151
|
Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics: review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:50. [PMID: 32451785 PMCID: PMC7248025 DOI: 10.1007/s10856-020-06390-w] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 05/12/2020] [Indexed: 06/02/2023]
Abstract
Hydrogels are cross-linked networks of macromolecular compounds characterized by high water absorption capacity. Such materials find a wide range of biomedical applications. Several polymeric hydrogels can also be used in cosmetics. Herein, the structure, properties and selected applications of hydrogels in cosmetics are discussed in general. Detailed examples from scientific literature are also shown. In this review paper, most common biopolymers used in cosmetics are presented in detail together with issues related to skin treatment and hair conditioning. Hydrogels based on collagen, chitosan, hyaluronic acid, and other polysaccharides have been characterized. New trends in the preparation of hydrogels based on biopolymer blends as well as bigels have been shown. Moreover, biopolymer hydrogels employment in encapsulation has been mentioned.
Collapse
Affiliation(s)
- Stanisław Mitura
- President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Medical Faculty, Nowy Świat 4 st., 62-800, Kalisz, Poland
- Technical University of Liberec, Faculty of Mechanical Engineering, Department of Material Science, Liberec, Czech Republic
| | - Alina Sionkowska
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Chemistry of Biomaterials and Cosmetics, Gagarin 7 street, 87-100, Torun, Poland.
| | - Amit Jaiswal
- Centre for Biomaterials Cellular and Molecular Theranostics (CBCMT) VIT, Vellore, India
| |
Collapse
|
152
|
Nanomaterials in Cosmetics: Recent Updates. NANOMATERIALS 2020; 10:nano10050979. [PMID: 32443655 PMCID: PMC7279536 DOI: 10.3390/nano10050979] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
This review paper collects the recent updates regarding the use of nanomaterials in cosmetics. Special focus is given to the applications of nanomaterials in the cosmetic industry, their unique features, as well as the advantages of nanoscale ingredients compared to non-nanoscale products. The state-of-the-art practices for physicochemical and toxicological characterization of nanomaterials are also reviewed. Moreover, special focus is given to the current regulations and safety assessments that are currently in place regarding the use of nanomaterials in cosmetics—the new 2019 European guidance for the safety assessment of nanomaterials in cosmetics, together with the new proposed methodologies for the toxicity evaluation of nanomaterials. Concerns over health risks have limited the further incorporation of nanomaterials in cosmetics, and since new nanomaterials may be used in the future by the cosmetic industry, a detailed characterization and risk assessment are needed to fulfill the standard safety requirements.
Collapse
|
153
|
Souza MPCD, Sábio RM, Ribeiro TDC, Santos AMD, Meneguin AB, Chorilli M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int J Biol Macromol 2020; 159:804-822. [PMID: 32425271 PMCID: PMC7232078 DOI: 10.1016/j.ijbiomac.2020.05.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The development of gastroretentive systems have been growing lately due to the high demand for carriers that increase drug bioavailability and therapeutic effectiveness after oral administration. Most of systems reported up to now are based on chitosan (CS) due to its peculiar properties, such as cationic nature, biodegradability, biocompatibility and important mucoadhesiveness, which make CS a promising biopolymer to design effective gastroretentive systems. In light of this, we reported in this review the CS versatility to fabricate different types of nano- and microstructured gastroretentive systems. For a better understanding of the gastric retention mechanisms, we highlighted expandable, density-based, magnetic, mucoadhesive and superporous systems. The biological and chemical properties of CS, anatomophysiological aspects related to gastrointestinal tract (GIT) and some applications of these systems are also described here. Overall, this review may assist researchers to explore new strategies to design safe and efficient gastroretentive systems in order to popularize them in the treatment of diseases and clinical practices.
Collapse
Affiliation(s)
- Maurício Palmeira Chaves de Souza
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Tais de Cassia Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Aline Martins Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Andréia Bagliotti Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil.
