151
|
Park JY, Chandran S, Hewawaduge C, Lee JH. Development and evaluation of a mouse model susceptible to severe fever with thrombocytopenia syndrome virus by rAAV-based exogenous human DC-SIGN expression. Microb Pathog 2023; 178:106079. [PMID: 36966885 DOI: 10.1016/j.micpath.2023.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Experimental animal model is indispensable to evaluate the prophylactic and therapeutic candidates against severe fever with thrombocytopenia syndrome virus (SFTSV). To develop a suitable mouse model for SFTSV infection, we delivered human dendritic cell-specific ICAM-3-grabbing non-integrin (hDC-SIGN) by adeno-associated virus (AAV2) and validated its susceptibility for SFTSV infection. Western blot and RT-PCR assays confirmed the expression of hDC-SIGN in transduced cell lines and a significantly increased viral infectivity was observed in cells expressing hDC-SIGN. The C57BL/6 mice transduced with AAV2 exhibited a stable hDC-SIGN expression in the organs for 7 days. Upon SFTSV challenge with 1 × 105 FAID50, the mice transduced with rAAV-hDC-SIGN showed a 12.5% mortality and reduced platelet and white blood cell count in accordance with higher viral titer than control group. Liver and spleen samples collected from the transduced mice had pathological signs similar to the IFNAR-/- mice with severe SFTSV infection. Collectively, the rAAV-hDC-SIGN transduced mouse model can be used as an accessible and promising tool for studying the SFTSV pathogenesis and pre-clinical evaluation of vaccines and therapeutics against the SFTSV infection.
Collapse
Affiliation(s)
- Ji-Young Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Sivasankar Chandran
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea.
| |
Collapse
|
152
|
Fathi J, Amani J, Nazarian S, Hadi N, Mirhosseini SA, Ranjbar R, Abianeh HS. Investigate the immunogenic and protective effect of trivalent chimeric protein containing IpaD-StxB-TolC antigens as a vaccine candidate against S. dysenteri and S. flexneri. Microb Pathog 2023; 178:106066. [PMID: 36924900 DOI: 10.1016/j.micpath.2023.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND s: Shigella spp. causes bloody diarrhea and leads to death, especially in children. Chimeric proteins containing virulence factors can prevent Shigella infection. The purpose of this study is to investigate the immunogenic and protective effect of trivalent chimeric protein containing IpaD-StxB-TolC antigens against shiga toxin, S. dysenteri and S. flexneri in vitro and in vivo conditions. METHODS Recombinant vector was transferred to E. coli BL21. The expression of the chimeric protein was confirmed by SDS PAGE and purified using the Ni-NTA column. Mice were immunized with recombinant protein and antibody titer was evaluated by ELISA. 10, 25 and 50 LD50 of Shiga toxin neutralization was evaluated in vitro (Vero cell line) and in vivo conditions. Also, the challenge of immunized mice with 10, 25 and 50 LD50 of S. dysentery and S. flexneri was done. RESULTS The expression and purification of the recombinant protein with 60.6 kDa was done. ELISA showed increased antibody titer against the chimeric protein. MTT assay indicated that 1/8000 dilution of the sera had a 51% of cell viability against the toxin in Vero cell line. The challenge of mice immunized with toxin showed that the mice had complete protection against 10 and 25 LD50 of toxin and had 40% survival against 50 LD50. Mice receiving 10 and 25 LD50 of S. dysenteri and S. flexneri had 100% protection and in 50 LD50 the survival rate was 60 and 50%, respectively. Organ burden showed that the amount of bacterial colonization in immunized mice was 1 × 104 CFU/mL, which was significantly different from the control group. CONCLUSION This study showed that chimeric proteins can create favorable immunogenicity in the host as vaccine candidates.
Collapse
Affiliation(s)
- Javad Fathi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Shahram Nazarian
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran.
| | - Nahal Hadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Samiei Abianeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
153
|
Lu C, Zhang Y, Liu X, Hou F, Cai R, Yu Z, Liu F, Yang G, Ding J, Xu J, Hua X, Cheng X, Pan X, Liu L, Lin K, Wang Z, Li X, Lu J, Zhang Q, Li Y, Hu C, Fan H, Liu X, Wang H, Jia R, Xu F, Wang X, Huang H, Zhao R, Li J, Cheng H, Jia W, Yang X. Heterologous boost with mRNA vaccines against SARS-CoV-2 Delta/Omicron variants following an inactivated whole-virus vaccine. Antiviral Res 2023; 212:105556. [PMID: 36871919 PMCID: PMC9985518 DOI: 10.1016/j.antiviral.2023.105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
The coronavirus SARS-CoV-2 has mutated quickly and caused significant global damage. This study characterizes two mRNA vaccines ZSVG-02 (Delta) and ZSVG-02-O (Omicron BA.1), and associating heterologous prime-boost strategy following the prime of a most widely administrated inactivated whole-virus vaccine (BBIBP-CorV). The ZSVG-02-O induces neutralizing antibodies that effectively cross-react with Omicron subvariants. In naïve animals, ZSVG-02 or ZSVG-02-O induce humoral responses skewed to the vaccine's targeting strains, but cellular immune responses cross-react to all variants of concern (VOCs) tested. Following heterologous prime-boost regimes, animals present comparable neutralizing antibody levels and superior protection against Delta and Omicron BA.1variants. Single-boost only generated ancestral and omicron dual-responsive antibodies, probably by "recall" and "reshape" the prime immunity. New Omicron-specific antibody populations, however, appeared only following the second boost with ZSVG-02-O. Overall, our results support a heterologous boost with ZSVG-02-O, providing the best protection against current VOCs in inactivated virus vaccine-primed populations.
Collapse
Affiliation(s)
- Changrui Lu
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | | | - Xiaohu Liu
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Fujun Hou
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Rujie Cai
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Zhibin Yu
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Fei Liu
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Guohuan Yang
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Jun Ding
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Jiang Xu
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Xianwu Hua
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Xinhua Cheng
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Xinping Pan
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Lianxiao Liu
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Kang Lin
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Xinguo Li
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Jia Lu
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Qiu Zhang
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Yuwei Li
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Chunxia Hu
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Huifen Fan
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Xiaoke Liu
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Hui Wang
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Rui Jia
- China National Biotec Group (CNBG), China
| | | | | | - Hongwei Huang
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China; Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Ronghua Zhao
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China; Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Jing Li
- Shuimu BioSciences Ltd, China
| | | | - William Jia
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China; Virogin Biotech (Shanghai) Ltd (Virogin), China.
| | | |
Collapse
|
154
|
Transcriptomic and antiviral analyses of PoIFN-Delta5 against porcine enteric viruses in porcine intestinal epithelial cells. Vet Microbiol 2023; 280:109718. [PMID: 36871521 DOI: 10.1016/j.vetmic.2023.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The interferon-delta family was first reported in domestic pigs and belongs to the type I interferon (IFN-I) family. The enteric viruses could cause diarrhea in newborn piglets with high morbidity and mortality. We researched the function of the porcine IFN-delta (PoIFN-δ) family in the porcine intestinal epithelial cells (IPEC-J2) cells infected with porcine epidemic diarrhea virus (PEDV). Our study found that all PoIFN-δs shared a typical IFN-I signature and could be divided into five branches in the phylogenic tree. Different strains of PEDV could induce typical IFN transitorily, and the virulent strain AH2012/12 had the strongest induction of porcine IFN-δ and IFN-alpha (PoIFN-α) in the early stage of infection. In addition, it was found that PoIFN-δ5/6/9/11 and PoIFN-δ1/2 were highly expressed in the intestine. PoIFN-δ5 had a better antiviral effect on PEDV compared to PoIFN-δ1 due to its higher induction of ISGs. PoIFN-δ1 and PoIFN-δ5 also activated JAK-STAT and IRS signaling. For other enteric viruses, transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and porcine rotavirus (PoRV), PoIFN-δ1 and PoIFN-δ5 both showed an excellent antiviral effect. Transcriptome analyses uncovered the differences in host responses to PoIFN-α and PoIFN-δ5 and revealed thousands of differentially expressed genes were mainly enriched in the inflammatory response, antigen processing and presentation, and other immune-related pathways. PoIFN-δ5 would be a potential antiviral drug, especially against porcine enteric viruses. These studies were the first to report the antiviral function against porcine enteric viruses and broaden the new acquaintances of this type of interferon though not novelly discovered.
Collapse
|
155
|
Li R, Qu S, Qin M, Huang L, Huang Y, Du Y, Yu Z, Fan F, Sun J, Li Q, So KF. Immunomodulatory and antiviral effects of Lycium barbarum glycopeptide on influenza a virus infection. Microb Pathog 2023; 176:106030. [PMID: 36773941 DOI: 10.1016/j.micpath.2023.106030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Influenza is caused by a respiratory virus and has a major global impact on human health. Influenza A viruses in particular are highly pathogenic to humans and have caused multiple pandemics. An important consequence of infection is viral pneumonia, and with serious complications of excessive inflammation and tissue damage. Therefore, simultaneously reducing direct damage caused by virus infection and relieving indirect damage caused by excessive inflammation would be an effective treatment strategy. Lycium barbarum glycopeptide (LbGp) is a mixture of five highly branched polysaccharide-protein conjuncts (LbGp1-5) isolated from Lycium barbarum fruit. LbGp has pro-immune activity that is 1-2 orders of magnitude stronger than that of other plant polysaccharides. However, there are few reports on the immunomodulatory and antiviral activities of LbGp. In this study, we evaluated the antiviral and immunomodulatory effects of LbGp in vivo and in vitro and investigated its therapeutic effect on H1N1-induced viral pneumonia and mechanisms of action. In vitro, cytokine secretion, NF-κB p65 nuclear translocation, and CD86 mRNA expression in LPS-stimulated RAW264.7 cells were constrained by LbGp treatment. In A549 cells, LbGp can inhibit H1N1 infection by blocking virus attachment and entry action. In vivo experiments confirmed that administration of LbGp can effectively increase the survival rate, body weight and decrease the lung index of mice infected with H1N1. Compared to the model group, pulmonary histopathologic symptoms in lung sections of mice treated with LbGp were obviously alleviated. Further investigation revealed that the mechanism of LbGp in the treatment of H1N1-induced viral pneumonia includes reducing the viral load in lung, regulating the phenotype of pulmonary macrophages, and inhibiting excessive inflammation. In conclusion, LbGp exhibits potential curative effects against H1N1-induced viral pneumonia in mice, and these effects are associated with its good immuno-regulatory and antiviral activities.
Collapse
Affiliation(s)
- Runwei Li
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Qin
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Yichun Huang
- College of Life Science and Technology, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi Du
- Center of Clinical Evaluation and Analysis, Pharmacy Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Zhexiong Yu
- Ningxia Tianren Goji Biotechnology, Ningxia, 755100, China
| | - Fu Fan
- Ningxia Tianren Goji Biotechnology, Ningxia, 755100, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.4 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| | - Qiushuang Li
- Center of Clinical Evaluation and Analysis, Pharmacy Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China.
