - Peter Johansen
- Section of Forensic Genetics
- Department of Forensic Medicine
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
| | - Anne V. Schmedes
- Department of Clinical Immunology and Biochemistry
- Lillebaelt Hospital
- 7100 Vejle
- Denmark
| | - Niels Morling
- Section of Forensic Genetics
- Department of Forensic Medicine
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
| | - Hans C. Wulf
- Department of Dermatology
- Copenhagen University Hospital
- Bispebjerg Hospital
- 2400 Copenhagen NV
- Denmark
| |
Collapse
|
185
|
Abbas MA. Physiological functions of Vitamin D in adipose tissue. J Steroid Biochem Mol Biol 2017; 165:369-381. [PMID: 27520301 DOI: 10.1016/j.jsbmb.2016.08.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022]
Abstract
Adipose tissue has long been identified as the major site of vitamin D storage. Recent studies have demonstrated that VDR and vitamin D metabolizing enzymes are expressed in adipocytes. Furthermore, it has been shown that vitamin D regulates adipogenic gene expression as well as adipocyte apoptosis. Vitamin D is active in adipocytes at all levels. It interacts with membrane receptors, adaptor molecules, and nuclear coregulator proteins. Several functions of unliganded nVDR were discovered by studying human samples from patients having hereditary vitamin D resistant rickets, transgenic mice overexpressing the VDR and VDR knockout mice. Through its genomic action, vitamin D participates in the regulation of energy metabolism by controlling the expression of uncoupling proteins. In vitro, vitamin D stimulates lipogenesis and inhibits lipolysis by interacting with mVDR. mVDR is present in caveolae of the plasma membrane and is the same as the classic nVDR. In addition, vitamin D affects directly the expression of the appetite regulating hormone, leptin. Some researchers reported also that vitamin D regulates the expression of the insulin sensitizing hormone, adiponectin. Vitamin D reduced cytokine release and adipose tissue inflammation through the inhibition of NF-κB signaling. Scientific research investigating the role of adipose tissue resident immune cells in the pathogenesis of obesity-associated inflammation is scarce. Obesity is associated with vitamin D deficiency. However there is no scientific evidence to prove that vitamin D deficiency predispose to obesity. Vitamin D supplementation may prevent obesity but it does not lead to weight loss in obese subjects.
Collapse
|
186
|
Dulla YAT, Kurauchi Y, Hisatsune A, Seki T, Shudo K, Katsuki H. Regulatory Mechanisms of Vitamin D 3 on Production of Nitric Oxide and Pro-inflammatory Cytokines in Microglial BV-2 Cells. Neurochem Res 2016; 41:2848-2858. [PMID: 27401255 DOI: 10.1007/s11064-016-2000-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/19/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
Abstract
Inhibition of pro-inflammatory functions of microglia has been considered a promising strategy to prevent pathogenic events in the central nervous system under neurodegenerative conditions. Here we examined potential inhibitory effects of nuclear receptor ligands on lipopolysaccharide (LPS)-induced inflammatory responses in microglial BV-2 cells. We demonstrate that a vitamin D receptor agonist 1,25-dihydroxyvitamin D3 (VD3) and a retinoid X receptor agonist HX630 affect LPS-induced expression of pro-inflammatory factors. Specifically, both VD3 and HX630 inhibited expression of mRNAs encoding inducible nitric oxide synthase (iNOS) and IL-6, whereas expression of IL-1β mRNA was inhibited only by VD3. The inhibitory effect of VD3 and HX630 on expression of iNOS and IL-6 mRNAs was additive. Effect of VD3 and HX630 was also observed for inhibition of iNOS protein expression and nitric oxide production. Moreover, VD3 and HX630 inhibited LPS-induced activation of extracellular signal-regulated kinase (ERK) and nuclear translocation of nuclear factor κB (NF-κB). PD98059, an inhibitor of ERK kinase, attenuated LPS-induced nuclear translocation of NF-κB and induction of mRNAs for iNOS, IL-1β and IL-6. These results indicate that VD3 can inhibit production of several pro-inflammatory molecules from microglia, and that suppression of ERK activation is at least in part involved in the anti-inflammatory effect of VD3.
Collapse
Affiliation(s)
- Yevgeny Aster T Dulla
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Akinori Hisatsune
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Koichi Shudo
- Research Foundation Itsuu Laboratory, Tokyo, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|