151
|
Alhudaithy S, Hoshino K. Biocompatible micro tweezers for 3D hydrogel organoid array mechanical characterization. PLoS One 2022; 17:e0262950. [PMID: 35073389 PMCID: PMC8786121 DOI: 10.1371/journal.pone.0262950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022] Open
Abstract
This study presents novel biocompatible Polydimethylsiloxane (PDMS)-based micromechanical tweezers (μTweezers) capable of the stiffness characterization and manipulation of hydrogel-based organoids. The system showed great potential for complementing established mechanical characterization methods such as Atomic Force Microscopy (AFM), parallel plate compression (PPC), and nanoindentation, while significantly reducing the volume of valuable hydrogels used for testing. We achieved a volume reduction of ~0.22 μl/sample using the μTweezers vs. ~157 μl/sample using the PPC, while targeting high-throughput measurement of widely adopted micro-mesoscale (a few hundred μm-1500 μm) 3D cell cultures. The μTweezers applied and measured nano-millinewton forces through cantilever' deflection with high linearity and tunability for different applications; the assembly is compatible with typical inverted optical microscopes and fit on standard tissue culture Petri dishes, allowing mechanical compression characterization of arrayed 3D hydrogel-based organoids in a high throughput manner. The average achievable output per group was 40 tests per hour, where 20 organoids and 20 reference images in one 35 mm petri dish were tested, illustrating efficient productivity to match the increasing demand on 3D organoids' applications. The changes in stiffness of collagen I hydrogel organoids in four conditions were measured, with ovarian cancer cells (SKOV3) or without (control). The Young's modulus of the control group (Control-day 0, E = 407± 146, n = 4) measured by PPC was used as a reference modulus, where the relative elastic compressive modulus of the other groups based on the stiffness measurements was also calculated (control-day 0, E = 407 Pa), (SKOV3-day 0, E = 318 Pa), (control-day 5, E = 528 Pa), and (SKOV3-day 5, E = 376 Pa). The SKOV3-embedded hydrogel-based organoids had more shrinkage and lowered moduli on day 0 and day 5 than controls, consistently, while SKOV3 embedded organoids increased in stiffness in a similar trend to the collagen I control from day 0 to day 5. The proposed method can contribute to the biomedical, biochemical, and regenerative engineering fields, where bulk mechanical characterization is of interest. The μTweezers will also provide attractive design and application concepts to soft membrane-micro 3D robotics, sensors, and actuators.
Collapse
Affiliation(s)
- Soliman Alhudaithy
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Biomedical Technology, King Saud University, Riyadh, KSA
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
152
|
Dunn E, Chitcholtan K, Sykes P, Garrill A. The Anti-Proliferative Effect of PI3K/mTOR and ERK Inhibition in Monolayer and Three-Dimensional Ovarian Cancer Cell Models. Cancers (Basel) 2022; 14:cancers14020395. [PMID: 35053555 PMCID: PMC8773481 DOI: 10.3390/cancers14020395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In ovarian cancer patients the PI3K/AKT/mTOR and RAS/RAF/MEK/ERK kinase signaling pathways are frequently dysregulated, making them potential targets of therapeutic inhibitors. In this study, we used four human ovarian cancer cell lines grown in two- and three-dimensional models to investigate the potential efficacy of combining two inhibitors, which target these pathways, against ovarian cancer. The inhibitor combination was found to have cell line- and model-dependent synergistic antiproliferative effect. Abstract Most ovarian cancer patients are diagnosed with advanced stage disease, which becomes unresponsive to chemotherapeutic treatments. The PI3K/AKT/mTOR and the RAS/RAF/MEK/ERK kinase signaling pathways are attractive targets for potential therapeutic inhibitors, due to the high frequency of mutations to PTEN, PIK3CA, KRAS and BRAF in several ovarian cancer subtypes. However, monotherapies targeting one of these pathways have shown modest effects in clinical trials. This limited efficacy of the agents could be due to upregulation and increased signaling via the adjacent alternative pathway. In this study, the efficacy of combined PI3K/mTOR (BEZ235) and ERK inhibition (SCH772984) was investigated in four human ovarian cancer cell lines, grown as monolayer and three-dimensional cell aggregates. The inhibitor combination reduced cellular proliferation in a synergistic manner in OV-90 and OVCAR8 monolayers and in OV-90, OVCAR5 and SKOV3 aggregates. Sensitivity to the inhibitors was reduced in three-dimensional cell aggregates in comparison to monolayers. OV-90 cells cultured in large spheroids were sensitive to the inhibitors and displayed a robust synergistic antiproliferative response to the inhibitor combination. In contrast, OVCAR8 spheroids were resistant to the inhibitors. These findings suggest that combined PI3K/mTOR and ERK inhibition could be a useful strategy for overcoming treatment resistance in ovarian cancer and warrants further preclinical investigation. Additionally, in some cell lines the use of different three-dimensional models can influence cell line sensitivity to PI3K/mTOR and RAS/RAF/MEK/ERK pathway inhibitors.
Collapse
Affiliation(s)
- Elizabeth Dunn
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Correspondence: (E.D.); (A.G.)
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch 8011, New Zealand; (K.C.); (P.S.)
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch 8011, New Zealand; (K.C.); (P.S.)
| | - Ashley Garrill
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Correspondence: (E.D.); (A.G.)
| |
Collapse
|
153
|
Nii T, Tabata Y. Immunosuppressive mesenchymal stem cells aggregates incorporating hydrogel microspheres promote an in vitro invasion of cancer cells. Regen Ther 2022; 18:516-522. [PMID: 34977285 PMCID: PMC8668441 DOI: 10.1016/j.reth.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction The objective of this study is to design a co-culture system of cancer cells and three-dimensional (3D) mesenchymal stem cells (MSC) aggregates for the in vitro evaluation of cancer invasion. Methods First, the MSC of an immunosuppressive phenotype (MSC2) were prepared by the MSC stimulation of polyriboinosinic polyribocytidylic acid. By simple mixing MSC2 and gelatin hydrogel microspheres (GM) in a U-bottomed well of 96 well plates which had been pre-coated with poly (vinyl alcohol), 3D MSC2 aggregates incorporating GM were obtained. The amount of chemokine (C–C motif) ligand 5 (CCL5) secreted from the MSC2 aggregates incorporating GM. Finally, an invasion assay was performed to evaluate the cancer invasion rate by co-cultured cancer cells and the 3D MSC2 incorporating GM. Results The amount of CCL5 secreted for the 3D MSC2 aggregates incorporating GM was significantly higher than that of two-dimensional (2D) MSC, 2D MSC2, and 3D MSC aggregates incorporating GM. When MDA-MB-231 human breast cancer cells were co-cultured with the 3D MSC2 aggregates incorporating GM, the invasion rate of cancer cells was significantly high compared with that of 2D MSC or 2D MSC2 and 3D MSC aggregates incorporating GM. In addition, high secretion of matrix metalloproteinase-2 was observed for the 3D MSC2 aggregates/cancer cells system. Conclusions It is concluded that the co-culture system of 3D MSC2 aggregates incorporating GM and cancer cells is promising to evaluate the invasion of cancer cells in vitro. This invasion model is an important tool for anti-cancer drug screening. Mesenchymal stem cells of an immunosuppressive phenotype (MSC2) were obtained. 3D MSC2 aggregates incorporating gelatin hydrogel microspheres were prepared. 3D MSC2 aggregates promoted the invasion rate of cancer cells.
Collapse
Key Words
- (CCL)5, chemokine (C–C motif) ligand
- 2D, two-dimensional
- 3D, three-dimensional
- Anti-cancer drug screening
- CAF, cancer-associated fibroblasts
- Cancer invasion model
- DDW, double-distilled water
- DMEM, Dulbecco's modified Eagle's medium
- ELISA, enzyme-linked immunosolvent assay
- FCS, fetal calf serum
- GM, gelatin hydrogel microspheres
- Gelatin hydrogel microspheres
- MEM, minimum essential medium
- MMP, matrix metalloproteinase
- MSC, mesenchymal stem cells
- MSC2, MSC of an immunosuppressive phenotype
- Mesenchymal stem cells
- PBS, phosphate buffered-saline
- PVA, poly (vinyl alcohol)
- TAM, tumor-associated macrophages
- Three-dimensional cell culture
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
154
|
Bhonde R. Future of regenerative medicine. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022. [DOI: 10.4103/mjdrdypu.mjdrdypu_651_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
155
|
Nandi A, Chakrabarti R. Assessment of Breast Cancer Stem Cell Activity Using a Spheroid Formation Assay. Methods Mol Biol 2022; 2429:485-500. [PMID: 35507183 DOI: 10.1007/978-1-0716-1979-7_33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Evidence is emerging that cancer cells are arranged as a hierarchy that spans from stem cells to lineage-restricted progenitor cells. The recent development of spheroid cultures with several tissue type has provided new opportunities to assess cancer stem cell (CSC) activity by allowing them to propagate under conditions that resemble the microenvironment for growth of tumors. One tissue type widely used for stem cell investigations is mammary tissue, and the sphere formation assay has been used in both normal mammary tissue and in breast cancer. Here, we describe detailed experimental methodology for generating and propagating spheres from normal mammary tissue and primary breast tumors of mice, patient derived xenografts (PDXs) and breast cancer cell lines. We further describe how these sphere cultures can be employed for coculture assays to assess the effect of tumor microenvironment (TME) on self-renewal ability of CSCs in breast cancer.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
156
|
Bär SI, Biersack B, Schobert R. 3D cell cultures, as a surrogate for animal models, enhance the diagnostic value of preclinical in vitro investigations by adding information on the tumour microenvironment: a comparative study of new dual-mode HDAC inhibitors. Invest New Drugs 2022; 40:953-961. [PMID: 35796910 PMCID: PMC9395463 DOI: 10.1007/s10637-022-01280-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 12/15/2022]
Abstract
Anchorage-independent 3D-cultures of multicellular tumour spheroids (MCTS) and in vitro microtumours of cancer cells can provide upfront information on the effects of anticancer drug candidates, tantamount to that obtained from animal xenograft studies. Unlike 2D cancer cell cultures, 3D-models take into account the influence of the tumour microenvironment and the location dependence of drug effects and accumulation. We exemplified this by comparison of the effects of two new dual-mode anticancer agents, Troxbam and Troxham, and their monomodal congeners SAHA (suberoylanilide hydroxamic acid) and CA-4 (combretastatin A-4). We assessed the growth of MCTS of HCT116<sup>wt</sup> human colon carcinoma cells exposed to these compounds, as well as the spatial distribution of dead HCT116<sup>wt</sup> cells in these MCTS. Also, fluorescence imaging of live and fixed MCTS was used to assess the type of cellular death induced by test compounds. Furthermore, an innovative perfusion bioreactor system was used to grow microtumours in the presence or absence of test compounds. Both new investigational compounds led to significant reductions of the size of such MCTS and also of corresponding in vitro microtumours by inducing caspase-9 dependent apoptosis and elevated levels of reactive oxygen species. 3D multicellular tumour spheroids are easy to grow and employ for compound tests in the familiar well-plate set-up. Together with 3D microtumours grown at scaffolds in continuously perfused bioreactors they allow to study, early on in the course of drug evaluations, the communication of tumour cells with their microenvironment to an extent hitherto available only in animal experiments.