| |
Collapse
|
154
|
Apryatina KV, Tkachuk EK, Smirnova LA. Influence of macromolecules conformation of chitosan on its graft polymerization with vinyl monomers and the copolymer properties. Carbohydr Polym 2020; 235:115954. [DOI: 10.1016/j.carbpol.2020.115954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/15/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
|
155
|
A Chitosanase mutant from Streptomyces sp. N174 prefers to produce functional chitopentasaccharide. Int J Biol Macromol 2020; 151:1091-1098. [DOI: 10.1016/j.ijbiomac.2019.10.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
|
156
|
Yihun FA, Ifuku S, Saimoto H, Izawa H, Morimoto M. Highly transparent and flexible surface modified chitin nanofibers reinforced poly (methyl methacrylate) nanocomposites: Mechanical, thermal and optical studies. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
157
|
Hong S, Yuan Y, Zhang K, Lian H, Liimatainen H. Efficient Hydrolysis of Chitin in a Deep Eutectic Solvent Synergism for Production of Chitin Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E869. [PMID: 32365931 PMCID: PMC7279284 DOI: 10.3390/nano10050869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
A deep eutectic solvent (DES) derived from ferric chloride hexahydrate and betaine chloride (molar ratio of 1:1) was used as hydrolytic media for production of chitin nanocrystals (ChNCs) with a high yield (up to 88.5%). The synergistic effect of Lewis acid and released Brønsted acid from betaine hydrochloride enabled the efficient hydrolysis of chitin for production of ChNCs coupled with ultrasonication with low energy consumption. The obtained ChNCs were with an average diameter of 10 nm and length of 268 nm, and a crystallinity of 89.2% with optimal synthesis conditions (at 100 °C for 1 h with chitin-to-DES mass ratio of 1:20). The ChNCs were further investigated as efficient emulsion stabilizers, and they resulted in stable o/w emulsions even at a high oil content of 50% with a low ChNC dosage of 1 mg/g. Therefore, a potential approach based on a DES on the production of chitin-based nanoparticles as emulsifiers is introduced.
Collapse
Affiliation(s)
- Shu Hong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| | - Yang Yuan
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| | - Kaitao Zhang
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| | - Hailan Lian
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Henrikki Liimatainen
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland; (Y.Y.); (K.Z.)
| |
Collapse
|
158
|
Enigmatic Microalgae from Aeroterrestrial and Extreme Habitats in Cosmetics: The Potential of the Untapped Natural Sources. COSMETICS 2020. [DOI: 10.3390/cosmetics7020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With the increasing demand for natural and safe products in cosmetics, algae with their diverse and valuable bioactive compounds are gaining vital importance. Until now, cosmetics have focused mainly on the use of freshwater and marine algae. However, algae are not restricted to aquatic habitats. They are found in essentially every type of aeroterrestrial and extreme environment on the Earth. There, they have to cope with harsh ecological conditions and have developed special strategies to thrive in these inimical habitats. Although not thoroughly studied, their adaptations include protective biochemical compounds which can find their application or are already used in the field of cosmetics. With proper cultivation techniques, algae from these habitats can provide novel sources of high-value functional products for the cosmetics industry, which have the advantage of being obtained in eco-friendly and cost-effective processes. However, it has to be considered that a few aeroterrestrial and extremophilic algae can be toxin producers, and in order to ensure conformity to the safe quality standards, all new ingredients must be properly tested. The aim of the present review is to unveil the hidden and underestimated potential of the enigmatic algae of aeroterrestrial and extreme habitats for the rapidly developing modern cosmetic industries.
Collapse
|
159
|
Luo C, Li M, Yuan R, Yang Y, Lu Z, Ge L. Biocompatible Self-Healing Coating Based on Schiff Base for Promoting Adhesion of Coral Cells. ACS APPLIED BIO MATERIALS 2020; 3:1481-1495. [PMID: 35021639 DOI: 10.1021/acsabm.9b01113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Layer-by-layer self-assembly (LBL) technique is a very efficient and convenient method to modify the substrate surface. In this study, we report a self-repairing surface coating that can promote cell adhesion, especially for enhancing the adhesion of coral cells on the basal surface. The results confirmed that the modified chitosan-dialdehyde starch film based on Schiff base has good biocompatibility for common mammalian cells, such as normal human dermal fibroblasts (NHDFs) and relatively special cells (coral cells). The cytotoxicity test indicated that the optical density values of the experimental group films at 490 nm were higher than those of the control group in this study. In addition, the self-repairing coating modified by phase transition lysozyme can maintain its adhesion ability underwater for a period of time. Therefore, they have great application on substrates requiring underwater adhesion. Our results confirmed that the modified chitosan-dialdehyde starch self-healing films could provide a biocompatible coating material to promote the adhesion of normal human epidermal fibroblasts or coral cells.