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
156
|
Shakya R, Jiménez-Meléndez A, Robertson LJ, Myrmel M. Bovine Enteroids as an In Vitro Model for Infection with Bovine Coronavirus. Viruses 2023; 15:635. [PMID: 36992344 PMCID: PMC10054012 DOI: 10.3390/v15030635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Bovine coronavirus (BCoV) is one of the major viral pathogens of cattle, responsible for economic losses and causing a substantial impact on animal welfare. Several in vitro 2D models have been used to investigate BCoV infection and its pathogenesis. However, 3D enteroids are likely to be a better model with which to investigate host-pathogen interactions. This study established bovine enteroids as an in vitro replication system for BCoV, and we compared the expression of selected genes during the BCoV infection of the enteroids with the expression previously described in HCT-8 cells. The enteroids were successfully established from bovine ileum and permissive to BCoV, as shown by a seven-fold increase in viral RNA after 72 h. Immunostaining of differentiation markers showed a mixed population of differentiated cells. Gene expression ratios at 72 h showed that pro-inflammatory responses such as IL-8 and IL-1A remained unchanged in response to BCoV infection. Expression of other immune genes, including CXCL-3, MMP13, and TNF-α, was significantly downregulated. This study shows that the bovine enteroids had a differentiated cell population and were permissive to BCoV. Further studies are necessary for a comparative analysis to determine whether enteroids are suitable in vitro models to study host responses during BCoV infection.
Collapse
Affiliation(s)
| | | | | | - Mette Myrmel
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| |
Collapse
|
157
|
Cho HK, Kang YM, Sagong M, Kim J, Kim H, An S, Lee YJ, Kang HM. Protection of SPF Chickens by H9N2 Y439 and G1 Lineage Vaccine against Homologous and Heterologous Viruses. Vaccines (Basel) 2023; 11:vaccines11030538. [PMID: 36992122 DOI: 10.3390/vaccines11030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Prior to the identification of low pathogenic avian influenza H9N2 viruses belonging to the Y280 lineage in 2020, Y439 lineage viruses had been circulating in the Republic of Korea since 1996. Here, we developed a whole inactivated vaccine (vac564) by multiple passage of Y439 lineage viruses and then evaluated immunogenicity and protective efficacy in specific-pathogen-free chickens. We found that LBM564 could be produced at high yield in eggs (108.4EID50/0.1 mL; 1024 hemagglutinin units) and was immunogenic (8.0 ± 1.2 log2) in chickens. The vaccine showed 100% inhibition of virus in the cecal tonsil with no viral shedding detected in either oropharyngeal or cloacal swabs after challenge with homologous virus. However, it did not induce effective protection against challenge with heterologous virus. An imported commercial G1 lineage vaccine inhibited viral replication against Y280 and Y439 lineage viruses in major tissues, although viral shedding in oropharyngeal and cloacal swabs was observed up until 5 dpi after exposure to both challenge viruses. These results suggest that a single vaccination with vac564 could elicit immune responses, showing it to be capable of protecting chickens against the Y439 lineage virus. Thus, our results suggest the need to prepare suitable vaccines for use against newly emerging and re-emerging H9N2 viruses.
Collapse
Affiliation(s)
- Hyun-Kyu Cho
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Yong-Myung Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Juhun Kim
- Bioapp Institute, 394 Jigok-ro, Pohang-si 37668, Republic of Korea
| | - Hyunjun Kim
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Sungjun An
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Hyun-Mi Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
158
|
Boley PA, Lee CM, Schrock J, Yadav KK, Patil V, Suresh R, Lu S, Feng MM, Hanson J, Channappanavar R, Kenney SP, Renukaradhya GJ. Enhanced mucosal immune responses and reduced viral load in the respiratory tract of ferrets to intranasal lipid nanoparticle-based SARS-CoV-2 proteins and mRNA vaccines. J Nanobiotechnology 2023; 21:60. [PMID: 36814238 PMCID: PMC9944789 DOI: 10.1186/s12951-023-01816-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Unlike the injectable vaccines, intranasal lipid nanoparticle (NP)-based adjuvanted vaccine is promising to protect against local infection and viral transmission. Infection of ferrets with SARS-CoV-2 results in typical respiratory disease and pathology akin to in humans, suggesting that the ferret model may be ideal for intranasal vaccine studies. RESULTS We developed SARS-CoV-2 subunit vaccine containing both Spike receptor binding domain (S-RBD) and Nucleocapsid (N) proteins (NP-COVID-Proteins) or their mRNA (NP-COVID-mRNA) and NP-monosodium urate adjuvant. Both the candidate vaccines in intranasal vaccinated aged ferrets substantially reduced the replicating virus in the entire respiratory tract. Specifically, the NP-COVID-Proteins vaccine did relatively better in clearing the virus from the nasal passage early post challenge infection. The immune gene expression in NP-COVID-Proteins vaccinates indicated increased levels of mRNA of IFNα, MCP1 and IL-4 in lungs and nasal turbinates, and IFNγ and IL-2 in lungs; while proinflammatory mediators IL-1β and IL-8 mRNA levels in lungs were downregulated. In NP-COVID-Proteins vaccinated ferrets S-RBD and N protein specific IgG antibodies in the serum were substantially increased at both day post challenge (DPC) 7 and DPC 14, while the virus neutralizing antibody titers were relatively better induced by mRNA versus the proteins-based vaccine. In conclusion, intranasal NP-COVID-Proteins vaccine induced balanced Th1 and Th2 immune responses in the respiratory tract, while NP-COVID-mRNA vaccine primarily elicited antibody responses. CONCLUSIONS Intranasal NP-COVID-Proteins vaccine may be an ideal candidate to elicit increased breadth of immunity against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Patricia A Boley
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Carolyn M Lee
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Songqing Lu
- Dynamic Entropy Technology LLC, Building B, 1028 W. Nixon St., Pasco, WA, 99301-5216, USA
| | - Maoqi Mark Feng
- Dynamic Entropy Technology LLC, Building B, 1028 W. Nixon St., Pasco, WA, 99301-5216, USA
| | - Juliette Hanson
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Rudra Channappanavar
- Department of Veterinary Pathobiology, Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Scott P Kenney
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| | - Gourapura J Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| |
Collapse
|
159
|
Aghaie SM, Tabatabaei M, Nazarian S. Bioinformatics design of recombinant chimeric protein containing SipD and LptD immunogens and evaluation of its immunogenicity against Salmonella Typhimurium. Microb Pathog 2023; 175:105959. [PMID: 36581307 DOI: 10.1016/j.micpath.2022.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
The growing emergence of resistant bacteria is the current global concern for the humans and animals. Vaccination could be the desirable method to preventing such infectious diseases. Safe and effective vaccines are urgently needed to manage and prevent Salmonella contamination. Subunit vaccines are safe approaches for the protection against Salmonella spp. The bioinformatics methods were performed to determine the gene structure. Gene cassette (rLPSI) was ordered in pET28a (+), and cloned into E.coli BL21 (DE3), and the recombinant protein was expressed using IPTG (1 mM). Mice were immunized by subcutaneous administration of recombinant protein. Then, the mice were challenged by oral administration of 100LD50 of live S. Typhimurium. The Codon adaptation index of the chimeric gene was multiplied by 0.92. Validation results showed that >90% of residues lie in the desired or extra allowed area of the Ramachandran plot. The recombinant protein (65.9 kDa) was expressed in E.coli. Antibody titers in vaccinated mice were significantly different from those in the control groups. Recombinant protein immunization of the mice provided 90% and 70% protection against 10LD50 and 100LD50 of S. Typhimurium, respectively. In general, the results showed the high efficiency of rLPSI chimeric protein as a protective antigen against S. Typhimurium infection. The rLPSI chimeric protein could be an effective recombinant vaccine candidate against S. Typhimurium infection, but more research is needed.
Collapse
Affiliation(s)
- Seyed Mojtaba Aghaie
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Tabatabaei
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Shahram Nazarian
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| |
Collapse
|
160
|
Lee Z, Lu M, Irfanullah E, Soukup M, Schmidt D, Hu WS. Development of an Inducible, Replication-Competent Assay Cell Line for Titration of Infectious Recombinant Adeno-Associated Virus Vectors. Hum Gene Ther 2023; 34:162-170. [PMID: 36565023 PMCID: PMC10081724 DOI: 10.1089/hum.2022.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
An important quality attribute of a recombinant adeno-associated virus (rAAV) as a therapeutic vector is its infectivity. Current assays to quantify infectious rAAV rely on coinfection with a helper virus such as adenovirus (Ad), which requires helper virus preparation and introduces additional variability. A simple method that has high sensitivity and removes the need for helper virus would improve assay consistency and facilitate high-throughput applications such as rAAV producer cell line development. In this study, we describe a stable assay cell line that was generated by integrating the coding sequences for AAV Rep68 and Ad E4orf6 and DNA binding protein under the control of inducible promoters. The Rep68 protein expression was further modulated by a ligand-responsive destabilization domain. In several benchmarks, the cell line gave comparable titers with those obtained using a classical Ad coinfection method. The cell line was also used to titer vectors of multiple rAAV serotypes. This cell line has the potential to serve as an effective and robust tool for quantifying infectious rAAV titers to advance gene therapy vector biomanufacturing.
Collapse
Affiliation(s)
- Zion Lee
- Department of Chemical Engineering and Materials Science and
| | - Min Lu
- Department of Chemical Engineering and Materials Science and
| | | | - Morgan Soukup
- Department of Chemical Engineering and Materials Science and
| | - Daniel Schmidt
- Department of Chemical Engineering and Materials Science and
- Department of Genetics, Cell Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science and
| |
Collapse
|
161
|
Rohde F, Walther M, Baur F, Windbergs M. A Dual‐Function Electrospun Matrix for the Prevention of Herpes Simplex Virus‐1 Infections after Corneal Transplantation. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Felix Rohde
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Marcel Walther
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Florentin Baur
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| |
Collapse
|
162
|
Faizuloev E, Gracheva A, Korchevaya E, Smirnova D, Samoilikov R, Pankratov A, Trunova G, Khokhlova V, Ammour Y, Petrusha O, Poromov A, Leneva I, Svitich O, Zverev V. Cold-adapted SARS-CoV-2 variants with different temperature sensitivity exhibit an attenuated phenotype and confer protective immunity. Vaccine 2023; 41:892-902. [PMID: 36528447 PMCID: PMC9744683 DOI: 10.1016/j.vaccine.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
As novel SARS-CoV-2 Variants of Concern emerge, the efficacy of existing vaccines against COVID-19 is declining. A possible solution to this problem lies in the development of a live attenuated vaccine potentially able of providing cross-protective activity against a wide range of SARS-CoV-2 antigenic variants. Cold-adapted (ca) SARS-CoV-2 variants, Dubrovka-ca-B4 (D-B4) and Dubrovka-ca-D2 (D-D2), were obtained after long-term passaging of the Dubrovka (D) strain in Vero cells at reduced temperatures. Virulence, immunogenicity, and protective activity of SARS-CoV-2 variants were evaluated in experiments on intranasal infection of Syrian golden hamsters (Mesocricetus auratus). In animal model infecting with ca variants, the absence of body weight loss, the significantly lower viral titer and viral RNA concentration in animal tissues, the less pronounced inflammatory lesions in animal lungs as compared with the D strain indicated the reduced virulence of the virus variant. Single intranasal immunization with D-B4 and D-D2 variants induced the production of neutralizing antibodies in hamsters and protected them from infection with the D strain and the development of severe pneumonia. It was shown that for ca SARS-CoV-2 variants, the temperature-sensitive (ts) phenotype was not obligate for virulence reduction. Indeed, the D-B4 variant, which did not possess the ts phenotype but had lost the ability to infect human lung cells Calu-3, exhibited reduced virulence in hamsters. Consequently, the potential phenotypic markers of attenuation of ca SARS-CoV-2 variants are the ca phenotype, the ts phenotype, and the change in species specificity of the virus. This study demonstrates the great potential of SARS-CoV-2 cold adaptation as a strategy to develop a live attenuated COVID-19 vaccine.