Collapse
Affiliation(s)
- Sofia I Bär
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
157
|
Lee KY, Loh HX, Wan ACA. Systems for Muscle Cell Differentiation: From Bioengineering to Future Food. MICROMACHINES 2021; 13:71. [PMID: 35056236 PMCID: PMC8777594 DOI: 10.3390/mi13010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
In light of pressing issues, such as sustainability and climate change, future protein sources will increasingly turn from livestock to cell-based production and manufacturing activities. In the case of cell-based or cultured meat a relevant aspect would be the differentiation of muscle cells into mature muscle tissue, as well as how the microsystems that have been developed to date can be developed for larger-scale cultures. To delve into this aspect we review previous research that has been carried out on skeletal muscle tissue engineering and how various biological and physicochemical factors, mechanical and electrical stimuli, affect muscle cell differentiation on an experimental scale. Material aspects such as the different biomaterials used and 3D vs. 2D configurations in the context of muscle cell differentiation will also be discussed. Finally, the ability to translate these systems to more scalable bioreactor configurations and eventually bring them to a commercial scale will be touched upon.
Collapse
Affiliation(s)
| | | | - Andrew C. A. Wan
- Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore; (K.-Y.L.); (H.-X.L.)
| |
Collapse
|
158
|
El Khoury R, Nagiah N, Mudloff JA, Thakur V, Chattopadhyay M, Joddar B. 3D Bioprinted Spheroidal Droplets for Engineering the Heterocellular Coupling between Cardiomyocytes and Cardiac Fibroblasts. CYBORG AND BIONIC SYSTEMS 2021; 2021:9864212. [PMID: 35795473 PMCID: PMC9254634 DOI: 10.34133/2021/9864212] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Since conventional human cardiac two-dimensional (2D) cell culture and multilayered three-dimensional (3D) models fail in recapitulating cellular complexity and possess inferior translational capacity, we designed and developed a high-throughput scalable 3D bioprinted cardiac spheroidal droplet-organoid model with cardiomyocytes and cardiac fibroblasts that can be used for drug screening or regenerative engineering applications. This study helped establish the parameters for bioprinting and cross-linking a gelatin-alginate-based bioink into 3D spheroidal droplets. A flattened disk-like structure developed in prior studies from our laboratory was used as a control. The microstructural and mechanical stability of the 3D spheroidal droplets was assessed and was found to be ideal for a cardiac scaffold. Adult human cardiac fibroblasts and AC16 cardiomyocytes were mixed in the bioink and bioprinted. Live-dead assay and flow cytometry analysis revealed robust biocompatibility of the 3D spheroidal droplets that supported the growth and proliferation of the cardiac cells in the long-term cultures. Moreover, the heterocellular gap junctional coupling between the cardiomyocytes and cardiac fibroblasts further validated the 3D cardiac spheroidal droplet model.
Collapse
Affiliation(s)
- Raven El Khoury
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| | - Naveen Nagiah
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| | - Joel A. Mudloff
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| |
Collapse
|
159
|
Ayvaz I, Sunay D, Sariyar E, Erdal E, Karagonlar ZF. Three-Dimensional Cell Culture Models of Hepatocellular Carcinoma - a Review. J Gastrointest Cancer 2021; 52:1294-1308. [PMID: 34927218 DOI: 10.1007/s12029-021-00772-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Three-dimensional (3D) cell culture studies are becoming extremely common because of their capability to mimic tumor architecture, such as cell-cell and cell-ECM interactions, more efficiently than 2D monolayer systems. These interactions have important roles in defining the tumor cell behaviors, such as proliferation, differentiation, and most importantly, tumor drug response. OBJECTIVE This review aims to provide an overview of the methods for 3D tumor spheroid formation to model human tumors, specifically concentrated on studies using hepatocellular carcinoma (HCC) cells. METHOD We obtained information from previously published articles. In this review, there is discussion of the scaffold and non-scaffold-based approaches, including hanging drop, bioreactors and 3D bioprinting. RESULTS AND CONCLUSION The mimicking of the tumor microenvironment (TME) as tumor spheroids could provide a valuable platform for studying tumor biology. Multicellular tumor spheroids are self-assembled cultures of mixed cells (tumor and stromal cells) organized in a 3D arrangement. These spheroids closely mimic the main features of human solid tumors, such as structural organization, central hypoxia, and overall oxygen and nutrient gradients. Hepatocellular carcinoma (HCC) is the most common liver malignancy, and most difficult to overcome because of its drug resistance and tumor heterogeneity. In order to mimic this highly heterogeneous environment, 3D cell culture systems are needed.
Collapse
Affiliation(s)
- Irmak Ayvaz
- Genetics and Bioengineering Department, Izmir University of Economics, Izmir, 35330, Turkey
| | - Dilara Sunay
- Genetics and Bioengineering Department, Izmir University of Economics, Izmir, 35330, Turkey
| | - Ece Sariyar
- Genetics and Bioengineering Department, Izmir University of Economics, Izmir, 35330, Turkey
| | - Esra Erdal
- Department of Medical Biology and Genetics, FacultyofMedicine, Dokuz Eylul University, Izmir, 35340, Turkey.,Izmir Biomedicine and Genome Center, Izmir, 35340, Turkey
| | | |
Collapse
|
160
|
Law AMK, Rodriguez de la Fuente L, Grundy TJ, Fang G, Valdes-Mora F, Gallego-Ortega D. Advancements in 3D Cell Culture Systems for Personalizing Anti-Cancer Therapies. Front Oncol 2021; 11:782766. [PMID: 34917509 PMCID: PMC8669727 DOI: 10.3389/fonc.2021.782766] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Over 90% of potential anti-cancer drug candidates results in translational failures in clinical trials. The main reason for this failure can be attributed to the non-accurate pre-clinical models that are being currently used for drug development and in personalised therapies. To ensure that the assessment of drug efficacy and their mechanism of action have clinical translatability, the complexity of the tumor microenvironment needs to be properly modelled. 3D culture models are emerging as a powerful research tool that recapitulates in vivo characteristics. Technological advancements in this field show promising application in improving drug discovery, pre-clinical validation, and precision medicine. In this review, we discuss the significance of the tumor microenvironment and its impact on therapy success, the current developments of 3D culture, and the opportunities that advancements that in vitro technologies can provide to improve cancer therapeutics.
Collapse
Affiliation(s)
- Andrew M K Law
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia
| | - Laura Rodriguez de la Fuente
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia.,Cancer Epigenetic Biology and Therapeutics Lab, Children's Cancer Institute, Randwick, NSW, Australia
| | - Thomas J Grundy
- Life Sciences, Inventia Life Science Pty Ltd, Alexandria, NSW, Australia
| | - Guocheng Fang
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetic Biology and Therapeutics Lab, Children's Cancer Institute, Randwick, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia
| | - David Gallego-Ortega
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
161
|
Bioengineering the ameloblastoma tumour to study its effect on bone nodule formation. Sci Rep 2021; 11:24088. [PMID: 34916549 PMCID: PMC8677805 DOI: 10.1038/s41598-021-03484-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ameloblastoma is a benign, epithelial cancer of the jawbone, which causes bone resorption and disfigurement to patients affected. The interaction of ameloblastoma with its tumour stroma drives invasion and progression. We used stiff collagen matrices to engineer active bone forming stroma, to probe the interaction of ameloblastoma with its native tumour bone microenvironment. This bone-stroma was assessed by nano-CT, transmission electron microscopy (TEM), Raman spectroscopy and gene analysis. Furthermore, we investigated gene correlation between bone forming 3D bone stroma and ameloblastoma introduced 3D bone stroma. Ameloblastoma cells increased expression of MMP-2 and -9 and RANK temporally in 3D compared to 2D. Our 3D biomimetic model formed bone nodules of an average surface area of 0.1 mm2 and average height of 92.37 [Formula: see text] 7.96 μm over 21 days. We demonstrate a woven bone phenotype with distinct mineral and matrix components and increased expression of bone formation genes in our engineered bone. Introducing ameloblastoma to the bone stroma, completely inhibited bone formation, in a spatially specific manner. Multivariate gene analysis showed that ameloblastoma cells downregulate bone formation genes such as RUNX2. Through the development of a comprehensive bone stroma, we show that an ameloblastoma tumour mass prevents osteoblasts from forming new bone nodules and severely restricted the growth of existing bone nodules. We have identified potential pathways for this inhibition. More critically, we present novel findings on the interaction of stromal osteoblasts with ameloblastoma.