Collapse
Affiliation(s)
- Chenxi Luo
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Minli Li
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Renqiang Yuan
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Yifan Yang
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Zuhong Lu
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Liqin Ge
- National Demonstration Centre for Experimental Biomedical Engineering Education, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
160
|
Manimohan M, Pugalmani S, Sithique MA. Biologically Active Water Soluble Novel Biopolymer/Hydrazide Based O-Carboxymethyl Chitosan Schiff Bases: Synthesis and Characterisation. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01487-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
161
|
Wysokowski M, Machałowski T, Petrenko I, Schimpf C, Rafaja D, Galli R, Ziętek J, Pantović S, Voronkina A, Kovalchuk V, Ivanenko VN, Hoeksema BW, Diaz C, Khrunyk Y, Stelling AL, Giovine M, Jesionowski T, Ehrlich H. 3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo. Mar Drugs 2020; 18:E123. [PMID: 32092907 PMCID: PMC7074400 DOI: 10.3390/md18020123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Structure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed. For the first time, a method to obtain calcium carbonate deposition ex vivo, using living mollusks hemolymph and a marine-sponge-derived template, is specifically described. For this purpose, the marine sponge Aplysin aarcheri and the terrestrial snail Cornu aspersum were selected as appropriate 3D chitinous scaffold and as hemolymph donor, respectively. The formation of calcium-based phase on the surface of chitinous matrix after its immersion into hemolymph was confirmed by Alizarin Red staining. A direct role of mollusks hemocytes is proposed in the creation of fine-tuned microenvironment necessary for calcification ex vivo. The X-ray diffraction pattern of the sample showed a high CaCO3 amorphous content. Raman spectroscopy evidenced also a crystalline component, with spectra corresponding to biogenic calcite. This study resulted in the development of a new biomimetic product based on ex vivo synthetized ACC and calcite tightly bound to the surface of 3D sponge chitin structure.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Tomasz Machałowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Jerzy Ziętek
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20612 Lublin, Poland;
| | - Snežana Pantović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro;
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Bert W. Hoeksema
- Taxonomy and Systematics Group, Naturalis Biodiversity Center, 2333CR Leiden, The Netherlands;
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AG Groningen, The Netherlands
| | - Cristina Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 Old Dixie Hwy, Fort Pierce, FL 34946, USA;
| | - Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia;
- The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Akademicheskaya Str. 20, 620990 Ekaterinburg, Russia
| | - Allison L. Stelling
- Department of Biochemistry, Duke University Medical School, Durham, NC 27708, USA;
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
162
|
Feás X, Vázquez-Tato MP, Seijas JA, Pratima G. Nikalje A, Fraga-López F. Extraction and Physicochemical Characterization of Chitin Derived from the Asian Hornet, Vespa velutina Lepeletier 1836 (Hym.: Vespidae). Molecules 2020; 25:molecules25020384. [PMID: 31963436 PMCID: PMC7024375 DOI: 10.3390/molecules25020384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
Fifteen years ago, at least one multimated female yellow-legged Asian hornet (Vespa velutina Lepeletier 1836) arrived in France, which gave rise to a pan-European invasion. In this study, the isolation and characterization of chitin (CHI) that was obtained from Vespa velutina (CHIVV) is described. In addition, an easy procedure is carried out to capture the raw insect, selectively and with high rates of success. The chitin contents of dry VV was observed to be 11.7%. Fourier transform infrared spectroscopy (FTIR), solid-state NMR (ssNMR), elemental analysis (EA), scanning electron microscopy (SEM), and thermogravimetric analysis (TG) characterized the physicochemical properties of CHIVV. The obtained CHIVV is close to pure (43.47% C, 6.94% H, and 6.85% N), and full acetylated with a value of 95.44%. Additionally, lifetime and kinetic parameters such as activation E and the frequency factor A using model-free and model-fitting methods, were determined. For CHIVV the solid state mechanism that follows the thermodegradation is of type F2 (random nucleation around two nuclei). The invasive Asian hornet is a promising alternative source of CHI, based on certain factors, such as the current and probable continued abundance of the quantity and quality of the product obtained.