Collapse
Affiliation(s)
- Evgeny Faizuloev
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia; Russian Medical Academy of Continuous Professional Education, Moscow, Russia.
| | | | | | - Daria Smirnova
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Roman Samoilikov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Andrey Pankratov
- FSBI NMRRC of the Ministry of Health of the Russian Federation, P.A. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Galina Trunova
- FSBI NMRRC of the Ministry of Health of the Russian Federation, P.A. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Varvara Khokhlova
- FSBI NMRRC of the Ministry of Health of the Russian Federation, P.A. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Yulia Ammour
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Olga Petrusha
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Artem Poromov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia,Peoples' Friendship University of Russia, Department of Biochemistry, Moscow, Russia
| | - Irina Leneva
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Oxana Svitich
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia,I.M. Sechenov First Moscow State Medical University (Sechenov University), F.F. Erisman Institute of Public Health, Moscow, Russia
| | - Vitaly Zverev
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia,I.M. Sechenov First Moscow State Medical University (Sechenov University), F.F. Erisman Institute of Public Health, Moscow, Russia
| |
Collapse
|
163
|
Reyes Ballista JM, Miazgowicz KL, Acciani MD, Jimenez AR, Belloli RS, Havranek KE, Brindley MA. Chikungunya virus entry and infectivity is primarily facilitated through cell line dependent attachment factors in mammalian and mosquito cells. Front Cell Dev Biol 2023; 11:1085913. [PMID: 36743418 PMCID: PMC9895848 DOI: 10.3389/fcell.2023.1085913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Chikungunya virus (CHIKV) is the causative agent of the human disease chikungunya fever, characterized by debilitating acute and chronic arthralgia. No licensed vaccines or antivirals are currently available for CHIKV. Therefore, the prevention of attachment of viral particles to host cells is a potential intervention strategy. As an arbovirus, CHIKV infects a wide variety of cells in both its mammalian and mosquito host. This broad cell tropism might stem from CHIKV's ability to bind to a variety of entry factors in the host cell including phosphatidylserine receptors (PSRs), glycosaminoglycans (GAGs), and the proteinaceous receptor Mxra8, among others. In this study, we aimed to determine the relevance of each attachment factor during CHIKV entry into a panel of mammalian and mosquito cells. Our data suggest that the importance of particular binding factors during CHIKV infection is highly cell line dependent. Entry into mammalian Vero cells was mediated through attachment to PSRs, mainly T-cell immunoglobulin mucin domain-1 (TIM-1). Conversely, CHIKV infection into HAP1 and NIH3T3 was predominantly mediated by heparan sulfate (HS) and Mxra8, respectively. Entry into mosquito cells was independent of PSRs, HS, and Mxra8. Although entry into mosquito cells remains unclear, our data denotes the importance of careful evaluation of reagents used to identify receptor use in invertebrate cells. While PSRs, GAGs, and Mxra8 all enhance entry in a cell line dependent manner, none of these factors are necessary for CHIKV entry, suggesting additional host factors are involved.
Collapse
Affiliation(s)
- Judith Mary Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kerri L. Miazgowicz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Marissa D. Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ariana R. Jimenez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ryan S. Belloli
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Katherine E. Havranek
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Melinda A. Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
164
|
Vijver SV, Danklmaier S, Pipperger L, Gronauer R, Floriani G, Hackl H, Das K, Wollmann G. Prediction and validation of murine MHC class I epitopes of the recombinant virus VSV-GP. Front Immunol 2023; 13:1100730. [PMID: 36741416 PMCID: PMC9893851 DOI: 10.3389/fimmu.2022.1100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Oncolytic viruses are currently tested as a novel platform for cancer therapy. These viruses preferentially replicate in and kill malignant cells. Due to their microbial origin, treatment with oncolytic viruses naturally results in anti-viral responses and general immune activation. Consequently, the oncolytic virus treatment also induces anti-viral T cells. Since these can constitute the dominant activated T cell pool, monitoring of the anti-viral T cell response may aid in better understanding of the immune responses post oncolytic virotherapy. This study aimed to identify the anti-viral T cells raised by VSV-GP virotherapy in C57BL/6J mice, one of the most widely used models for preclinical studies. VSV-GP is a novel oncolytic agent that recently entered a clinical phase I study. To identify the VSV-GP epitopes to which mouse anti-viral T cells react, we used a multilevel adapted bioinformatics viral epitope prediction approach based on the tools netMHCpan, MHCflurry and netMHCstabPan, which are commonly used in neoepitope identification. Predicted viral epitopes were ranked based on consensus binding strength categories, predicted stability, and dissimilarity to the mouse proteome. The top ranked epitopes were selected and included in the peptide candidate matrix in order to use a matrix deconvolution approach. Using ELISpot, we showed which viral epitopes presented on C57BL/6J mouse MHC-I alleles H2-Db and H2-Kb trigger IFN-γ secretion due to T cell activation. Furthermore, we validated these findings using an intracellular cytokine staining. Collectively, identification of the VSV-GP T cell epitopes enables monitoring of the full range of anti-viral T cell responses upon VSV-GP virotherapy in future studies with preclinical mouse models to more comprehensively delineate anti-viral from anti-tumor T cell responses. These findings also support the development of novel VSV-GP variants expressing immunomodulatory transgenes and can improve the assessment of anti-viral immunity in preclinical models.
Collapse
Affiliation(s)
- Saskia V. Vijver
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah Danklmaier
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Pipperger
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphael Gronauer
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Floriani
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Guido Wollmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
165
|
Köchl K, Schopper T, Durmaz V, Parigger L, Singh A, Krassnigg A, Cespugli M, Wu W, Yang X, Zhang Y, Wang WWS, Selluski C, Zhao T, Zhang X, Bai C, Lin L, Hu Y, Xie Z, Zhang Z, Yan J, Zatloukal K, Gruber K, Steinkellner G, Gruber CC. Optimizing variant-specific therapeutic SARS-CoV-2 decoys using deep-learning-guided molecular dynamics simulations. Sci Rep 2023; 13:774. [PMID: 36641503 PMCID: PMC9840421 DOI: 10.1038/s41598-023-27636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Treatment of COVID-19 with a soluble version of ACE2 that binds to SARS-CoV-2 virions before they enter host cells is a promising approach, however it needs to be optimized and adapted to emerging viral variants. The computational workflow presented here consists of molecular dynamics simulations for spike RBD-hACE2 binding affinity assessments of multiple spike RBD/hACE2 variants and a novel convolutional neural network architecture working on pairs of voxelized force-fields for efficient search-space reduction. We identified hACE2-Fc K31W and multi-mutation variants as high-affinity candidates, which we validated in vitro with virus neutralization assays. We evaluated binding affinities of these ACE2 variants with the RBDs of Omicron BA.3, Omicron BA.4/BA.5, and Omicron BA.2.75 in silico. In addition, candidates produced in Nicotiana benthamiana, an expression organism for potential large-scale production, showed a 4.6-fold reduction in half-maximal inhibitory concentration (IC50) compared with the same variant produced in CHO cells and an almost six-fold IC50 reduction compared with wild-type hACE2-Fc.
Collapse
Affiliation(s)
- Katharina Köchl
- Innophore GmbH, 8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology, 8010, Graz, Austria
| | | | | | | | - Amit Singh
- Innophore GmbH, 8010, Graz, Austria
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria
| | | | | | - Wei Wu
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Xiaoli Yang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Yanchong Zhang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Welson Wen-Shang Wang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Crystal Selluski
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Tiehan Zhao
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Xin Zhang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Caihong Bai
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Leon Lin
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Yuxiang Hu
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Zhiwei Xie
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Zaihui Zhang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Jun Yan
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Kurt Zatloukal
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Karl Gruber
- Innophore GmbH, 8010, Graz, Austria
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria
| | - Georg Steinkellner
- Innophore GmbH, 8010, Graz, Austria.
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
| | - Christian C Gruber
- Innophore GmbH, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology, 8010, Graz, Austria.
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
166
|
Quéromès G, Frobert E, Bouscambert‐Duchamp M, Oblette A, Valette M, Billaud G, Escuret V, Lina B, Morfin F, Gaymard A. Rapid and reliable inactivation protocols for the diagnostics of emerging viruses: The example of SARS-CoV-2 and monkeypox virus. J Med Virol 2023; 95:e28126. [PMID: 36089749 PMCID: PMC9538322 DOI: 10.1002/jmv.28126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023]
Abstract
The emergence and sustained transmission of novel pathogens are exerting an increasing demand on the diagnostics sector worldwide, as seen with the ongoing severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic and the more recent public health concern of monkeypox virus (MPXV) since May 2022. Appropriate and reliable viral inactivation measures are needed to ensure the safety of personnel handling these infectious samples. In the present study, seven commercialized diagnosis buffers, heat (56°C and 60°C), and sodium dodecyl sulfate detergent (2.0%, 1.0%, and 0.5% final concentrations) were tested against infectious SARS-CoV-2 and MPXV culture isolates on Vero cell culture. Cytopathic effects were observed up to 7 days postinoculation and viral load evolution was measured by semiquantitative polymerase chain reaction. The World Health Organization recommends an infectious titer reduction of at least 4 log10 . As such, the data show efficacious SARS-CoV-2 inactivation by all investigated methods, with >6.0 log10 reduction. MPXV inactivation was also validated with all investigated methods with 6.9 log10 reductions, although some commercial buffers required a longer incubation period to yield complete inactivation. These results are valuable for facilities, notably those without biosafety level-3 capabilities, that need to implement rapid and reliable protocols common against both SARS-CoV-2 and MPXV.