Collapse
|
162
|
Abraham DM, Herman C, Witek L, Cronstein BN, Flores RL, Coelho PG. Self-assembling human skeletal organoids for disease modeling and drug testing. J Biomed Mater Res B Appl Biomater 2021; 110:871-884. [PMID: 34837719 DOI: 10.1002/jbm.b.34968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 01/09/2023]
Abstract
Skeletal conditions represent a considerable challenge to health systems globally. Barriers to effective therapeutic development include a lack of accurate preclinical tissue and disease models. Most recently, work was attempted to present a novel whole organ approach to modeling human bone and cartilage tissues. These self-assembling skeletal organoids mimic the cellular milieu and extracellular organization present in native tissues. Bone organoids demonstrated osteogenesis and micro vessel formation, and cartilage organoids showed evidence of cartilage development and maturation. Skeletal organoids derived from both bone and cartilage tissues yielded spontaneous polarization of their cartilaginous and bone components. Using these hybrid skeletal organoids, we successfully generated "mini joint" cultures, which we used to model inflammatory disease and test Adenosine (A2A ) receptor agonists as a therapeutic agent. The work and respective results indicated that skeletal organoids can be an effective biological model for tissue development and disease as well as to test therapeutic agents.
Collapse
Affiliation(s)
- Diana M Abraham
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA
| | - Calvin Herman
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA
| | - Lukasz Witek
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Bruce N Cronstein
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Paulo G Coelho
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
163
|
Ben Hamouda S, Miglino MA, de Sá Schiavo Matias G, Beauchamp G, Lavoie JP. Asthmatic Bronchial Matrices Determine the Gene Expression and Behavior of Smooth Muscle Cells in a 3D Culture Model. FRONTIERS IN ALLERGY 2021; 2:762026. [PMID: 35387054 PMCID: PMC8974673 DOI: 10.3389/falgy.2021.762026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Asthma is associated with increased deposition and altered phenotype of airway smooth muscle (ASM) cells. However, little is known about the processes responsible for these changes. It has been suggested that alterations of the extracellular matrix (ECM) contribute to the remodeling of ASM cells in asthma. Three-dimensional matrices allow the in vitro study of complex cellular responses to different stimuli in a close-to-natural environment. Thus, we investigated the ultrastructural and genic variations of ASM cells cultured on acellular asthmatic and control bronchial matrices. We studied horses, as they spontaneously develop a human asthma-like condition (heaves) with similarities to chronic pulmonary changes observed in human asthma. Primary bronchial ASM cells from asthmatic (n = 3) and control (n = 3) horses were cultured on decellularized bronchi from control (n = 3) and asthmatic (n = 3) horses. Each cell lineage was used to recellularize six different bronchi for 41 days. Histomorphometry on HEPS-stained-recellularized matrices revealed an increased ASM cell number in the control cell/control matrix (p = 0.02) and asthmatic cell/control matrix group (p = 0.04) compared with the asthmatic cell/asthmatic matrix group. Scan electron microscopy revealed a cell invasion of the ECM. While ASM cells showed high adhesion and proliferation processes on the control ECM, the presence of senescent cells and cellular debris in the asthmatic ECM with control or asthmatic ASM cells suggested cell death. When comparing asthmatic with control cell/matrix combinations by targeted next generation sequencing, only AGC1 (p = 0.04), MYO10 (p = 0.009), JAM3 (p = 0.02), and TAGLN (p = 0.001) were differentially expressed out of a 70-gene pool previously associated with smooth muscle remodeling. To our knowledge, this is the first attempt to evaluate the effects of asthmatic ECM on an ASM cell phenotype using a biological bronchial matrix. Our results indicate that bronchial ECM health status contributes to ASM cell gene expression and, possibly, its survival.
Collapse
Affiliation(s)
- Selma Ben Hamouda
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
| | - Maria Angélica Miglino
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Guy Beauchamp
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
- *Correspondence: Jean-Pierre Lavoie
| |
Collapse
|
164
|
Foglietta F, Serpe L, Canaparo R. The Effective Combination between 3D Cancer Models and Stimuli-Responsive Nanoscale Drug Delivery Systems. Cells 2021; 10:3295. [PMID: 34943803 PMCID: PMC8699241 DOI: 10.3390/cells10123295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Stimuli-responsive drug-delivery systems (DDSs) have emerged as a potential tool for applications in healthcare, mainly in the treatment of cancer where versatile nanocarriers are co-triggered by endogenous and exogenous stimuli. Two-dimensional (2D) cell cultures are the most important in vitro model used to evaluate the anticancer activity of these stimuli-responsive DDSs due to their easy manipulation and versatility. However, some limitations suggest that these in vitro models poorly predict the outcome of in vivo studies. One of the main drawbacks of 2D cell cultures is their inadequate representation of the 3D environment's physiological complexity, which sees cells interact with each other and the extracellular matrix (ECM) according to their specific cellular organization. In this regard, 3D cancer models are a promising approach that can overcome the main shortcomings of 2D cancer cell cultures, as these in vitro models possess many peculiarities by which they mimic in vivo tumors, including physiologically relevant cell-cell and cell-ECM interactions. This is, in our opinion, even more relevant when a stimuli-responsive DDS is being investigated. In this review, we therefore report and discuss endogenous and exogenous stimuli-responsive DDSs whose effectiveness has been tested using 3D cancer cell cultures.
Collapse
Affiliation(s)
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy; (F.F.); (R.C.)
| | | |
Collapse
|
165
|
Nkune NW, Simelane NWN, Montaseri H, Abrahamse H. Photodynamic Therapy-Mediated Immune Responses in Three-Dimensional Tumor Models. Int J Mol Sci 2021; 22:12618. [PMID: 34884424 PMCID: PMC8657498 DOI: 10.3390/ijms222312618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive phototherapeutic approach for cancer therapy that can eliminate local tumor cells and produce systemic antitumor immune responses. In recent years, significant efforts have been made in developing strategies to further investigate the immune mechanisms triggered by PDT. The majority of in vitro experimental models still rely on the two-dimensional (2D) cell cultures that do not mimic a three-dimensional (3D) cellular environment in the human body, such as cellular heterogeneity, nutrient gradient, growth mechanisms, and the interaction between cells as well as the extracellular matrix (ECM) and therapeutic resistance to anticancer treatments. In addition, in vivo animal studies are highly expensive and time consuming, which may also show physiological discrepancies between animals and humans. In this sense, there is growing interest in the utilization of 3D tumor models, since they precisely mimic different features of solid tumors. This review summarizes the characteristics and techniques for 3D tumor model generation. Furthermore, we provide an overview of innate and adaptive immune responses induced by PDT in several in vitro and in vivo tumor models. Future perspectives are highlighted for further enhancing PDT immune responses as well as ideal experimental models for antitumor immune response studies.
Collapse
Affiliation(s)
| | | | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (N.W.N.); (N.W.N.S.); (H.M.)
| |
Collapse
|
166
|
Nkune NW, Abrahamse H. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. Int J Mol Sci 2021; 22:12549. [PMID: 34830431 PMCID: PMC8620728 DOI: 10.3390/ijms222212549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic melanoma (MM) is a skin malignancy arising from melanocytes, the incidence of which has been rising in recent years. It poses therapeutic challenges due to its resistance to chemotherapeutic drugs and radiation therapy. Photodynamic therapy (PDT) is an alternative non-invasive modality that requires a photosensitizer (PS), specific wavelength of light, and molecular oxygen. Several studies using conventional PSs have highlighted the need for improved PSs for PDT applications to achieve desired therapeutic outcomes. The incorporation of nanoparticles (NPs) and targeting moieties in PDT have appeared as a promising strategy to circumvent various drawbacks associated with non-specific toxicity, poor water solubility, and low bioavailability of the PSs at targeted tissues. Currently, most studies investigating new developments rely on two-dimensional (2-D) monocultures, which fail to accurately mimic tissue complexity. Therefore, three-dimensional (3-D) cell cultures are ideal models to resemble tumor tissue in terms of architectural and functional properties. This review examines various PS drugs, as well as passive and active targeted PS nanoparticle-mediated platforms for PDT treatment of MM on 2-D and 3-D models. The overall findings of this review concluded that very few PDT studies have been conducted within 3-D models using active PS nanoparticle-mediated platforms, and so require further investigation.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
| |
Collapse
|
167
|
Three-Dimensional Culture Systems for Dissecting Notch Signalling in Health and Disease. Int J Mol Sci 2021; 22:ijms222212473. [PMID: 34830355 PMCID: PMC8618738 DOI: 10.3390/ijms222212473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) culture systems opened up new horizons in studying the biology of tissues and organs, modelling various diseases, and screening drugs. Producing accurate in vitro models increases the possibilities for studying molecular control of cell–cell and cell–microenvironment interactions in detail. The Notch signalling is linked to cell fate determination, tissue definition, and maintenance in both physiological and pathological conditions. Hence, 3D cultures provide new accessible platforms for studying activation and modulation of the Notch pathway. In this review, we provide an overview of the recent advances in different 3D culture systems, including spheroids, organoids, and “organ-on-a-chip” models, and their use in analysing the crucial role of Notch signalling in the maintenance of tissue homeostasis, pathology, and regeneration.
Collapse
|
168
|
Polat A, Göktürk D. An alternative approach to tracing the volumic proliferation development of an entire tumor spheroid in 3D through a mini-Opto tomography platform. Micron 2021; 152:103173. [PMID: 34785434 DOI: 10.1016/j.micron.2021.103173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Microscopy, which is listed among the major in-situ imaging applications, allows to derive information from a biological sample on the existing architectural structures of cells and tissues and their changes over time. Large biological samples such as tumor spheroids cannot be imaged within one field of view, regional imaging in different areas and subsequent stitching are required to attain the full picture. Microscopy is not typically used to produce full-size visualization of tumor spheroids measuring a few millimeters in size. In this study, we propose a 3D volume imaging technique for tracing the growth of an entire tumor spheroid measuring up to 10 mm using a miniaturized optical (mini-Opto) tomography platform. We performed a primary analysis of the 3D imaging for the MIA PaCa-2 pancreatic tumoroid employing its 2D images produced with the mini-Opto tomography from different angles ranging from -25 ° to +25 ° at six different three-day-apart time points of consecutive image acquisition. These 2D images were reconstructed by using a 3D image reconstruction algorithm that we developed based on the algebraic reconstruction technique (ART). We were able to reconstruct the 3D images of the tumoroid to achieve 800 × 800-pixel 50-layer images at resolutions of 5-25 μm. We also created its 3D visuals to understand more clearly how its volume changed and how it looked over weeks. The volume of the tumor was calculated to be 6.761 mm3 at the first imaging time point and 46.899 mm3 15 days after the first (at the sixth time point), which is 6.94 times larger in volume. The mini-Opto tomography can be considered more advantageous than commercial microscopy because it is portable, more cost-effective, and easier to use, and enables full-size visualization of biological samples measuring a few millimeters in size.