Collapse
Affiliation(s)
- Xesús Feás
- Academy of Veterinary Sciences of Galicia, Edificio EGAP, Rúa Madrid, No. 2-4, 15707 Santiago de Compostela, (A Coruña), Spain
- Correspondence: (X.F.); (F.F.-L.)
| | - M. Pilar Vázquez-Tato
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad of Santiago De Compostela, Alfonso X el Sabio, 27002 Lugo, Spain; (M.P.V.-T.); (J.A.S.)
| | - Julio A. Seijas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad of Santiago De Compostela, Alfonso X el Sabio, 27002 Lugo, Spain; (M.P.V.-T.); (J.A.S.)
| | - Anna Pratima G. Nikalje
- Department of Chemistry, Wilson College, Girgaon Chawpatty, Mumbai 400007, Maharashtra, India;
| | - Francisco Fraga-López
- Departamento de Física Aplicada Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain
- Correspondence: (X.F.); (F.F.-L.)
| |
Collapse
|
163
|
Sharkawy A, Casimiro FM, Barreiro MF, Rodrigues AE. Enhancing trans-resveratrol topical delivery and photostability through entrapment in chitosan/gum Arabic Pickering emulsions. Int J Biol Macromol 2020; 147:150-159. [PMID: 31923496 DOI: 10.1016/j.ijbiomac.2020.01.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 01/21/2023]
Abstract
The surfactant-free nature and higher stability of Pickering emulsions make them preferable solutions over conventional emulsions for skin applications. In this work, Pickering emulsions stabilized by chitosan/gum Arabic (CH/GA) nanoparticles were tested as vehicles for trans-resveratrol topical delivery. Skin absorption was examined ex vivo using Franz diffusion cells and porcine skin. Pickering emulsions allowed higher cutaneous retention and lower permeation of resveratrol, in comparison with a control solution based on a 20% v/v ethanol. The total amount of resveratrol retained in the skin, 24 h after the application, was 11.60% and 10.82% of the applied dose for the tested Pickering emulsion-based formulations prepared with 0.5% and 1.5% w/v CH/GA nanoparticles, respectively. In contrast, resveratrol skin retention from the control solution was only 2.86%. Confocal laser scanning microscopy revealed enhanced skin deposition of Nile Red to deeper layers from the Pickering emulsion-based formulations. Moreover, Pickering emulsions led to trans-resveratrol photostability increase, as measured after exposure to UV for 4 h. These results show that the CH/GA Pickering emulsions are promising solutions for the topical delivery of trans-resveratrol and have the potential to be used as green cosmetic products.
Collapse
Affiliation(s)
- Asma Sharkawy
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Filipa M Casimiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-253 Bragança, Portugal; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Alírio E Rodrigues
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
164
|
Bagal-Kestwal DR, Chiang BH. Exploration of Chitinous Scaffold-Based Interfaces for Glucose Sensing Assemblies. Polymers (Basel) 2019; 11:E1958. [PMID: 31795230 PMCID: PMC6960682 DOI: 10.3390/polym11121958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023] Open
Abstract
: The nanomaterial-integrated chitinous polymers have promoted the technological advancements in personal health care apparatus, particularly for enzyme-based devices like the glucometer. Chitin and chitosan, being natural biopolymers, have attracted great attention in the field of biocatalysts engineering. Their remarkable tunable properties have been explored for enhancing enzyme performance and biosensor advancements. Currently, incorporation of nanomaterials in chitin and chitosan-based biosensors are also widely exploited for enzyme stability and interference-free detection. Therefore, in this review, we focus on various innovative multi-faceted strategies used for the fabrication of biological assemblies using chitinous biomaterial interface. We aim to summarize the current development on chitin/chitosan and their nano-architecture scaffolds for interdisciplinary biosensor research, especially for analytes like glucose. This review article will be useful for understanding the overall multifunctional aspects and progress of chitin and chitosan-based polysaccharides in the food, biomedical, pharmaceutical, environmental, and other diverse applications.