Collapse
Affiliation(s)
- Grégory Quéromès
- Centre International de Recherche en Infectiologie (CIRI), Team VirPatH, Université de Lyon, Inserm, U1111, CNRS, UMR5308, ENS de LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Emilie Frobert
- Centre International de Recherche en Infectiologie (CIRI), Team VirPatH, Université de Lyon, Inserm, U1111, CNRS, UMR5308, ENS de LyonUniversité Claude Bernard Lyon 1LyonFrance
- Laboratoire de VirologieInstitut des Agents Infectieux, Hospices Civils de LyonLyonFrance
| | | | - Antoine Oblette
- Laboratoire de VirologieInstitut des Agents Infectieux, Hospices Civils de LyonLyonFrance
| | - Martine Valette
- Centre International de Recherche en Infectiologie (CIRI), Team VirPatH, Université de Lyon, Inserm, U1111, CNRS, UMR5308, ENS de LyonUniversité Claude Bernard Lyon 1LyonFrance
- Laboratoire de VirologieInstitut des Agents Infectieux, Hospices Civils de LyonLyonFrance
- Centre National de Référence des Virus des infections respiratoires (dont la grippe)Hospices Civils de LyonLyonFrance
| | - Geneviève Billaud
- Laboratoire de VirologieInstitut des Agents Infectieux, Hospices Civils de LyonLyonFrance
| | - Vanessa Escuret
- Centre International de Recherche en Infectiologie (CIRI), Team VirPatH, Université de Lyon, Inserm, U1111, CNRS, UMR5308, ENS de LyonUniversité Claude Bernard Lyon 1LyonFrance
- Laboratoire de VirologieInstitut des Agents Infectieux, Hospices Civils de LyonLyonFrance
- Centre National de Référence des Virus des infections respiratoires (dont la grippe)Hospices Civils de LyonLyonFrance
| | - Bruno Lina
- Centre International de Recherche en Infectiologie (CIRI), Team VirPatH, Université de Lyon, Inserm, U1111, CNRS, UMR5308, ENS de LyonUniversité Claude Bernard Lyon 1LyonFrance
- Laboratoire de VirologieInstitut des Agents Infectieux, Hospices Civils de LyonLyonFrance
- Centre National de Référence des Virus des infections respiratoires (dont la grippe)Hospices Civils de LyonLyonFrance
| | - Florence Morfin
- Centre International de Recherche en Infectiologie (CIRI), Team VirPatH, Université de Lyon, Inserm, U1111, CNRS, UMR5308, ENS de LyonUniversité Claude Bernard Lyon 1LyonFrance
- Laboratoire de VirologieInstitut des Agents Infectieux, Hospices Civils de LyonLyonFrance
| | - Alexandre Gaymard
- Centre International de Recherche en Infectiologie (CIRI), Team VirPatH, Université de Lyon, Inserm, U1111, CNRS, UMR5308, ENS de LyonUniversité Claude Bernard Lyon 1LyonFrance
- Laboratoire de VirologieInstitut des Agents Infectieux, Hospices Civils de LyonLyonFrance
| |
Collapse
|
167
|
Shen K, Yang C, Chen C, Ho H, Chiu F, Huang C, Liao H, Hsu C, Yu G, Liao C, Chen H, Huang M, Liu S. Omicron-specific mRNA vaccine induced cross-protective immunity against ancestral SARS-CoV-2 infection with low neutralizing antibodies. J Med Virol 2023; 95:e28370. [PMID: 36458553 PMCID: PMC9877661 DOI: 10.1002/jmv.28370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
The major challenge in COVID-19 vaccine effectiveness is immune escape by SARS-CoV-2 variants. To overcome this, an Omicron-specific messenger RNA (mRNA) vaccine was designed. The extracellular domain of the spike of the Omicron variant was fused with a modified GCN4 trimerization domain with low immunogenicity (TSomi). After immunization with TSomi mRNA in hamsters, animals were challenged with SARS-CoV-2 virus. The raised nonneutralizing antibodies or cytokine secretion responses can recognize both Wuhan S and Omicron S. However, the raised antibodies neutralized SARS-CoV-2 Omicron virus infection but failed to generate Wuhan virus neutralizing antibodies. Surprisingly, TSomi mRNA immunization protected animals from Wuhan virus challenge. These data indicated that non-neutralizing antibodies or cellular immunity may play a more important role in vaccine-induced protection than previously believed. Next-generation COVID-19 vaccines using the Omicron S antigen may provide sufficient protection against ancestral or current SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Kuan‐Yin Shen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Chung‐Hsiang Yang
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Chiung‐Tong Chen
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoliTaiwan
| | - Hui‐Min Ho
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Fang‐Feng Chiu
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Chiung‐Yi Huang
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Hung‐Chun Liao
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Chia‐Wei Hsu
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Guann‐Yi Yu
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Ching‐Len Liao
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | - Hsin‐Wei Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan,Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Ming‐Hsi Huang
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan,Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shih‐Jen Liu
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan,Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
168
|
Samiei H, Nazarian S, Hajizade A, Kordbacheh E. In silico design, production and immunization evaluation of a recombinant bivalent fusion protein candidate vaccine against E. coli O157:H7. Int Immunopharmacol 2023; 114:109464. [PMID: 36450206 DOI: 10.1016/j.intimp.2022.109464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/20/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
Abstract
In silico techniques are highly suited for both the discovery of new and development of available vaccines. Escherichia coli O157: H7, a main cause of food poisoning can infect humans through the consumption of contaminated water or food. Vaccination is a choice strategy to combat the bacterium. In the present study, we designed, expressed and purified a chimeric protein comprising two antigens of Escherichia coli O157: H7, including intimin and flagellin proteins, as a vaccine candidate and evaluated its immunization ability in mice. Thein silicoresults showed that the proposed antigen has a high antigenicity and conformation to be used as a potent vaccine candidate. The protein was successfully expressed in E. coli expression system with a proper level of expression (0/8g/L). Immunization evaluation showed that the protein is able to evoke the mice's humoral immunity and can confer a protective immunity against E. coli O157:H7, so that 80 % of the immunized animals were survived following the intraperitoneal injection of 100 LD50 of the live bacteria. Shedding analysis also showed the protectivity power of the protein. Bacterial excretion in control animals remained stable at about 108 CFU after 15 days, while the excreted bacteria in the feces of immunized mice's decreased to about 102 after the same time. According to the results, the proposed protein is able to stimulate the immune responses of mice and protect them against E. coli O157:H7.
Collapse
Affiliation(s)
- Hossein Samiei
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences Mashhad, Iran
| | - Shahram Nazarian
- (b)Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran.
| | - Abass Hajizade
- (b)Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran.
| | - Emad Kordbacheh
- (b)Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran
| |
Collapse
|
169
|
Köntös Z. Reducing Vaccinia virus transmission indoors within 60 seconds: Applying SAFEAIR-X aerosol with Iodine-V as a disinfectant. PLoS One 2023; 18:e0279027. [PMID: 36706113 PMCID: PMC9882904 DOI: 10.1371/journal.pone.0279027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023] Open
Abstract
Iodine-V ((C26H39N4O15)x * (I2)y) demonstrates an in vitro virucidal activity by deactivating SARS-CoV-2 viral titers. It combines elemental iodine (I2) and fulvic acid (C14H12O8), forming a clathrate compound. The antiviral properties of Iodine-V reduce viral load in the air to inhibit viral transmission indoors. This antiviral property was applied to form a disinfectant solution called SAFEAIR-X Aerosol. The current study evaluates the antiviral efficacy of Iodine-V in aerosol form in a prototype called SAFEAIR-X Aerosol. The experiment measured the antiviral efficacy of SAFEAIR-X following exposure to the Vaccinia virus (VACV) samples as a confirmed surrogate for SARS-CoV-2. The SAFEAIR-X showed 96% effectiveness, with 2 seconds of spraying duration and 60 seconds of contact time releasing less than 0.0001 ppm of iodine into the air, and a log reduction value of 1.50 at 60 seconds in 2 out of 3 tests was observed. Therefore, this study demonstrates SAFEAIR-X aerosol as a potential indoor surface and air disinfectant.
Collapse
|
170
|
Stability and inactivation of SARS-CoV-2 on food contact surfaces. Food Control 2023; 143:109306. [PMID: 35975280 PMCID: PMC9374322 DOI: 10.1016/j.foodcont.2022.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 269 million people and killed more than 5.3 million people worldwide. Although fomite transmission of SARS-CoV-2 has been continuously reported, few studies have been conducted on food contact surfaces. Therefore, this study aimed to investigate the viability of coronaviruses on food contact surfaces and to remove SARS-CoV-2 contaminated on food contact surfaces with disinfectants. At 20 °C, SARS-CoV-2 was inactivated within 48 h on all food contact surfaces. At 4 °C, it was inactivated at 48 h on kraft paper and 96 h on parchment paper, but it was viable up to 5 days in low-density polyethylene (LDPE). At −20 °C, SARS-CoV-2 did not decrease by even 1 log on all food contact surfaces until 5 days. Treatment with 70% ethanol or 1000 ppm sodium hypochlorite for 5 min was sufficient to completely remove SARS-CoV-2 from 6 food contact surfaces. Similarly, UV-C irradiation at 60 mJ/cm2 eliminated SARS-CoV-2 contaminated on food contact surfaces. Also, the wiping test showed that even wiping an area contaminated with SARS-CoV-2 with a cloth moistened with 70% ethanol or 1000 ppm sodium hypochlorite, it took 5 min to inactivate the virus. Our findings suggested that SARS-CoV-2 contaminated on food contact surfaces in local retail may be viable enough to be transported home. However, if the type and method of use of the disinfectant suggested in this study are followed, it is possible to sufficiently control the fomite transmission of SARS-CoV-2 through food contact surfaces at home.
Collapse
|
171
|
Johnson DM, Brasel T, Massey S, Garron T, Grimes M, Smith J, Torres M, Wallace S, Villasante-Tezanos A, Beasley DW, Comer JE. Evaluation of molnupiravir (EIDD-2801) efficacy against SARS-CoV-2 in the rhesus macaque model. Antiviral Res 2023; 209:105492. [PMID: 36535309 PMCID: PMC9756747 DOI: 10.1016/j.antiviral.2022.105492] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Molnupiravir (EIDD-2801) is a prodrug of a ribonucleoside analogue that is currently being used under a US FDA emergency use authorization for the treatment of mild to moderate COVID-19. We evaluated molnupiravir for efficacy as an oral treatment in the rhesus macaque model of SARS-CoV-2 infection. Twenty non-human primates (NHPs) were challenged with SARS-CoV-2 and treated with 75 mg/kg (n = 8) or 250 mg/kg (n = 8) of molnupiravir twice daily by oral gavage for 7 days. The NHPs were observed for 14 days post-challenge and monitored for clinical signs of disease. After challenge, all groups showed a trend toward increased respiration rates. Treatment with molnupiravir significantly reduced viral RNA levels in bronchoalveolar lavage (BAL) samples at Days 7 and 10. Considering the mild to moderate nature of SARS-CoV-2 infection in the rhesus macaque model, this study highlights the importance of monitoring the viral load in the lung as an indicator of pharmaceutical efficacy for COVID-19 treatments. Additionally, this study provides evidence of the efficacy of molnupiravir which supplements the current ongoing clinical trials of this drug.
Collapse
Affiliation(s)
- Dylan M Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Shane Massey
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Tania Garron
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael Grimes
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Jeanon Smith
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Maricela Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | - David W Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Jason E Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
172
|
Fei S, Xia J, Ma G, Zhang M, Sun J, Feng M, Wang Y. Apolipoprotein D facilitate the proliferation of BmNPV. Int J Biol Macromol 2022; 223:830-836. [PMID: 36372108 DOI: 10.1016/j.ijbiomac.2022.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
The silkworm, Bombyx mori, a model Lepidopteran specie, is an important economic insect. It is specifically infected by Bombyx mori nucleopolyhedrovirus (BmNPV), causing huge losses to the sericulture industry. Therefore, the understandings of the interaction mechanism between BmNPV and the host will help to provide the theoretical basis for the sericulture industry to control BmNPV. Apolipoprotein D (ApoD) is a member of lipid transport family and capable of binding to a variety of lipophilic ligands. ApoD is mainly used in neurodegenerative disease research in mammals, and there is little research on ApoD against viruses. Here, we explored the effects of Bombyx mori Apolipoprotein D (BmApoD) on BmNPV replication. We knocked out and overexpressed BmApoD in BmN cells and infected them with Bombyx mori nucleopolyhedrovirus (BmNPV). The results showed that BmApoD promote the replication of BmNPV in BmN cells. It was also confirmed that BmApoD promote the replication of BmNPV after knocking down BmApoD in silkworm larvae. This study is the first to explore the role of ApoD in insect-virus interactions, providing new insights into the functional role of ApoD.