Collapse
Affiliation(s)
- Adem Polat
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Electronics Engineering, 17100, Çanakkale, Turkey.
| | - Dilek Göktürk
- Adana Alparslan Türkeş Science and Technology University, Faculty of Engineering, Department of Bioengineering, 01250, Adana, Turkey
| |
Collapse
|
169
|
Digital holographic microscopy: a noninvasive method to analyze the formation of spheroids. Biotechniques 2021; 71:598-603. [PMID: 34783256 DOI: 10.2144/btn-2021-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Digital holographic (DH) microscopy is a unique noninvasive method to analyze living cells. With DH microscopy, in vitro cell cultures can be imaged in 2D and pseudo-3D and measurements of size and morphology of the cells are provided. Here, a description of a novel methodology utilizing DH microscopy for the analysis of spheroids is presented. A cell culture protocol is introduced and morphological parameters of cell spheroids as measured by DH microscopy are presented. The study confirms the use of DH microscopy for the analysis of cell spheroids. In the future, organoids can be analyzed with DH microscopy, and it can also be used for drug response and cell death analyses.
Collapse
|
170
|
Considerations for a Reliable In Vitro Model of Chemotherapy-Induced Peripheral Neuropathy. TOXICS 2021; 9:toxics9110300. [PMID: 34822690 PMCID: PMC8620674 DOI: 10.3390/toxics9110300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is widely recognized as a potentially severe toxicity that often leads to dose reduction or discontinuation of cancer treatment. Symptoms may persist despite discontinuation of chemotherapy and quality of life can be severely compromised. The clinical symptoms of CIPN, and the cellular and molecular targets involved in CIPN, are just as diverse as the wide variety of anticancer agents that cause peripheral neurotoxicity. There is an urgent need for extensive molecular and functional investigations aimed at understanding the mechanisms of CIPN. Furthermore, a reliable human cell culture system that recapitulates the diversity of neuronal modalities found in vivo and the pathophysiological changes that underlie CIPN would serve to advance the understanding of the pathogenesis of CIPN. The demonstration of experimental reproducibility in a human peripheral neuronal cell system will increase confidence that such an in vitro model is clinically useful, ultimately resulting in deeper exploration for the prevention and treatment of CIPN. Herein, we review current in vitro models with a focus on key characteristics and attributes desirable for an ideal human cell culture model relevant for CIPN investigations.
Collapse
|
171
|
Vernazza S, Tirendi S, Passalacqua M, Piacente F, Scarfì S, Oddone F, Bassi AM. An Innovative In Vitro Open-Angle Glaucoma Model (IVOM) Shows Changes Induced by Increased Ocular Pressure and Oxidative Stress. Int J Mol Sci 2021; 22:12129. [PMID: 34830007 PMCID: PMC8622817 DOI: 10.3390/ijms222212129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
Primary Open-Angle Glaucoma (POAG) is a neurodegenerative disease, and its clinical outcomes lead to visual field constriction and blindness. POAG's etiology is very complex and its pathogenesis is mainly explained through both mechanical and vascular theories. The trabecular meshwork (TM), the most sensitive tissue of the eye anterior segment to oxidative stress (OS), is the main tissue involved in early-stage POAG, characterized by an increase in pressure. Preclinical assessments of neuroprotective drugs on animal models have not always shown correspondence with human clinical studies. In addition, intra-ocular pressure management after a glaucoma diagnosis does not always prevent blindness. Recently, we have been developing an innovative in vitro 3Dadvanced human trabecular cell model on a millifluidicplatform as a tool to improve glaucoma studies. Herein, we analyze the effects of prolonged increased pressure alone and, in association with OS, on such in vitro platform. Moreover, we verify whethersuch damaged TM triggers apoptosis on neuron-like cells. The preliminary results show that TM cells are less sensitive to pressure elevation than OS, and OS-damaging effects were worsened by the pressure increase. The stressed TM releases harmful signals, which increase apoptosis stimuli on neuron-like cells, suggesting its pivotal role in the glaucoma cascade.
Collapse
Affiliation(s)
- Stefania Vernazza
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.V.); (S.T.); (F.P.); (A.M.B.)
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.V.); (S.T.); (F.P.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy;
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.V.); (S.T.); (F.P.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy;
| | - Francesco Piacente
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.V.); (S.T.); (F.P.); (A.M.B.)
| | - Sonia Scarfì
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy;
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy
| | | | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.V.); (S.T.); (F.P.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy;
| |
Collapse
|
172
|
Ma D, Hernandez GA, Lefebvre AEYT, Alshetaiwi H, Blake K, Dave KR, Rauf M, Williams JW, Davis RT, Evans KT, Longworth A, Masoud MYG, Lee R, Edwards RA, Digman MA, Kessenbrock K, Lawson DA. Patient-derived xenograft culture-transplant system for investigation of human breast cancer metastasis. Commun Biol 2021; 4:1268. [PMID: 34741115 PMCID: PMC8571269 DOI: 10.1038/s42003-021-02596-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metastasis is a fatal disease where research progress has been hindered by a lack of authentic experimental models. Here, we develop a 3D tumor sphere culture-transplant system that facilitates the growth and engineering of patient-derived xenograft (PDX) tumor cells for functional metastasis assays in vivo. Orthotopic transplantation and RNA sequencing (RNA-seq) analyses show that PDX tumor spheres maintain tumorigenic potential, and the molecular marker and global transcriptome signatures of native tumor cells. Tumor spheres display robust capacity for lentiviral engineering and dissemination in spontaneous and experimental metastasis assays in vivo. Inhibition of pathways previously reported to attenuate metastasis also inhibit metastasis after sphere culture, validating our approach for authentic investigations of metastasis. Finally, we demonstrate a new role for the metabolic enzyme NME1 in promoting breast cancer metastasis, providing proof-of-principle that our culture-transplant system can be used for authentic propagation and engineering of patient tumor cells for functional studies of metastasis.
Collapse
Affiliation(s)
- Dennis Ma
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Grace A Hernandez
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | | | - Hamad Alshetaiwi
- Department of Biological Chemistry, University of California, Irvine, CA, USA.,Department of Pathology, University of Hail, Hail, Saudi Arabia
| | - Kerrigan Blake
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Kushal R Dave
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Maha Rauf
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Justice W Williams
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Ryan T Davis
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Katrina T Evans
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Aaron Longworth
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Madona Y G Masoud
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Regis Lee
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Robert A Edwards
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
173
|
Development of Breast Cancer Spheroids to Evaluate Cytotoxic Response to an Anticancer Peptide. Pharmaceutics 2021; 13:pharmaceutics13111863. [PMID: 34834277 PMCID: PMC8619419 DOI: 10.3390/pharmaceutics13111863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women and one of the most common causes of cancer-related deaths. Despite intense research efforts, BC treatment still remains challenging. Improved drug development strategies are needed for impactful benefit to patients. Current preclinical studies rely mostly on cell-based screenings, using two-dimensional (2D) cell monolayers that do not mimic in vivo tumors properly. Herein, we explored the development and characterization of three-dimensional (3D) models, named spheroids, of the most aggressive BC subtypes (triple-negative breast cancer-TNBC; and human-epidermal growth receptor-2-HER2+), using the liquid overlay technique with several selected cell lines. In these cell line-derived spheroids, we studied cell density, proliferation, ultrastructure, apoptosis, reactive oxygen species (ROS) production, and cell permeabilization (live/dead). The results showed a formation of compact and homogeneous spheroids on day 7 after seeding 2000 cells/well for MDA-MB-231 and 5000 cells/well for BT-20 and BT-474. Next, we compared the efficacy of a model anticancer peptide (ACP) in cell monolayers and spheroids. Overall, the results demonstrated spheroids to be less sensitive to treatment than cell monolayers, revealing the need for more robust models in drug development.
Collapse
|
174
|
Zhou T, Rong M, Wang Z, Chu H, Chen C, Zhang J, Tian Z. Conditioned medium derived from 3D tooth germs: A novel cocktail for stem cell priming and early in vivo pulp regeneration. Cell Prolif 2021; 54:e13129. [PMID: 34585454 PMCID: PMC8560607 DOI: 10.1111/cpr.13129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Conditioned medium (CM) from 2D cell culture can mitigate the weakened regenerative capacity of the implanted stem cells. However, the capacity of 3D CM to prime dental pulp stem cells (DPSCs) for pulp regeneration and its protein profile are still elusive. We aim to investigate the protein profile of CM derived from 3D tooth germs, and to unveil its potential for DPSCs-based pulp regeneration. MATERIALS AND METHODS We prepared CM of 3D ex vivo cultured tooth germ organs (3D TGO-CM) and CM of 2D cultured tooth germ cells (2D TGC-CM) and applied them to prime DPSCs. Influences on cell behaviours and protein profiles of CMs were compared. In vivo pulp regeneration of CMs-primed DPSCs was explored using a tooth root fragment model on nude mice. RESULTS TGO-CM enhanced DPSCs proliferation, migration, in vitro mineralization, odontogenic differentiation, and angiogenesis performances. The TGO-CM group generated superior pulp structures, more odontogenic cells attachment, and enhanced vasculature at 4 weeks post-surgery, compared with the TGC-CM group. Secretome analysis revealed that TGO-CM contained more odontogenic and angiogenic growth factors and fewer pro-inflammatory cytokines. Mechanisms leading to the differential CM profiles may be attributed to the cytokine-cytokine receptor interaction and PI3K-Akt signalling pathway. CONCLUSIONS The unique secretome profile of 3D TGO-CM made it a successful priming cocktail to enhance DPSCs-based early pulp regeneration.