Collapse
Affiliation(s)
- Dipali R. Bagal-Kestwal
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Been-Huang Chiang
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| |
Collapse
|
165
|
Salehi B, Sharifi-Rad J, Seca AML, Pinto DCGA, Michalak I, Trincone A, Mishra AP, Nigam M, Zam W, Martins N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019; 24:E4182. [PMID: 31752200 PMCID: PMC6891420 DOI: 10.3390/molecules24224182] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Seaweeds have received huge interest in recent years given their promising potentialities. Their antioxidant, anti-inflammatory, antitumor, hypolipemic, and anticoagulant effects are among the most renowned and studied bioactivities so far, and these effects have been increasingly associated with their content and richness in both primary and secondary metabolites. Although primary metabolites have a pivotal importance such as their content in polysaccharides (fucoidans, agars, carragenans, ulvans, alginates, and laminarin), recent data have shown that the content in some secondary metabolites largely determines the effective bioactive potential of seaweeds. Among these secondary metabolites, phenolic compounds feature prominently. The present review provides the most remarkable insights into seaweed research, specifically addressing its chemical composition, phytopharmacology, and cosmetic applications.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, Bam University of Medical Sciences, Bam 4340847, Iran;
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| | - Ana M. L. Seca
- cE3c- Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Diana C. G. A. Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland;
| | - Antonio Trincone
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Naples, Italy;
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal-246174, Uttarakhand, India;
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal-246174, Uttarakhand, India;
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | - Natália Martins
- Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
166
|
Rizeq BR, Younes NN, Rasool K, Nasrallah GK. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int J Mol Sci 2019; 20:E5776. [PMID: 31744157 PMCID: PMC6888098 DOI: 10.3390/ijms20225776] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/06/2023] Open
Abstract
The development of advanced nanomaterials and technologies is essential in biomedical engineering to improve the quality of life. Chitosan-based nanomaterials are on the forefront and attract wide interest due to their versatile physicochemical characteristics such as biodegradability, biocompatibility, and non-toxicity, which play a promising role in biological applications. Chitosan and its derivatives are employed in several applications including pharmaceuticals and biomedical engineering. This article presents a comprehensive overview of recent advances in chitosan derivatives and nanoparticle synthesis, as well as emerging applications in medicine, tissue engineering, drug delivery, gene therapy, and cancer therapy. In addition to the applications, we critically review the main concerns and mitigation strategies related to chitosan bactericidal properties, toxicity/safety using tissue cultures and animal models, and also their potential environmental impact. At the end of this review, we also provide some of future directions and conclusions that are important for expanding the field of biomedical applications of the chitosan nanoparticles.
Collapse
Affiliation(s)
- Balsam R. Rizeq
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar;
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nadin N. Younes
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar;
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 5825, Doha, Qatar
| | - Gheyath K. Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar;
| |
Collapse
|
167
|
Li B, Wang J, Moustafa ME, Yang H. Ecofriendly Method to Dissolve Chitosan in Plain Water. ACS Biomater Sci Eng 2019; 5:6355-6360. [DOI: 10.1021/acsbiomaterials.9b00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Boxuan Li
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Mahmoud E. Moustafa
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
168
|
Mirajkar SJ, Dalvi SG, Ramteke SD, Suprasanna P. Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. Int J Biol Macromol 2019; 139:1212-1223. [DOI: 10.1016/j.ijbiomac.2019.08.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022]
|
169
|
Kaczmarek MB, Struszczyk-Swita K, Li X, Szczęsna-Antczak M, Daroch M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front Bioeng Biotechnol 2019; 7:243. [PMID: 31612131 PMCID: PMC6776590 DOI: 10.3389/fbioe.2019.00243] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Chitin and its N-deacetylated derivative chitosan are two biological polymers that have found numerous applications in recent years, but their further deployment suffers from limitations in obtaining a defined structure of the polymers using traditional conversion methods. The disadvantages of the currently used industrial methods of chitosan manufacturing and the increasing demand for a broad range of novel chitosan oligosaccharides (COS) with a fully defined architecture increase interest in chitin and chitosan-modifying enzymes. Enzymes such as chitinases, chitosanases, chitin deacetylases, and recently discovered lytic polysaccharide monooxygenases had attracted considerable interest in recent years. These proteins are already useful tools toward the biotechnological transformation of chitin into chitosan and chitooligosaccharides, especially when a controlled non-degradative and well-defined process is required. This review describes traditional and novel enzymatic methods of modification of chitin and its derivatives. Recent advances in chitin processing, discovery of increasing number of new, well-characterized enzymes and development of genetic engineering methods result in rapid expansion of the field. Enzymatic modification of chitin and chitosan may soon become competitive to conventional conversion methods.