Collapse
Affiliation(s)
- Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangyu Ma
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengmeng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
173
|
Lv C, Yang J, Zhao L, Wu C, Kang C, Zhang Q, Sun X, Chen X, Zou Z, Jin M. Infection Characteristics and Transcriptomics of African Swine Fever Virus in Bama Minipigs. Microbiol Spectr 2022; 10:e0383422. [PMID: 36445132 PMCID: PMC9769931 DOI: 10.1128/spectrum.03834-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Animal experiments on African swine fever virus (ASFV) are vital to the study of ASFV; however, ASFV can only infect pigs, and animal experiments need to be performed in animal biosafety level 3 (ABSL-3) laboratories, meaning that many small ABSL-3 laboratories are unable to carry out in vivo ASFV experiments. Therefore, miniaturized experimental animals for ASFV infection are urgently needed. Here, we successfully isolated genotype II of ASFV SY-1 from wild boars and evaluated ASFV-infected Bama minipigs in a negative-pressure isolator of a small ABSL-3 laboratory. The pathological changes of ASFV-infected Bama minipigs were consistent with characteristic lesions of ASFV-infected domestic pigs and wild boars. All pigs died 5 to 14 days postinfection (dpi) through intramuscular injection. Viral genomic DNA from nasal, oral, and rectal swab samples was first detectable at 2 to 4 dpi. The common differentially expressed genes were clustered in the immune-related, metabolic, and inflammatory response pathways from the spleen and inguinal lymph node samples comparing infected to mock. In summary, these results demonstrated that the Bama minipig was an appropriate model for ASFV infection in small ABSL-3 laboratories that can accelerate the research of vaccines and antiviral drugs and uncover pathogenic mechanisms of ASFV infection. IMPORTANCE African swine fever virus (ASFV) can only infect pigs rather than other animals. However, the domestic pigs cannot be kept in small ABSL-3 laboratories for a long time due to the characteristics of rapid growth and large size, which hinder ASFV research, including research of vaccines, antiviral drugs, and mechanisms. In contrast, Bama minipigs have unique advantages consisting of low growth and small size. In the research, Bama minipigs were used to evaluate the characteristics of ASFV infection in small ABSL-3 laboratories. The pathological changes, viral shedding, and gene regulation were consistent with those of domestic pigs infected with ASFV. Therefore, Bama minipigs can be a suitable model for ASFV infection in small ABSL-3 laboratories.
Collapse
Affiliation(s)
- Changjie Lv
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jingyu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Li Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Chao Wu
- Research Institute of Wuhan Keqian Biology Co., Ltd., Wuhan, China
| | - Chao Kang
- Research Institute of Wuhan Keqian Biology Co., Ltd., Wuhan, China
| | - Qiang Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhong Zou
- Research Institute of Wuhan Keqian Biology Co., Ltd., Wuhan, China
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
174
|
The establishment of COPD organoids to study host-pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi. Nat Commun 2022; 13:7635. [PMID: 36496442 PMCID: PMC9735280 DOI: 10.1038/s41467-022-35253-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by airflow limitation and infective exacerbations, however, in-vitro model systems for the study of host-pathogen interaction at the individual level are lacking. Here, we describe the establishment of nasopharyngeal and bronchial organoids from healthy individuals and COPD that recapitulate disease at the individual level. In contrast to healthy organoids, goblet cell hyperplasia and reduced ciliary beat frequency were observed in COPD organoids, hallmark features of the disease. Single-cell transcriptomics uncovered evidence for altered cellular differentiation trajectories in COPD organoids. SARS-CoV-2 infection of COPD organoids revealed more productive replication in bronchi, the key site of infection in severe COVID-19. Viral and bacterial exposure of organoids induced greater pro-inflammatory responses in COPD organoids. In summary, we present an organoid model that recapitulates the in vivo physiological lung microenvironment at the individual level and is amenable to the study of host-pathogen interaction and emerging infectious disease.
Collapse
|
175
|
Aganovic A, Cao G, Kurnitski J, Melikov A, Wargocki P. Zonal modeling of air distribution impact on the long-range airborne transmission risk of SARS-CoV-2. APPLIED MATHEMATICAL MODELLING 2022; 112:800-821. [PMID: 36060304 PMCID: PMC9420246 DOI: 10.1016/j.apm.2022.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 05/10/2023]
Abstract
A widely used analytical model to quantitatively assess airborne infection risk is the Wells-Riley model which is limited to complete air mixing in a single zone. However, this assumption tends not to be feasible (or reality) for many situations. This study aimed to extend the Wells-Riley model so that the infection risk can be calculated in spaces where complete mixing is not present. Some more advanced ventilation concepts create either two horizontally divided air zones in spaces as displacement ventilation or the space may be divided into two vertical zones by downward plane jet as in protective-zone ventilation systems. This is done by evaluating the time-dependent distribution of infectious quanta in each zone and by solving the coupled system of differential equations based on the zonal quanta concentrations. This model introduces a novel approach by estimating the interzonal mixing factor based on previous experimental data for three types of ventilation systems: incomplete mixing ventilation, displacement ventilation, and protective zone ventilation. The modeling approach is applied to a room with one infected and one susceptible person present. The results show that using the Wells-Riley model based on the assumption of completely air mixing may considerably overestimate or underestimate the long-range airborne infection risk in rooms where air distribution is different than complete mixing, such as displacement ventilation, protected zone ventilation, warm air supplied from the ceiling, etc. Therefore, in spaces with non-uniform air distribution, a zonal modeling approach should be preferred in analytical models compared to the conventional single-zone Wells-Riley models when assessing long-range airborne transmission risk of infectious respiratory diseases.
Collapse
Affiliation(s)
- Amar Aganovic
- Department of Automation and Process Engineering, UiT The Arctic University of Norway, Postboks 6050 Langnes, Tromsø 9037, Norway
| | - Guangyu Cao
- Department of Energy and Process Engineering, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Jarek Kurnitski
- REHVA Technology and Research Committee, Tallinn University of Technology, Tallinn, Estonia
| | - Arsen Melikov
- Department of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark
| | - Pawel Wargocki
- Department of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
176
|
CUEVAS-ROMERO JS, CERRITEÑO-SÁNCHEZ JL, LARA-ROMERO R, VEGA-LÓPEZ MA, RAMÍREZ-ESTUDILLO C, RAMÍREZ-MENDOZA H, BERG M, LÖVGREN-BENGTSSON K. Immunogenicity of a recombinant hemagglutinin neuraminidase-Porcine rubulavirus produced by Escherichia coli of Porcine rubulavirus gives protective immunity of litter after challenge. J Vet Med Sci 2022; 84:1595-1604. [PMID: 36273875 PMCID: PMC9791230 DOI: 10.1292/jvms.22-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Porcine rubulavirus (PRV) is a contagious virus that affects the Mexican swine industry. This work aimed to evaluate the immunogenicity of an recombinant hemagglutinin neuraminidase-Porcine rubulavirus (rHN-PorPV) candidate vaccine on pregnant sows, and the protective efficacy afforded to their 7-day-old suckling piglets against PRV lethal challenge. Three sows were immunized with rHN-PorPV formulated with immune-stimulating complex (ISCOMs) and two sows with rHN-PorPV protein alone as well as a mock-immunized pregnant sow (negative control). Quantitative ELISA detected a high concentration of anti-rHN-PorPV Immunoglobulin G (IgG) antibodies in sow sera after the second dose of vaccine administered on day 14 until farrowing, showing viral-neutralizing and cross-neutralization activity against different variants of PRV. Sera samples from piglets of immunized sows (with or without adjuvant), showed high concentrations of IgG antibodies. As expected, piglets from the negative control sow (n=5), exhibited severe signs of disease and 100% of mortality after PRV challenge study. Conversely, 75% and 87.5% of the piglets born from the rHN-PorPV and the rHN-PorPV-ISCOMs-immunized sows (n=8), survived, respectively, showing milder PRV clinical signs. Our data indicate that rHN-PorPV candidate vaccine produced in Escherichia coli induces efficient humoral response in pregnant sows and that the maternally derived immunity provides high protection to suckling piglets against PRV lethal challenge.
Collapse
Affiliation(s)
- Julieta Sandra CUEVAS-ROMERO
- Centro Nacional de Investigación Disciplinaria en Salud
Animal e Inocuidad, INIFAP, México City, Mexico,Correspondence to: Cuevas-Romero JS: , Centro
Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, KM. 15.5
Carretera México-Toluca. Col, Palo Alto, Cuajimalpa CP, 05110, Ciudad de México,
Mexico
| | | | - Rocío LARA-ROMERO
- Facultad de Estudios Superiores Cuautitlán FESC-UNAM,
Cuautitlán Izcalli, Estado de México, Mexico
| | - Marco Antonio VEGA-LÓPEZ
- Centro de Investigación y Estudios Avanzados del Instituto
Politécnico Nacional, México City, Mexico
| | - Carmen RAMÍREZ-ESTUDILLO
- Centro de Investigación y Estudios Avanzados del Instituto
Politécnico Nacional, México City, Mexico
| | | | - Mikael BERG
- Section of Virology, Department of Biomedical Sciences and
Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala,
Sweden
| | - Karin LÖVGREN-BENGTSSON
- Section of Virology, Department of Biomedical Sciences and
Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala,
Sweden,Isconova AB, Uppsala, Sweden
| |
Collapse
|
177
|
Taddeo A, Veiga IB, Devisme C, Boss R, Plattet P, Weigang S, Kochs G, Thiel V, Benarafa C, Zimmer G. Optimized intramuscular immunization with VSV-vectored spike protein triggers a superior immune response to SARS-CoV-2. NPJ Vaccines 2022; 7:82. [PMID: 35879345 PMCID: PMC9309237 DOI: 10.1038/s41541-022-00508-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Immunization with vesicular stomatitis virus (VSV)-vectored COVID-19 vaccine candidates expressing the SARS-CoV-2 spike protein in place of the VSV glycoprotein relies implicitly on expression of the ACE2 receptor at the muscular injection site. Here, we report that such a viral vector vaccine did not induce protective immunity following intramuscular immunization of K18-hACE2 transgenic mice. However, when the viral vector was trans-complemented with the VSV glycoprotein, intramuscular immunization resulted in high titers of spike-specific neutralizing antibodies. The vaccinated animals were fully protected following infection with a lethal dose of SARS-CoV-2-SD614G via the nasal route, and partially protected if challenged with the SARS-CoV-2Delta variant. While dissemination of the challenge virus to the brain was completely inhibited, replication in the lung with consequent lung pathology was not entirely controlled. Thus, intramuscular immunization was clearly enhanced by trans-complementation of the VSV-vectored vaccines by the VSV glycoprotein and led to protection from COVID-19, although not achieving sterilizing immunity.