Collapse
Affiliation(s)
- Tengfei Zhou
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zijie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxing Chu
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chuying Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhihui Tian
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
175
|
3D Cell Culture Technology – A New Insight Into in Vitro Research – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Most in vitro cell-based research is based on two-dimensional (2D) systems where growth and development take place on a flat surface, which does not reflect the natural environment of the cells. The imperfection and limitations of culture in 2D systems eventually led to the creation of three-dimensional (3D) culture models that more closely reproduce the actual conditions of physiological cell growth. Since the inception of 3D culture technology, many culture models have been developed, such as technologies of multicellular spheroids, organoids, and organs on chips in the technology of scaffolding, hydrogels, bio-printing and liquid media. In this review we will focus on the advantages and disadvantages of the 2D vs. 3D cell cultures technologies. We will also try to sum up available 3D culture systems and materials for building 3D scaffolds.
Collapse
|
176
|
Alphavirus-Driven Interferon Gamma (IFNg) Expression Inhibits Tumor Growth in Orthotopic 4T1 Breast Cancer Model. Vaccines (Basel) 2021; 9:vaccines9111247. [PMID: 34835178 PMCID: PMC8620866 DOI: 10.3390/vaccines9111247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon gamma (IFNg) is a pleiotropic cytokine that can potentially reprogram the tumor microenvironment; however, the antitumor immunomodulatory properties of IFNg still need to be validated due to variable therapeutic outcomes in preclinical and clinical studies. We developed a replication-deficient Semliki Forest virus vector expressing IFNg (SFV/IFNg) and evaluated its immunomodulatory antitumor potential in vitro in a model of 3D spheroids and in vivo in an immunocompetent 4T1 mouse breast cancer model. We demonstrated that SFV-derived, IFN-g-stimulated bone marrow macrophages can be used to acquire the tumoricidal M1 phenotype in 3D nonattached conditions. Coculturing SFV/IFNg-infected 4T1 spheroids with BMDMs inhibited spheroid growth. In the orthotopic 4T1 mouse model, intratumoral administration of SFV/IFNg virus particles alone or in combination with the Pam3CSK4 TLR2/1 ligand led to significant inhibition of tumor growth compared to the administration of the control SFV/Luc virus particles. Analysis of the composition of intratumoral lymphoid cells isolated from tumors after SFV/IFNg treatment revealed increased CD4+ and CD8+ and decreased T-reg (CD4+/CD25+/FoxP3+) cell populations. Furthermore, a significant decrease in the populations of cells bearing myeloid cell markers CD11b, CD38, and CD206 was observed. In conclusion, the SFV/IFNg vector induces a therapeutic antitumor T-cell response and inhibits myeloid cell infiltration in treated tumors.
Collapse
|
177
|
Recent Advances in Three-Dimensional Stem Cell Culture Systems and Applications. Stem Cells Int 2021; 2021:9477332. [PMID: 34671401 PMCID: PMC8523294 DOI: 10.1155/2021/9477332] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Cell culture is one of the most core and fundamental techniques employed in the fields of biology and medicine. At present, although the two-dimensional cell culture method is commonly used in vitro, it is quite different from the cell growth microenvironment in vivo. In recent years, the limitations of two-dimensional culture and the advantages of three-dimensional culture have increasingly attracted more and more attentions. Compared to two-dimensional culture, three-dimensional culture system is better to realistically simulate the local microenvironment of cells, promote the exchange of information among cells and the extracellular matrix (ECM), and retain the original biological characteristics of stem cells. In this review, we first present three-dimensional cell culture methods from two aspects: a scaffold-free culture system and a scaffold-based culture system. The culture method and cell characterizations will be summarized. Then the application of three-dimensional cell culture system is further explored, such as in the fields of drug screening, organoids and assembloids. Finally, the directions for future research of three-dimensional cell culture are stated briefly.
Collapse
|
178
|
Giordano F, Lenna S, Rampado R, Brozovich A, Hirase T, Tognon MG, Martini F, Agostini M, Yustein JT, Taraballi F. Nanodelivery Systems Face Challenges and Limitations in Bone Diseases Management. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Federica Giordano
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Riccardo Rampado
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
- First Surgical Clinic Section, Department of Surgical Oncological and Gastroenterological Sciences, University of Padua Padua 35124 Italy
- Nano‐Inspired Biomedicine Laboratory Institute of Pediatric Research—Città della Speranza Padua Italy
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
- Texas A&M College of Medicine 8447 Highway 47 Bryan TX 77807 USA
| | - Takashi Hirase
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Mauro G. Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine University of Ferrara Ferrara Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine University of Ferrara Ferrara Italy
| | - Marco Agostini
- First Surgical Clinic Section, Department of Surgical Oncological and Gastroenterological Sciences, University of Padua Padua 35124 Italy
- Nano‐Inspired Biomedicine Laboratory Institute of Pediatric Research—Città della Speranza Padua Italy
| | - Jason T. Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center Baylor College of Medicine Houston TX 77030 USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| |
Collapse
|
179
|
In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021; 9:biomedicines9101415. [PMID: 34680532 PMCID: PMC8533367 DOI: 10.3390/biomedicines9101415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.
Collapse
|
180
|
Jayme CC, Pires AF, Fernandes DS, Bi H, Tedesco AC. DNA polymer films used as drug delivery systems to early-stage diagnose and treatment of breast cancer using 3D tumor spheroids as a model. Photodiagnosis Photodyn Ther 2021; 37:102575. [PMID: 34628073 DOI: 10.1016/j.pdpdt.2021.102575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022]
Abstract
The present study examines the designer of DNA polymeric films (DNA-PFs) associated with aluminum chloride phthalocyanine (AlClPc) (DNA-PFs-AlClPc), as a promising drug delivery system (DDS), applicable for breast cancer treatment and early-stage diagnosis using photodynamic therapy (PDT). This study starts evaluating (MCF7) as a model for breast cancer cell behavior associated with DNA-PFs. Analyses of the morphological behaviors, biochemical reaction, and MCF7 cell adhesion profile on DNA-PFs were evaluated. SEM and AFM analysis allowed the morphological characterization of the DNA-PFs. Cell viability and cell cycle kinetics studies indicate highly biocompatible material capable of anchoring MCF7 cells, allowing the attachment and support of cell in the same structure where the insertion of AlClPc (DNA-PFs-AlClPc). The application of visible light photoactivation based on classical PDT protocol over the DNA-PFs-AlClPc showed a reduction in cell viability with increased cell death proportional to the fluency energy range from 600, 900, and 1800 mJ cm-2. The 3D organoid system mimics the tumor microenvironment which was precisely observed in human breast cancer in early-stage progression in the body. The results observed indicate that the viability was reduced by more than 80% in monolayer culture and around 50% in the 3D organoid cell culture at the highest energy fluency (1800 mJ cm-2). We could also point out that with low energy fluency (100 mJ cm-2,), the DNA-PFs-AlClPc did not show a cytotoxic effect on MCF7 cells, enabling this user dose for the photodiagnosis of early-stage human breast cancer detection in the initial stage of progression.
Collapse
Affiliation(s)
- Cristiano Ceron Jayme
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Ananda Ferreira Pires
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Daniela Silvestrini Fernandes
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, China
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil; School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, China.
| |
Collapse
|
181
|
Khazaei S, Soleimani M, Tafti SHA, Aghdam RM, Hojati Z. Improvement of Heart Function After Transplantation of Encapsulated Stem Cells Induced with miR-1/Myocd in Myocardial Infarction Model of Rat. Cell Transplant 2021; 30:9636897211048786. [PMID: 34606735 PMCID: PMC8493326 DOI: 10.1177/09636897211048786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease is one of the most common causes of death worldwide. Mesenchymal stem cells (MSCs) are one of the most common sources in cell-based therapies in heart regeneration. There are several methods to differentiate MSCs into cardiac-like cells, such as gene induction. Moreover, using a three-dimensional (3D) culture, such as hydrogels increases efficiency of differentiation. In the current study, mouse adipose-derived MSCs were co-transduced with lentiviruses containing microRNA-1 (miR-1) and Myocardin (Myocd). Then, expression of cardiac markers, such as NK2 homeobox 5(Nkx2-5), GATA binding protein 4 (Gata4), and troponin T type 2 (Tnnt2) was investigated, at both gene and protein levels in two-dimensional (2D) culture and chitosan/collagen hydrogel (CS/CO) as a 3D culture. Additionally, after induction of myocardial infarction (MI) in rats, a patch containing the encapsulated induced cardiomyocytes (iCM/P) was implanted to MI zone. Subsequently, 30 days after MI induction, echocardiography, immunohistochemistry staining, and histological examination were performed to evaluate cardiac function. The results of quantitative real -time polymerase chain reaction (qRT-PCR) and immunocytochemistry showed that co-induction of miR-1 and Myocd in MSCs followed by 3D culture of transduced cells increased expression of cardiac markers. Besides, results of in vivo study implicated that heart function was improved in MI model of rats in iCM/P-treated group. The results suggested that miR-1/Myocd induction combined with encapsulation of transduced cells in CS/CO hydrogel increased efficiency of MSCs differentiation into iCMs and could improve heart function in MI model of rats after implantation.