Collapse
Affiliation(s)
- Michal Benedykt Kaczmarek
- Institute of Technical Biochemistry, Lodz University of Technology, Łódź, Poland.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
170
|
Rujiravanit R, Kantakanun M, Chokradjaroen C, Vanichvattanadecha C, Saito N. Simultaneous deacetylation and degradation of chitin hydrogel by electrical discharge plasma using low sodium hydroxide concentrations. Carbohydr Polym 2019; 228:115377. [PMID: 31635748 DOI: 10.1016/j.carbpol.2019.115377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 01/07/2023]
Abstract
Electrical discharge plasma occurring in a liquid phase, so called solution plasma, can generate highly active species, e.g. free radicals, which can involve in various chemical reactions, leading to less chemical uses. In this study, solution plasma was applied to deacetylation of chitin aiming to reduce the use of alkali. It was found that solution plasma could induce deacetylation of chitin hydrogels that were dispersed in MeOH/water solutions containing low NaOH concentrations (1-12%). Due to the action of free radicals, some extent of chain session of the polymer occurred during the plasma treatment. The degree of deacetylation and molecular weight of the obtained chitosan were 78% and 220 kDa, respectively, after the plasma treatment for five cycles (1 h/cycle) by using 90% MeOH/water solution containing 12% NaOH. The obtained chitosan could completely dissolve in 2% acetic acid solution and had antibacterial activities against S. aureus and E. coli.
Collapse
Affiliation(s)
- Ratana Rujiravanit
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand.
| | - Maneekarn Kantakanun
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - Chayanaphat Chokradjaroen
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand
| | - Chutima Vanichvattanadecha
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Nagahiro Saito
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
171
|
Schmitz C, Auza LG, Koberidze D, Rasche S, Fischer R, Bortesi L. Conversion of Chitin to Defined Chitosan Oligomers: Current Status and Future Prospects. Mar Drugs 2019; 17:E452. [PMID: 31374920 PMCID: PMC6723438 DOI: 10.3390/md17080452] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Chitin is an abundant polysaccharide primarily produced as an industrial waste stream during the processing of crustaceans. Despite the limited applications of chitin, there is interest from the medical, agrochemical, food and cosmetic industries because it can be converted into chitosan and partially acetylated chitosan oligomers (COS). These molecules have various useful properties, including antimicrobial and anti-inflammatory activities. The chemical production of COS is environmentally hazardous and it is difficult to control the degree of polymerization and acetylation. These issues can be addressed by using specific enzymes, particularly chitinases, chitosanases and chitin deacetylases, which yield better-defined chitosan and COS mixtures. In this review, we summarize recent chemical and enzymatic approaches for the production of chitosan and COS. We also discuss a design-of-experiments approach for process optimization that could help to enhance enzymatic processes in terms of product yield and product characteristics. This may allow the production of novel COS structures with unique functional properties to further expand the applications of these diverse bioactive molecules.
Collapse
Affiliation(s)
- Christian Schmitz
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Lilian González Auza
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - David Koberidze
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Stefan Rasche
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany
| | - Rainer Fischer
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Indiana Bioscience Research Institute, 1345 W 16th St #300, Indianapolis, IN 46202, USA
| | - Luisa Bortesi
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
172
|
Gupta PL, Rajput M, Oza T, Trivedi U, Sanghvi G. Eminence of Microbial Products in Cosmetic Industry. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:267-278. [PMID: 31214881 PMCID: PMC6646485 DOI: 10.1007/s13659-019-0215-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/13/2019] [Indexed: 05/21/2023]
Abstract
Cosmetology is the developing branch of science, having direct impact on the society. The cosmetic sector is interested in finding novel biological alternatives which can enhance the product attributes as well as it can substitute chemical compounds. Many of the compounds are having biological origin and are acquire from bacteria, fungi, and algae. A range of biological compounds, like bio-surfactant, vitamins, antioxidants, pigments, enzymes, peptides have promising features and beneficial properties. Moreover, these products can be produced commercially with ease. The review will encompass the importance and use of microbial compounds for new cosmetic formulations as well as products associated with it.
Collapse
Affiliation(s)
| | | | - Tejas Oza
- Department of Microbiology, Marwadi University, Rajkot, 360001, India
| | | | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot, 360001, India.