Collapse
|
178
|
Carducci A, Federigi I, Balestri E, Lardicci C, Castelli A, Maltagliati F, Zhao H, Menicagli V, Valente R, De Battisti D, Verani M. Virus contamination and infectivity in beach environment: Focus on sand and stranded material. MARINE POLLUTION BULLETIN 2022; 185:114342. [PMID: 36395711 DOI: 10.1016/j.marpolbul.2022.114342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
To assess the exposure of beachgoers to viruses, a study on seawater, sand, and beach-stranded material was carried out, searching for human viruses, fecal indicator organisms, and total fungi. Moreover, for the first time, the genome persistence and infectivity of two model viruses was studied in laboratory-spiked sand and seawater samples during a one-week experiment. Viral genome was detected in 13.6 % of the environmental samples, but it was not infectious (Human Adenovirus - HAdV, and enterovirus). Norovirus and SARS-CoV-2 were not detected. The most contaminated samples were from sand and close to riverine discharges. In lab-scale experiments, the infectivity of HAdV5 decreased by ~1.5-Log10 in a week, the one of Human Coronavirus-229E disappeared in <3 h in sand. The genome of both viruses persisted throughout the experiment. Our results confirm viral contamination of the beach and suggest HAdV as an index pathogen for beach monitoring and quantitative risk assessment.
Collapse
Affiliation(s)
- Annalaura Carducci
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - Ileana Federigi
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy.
| | - Elena Balestri
- Unit of Marine Biology and Ecology, Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy
| | - Claudio Lardicci
- Department of Earth Sciences, University of Pisa, via S. Maria 53, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Pisa, Italy
| | - Alberto Castelli
- Unit of Marine Biology and Ecology, Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy
| | - Ferruccio Maltagliati
- Unit of Marine Biology and Ecology, Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy
| | - Hongrui Zhao
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - Virginia Menicagli
- Unit of Marine Biology and Ecology, Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Pisa, Italy
| | - Rossella Valente
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| | - Davide De Battisti
- Unit of Marine Biology and Ecology, Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy; Department of Biology, Chioggia Hydrobiological Station Umberto D'Ancona, University of Padova, Chioggia, Italy
| | - Marco Verani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127 Pisa, Italy
| |
Collapse
|
179
|
Triacetyl Resveratrol Inhibits PEDV by Inducing the Early Apoptosis In Vitro. Int J Mol Sci 2022; 23:ijms232314499. [PMID: 36498827 PMCID: PMC9737061 DOI: 10.3390/ijms232314499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
PEDV represents an ancient Coronavirus still causing huge economic losses to the porcine breeding industry. Resveratrol has excellent antiviral effects. Triacetyl resveratrol (TCRV), a novel natural derivative of resveratrol, has been recently discovered, and its pharmacological effects need to be explored further. This paper aims to explore the relationship between PEDV and TCRV, which offers a novel strategy in the research of antivirals. In our study, Vero cells and IPEC-J2 cells were used as an in vitro model. First, we proved that TCRV had an obvious anti-PEDV effect and a strong inhibitory effect at different time points. Then, we explored the mechanism of inhibition of PEDV infection by TCRV. Our results showed that TCRV could induce the early apoptosis of PEDV-infected cells, in contrast to PEDV-induced apoptosis. Moreover, we observed that TCRV could promote the expression and activation of apoptosis-related proteins and release mitochondrial cytochrome C into cytoplasm. Based on these results, we hypothesized that TCRV induced the early apoptosis of PEDV-infected cells and inhibited PEDV infection by activating the mitochondria-related caspase pathway. Furthermore, we used the inhibitors Z-DEVD-FMK and Pifithrin-α (PFT-α) to support our hypothesis. In conclusion, the TCRV-activated caspase pathway triggered early apoptosis of PEDV-infected cells, thereby inhibiting PEDV infections.
Collapse
|
180
|
Rhee CH, Park SC, Her M, Jeong W. Surrogate Selection for Foot-and-Mouth Disease Virus in Disinfectant Efficacy Tests by Simultaneous Comparison of Bacteriophage MS2 and Bovine Enterovirus Type 1. Viruses 2022; 14:2590. [PMID: 36560594 PMCID: PMC9782237 DOI: 10.3390/v14122590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
In South Korea, testing disinfectants against foot-and-mouth disease virus (FMDV) that are contagious in livestock or that require special attention with respect to public hygiene can be manipulated only in high-level containment laboratories, which are not easily available. This causes difficulties in the approval procedure for disinfectants, such as a prolonged testing period. Additionally, the required biosafety level (BSL) in the case of FMDV has hindered its extensive studies. However, this drawback can be circumvented by using a surrogate virus to improve the performance of the efficacy testing procedure for disinfectants. Therefore, we studied bacteriophage MS2 (MS2) and bovine enterovirus type 1 (ECBO) with respect to disinfectant susceptibility for selecting a surrogate for FMDV according to the Animal and Plant Quarantine Agency (APQA) guidelines for efficacy testing of veterinary disinfectants. Effective concentrations of the active substances in disinfectants (potassium peroxymonosulfate, sodium dichloroisocyanurate, malic acid, citric acid, glutaraldehyde, and benzalkonium chloride) against FMDV, MS2, and ECBO were compared and, efficacies of eight APQA-listed commercial disinfectants used against FMDV were examined. The infectivity of FMDV and ECBO were confirmed by examination of cytopathic effects, and MS2 by plaque assay. The results reveal that the disinfectants are effective against MS2 and ECBO at higher concentrations than in FMDV, confirming their applicability as potential surrogates for FMDV in efficacy testing of veterinary disinfectants.
Collapse
Affiliation(s)
- Chae Hong Rhee
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Gyeongbuk do, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Gyeongbuk do, Republic of Korea
| | - Moon Her
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea
| | - Wooseog Jeong
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
181
|
Leneva IA, Smirnova DI, Kartashova NP, Gracheva AV, Ivanina AV, Glubokova EA, Korchevaya ER, Pancratov AA, Trunova GV, Khokhlova VA, Svitich OA, Zverev VV, Faizuloev EB. [Comparative study of Wuhan-like and omicron-like variants of SARS-CoV-2 in experimental animal models]. Vopr Virusol 2022; 67:439-449. [PMID: 36515289 DOI: 10.36233/0507-4088-135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION The variability of SARS-CoV-2 appeared to be higher than expected, the emergence of new variants raises concerns. The aim of the work was to compare the pathogenicity of the Wuhan and BA.1.1/Omicron variants in BALB/c mice and Syrian hamsters. MATERIALS AND METHODS The study used strains of SARS-CoV-2: Dubrovka phylogenetically close to Wuhan-Hu-1, and LIA phylogenetically close to Omicron, BALB/c mice, transgenic mice B6.Cg-Tg(K18-ACE2)2Prlmn/HEMI Hemizygous for Tg(K18-ACE2)2Prlmn, Syrian golden hamsters. Animals were infected intranasally, pathogenicity was estimated by a complex of clinical, pathomorphological and virological methods. RESULTS Comparative studies of SARS-CoV-2 Dubrovka and LIA strains on animal models demonstrated their heterogeneous pathogenicity. In parallel infection of BALB/c mice with Dubrovka and LIA variants, the infection proceeded without serious clinical signs and lung damage. Infection with the LIA strain resulted to a systemic disease with a high concentration of viral RNA in the lungs and brain tissues of animals. The presence of viral RNA in mice infected with the Dubrovka strain was transient and undetectable in the lungs by day 7 post-infection. Unlike the mouse model, in hamsters, the Dubrovka strain had a greater pathogenicity than the LIA strain. In hamsters infected with the Dubrovka strain lung lesions were more significant, and the virus spread through organs, in particular in brain tissue, was observed. In hamsters infected with the LIA strain virus was not detected in brain tissue. CONCLUSION The study of various variants of SARS-CoV-2 in species initially unsusceptible to SARS-CoV-2 infection is important for monitoring zoonotic reservoirs that increase the risk of spread of new variants in humans.
Collapse
Affiliation(s)
- I A Leneva
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology
| | - D I Smirnova
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology
| | - N P Kartashova
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology
| | - A V Gracheva
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology
| | - A V Ivanina
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology
| | - E A Glubokova
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology
| | - E R Korchevaya
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology
| | - A A Pancratov
- Herzen Moscow Research Institute of Oncology of the Ministry of Health of Russia
| | - G V Trunova
- Herzen Moscow Research Institute of Oncology of the Ministry of Health of Russia
| | - V A Khokhlova
- Herzen Moscow Research Institute of Oncology of the Ministry of Health of Russia
| | - O A Svitich
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology
| | - V V Zverev
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology
| | - E B Faizuloev
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology
| |
Collapse
|
182
|
Umar Q, Huang Y, Nazeer A, Yin H, Zhang JC, Luo M, Meng XG. Synthesis, characterization and anticancer activities of Zn 2+, Cu 2+, Co 2+ and Ni 2+ complexes involving chiral amino alcohols. RSC Adv 2022; 12:32119-32128. [PMID: 36415554 PMCID: PMC9644435 DOI: 10.1039/d2ra05576g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/24/2022] [Indexed: 08/22/2024] Open
Abstract
Seven new metal coordination complexes, [NiC15H43N5O11] (I), [Co3C36H98N6O6] (II), [CuC14H32N2O6] (III), [Cu2C32H43Cl2N2O13] (IV), [Zn2C24H32Cl3N3O3] (V), [Co3C48H66Cl6N6O6] (VI), and [Zn (C18H45N3O3] (VII), have been synthesized from some direct reactions of amino-alcoholic ligands with metal salts in anhydrous methanol or ethanol medium. All the crystals of these seven complexes are crystallized in the chiral space groups (P212121 for (I), (IV), (VI) and (VII); P21 for (III) and (V); and C2 for (II), respectively). Their characteristic peaks were analyzed and assigned by FTIR, NMR, and UV-Vis and elemental analysis techniques. The anticancer activities of amino alcohol complexes (I)-(VII) showed cytotoxic effects against the human tumour cell line A549; among them, complex (V) showed the best activity with an IC50 value of 17.8. The higher biological activity should be related to its di-nuclear zinc(ii) unit in which one zinc is only four-coordinated by four small chloride anions.