Collapse
Affiliation(s)
- Samaneh Khazaei
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| | - Masoud Soleimani
- Tissue Engineering and Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Tissue Engineering and Nanomedicine Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zohreh Hojati
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| |
Collapse
|
182
|
Banerjee S, Yoon H, Ting S, Tang CM, Yebra M, Wenzel AT, Yeerna H, Mesirov JP, Wechsler-Reya RJ, Tamayo P, Sicklick JK. KIT low Cells Mediate Imatinib Resistance in Gastrointestinal Stromal Tumor. Mol Cancer Ther 2021; 20:2035-2048. [PMID: 34376580 PMCID: PMC8492542 DOI: 10.1158/1535-7163.mct-20-0973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Gastrointestinal stromal tumor (GIST) is commonly driven by oncogenic KIT mutations that are effectively targeted by imatinib (IM), a tyrosine kinase inhibitor (TKI). However, IM does not cure GIST, and adjuvant therapy only delays recurrence in high-risk tumors. We hypothesized that GIST contains cells with primary IM resistance that may represent a reservoir for disease persistence. Here, we report a subpopulation of CD34+KITlow human GIST cells that have intrinsic IM resistance. These cells possess cancer stem cell-like expression profiles and behavior, including self-renewal and differentiation into CD34+KIThigh progeny that are sensitive to IM treatment. We also found that TKI treatment of GIST cell lines led to induction of stem cell-associated transcription factors (OCT4 and NANOG) and concomitant enrichment of the CD34+KITlow cell population. Using a data-driven approach, we constructed a transcriptomic-oncogenic map (Onco-GPS) based on the gene expression of 134 GIST samples to define pathway activation during GIST tumorigenesis. Tumors with low KIT expression had overexpression of cancer stem cell gene signatures consistent with our in vitro findings. Additionally, these tumors had activation of the Gas6/AXL pathway and NF-κB signaling gene signatures. We evaluated these targets in vitro and found that primary IM-resistant GIST cells were effectively targeted with either single-agent bemcentinib (AXL inhibitor) or bardoxolone (NF-κB inhibitor), as well as with either agent in combination with IM. Collectively, these findings suggest that CD34+KITlow cells represent a distinct, but targetable, subpopulation in human GIST that may represent a novel mechanism of primary TKI resistance, as well as a target for overcoming disease persistence following TKI therapy.
Collapse
Affiliation(s)
- Sudeep Banerjee
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, California
- Department of Surgery, University of California, Los Angeles, California
- Moores Cancer Center, University of California, San Diego, California
| | - Hyunho Yoon
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, California
- Moores Cancer Center, University of California, San Diego, California
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Stephanie Ting
- Moores Cancer Center, University of California, San Diego, California
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, California
| | - Chih-Min Tang
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, California
- Moores Cancer Center, University of California, San Diego, California
| | - Mayra Yebra
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, California
- Moores Cancer Center, University of California, San Diego, California
| | - Alexander T Wenzel
- Moores Cancer Center, University of California, San Diego, California
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, California
| | - Huwate Yeerna
- Moores Cancer Center, University of California, San Diego, California
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, California
| | - Jill P Mesirov
- Moores Cancer Center, University of California, San Diego, California
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, California
| | | | - Pablo Tamayo
- Moores Cancer Center, University of California, San Diego, California
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, California
- UCSD Center for Novel Therapeutics, La Jolla, California
| | - Jason K Sicklick
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, California.
- Moores Cancer Center, University of California, San Diego, California
| |
Collapse
|
183
|
da Silva da Costa FA, Soares MR, Malagutti-Ferreira MJ, da Silva GR, Lívero FADR, Ribeiro-Paes JT. Three-Dimensional Cell Cultures as a Research Platform in Lung Diseases and COVID-19. Tissue Eng Regen Med 2021; 18:735-745. [PMID: 34080133 PMCID: PMC8172328 DOI: 10.1007/s13770-021-00348-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chronic respiratory diseases (CRD) are a major public health problem worldwide. In the current epidemiological context, CRD have received much interest when considering their correlation with greater susceptibility to SARS-Cov-2 and severe disease (COVID-19). Increasingly more studies have investigated pathophysiological interactions between CRD and COVID-19. AREA COVERED Animal experimentation has decisively contributed to advancing our knowledge of CRD. Considering the increase in ethical restrictions in animal experimentation, researchers must focus on new experimental alternatives. Two-dimensional (2D) cell cultures have complemented animal models and significantly contributed to advancing research in the life sciences. However, 2D cell cultures have several limitations in studies of cellular interactions. Three-dimensional (3D) cell cultures represent a new and robust platform for studying complex biological processes and are a promising alternative in regenerative and translational medicine. EXPERT OPINION Three-dimensional cell cultures are obtained by combining several types of cells in integrated and self-organized systems in a 3D structure. These 3D cell culture systems represent an efficient methodological approach in studies of pathophysiology and lung therapy. More recently, complex 3D culture systems, such as lung-on-a-chip, seek to mimic the physiology of a lung in vivo through a microsystem that simulates alveolar-capillary interactions and exposure to air. The present review introduces and discusses 3D lung cultures as robust platforms for studies of the pathophysiology of CRD and COVID-19 and the mechanisms that underlie interactions between CRD and COVID-19.
Collapse
Affiliation(s)
- Felipe Allan da Silva da Costa
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Murilo Racy Soares
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | | | - Gustavo Ratti da Silva
- Laboratory of Preclinical Research of Natural Products, Paranaense University - UNIPAR, Umuarama, Parana, Brazil
| | | | | |
Collapse
|
184
|
Leong TKM, Lo WS, Lee WEZ, Tan B, Lee XZ, Lee LWJN, Lee JYJ, Suresh N, Loo LH, Szu E, Yeong J. Leveraging advances in immunopathology and artificial intelligence to analyze in vitro tumor models in composition and space. Adv Drug Deliv Rev 2021; 177:113959. [PMID: 34481035 DOI: 10.1016/j.addr.2021.113959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the leading cause of death worldwide. Unfortunately, efforts to understand this disease are confounded by the complex, heterogenous tumor microenvironment (TME). Better understanding of the TME could lead to novel diagnostic, prognostic, and therapeutic discoveries. One way to achieve this involves in vitro tumor models that recapitulate the in vivo TME composition and spatial arrangement. Here, we review the potential of harnessing in vitro tumor models and artificial intelligence to delineate the TME. This includes (i) identification of novel features, (ii) investigation of higher-order relationships, and (iii) analysis and interpretation of multiomics data in a (iv) holistic, objective, reproducible, and efficient manner, which surpasses previous methods of TME analysis. We also discuss limitations of this approach, namely inadequate datasets, indeterminate biological correlations, ethical concerns, and logistical constraints; finally, we speculate on future avenues of research that could overcome these limitations, ultimately translating to improved clinical outcomes.
Collapse
|
185
|
La T, Chen S, Guo T, Zhao XH, Teng L, Li D, Carnell M, Zhang YY, Feng YC, Cole N, Brown AC, Zhang D, Dong Q, Wang JY, Cao H, Liu T, Thorne RF, Shao FM, Zhang XD, Jin L. Visualization of endogenous p27 and Ki67 reveals the importance of a c-Myc-driven metabolic switch in promoting survival of quiescent cancer cells. Theranostics 2021; 11:9605-9622. [PMID: 34646389 PMCID: PMC8490506 DOI: 10.7150/thno.63763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Recurrent and metastatic cancers often undergo a period of dormancy, which is closely associated with cellular quiescence, a state whereby cells exit the cell cycle and are reversibly arrested in G0 phase. Curative cancer treatment thus requires therapies that either sustain the dormant state of quiescent cancer cells, or preferentially, eliminate them. However, the mechanisms responsible for the survival of quiescent cancer cells remain obscure. Methods: Dual genome-editing was carried out using a CRISPR/Cas9-based system to label endogenous p27 and Ki67 with the green and red fluorescent proteins EGFP and mCherry, respectively, in melanoma cells. Analysis of transcriptomes of isolated EGFP-p27highmCherry-Ki67low quiescent cells was conducted at bulk and single cell levels using RNA-sequencing. The extracellular acidification rate and oxygen consumption rate were measured to define metabolic phenotypes. SiRNA and inducible shRNA knockdown, chromatin immunoprecipitation and luciferase reporter assays were employed to elucidate mechanisms of the metabolic switch in quiescent cells. Results: Dual labelling of endogenous p27 and Ki67 with differentiable fluorescent probes allowed for visualization, isolation, and analysis of viable p27highKi67low quiescent cells. Paradoxically, the proto-oncoprotein c-Myc, which commonly drives malignant cell cycle progression, was expressed at relatively high levels in p27highKi67low quiescent cells and supported their survival through promoting mitochondrial oxidative phosphorylation (OXPHOS). In this context, c-Myc selectively transactivated genes encoding OXPHOS enzymes, including subunits of isocitric dehydrogenase 3 (IDH3), whereas its binding to cell cycle progression gene promoters was decreased in quiescent cells. Silencing of c-Myc or the catalytic subunit of IDH3, IDH3α, preferentially killed quiescent cells, recapitulating the effect of treatment with OXPHOS inhibitors. Conclusion: These results establish a rigorous experimental system for investigating cellular quiescence, uncover the high selectivity of c-Myc in activating OXPHOS genes in quiescent cells, and propose OXPHOS targeting as a potential therapeutic avenue to counter cancer cells in quiescence.
Collapse
Affiliation(s)
- Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Tao Guo
- Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Liu Teng
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Dandan Li
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan 450003, China
| | - Michael Carnell
- Biomedical Imaging Facility, University of New South Wales, NSW, 2052, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Nicole Cole
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Alexandra C. Brown
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Didi Zhang
- Department of Orthopaedics, John Hunter Hospital, Hunter New England Health, NSW, 2305, Australia
| | - Qihan Dong
- Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Jenny Y. Wang
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, NSW 2750, Australia
| | - Huixia Cao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan Provincial Clinical Research Canter for Kidney Disease, Henan 450003, China
| | - Tao Liu
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, NSW 2750, Australia
| | - Rick F. Thorne
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Feng-Min Shao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan Provincial Clinical Research Canter for Kidney Disease, Henan 450003, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Lei Jin
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| |
Collapse
|
186
|
Costard LS, Hosn RR, Ramanayake H, O'Brien FJ, Curtin CM. Influences of the 3D microenvironment on cancer cell behaviour and treatment responsiveness: A recent update on lung, breast and prostate cancer models. Acta Biomater 2021; 132:360-378. [PMID: 33484910 DOI: 10.1016/j.actbio.2021.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
The majority of in vitro studies assessing cancer treatments are performed in two-dimensional (2D) monolayers and are subsequently validated in in vivo animal models. However, 2D models fail to accurately model the tumour microenvironment. Furthermore, animal models are not directly applicable to mimic the human scenario. Three-dimensional (3D) culture models may help to address the discrepancies of 2D and animal models. When cancer cells escape the primary tumour, they can invade at distant organs building secondary tumours, called metastasis. The development of metastasis leads to a dramatic decrease in the life expectancy of patients. Therefore, 3D systems to model the microenvironment of metastasis have also been developed. Several studies have demonstrated changes in cell behaviour and gene expression when cells are cultured in 3D compared to 2D and concluded a better comparability to cells in vivo. Of special importance is the effect seen in response to anti-cancer treatments as models are built primarily to serve as drug-testing platforms. This review highlights these changes between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate tumours. In addition to models aiming to mimic the primary tumour site, the effects of 3D cell culturing in bone metastasis models are also described. STATEMENT OF SIGNIFICANCE: Most in vitro studies in cancer research are performed in 2D and are subsequently validated in in vivo animal models. However, both models possess numerous limitations: 2D models fail to accurately model the tumour microenvironment while animal models are expensive, time-consuming and can differ considerably from humans. It is accepted that the cancer microenvironment plays a critical role in the disease, thus, 3D models have been proposed as a potential solution to address the discrepancies of 2D and animal models. This review highlights changes in cell behaviour, including proliferation, gene expression and chemosensitivity, between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate cancer as well as bone metastasis.