| |
Collapse
|
173
|
Morganti P, Morganti G, Colao C. Biofunctional Textiles for Aging Skin. Biomedicines 2019; 7:biomedicines7030051. [PMID: 31319516 PMCID: PMC6784157 DOI: 10.3390/biomedicines7030051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
The skin is the largest organ in the human body, acting as the first protective barrier against the external environment aggression, such as UV rays and atmospheric nanoparticulate pollutants. On the one hand, the skin employs different antioxidant agents to protect its natural oxidative balance. On the other hand, ageing phenomena are the main cause of skin barrier damages, leading to a disequilibrium in the physiological redox system. Thus, the necessity to find new innovative cosmetic means, such as biodegradable non-woven tissues able to load, carry and release active ingredients in the right skin layers. These innovative cosmetic tissues can not only protect the skin from toxic environmental agents, but may balance the natural skin barrier, also acting as anti-aging agents when their fibers are bound to the right ingredients. The proposed tissues, consisting of polysaccharide natural fibers made of chitin nanofibrils and nanochitin, seem to be an ideal candidate for the production of new and effective biofunctional textiles, also because they are able to mimic the skin's extra cellular matrix (ECM) when electrospun. These innovative cosmeceuticals have shown the possibility of being used for food formulations as well as for topic anti-aging agents, having shown an interesting repairing effectiveness on skin and also on hair. Thus, they could be used both as active ingredient and as skin smart active carriers in substitution of normal emulsions, being also biodegradable, free of chemicals, and obtainable from waste material.
Collapse
Affiliation(s)
- Pierfrancesco Morganti
- Dermatol Unit, Campania University, "Luigi Vanvitelli", 80100 Naples, Italy.
- Dermatol Department, China Medical University, Shenyang 110001, China.
| | | | | |
Collapse
|
174
|
Afonso C, Hirano R, Gaspar A, Chagas E, Carvalho R, Silva F, Leonardi G, Lopes P, Silva C, Yoshida C. Biodegradable antioxidant chitosan films useful as an anti-aging skin mask. Int J Biol Macromol 2019; 132:1262-1273. [DOI: 10.1016/j.ijbiomac.2019.04.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
|
175
|
Ruthenium(II)‐Chitosan, an Enantioselective Catalyst for the Transfer Hydrogenation of
N
‐Heterocyclic Ketones. ChemCatChem 2019. [DOI: 10.1002/cctc.201900363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
176
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
177
|
Inhibition of bacterial adhesion and biofilm formation of sulfonated chitosan against Pseudomonas aeruginosa. Carbohydr Polym 2019; 206:412-419. [DOI: 10.1016/j.carbpol.2018.11.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 11/19/2022]
|
178
|
Li X, Sun J, Che Y, Lv Y, Liu F. Antibacterial properties of chitosan chloride-graphene oxide composites modified quartz sand filter media in water treatment. Int J Biol Macromol 2019; 121:760-773. [DOI: 10.1016/j.ijbiomac.2018.10.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
|
179
|
Murugaiyan M, Mani SP, Sithique MA. Zinc(ii) centered biologically active novel N,N,O donor tridentate water-soluble hydrazide-based O-carboxymethyl chitosan Schiff base metal complexes: synthesis and characterisation. NEW J CHEM 2019. [DOI: 10.1039/c9nj00670b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, novel eco-friendly and water-soluble chitosan Schiff base derivatives have been designed for potential use in antimicrobial applications.
Collapse
Affiliation(s)
- Manimohan Murugaiyan
- PG & Research Department of Chemistry
- Islamiah College (Autonomous)
- Vaniyambadi – 635 752, Vellore District
- India
| | - S. Pugal Mani
- Department of Analytical Chemistry
- University of Madras
- Chennai – 600 025
- India
| | - Mohamed Aboobucker Sithique
- PG & Research Department of Chemistry
- Islamiah College (Autonomous)
- Vaniyambadi – 635 752, Vellore District
- India
| |
Collapse
|
180
|
Methylglyoxal, the Major Antibacterial Factor in Manuka Honey: An Alternative to Preserve Natural Cosmetics? COSMETICS 2018. [DOI: 10.3390/cosmetics6010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microbial safety is an essential prerequisite of cosmetics, and preservatives are required to prevent product spoilage and damage to consumers’ health. Consumer concern about the safety of some cosmetic ingredients and the increasing demand for more natural beauty products has driven cosmetic industries and formulators to find natural alternatives to replace synthetic preservatives currently used. In this study, methylglyoxal (MGO, the main factor responsible for the antimicrobial activity of manuka honey) was tested for antimicrobial activity against a panel of selected bacteria and mycetes by using conventional microbiological techniques (determination of M.I.C., time-kill assay), and its potential preservative in an O/W emulsion was investigated (challenge test). MGO showed a remarkable and fast antibacterial activity (M.I.C. values 0.150–0.310 mg/mL), while the inhibitory activity against fungi was less marked (M.I.C. values 1.25–10 mg/mL); chitosan has proven to be a synergist of antimicrobial effectiveness of MGO. Results of the challenge test showed that the addition of MGO to a cream formulation was efficient against microbial contamination. On the basis of our results, MGO appears to be a good candidate as a cosmetic preservative of natural origin; further studies are needed to confirm its applicability and its safety.