Collapse
Affiliation(s)
- Q Umar
- Department of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 23000 P.R. China
| | - Y Huang
- Department of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 23000 P.R. China
| | - A Nazeer
- Department of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 23000 P.R. China
| | - H Yin
- Department of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 23000 P.R. China
| | - J C Zhang
- Department of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 23000 P.R. China
| | - M Luo
- Department of Chemistry and Chemical Engineering, Hefei University of Technology Hefei 23000 P.R. China
| | - X G Meng
- College of Chemistry, Central China Normal University Wuhan 430079 P.R. China
| |
Collapse
|
183
|
Kang YM, Cho HK, An SJ, Kim HJ, Lee YJ, Kang HM. Updating the National Antigen Bank in Korea: Protective Efficacy of Synthetic Vaccine Candidates against H5Nx Highly Pathogenic Avian Influenza Viruses Belonging to Clades 2.3.2.1 and 2.3.4.4. Vaccines (Basel) 2022; 10:vaccines10111860. [PMID: 36366368 PMCID: PMC9697692 DOI: 10.3390/vaccines10111860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Since 2018, Korea has been building an avian influenza (AI) national antigen bank for emergency preparedness; this antigen bank is updated every 2 years. To update the vaccine strains in the antigen bank, we used reverse genetics technology to develop two vaccine candidates against avian influenza strains belonging to clades 2.3.2.1d and 2.3.4.4h, and then evaluated their immunogenicity and protective efficacy in SPF chickens challenged with H5 viruses. The two vaccine candidates, named rgCA2/2.3.2.1d and rgES3/2.3.4.4h, were highly immunogenic, with hemagglutination inhibition (HI) titers of 8.2−9.3 log2 against the vaccine strain, and 7.1−7.3 log2 against the lethal challenge viruses (in which the HA genes shared 97% and 95.4% homology with that of rgCA2/2.3.2.1d and rgES3/2.3.4.4h, respectively). A full dose of each vaccine candidate provided 100% protection against the challenge viruses, with a reduction in clinical symptoms and virus shedding. A 1/10 dose provided similar levels of protection, whereas a 1/100 dose resulted in mortality and virus shedding by 7 dpi. Moreover, immunity induced by the two vaccines was long lasting, with HI titers of >7 log2 against the vaccine strain remaining after 6 months. Thus, the two vaccine candidates show protective efficacy and can be used to update the AI national antigen bank.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyun-Mi Kang
- Correspondence: ; Tel.: +82-549120972; Fax: +82-549120977
| |
Collapse
|
184
|
Kukushkin V, Ambartsumyan O, Astrakhantseva A, Gushchin V, Nikonova A, Dorofeeva A, Zverev V, Gambaryan A, Tikhonova D, Sovetnikov T, Akhmetova A, Yaminsky I, Zavyalova E. Lithographic SERS Aptasensor for Ultrasensitive Detection of SARS-CoV-2 in Biological Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213854. [PMID: 36364630 PMCID: PMC9659100 DOI: 10.3390/nano12213854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 05/27/2023]
Abstract
In this paper, we propose a technology for the rapid and sensitive detection of the whole viral particles of SARS-CoV-2 using double-labeled DNA aptamers as recognition elements together with the SERS method for detecting the optical response. We report on the development of a SERS-aptasensor based on a reproducible lithographic SERS substrate, featuring the combination of high speed, specificity, and ultrasensitive quantitative detection of SARS-CoV-2 virions. The sensor makes it possible to identify SARS-CoV-2 in very low concentrations (the limit of detection was 100 copies/mL), demonstrating a sensitivity level comparable to the existing diagnostic golden standard-the reverse transcription polymerase chain reaction.
Collapse
Affiliation(s)
- Vladimir Kukushkin
- Osipyan Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia
| | - Oganes Ambartsumyan
- Department of Microbiology, Virology and Immunology, I.M. Sechenov First Moscow State Medical University, 125009 Moscow, Russia
| | - Anna Astrakhantseva
- Osipyan Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vladimir Gushchin
- N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, 123098 Moscow, Russia
| | - Alexandra Nikonova
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | | | - Vitaly Zverev
- Department of Microbiology, Virology and Immunology, I.M. Sechenov First Moscow State Medical University, 125009 Moscow, Russia
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia
| | - Daria Tikhonova
- Osipyan Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Timofei Sovetnikov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Assel Akhmetova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Yaminsky
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
185
|
Vu LD, Wallace S, Phan ATQ, Christofferson RC, Turner E, Parker S, Elkind-Hirsch K, Landry D, Stansbury A, Rose R, Nolan DJ, Lamers SL, Hirezi M, Ogden B, Cormier SA. Absence of antibody responses to SARS-CoV-2 N protein in COVID-19 vaccine breakthrough cases. Exp Biol Med (Maywood) 2022; 247:1923-1936. [PMID: 36408542 PMCID: PMC9679329 DOI: 10.1177/15353702221134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding the risk factors for breakthrough coronavirus disease 2019 (COVID-19) (BC19) is critical to inform policy. Herein, we assessed Delta (Lineage B.1.617.2) variant-specific effectiveness of the BNT162b2 (Pfizer) vaccine and characterized Delta-driven BC19 cases (fully vaccinated individuals who get infected) with known-time-since-vaccination. In this longitudinal prospective study (January 21-October 30, 2021), 90 naïve and 15 convalescent individuals were enrolled at the initiation of vaccination. Samples from 27 unvaccinated individuals with previous laboratory-confirmed COVID-19 diagnosis were collected at a single time point. Longitudinal serology profile (antibodies against severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] S and N proteins) and live-virus-based neutralization capacities were assessed while controlling for age. Sex, age, history of reactions to the COVID-19 vaccine, and viral neutralization capacities were identified as significant risk factors for breakthrough COVID-19. At 8 months postvaccination, male sex, individuals ⩾65 years of age, and individuals who experienced noticeable side effects with the COVID-19 vaccine were at 5.47 (p-value = 0.0102), 4.33 (p-value = 0.0236), and 4.95 (p-value = 0.0159) fold greater risk of BC19 as compared to their peers, respectively. Importantly, every five-fold increase in viral neutralization capacities (by live-virus-based assays) was significantly associated with ~4-fold reduction in the risk occurrence of breakthrough COVID-19 (p-value = 0.045). Vaccine boosting remarkably increased these viral neutralization capacities by 16.22-fold (p- value = 0.0005), supporting the importance of the BNT162b2 booster in efforts to control the incursion of future variants into the population at large. Strikingly, BC19 cases exhibited a delayed/absent antibody response to the N protein, suggesting limited exposure to the virus. Since antibodies against N protein are widely used to evaluate the extent of virus spread in communities, our finding has important implications on the utility of existing serological diagnostic and surveillance for COVID-19.
Collapse
Affiliation(s)
- Luan D Vu
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, Baton Rouge, LA 70803, USA
| | | | - Anh TQ Phan
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, Baton Rouge, LA 70803, USA
| | - Rebecca C Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Erik Turner
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sean Parker
- Woman’s Hospital, Baton Rouge, LA 70817, USA
| | | | | | | | | | | | | | - Michael Hirezi
- Louisiana Health Sciences Center New Orleans, New Orleans, LA 70112, USA
| | | | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, Baton Rouge, LA 70803, USA,Stephania A Cormier.
| |
Collapse
|
186
|
Pradhan A, Shivaprasad S, Dey S, Goel A, Aggarwal R, Das S. Exosome-associated microRNA-375 induces cell proliferation by regulating IGFBP4 upon hepatitis C virus infection. Mol Microbiol 2022; 118:570-587. [PMID: 36203260 DOI: 10.1111/mmi.14986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Hepatitis C virus (HCV) infection is one of the most common causes of liver cancer. HCV infection causes chronic disease followed by cirrhosis, which often leads to hepatocellular carcinoma (HCC). In this study, we investigated the roles of exosome-associated miRNAs in HCV-induced disease pathology. Small RNA sequencing was performed to identify miRNAs that are differentially regulated in exosomes isolated from patient sera at two different stages of HCV infection: cirrhosis and hepatocellular carcinoma. Among the differentially expressed miRNAs, miR-375 was found to be significantly upregulated in exosomes isolated from patients with cirrhosis and HCC. A similar upregulation was observed in intracellular and extracellular/exosomal levels of miR-375 in HCV-JFH1 infected Huh7.5 cells. The depletion of miR-375 in infected cells inhibited HCV-induced cell migration and proliferation, suggesting a supportive role for miR-375 in HCV pathogenesis. miR-375, secreted through exosomes derived from HCV-infected cells, could also be transferred to naïve Huh7.5 cells, resulting in an increase in cell proliferation and migration in the recipient cells. Furthermore, we identified Insulin growth factor binding protein 4 (IGFBP4), a gene involved in cell growth and malignancy, as a novel target of miR-375. Our results demonstrate the critical involvement of exosome-associated miR-375 in HCV-induced disease progression.
Collapse
Affiliation(s)
- Aunji Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Shwetha Shivaprasad
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Shuchismita Dey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Amit Goel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
187
|
Guo X, Zhang Z, Lin C, Ren H, Li Y, Zhang Y, Qu Y, Li H, Ma S, Xia H, Sun R, Zu H, Lin Y, Wang X. A/(H1N1) pdm09 NS1 promotes viral replication by enhancing autophagy through hijacking the IAV negative regulatory factor LRPPRC. Autophagy 2022:1-18. [DOI: 10.1080/15548627.2022.2139922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Xing Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Panjin Center of Inspection and Testing, Panjin, P. R. China
| | - Zhenyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Chaohui Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Huiling Ren
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yuxing Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Hongxin Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Saiwen Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Huijuan Xia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Rongkuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Haoyu Zu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| |
Collapse
|
188
|
Garnett L, Tse C, Funk D, Dust K, Tran KN, Hedley A, Poliquin G, Bullard J, Strong JE. Differential Infectivity of Original and Delta Variants of SARS-CoV-2 in Children Compared to Adults. Microbiol Spectr 2022; 10:e0039522. [PMID: 35972128 PMCID: PMC9602606 DOI: 10.1128/spectrum.00395-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Although children of all ages are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, they have not been implicated as major drivers of transmission thus far. However, it is still unknown if this finding holds true with new variants of concern (VOC), such as Delta (B.1.617.2). This study aimed to examine differences in both viral RNA (as measured by cycle threshold [CT]) and viable-virus levels from children infected with Delta and those infected with original variants (OV). Furthermore, we aimed to compare the pediatric population infection trends to those in adults. We obtained 690 SARS-CoV-2 RT-PCR positive nasopharyngeal swabs from across Manitoba, Canada, which were further screened for mutations characteristic of VOC. Aliquots of sample were then provided for TCID50 (50% tissue culture infective dose) assays to determine infectious titers. Using a variety of statistical analyses we compared CT and infectivity of VOC in different age demographics. Comparing 122 Delta- to 175 OV-positive nasopharyngeal swab samples from children, we found that those infected with Delta are 2.7 times more likely to produce viable SARS-CoV-2 with higher titers (in TCID50 per milliliter), regardless of viral RNA levels. Moreover, comparing the pediatric samples to 130 OV- and 263 Delta-positive samples from adults, we found only that the Delta pediatric culture-positive samples had titers (TCID50 per milliliter) similar to those of culture-positive adult samples. IMPORTANCE These important findings show that children may play a larger role in viral transmission of Delta than for previously circulating SARS-CoV-2 variants. Additionally, they may suggest a mechanism for why Delta has evolved to be the predominant circulating variant.