Collapse
|
187
|
Safarulla S, Khillar PS, Kini S, Jaiswal AK. Tissue engineered scaffolds as 3D models for prostate cancer metastasis to bone. MATERIALS TODAY COMMUNICATIONS 2021; 28:102641. [DOI: 10.1016/j.mtcomm.2021.102641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
|
188
|
Min TJ, Kim MJ, Kang KJ, Jeoung YJ, Oh SH, Jang YJ. 3D Spheroid Formation Using BMP-Loaded Microparticles Enhances Odontoblastic Differentiation of Human Dental Pulp Stem Cells. Stem Cells Int 2021; 2021:9326298. [PMID: 34512768 PMCID: PMC8429013 DOI: 10.1155/2021/9326298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) are the primary cells responsible for dentin regeneration. Typically, in order to allow for odontoblastic differentiation, hDPSCs are cultured over weeks with differentiation-inducing factors in a typical monolayered culture. However, monolayered cultures have significant drawbacks including inconsistent differentiation efficiency, require a higher BMP concentration than should be necessary, and require periodic treatment with BMPs for weeks to see results. To solve these problems, we developed a 3D-cell spheroid culture system for odontoblastic differentiation using microparticles with leaf-stacked structure (LSS), which allow for the sustained release of BMPs and adequate supply of oxygen in cell spheroids. BMPs were continuously released and maintained an effective concentration over 37 days. hDPSCs in the spheroid maintained their viability for 5 weeks, and the odontoblastic differentiation efficiency was increased significantly compared to monolayered cells. Finally, dentin-related features were detected in the spheroids containing BMPs-loaded microparticles after 5 weeks, suggesting that these hDPSC-LSS spheroids might be useful for dentin tissue regeneration.
Collapse
Affiliation(s)
- Tae-Jun Min
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Min Ji Kim
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyung-Jung Kang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Yeoung Jo Jeoung
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Laboratory of Oral Biochemistry, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
189
|
Abstract
Over the past decade, 3D culture models of human and animal cells have found their way into tissue differentiation, drug development, personalized medicine and tumour behaviour studies. Embryoid bodies (EBs) are in vitro 3D cultures established from murine pluripotential stem cells, whereas tumoroids are patient-derived in vitro 3D cultures. This thesis aims to describe a new implication of an embryoid body model and to characterize the patient-specific microenvironment of the parental tumour in relation to tumoroid growth rate. In this thesis, we described a high-throughput monitoring method, where EBs are used as a dynamic angiogenesis model. In this model, digital image analysis (DIA) is implemented on immunohistochemistry (IHC) stained sections of the cultures over time. Furthermore, we have investigated the correlation between the genetic profile and inflammatory microenvironment of parental tumours on the in vitro growth rate of tumoroids. The EBs were cultured in spinner flasks. The samples were collected at days 4, 6, 9, 14, 18 and 21, dehydrated and embedded in paraffin. The histological sections were IHC stained for the endothelial marker CD31 and digitally scanned. The virtual whole-image slides were digitally analysed by Visiopharm® software. Histological evaluation showed vascular-like structures over time. The quantitative DIA was plausible to monitor significant increase in the total area of the EBs and an increase in endothelial differentiation. The tumoroids were established from 32 colorectal adenocarcinomas. The in vitro growth rate of the tumoroids was followed by automated microscopy over an 11-day period. The parental tumours were analysed by next-generation sequencing for KRAS, TP53, PIK3CA, SMAD4, MAP2K1, BRAF, FGFR3 and FBXW7 status. The tumoroids established from KRAS-mutated parental tumours showed a significantly higher growth rate compared to their wild-type counterparts. The density of CD3+ T lymphocytes and CD68+ macrophages was calculated in the centre of the tumours and at the invasive margin of the tumours. The high density of CD3+ cells and the low density of CD68+ cells showed a significant correlation with a higher growth rate of the tumoroids. In conclusion, a novel approach for histological monitoring of endothelial differentiation is presented in the stem cell-derived EBs. Furthermore, the KRAS status and density of CD3+ T cells and macrophages in the parental tumour influence the growth rate of the tumoroids. Our results indicate that these parameters should be included when tumoroids are to be implemented in personalized medicine.
Collapse
Affiliation(s)
- Nabi Mousavi
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
190
|
Jahagirdar D, Bangde P, Jain R, Dandekar P. Degenerative disease-on-a-chip: Developing microfluidic models for rapid availability of newer therapies. Biotechnol J 2021; 16:e2100154. [PMID: 34390543 DOI: 10.1002/biot.202100154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Understanding the pathophysiology of degenerative diseases pertaining to nervous system, ocular region, bone/cartilage and muscle are still being comprehended, thus delaying the availability of targeted therapies. PURPOSE AND SCOPE Newer micro-physiological systems (organ-on-chip technology) involves development of more sophisticated devices, modelling a range of in vitro human tissues and an array of models for diseased conditions. These models expand opportunities for high throughput screening (HTS) of drugs and are likely to be rapid and cost-effective, thus reducing extensive usage of animal models. CONCLUSION Through this review article, we aim to present an overview of the degenerative disease models that are presently being developed using microfluidic platforms with the aim of mimicking in vivo tissue physiology and micro-architecture. The manuscript provides an overview of the degenerative disease models and their potential for testing and screening of possible biotherapeutic molecules and drugs. It highlights the perspective of the regulatory bodies with respect to the established-on chip models and thereby enhancing its translational potential. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Devashree Jahagirdar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Prachi Bangde
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| |
Collapse
|
191
|
Molecular analysis of cell survival and death pathways in the proteasome inhibitor bortezomib-resistant PC3 prostate cancer cell line. Med Oncol 2021; 38:112. [PMID: 34363546 DOI: 10.1007/s12032-021-01563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/02/2021] [Indexed: 11/09/2022]
Abstract
The ubiquitin-proteasome pathway is an important protein quality control system involved in intracellular homeostasis. To achieve intracellular homeostasis, proteins that are misfolded as a result of translational errors or genetic mutations must be eliminated by the ubiquitin-proteasome pathway. In our previous publications, we determined that 4T1 breast and B16F10 melanoma cancer cells have differential levels of resistance to proteasome inhibitors. Again, in the previous studies, we reported that 4T1 cell cultures, despite being p53-mutant, underwent apoptosis as a result of bortezomib treatment. The first goal of this study was to verify the resistance levels of parental and resistant PC3 prostate cancer cells to bortezomib using WST-1 test. As a result of treatment with different bortezomib concentrations for 48 h, the IC50 value of the parental cells was determined as 32.8 nM and that of the resistant cells was determined as 346 nM. This result showed that the resistant cells were at least 10.5 times more resistant. In addition, to determine whether the resistance gained was reversible or not, the cells were passaged in a medium without bortezomib for one month. The IC50 value determination by WST-1 test showed that the resistant PC3 cells gained an irreversible bortezomib resistance phenotype. The results of the 3D spheroid experiment showed that the 3D spheroid diameter of resistant cells was significantly higher than that of the parental cells. The studies conducted with Western blot showed that ERK1 MAPK T202 phosphorylation and the conversion of autophagy marker LC3-I to LC3-II were significantly increased in parental cells as compared to the resistant cells. Finally, the results showed that while both maternal embryonic leucine zipper kinase (MELK) inhibitor OTSSP167 and Ca2+ chelator BAPTA-AM (also an inhibitor of the expression of antiapoptotic protein GRP78) are promising agents for cancer cells resistant to the proteasome inhibitors, CDK2 inhibitor CVT-313 was found ineffective in both parental and the resistant cells.
Collapse
|
192
|
Signore MA, De Pascali C, Giampetruzzi L, Siciliano PA, Francioso L. Gut-on-Chip microphysiological systems: Latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
193
|
Cortez‐Jugo C, Czuba‐Wojnilowicz E, Tan A, Caruso F. A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Adv Healthc Mater 2021; 10:e2100574. [PMID: 34170631 DOI: 10.1002/adhm.202100574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Bio-nanoscience research encompasses studies on the interactions of nanomaterials with biological structures or what is commonly referred to as the biointerface. Fundamental studies on the influence of nanomaterial properties, including size, shape, composition, and charge, on the interaction with the biointerface have been central in bio-nanoscience to assess nanomaterial efficacy and safety for a range of biomedical applications. However, the state of the cells, tissues, or biological models can also influence the behavior of nanomaterials at the biointerface and their intracellular processing. Focusing on the "bio" in bio-nano, this review discusses the impact of biological properties at the cellular, tissue, and whole organism level that influences nanomaterial behavior, including cell type, cell cycle, tumor physiology, and disease states. Understanding how the biological factors can be addressed or exploited to enhance nanomaterial accumulation and uptake can guide the design of better and suitable models to improve the outcomes of materials in nanomedicine.