Collapse
|
181
|
Szőllősi G, Kolcsár VJ. Highly Enantioselective Transfer Hydrogenation of Prochiral Ketones Using Ru(II)-Chitosan Catalyst in Aqueous Media. ChemCatChem 2018. [DOI: 10.1002/cctc.201801602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- György Szőllősi
- MTA-SZTE Stereochemistry Research Group; University of Szeged; Dóm tér 8 Szeged 6720 Hungary
- University of Szeged Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry; Eötvös u. 6 Szeged 6720 Hungary)
| | | |
Collapse
|
182
|
Kopacic S, Walzl A, Hirn U, Zankel A, Kniely R, Leitner E, Bauer W. Application of Industrially Produced Chitosan in the Surface Treatment of Fibre-Based Material: Effect of Drying Method and Number of Coating Layers on Mechanical and Barrier Properties. Polymers (Basel) 2018; 10:E1232. [PMID: 30961157 PMCID: PMC6401777 DOI: 10.3390/polym10111232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/30/2018] [Accepted: 11/03/2018] [Indexed: 11/16/2022] Open
Abstract
Chitosan is a versatile biopolymer with many interesting functionalities. Its effects on the barrier and mechanical properties of single- or double-coated fibre-based packaging papers in dependence on the applied drying regime were successfully tested. Our investigations revealed chitosan to be a highly robust biopolymer, since the different drying regimes did not alter its contribution to the development of strength and barrier properties of the coated packaging papers. These properties showed a stronger influence of the applied coat weights than of the different drying regimes. The effect of chitosan coatings were quantified by measuring tensile strength (TS), burst strength (BS) and tensile energy absorption (TEA). These revealed that TS, BS and TEA of the coated papers increased significantly. Moreover, the chitosan-coated papers were less permeable against water vapor and air. High grease resistance was observed for double-coated papers, irrespective of the drying regimes. The coated paper surface showed a more hydrophilic character, resulting in lower contact angles and higher water absorption properties. In this study, industrially produced chitosan has been proven to be a renewable, robust biopolymer that can be utilized as an additive to increase strength and the barrier properties of fibre-based materials.
Collapse
Affiliation(s)
- Samir Kopacic
- Institute of Paper, Pulp and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Andrea Walzl
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9/2, 8010 Graz, Austria.
| | - Ulrich Hirn
- Institute of Paper, Pulp and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Armin Zankel
- Institute of Electron Microscopy and Nanoanalysis, NAWI Graz, Graz University of Technology and Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria.
| | - Rudolf Kniely
- Institute of Paper, Pulp and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Erich Leitner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9/2, 8010 Graz, Austria.
| | - Wolfgang Bauer
- Institute of Paper, Pulp and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| |
Collapse
|
183
|
Comparison of Rheological, Drug Release, and Mucoadhesive Characteristics upon Storage between Hydrogels with Unmodified or Beta-Glycerophosphate-Crosslinked Chitosan. INT J POLYM SCI 2018. [DOI: 10.1155/2018/3592843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The physicochemical characteristics of beta-glycerophosphate-crosslinked chitosan hydrogels were investigated upon long-term storage at ambient, accelerated, and refrigerated conditions and compared to unmodified chitosan formulations. Additionally, the impact of chitosan modification on the ex vivo mucoadhesive performance in contact with porcine vaginal mucosa and on the drug release profile from hydrogels was evaluated. Viscosity and mechanical properties of formulations with unmodified chitosan decreased significantly upon storage regardless of tested conditions as a result of hydrolytic depolymerization. Introduction of ion crosslinker exerted stabilizing effect on physicochemical performance of chitosan hydrogels but only upon storage at refrigerated conditions. Beta-glycerophosphate-modified chitosan formulations preserved organoleptic, rheological behavior, and hydrogel structure up to 3-month storage at 4 ± 2°C. Viscosity variations upon storage influenced markedly mucoadhesive properties and drug release rate from hydrogels.
Collapse
|