Collapse
Affiliation(s)
- Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Ewa Czuba‐Wojnilowicz
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Abigail Tan
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
194
|
Yaqinuddin A, Ikram MF, Ambia AR, Alaujan R, Kashir J. 3D Models as an Adjunct for Models in Studying Alzheimer’s Disease. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2021. [DOI: 10.1055/s-0041-1731864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractAlzheimer’s disease (AD) is one of the most common causes of dementia. Disease progression is marked by cognitive decline and memory impairment due to neurodegenerative processes in the brain stemming from amyloid-β (Aβ) deposition and formation of neurofibrillary tangles. Pathogenesis in AD is dependent on two main neurological processes: formation of intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein and deposition of extracellular senile Aβ peptides. Given the nature of the disease, the pathology and progression of AD in vivo in humans have been difficult to study in vivo. To this degree, models can help to study the disease pathogenesis, biochemistry, immunological functions, genetics, and potential pharmacotherapy. While animal and two-dimensional (2D) cell culture models have facilitated significant progress in studying the disease, more recent application of novel three-dimensional (3D) culture models has exhibited several advantages. Herein, we describe a brief background of AD, and how current animal, 2D, and 3D models facilitate the study of this disease and associated therapeutics.
Collapse
Affiliation(s)
- Ahmed Yaqinuddin
- Department of Anatomy and Genetic, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Faisal Ikram
- Department of Anatomy and Genetic, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Ayesha Rahman Ambia
- Department of Anatomy and Genetic, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Raghad Alaujan
- Department of Anatomy and Genetic, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Junaid Kashir
- Department of Anatomy and Genetic, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
195
|
Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021; 13:3651. [PMID: 34359553 PMCID: PMC8344976 DOI: 10.3390/cancers13153651] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Collapse
Affiliation(s)
- Alexandru Blidisel
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Florin Hut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| |
Collapse
|
196
|
Bioengineered Nanoparticles Loaded-Hydrogels to Target TNF Alpha in Inflammatory Diseases. Pharmaceutics 2021; 13:pharmaceutics13081111. [PMID: 34452074 PMCID: PMC8400713 DOI: 10.3390/pharmaceutics13081111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid Arthritis (RA) is an incurable autoimmune disease that promotes the chronic impairment of patients’ mobility. For this reason, it is vital to develop therapies that target early inflammatory symptoms and act before permanent articular damage. The present study offers two novel therapies based in advanced drug delivery systems for RA treatment: encapsulated chondroitin sulfate modified poly(amidoamine) dendrimer nanoparticles (NPs) covalently bonded to monoclonal anti-TNF α antibody in both Tyramine-Gellan Gum and Tyramine-Gellan Gum/Silk Fibroin hydrogels. Using pro-inflammatory THP-1 (i.e., human monocytic cell line), the therapy was tested in an inflammation in vitro model under both static and dynamic conditions. Firstly, we demonstrated effective NP-antibody functionalization and TNF-α capture. Upon encapsulation, the NPs were released steadily over 21 days. Moreover, in static conditions, the approaches presented good anti-inflammatory activity over time, enabling the retainment of a high percentage of TNF α. To mimic the physiological conditions of the human body, the hydrogels were evaluated in a dual-chamber bioreactor. Dynamic in vitro studies showed absent cytotoxicity in THP-1 cells and a significant reduction of TNF-α in suspension over 14 days for both hydrogels. Thus, the developed approach showed potential for use as personalized medicine to obtain better therapeutic outcomes and decreased adverse effects.
Collapse
|
197
|
Mokhtari RB, Sambi M, Qorri B, Baluch N, Ashayeri N, Kumar S, Cheng HLM, Yeger H, Das B, Szewczuk MR. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel) 2021; 13:3596. [PMID: 34298809 PMCID: PMC8305317 DOI: 10.3390/cancers13143596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Neda Ashayeri
- Division of Hematology & Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran;
| | - Sushil Kumar
- QPS, Holdings LLC, Pencader Corporate Center, 110 Executive Drive, Newark, DE 19702, USA;
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada;
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
- KaviKrishna Laboratory, Department of Cancer and Stem Cell Biology, GBP, Indian Institute of Technology, Guwahati 781039, India
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| |
Collapse
|
198
|
Wassmer CH, Bellofatto K, Perez L, Lavallard V, Cottet-Dumoulin D, Ljubicic S, Parnaud G, Bosco D, Berishvili E, Lebreton F. Engineering of Primary Pancreatic Islet Cell Spheroids for Three-dimensional Culture or Transplantation: A Methodological Comparative Study. Cell Transplant 2021; 29:963689720937292. [PMID: 32749168 PMCID: PMC7563811 DOI: 10.1177/0963689720937292] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) cell culture by engineering spheroids has gained increasing attention in recent years because of the potential advantages of such systems over conventional two-dimensional (2D) tissue culture. Benefits include the ability of 3D to provide a more physiologically relevant environment, for the generation of uniform, size-controlled spheroids with organ-like microarchitecture and morphology. In recent years, different techniques have been described for the generation of cellular spheroids. Here, we have compared the efficiency of four different methods of islet cell aggregation. Rat pancreatic islets were dissociated into single cells before reaggregation. Spheroids were generated either by (i) self-aggregation in nonadherent petri dishes, (ii) in 3D hanging drop culture, (iii) in agarose microwell plates or (iv) using the Sphericalplate 5D™. Generated spheroids consisted of 250 cells, except for the self-aggregation method, where the number of cells per spheroid cannot be controlled. Cell function and morphology were assessed by glucose stimulated insulin secretion (GSIS) test and histology, respectively. The quantity of material, labor intensity, and time necessary for spheroid production were compared between the different techniques. Results were also compared with native islets. Native islets and self-aggregated spheroids showed an important heterogeneity in terms of size and shape and were larger than spheroids generated with the other methods. Spheroids generated in hanging drops, in the Sphericalplate 5D™, and in agarose microwell plates were homogeneous, with well-defined round shape and a mean diameter of 90 µm. GSIS results showed improved insulin secretion in response to glucose in comparison with native islets and self-aggregated spheroids. Spheroids can be generated using different techniques and each of them present advantages and inconveniences. For islet cell aggregation, we recommend, based on our results, to use the hanging drop technique, the agarose microwell plates, or the Sphericalplate 5D™ depending on the experiments, the latter being the only option available for large-scale spheroids production.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Lisa Perez
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Sanda Ljubicic
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Géraldine Parnaud
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia.,Both the authors contributed equally to this article and share senior authorship
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Both the authors contributed equally to this article and share senior authorship
| |
Collapse
|
199
|
Munoz-Garcia J, Jubelin C, Loussouarn A, Goumard M, Griscom L, Renodon-Cornière A, Heymann MF, Heymann D. In vitro three-dimensional cell cultures for bone sarcomas. J Bone Oncol 2021; 30:100379. [PMID: 34307011 PMCID: PMC8287221 DOI: 10.1016/j.jbo.2021.100379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are rare tumour entities that arise from the mesenchyme most of which are highly heterogeneous at the cellular, genetic and epigenetic levels. The three main types are osteosarcoma, Ewing sarcoma, and chondrosarcoma. These oncological entities are characterised by high morbidity and mortality and an absence of significant therapeutic improvement in the last four decades. In the field of oncology, in vitro cultures of cancer cells have been extensively used for drug screening unfortunately with limited success. Indeed, despite the massive knowledge acquired from conventional 2D culture methods, scientific community has been challenged by the loss of efficacy of drugs when moved to clinical trials. The recent explosion of new 3D culture methods is paving the way to more relevant in vitro models mimicking the in vivo tumour environment (e.g. bone structure) with biological responses close to the in vivo context. The present review gives a brief overview of the latest advances of the 3D culture methods used for studying primary bone sarcomas.
Collapse
Affiliation(s)
- Javier Munoz-Garcia
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Camille Jubelin
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,Atlantic Bone Screen, Saint-Herblain, France
| | | | - Matisse Goumard
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | | | | | - Marie-Françoise Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,University of Sheffield, Department of Oncology and Metabolism, Medical School, Sheffield, UK
| |
Collapse
|
200
|
Itzhaki E, Hadad E, Moskovits N, Stemmer SM, Margel S. Tumor-Targeted Fluorescent Proteinoid Nanocapsules Encapsulating Synergistic Drugs for Personalized Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:648. [PMID: 34358074 PMCID: PMC8308547 DOI: 10.3390/ph14070648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Personalized cancer treatment based on specific mutations offers targeted therapy and is preferred over "standard" chemotherapy. Proteinoid polymers produced by thermal step-growth polymerization of amino acids may form nanocapsules (NCs) that encapsulate drugs overcoming miscibility problems and allowing passive targeted delivery with reduced side effects. The arginine-glycine-glutamic acid (RGD) sequence is known for its preferential attraction to αvβ3 integrin, which is highly expressed on neovascular endothelial cells that support tumor growth. Here, tumor-targeted RGD-based proteinoid NCs entrapping a synergistic combination of Palbociclib (Pal) and Alpelisib (Alp) were synthesized by self-assembly to induce the reduction of tumor cell growth in different types of cancers. The diameters of the hollow and drug encapsulating poly(RGD) NCs were 34 ± 5 and 22 ± 3 nm, respectively; thereby, their drug targeted efficiency is due to both passive and active targeting. The encapsulation yield of Pal and Alp was 70 and 90%, respectively. In vitro experiments with A549, MCF7 and HCT116 human cancer cells demonstrate a synergistic effect of Pal and Alp, controlled release and dose dependence. Preliminary results in a 3D tumor spheroid model with cells derived from patient-derived xenografts of colon cancer illustrate disassembly of spheroids, indicating that the NCs have therapeutic potential.
Collapse
Affiliation(s)
- Ella Itzhaki
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| | - Elad Hadad
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| | - Neta Moskovits
- Davidoff Center, Rabin and Felsenstein Medical Center, Beilinson Campus, Petach Tikva 49100, Israel; (N.M.); (S.M.S.)
| | - Salomon M. Stemmer
- Davidoff Center, Rabin and Felsenstein Medical Center, Beilinson Campus, Petach Tikva 49100, Israel; (N.M.); (S.M.S.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomo Margel
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (E.I.); (E.H.)
| |
Collapse
|