Collapse
Affiliation(s)
- Lauren Garnett
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carmen Tse
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Duane Funk
- Departments of Anaesthesiology and Medicine, Section of Critical Care, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kerry Dust
- Cadham Provincial Laboratory, Manitoba Health, Winnipeg, Manitoba, Canada
| | - Kaylie N. Tran
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Adam Hedley
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Cadham Provincial Laboratory, Manitoba Health, Winnipeg, Manitoba, Canada
| | - Guillaume Poliquin
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jared Bullard
- Cadham Provincial Laboratory, Manitoba Health, Winnipeg, Manitoba, Canada
- Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James E. Strong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
189
|
Villanueva-Saz S, Martínez M, Giner J, González A, Tobajas AP, Pérez MD, Lira-Navarrete E, González-Ramírez AM, Macías-León J, Verde M, Yzuel A, Hurtado-Guerrero R, Arias M, Santiago L, Aguiló-Gisbert J, Ruíz H, Lacasta D, Marteles D, Fernández A. A cross-sectional serosurvey of SARS-CoV-2 and co-infections in stray cats from the second wave to the sixth wave of COVID-19 outbreaks in Spain. Vet Res Commun 2022; 47:615-629. [PMID: 36229725 PMCID: PMC9560875 DOI: 10.1007/s11259-022-10016-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 is the causative agent of Coronavirus Disease 2019 in humans. Among domestic animals, cats are more susceptible to SARS-CoV-2 than dogs. The detection of anti-SARS-CoV-2 antibodies in seemingly healthy cats and/or infected cats which are in close contact with infected humans has been described. The presence of animals that tested positive by serology or molecular techniques could represent a potential transmission pathway of SARS-CoV-2 that can spill over into urban wildlife. This study analyses the seroprevalence variation of SARS-CoV-2 in stray cats from different waves of outbreaks in a geographical area where previous seroepidemiological information of SARS-CoV-2 was available and investigate if SARS-CoV-2-seropositive cats were exposed to other co-infections causing an immunosuppressive status and/or a chronic disease that could lead to a SARS-CoV-2 susceptibility. For this purpose, a total of 254 stray cats from Zaragoza (Spain) were included. This analysis was carried out by the enzyme-linked immunosorbent assay using the receptor binding domain of Spike antigen and confirmed by serum virus neutralization assay. The presence of co-infections including Toxoplasma gondii, Leishmania infantum, Dirofilaria immitis, feline calicivirus, feline herpesvirus type 1, feline leukemia virus and feline immunodeficiency virus, was evaluated using different serological methods. A seropositivity of 1.57% was observed for SARS-CoV-2 including the presence of neutralizing antibodies in three cats. None of the seropositive to SARS-CoV-2 cats were positive to feline coronavirus, however, four SARS-CoV-2-seropositive cats were also seropositive to other pathogens such as L. infantum, D. immitis and FIV (n = 1), L. infantum and D. immitis (n = 1) and L. infantum alone (n = 1).Considering other pathogens, a seroprevalence of 16.54% was detected for L. infantum, 30.31% for D. immitis, 13.78%, for T. gondii, 83.86% for feline calicivirus, 42.52% for feline herpesvirus type 1, 3.15% for FeLV and 7.87% for FIV. Our findings suggest that the epidemiological role of stray cats in SARS-CoV-2 transmission is scarce, and there is no increase in seropositivity during the different waves of COVID-19 outbreaks in this group of animals. Further epidemiological surveillances are necessary to determine the risk that other animals might possess even though stray cats do not seem to play a role in transmission.
Collapse
Affiliation(s)
- Sergio Villanueva-Saz
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain. .,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| | - Mariví Martínez
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Jacobo Giner
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Ana González
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Veterinary Teaching Hospital of the University of Zaragoza, Zaragoza, Spain
| | - Ana Pilar Tobajas
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Department of Animal Production and Sciences of the Food, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - María Dolores Pérez
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Department of Animal Production and Sciences of the Food, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Erandi Lira-Navarrete
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Andrés Manuel González-Ramírez
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Javier Macías-León
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Maite Verde
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Veterinary Teaching Hospital of the University of Zaragoza, Zaragoza, Spain
| | - Andrés Yzuel
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain.,Aragon I+D Foundation (ARAID), Zaragoza, Spain.,Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain.,, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Maykel Arias
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Llipsy Santiago
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Aguiló-Gisbert
- Servicio de Análisis, Investigación, Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, Valencia, Spain
| | - Héctor Ruíz
- Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Delia Lacasta
- Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Diana Marteles
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain
| | - Antonio Fernández
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain. .,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
190
|
Duty JA, Kraus T, Zhou H, Zhang Y, Shaabani N, Yildiz S, Du N, Singh A, Miorin L, Li D, Stegman K, Ophir S, Cao X, Atanasoff K, Lim R, Mena I, Bouvier NM, Kowdle S, Carreño JM, Rivero-Nava L, Raskin A, Moreno E, Johnson S, Rathnasinghe R, Pai CI, Kehrer T, Cabral EP, Jangra S, Healy L, Singh G, Warang P, Simon V, Sordillo EM, van Bakel H, Liu Y, Sun W, Kerwin L, Teijaro J, Schotsaert M, Krammer F, Bresson D, García-Sastre A, Fu Y, Lee B, Powers C, Moran T, Ji H, Tortorella D, Allen R. Discovery and intranasal administration of a SARS-CoV-2 broadly acting neutralizing antibody with activity against multiple Omicron subvariants. MED 2022; 3:705-721.e11. [PMID: 36044897 PMCID: PMC9359501 DOI: 10.1016/j.medj.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant and its BA.X lineages, has rendered ineffective a number of previously FDA emergency use authorized SARS-CoV-2 neutralizing antibody therapies. Furthermore, those approved antibodies with neutralizing activity against Omicron BA.1 are reportedly ineffective against the subset of Omicron subvariants that contain a R346K substitution, BA.1.1, and the more recently emergent BA.2, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. METHODS Following a campaign of antibody discovery based on the vaccination of Harbor H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. FINDINGS STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against each of the tested Omicron subvariants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. CONCLUSIONS With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for intravenous or intranasal use in human clinical trials. FUNDING Funded by CRIPT (no. 75N93021R00014), DARPA (HR0011-19-2-0020), and NCI Seronet (U54CA260560).
Collapse
Affiliation(s)
- J Andrew Duty
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Thomas Kraus
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Heyue Zhou
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | | | | | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Na Du
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Alok Singh
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Donghui Li
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Karen Stegman
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Sabrina Ophir
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Xia Cao
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Kristina Atanasoff
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reyna Lim
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | | | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Sachi Johnson
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chin I Pai
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Laura Healy
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Yonghong Liu
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Lisa Kerwin
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - John Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Yanwen Fu
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Colin Powers
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Thomas Moran
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Henry Ji
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA.
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY, USA; Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Robert Allen
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| |
Collapse
|
191
|
Guan M, Olivier AK, Lu X, Epperson W, Zhang X, Zhong L, Waters K, Mamaliger N, Li L, Wen F, Tao YJ, DeLiberto TJ, Wan XF. The Sialyl Lewis X Glycan Receptor Facilitates Infection of Subtype H7 Avian Influenza A Viruses. J Virol 2022; 96:e0134422. [PMID: 36125302 PMCID: PMC9555156 DOI: 10.1128/jvi.01344-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Subtype H7 avian influenza A viruses (IAVs) are enzootic in wild aquatic birds and have caused sporadic spillovers into domestic poultry and humans. Here, we determined the distribution of fucosylated α2,3 sialoglycan (i.e., sialyl Lewis X [SLeX]) in chickens and five common dabbling duck species and the association between SLeX and cell/tissue/host tropisms of H7 IAVs. Receptor binding analyses showed that H7 IAVs bind to both α2,3-linked (SA2,3Gal) and α2,6-linked sialic acids (SA2,6Gal), but with a higher preference for SLeX; H7 IAVs replicated more efficiently in SLeX-overexpressed than SLeX-deficient MDCK cells. While chickens and all tested dabbling ducks expressed abundant SA2,3Gal and SA2,6Gal, SLeX was detected in both respiratory and gastrointestinal tissues of chickens and mallard ducks and in only the respiratory tissues of gadwall, green-wing teal, and northern shoveler but not in wood ducks. Viral-tissue binding assays showed that H7 IAVs bind to chicken colon crypt cells that express SLeX but fewer bind to mallard colon crypt cells, which do not express SLeX; H7 IAVs bind efficiently to epithelial cells of all tissues expressing SA2,3Gal. High viral replication was identified in both chickens and mallards infected with an H7 virus, regardless of SLeX expression, and viruses were detected in all cells to the same degree as viruses detected in the viral-tissue binding assays. In summary, this study suggests that SLeX facilitates infection of H7 viruses, but other types of SA2,3Gal glycan receptors shape the tissue/host tropisms of H7 IAVs. IMPORTANCE In addition to causing outbreaks in domestic poultry, subtype H7 IAVs can cause sporadic spillover infections in lower mammals and humans. In this study, we showed that SLeX expression varies among wild dabbling ducks. Although it facilitated virus binding and affected infection of H7 IAV in cells, SLeX expression is not the only determinant of viral replication at either the tissue or host level. This study suggested that access to heterologous SA2,3Gal glycan receptors, including fucosylated α2,3-linked sialoglycans, shape tissue and host tropism of H7 IAVs in aquatic wild birds.
Collapse
Affiliation(s)
- Minhui Guan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Alicia K. Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Xiaotong Lu
- Department of BioSciences, Rice Universitygrid.21940.3e, Houston, Texas, USA
| | - William Epperson
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Xiaojian Zhang
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Lei Zhong
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Kaitlyn Waters
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nataly Mamaliger
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Lei Li
- Department of Chemistry, Georgia State Universitygrid.256304.6, Atlanta, Georgia, USA
| | - Feng Wen
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Yizhi J. Tao
- Department of BioSciences, Rice Universitygrid.21940.3e, Houston, Texas, USA
| | - Thomas J. DeLiberto
- U.S. Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, Colorado, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
192
|
Jha A, Barker D, Lew J, Manoharan V, van Kessel J, Haupt R, Toth D, Frieman M, Falzarano D, Kodihalli S. Efficacy of COVID-HIGIV in animal models of SARS-CoV-2 infection. Sci Rep 2022; 12:16956. [PMID: 36216961 PMCID: PMC9549041 DOI: 10.1038/s41598-022-21223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022] Open
Abstract
In late 2019 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus emerged in China and quickly spread into a worldwide pandemic. It has caused millions of hospitalizations and deaths, despite the use of COVID-19 vaccines. Convalescent plasma and monoclonal antibodies emerged as major therapeutic options for treatment of COVID-19. We have developed an anti-SARS-CoV-2 immunoglobulin intravenous (Human) (COVID-HIGIV), a potential improvement from using convalescent plasma. In this report the efficacy of COVID-HIGIV was evaluated in hamster and mouse models of SARS-CoV-2 infection. COVID-HIGIV treatment in both mice and hamsters significantly reduced the viral load in the lungs. Among COVID-HIGIV treated animals, infection-related body weight loss was reduced and the animals regained their baseline body weight faster than the PBS controls. In hamsters, COVID-HIGIV treatment reduced infection-associated lung pathology including lung inflammation, and pneumocyte hypertrophy in the lungs. These results support ongoing trials for outpatient treatment with COVID-HIGIV for safety and efficacy evaluation (NCT04910269, NCT04546581).
Collapse
Affiliation(s)
- Aruni Jha
- Research and Development, Emergent BioSolutions, Winnipeg, MB, Canada
| | - Douglas Barker
- Research and Development, Emergent BioSolutions, Winnipeg, MB, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Vinoth Manoharan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert Haupt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Derek Toth
- Research and Development, Emergent BioSolutions, Winnipeg, MB, Canada
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shantha Kodihalli
- Research and Development, Emergent BioSolutions, Winnipeg, MB, Canada.
| |
Collapse
|
193
|
Leblanc D, Raymond Y, Lemay MJ, Champagne CP, Brassard J. Effect of probiotic bacteria on porcine rotavirus OSU infection of porcine intestinal epithelial IPEC-J2 cells. Arch Virol 2022; 167:1999-2010. [PMID: 35794494 PMCID: PMC9402510 DOI: 10.1007/s00705-022-05510-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Rotavirus infections in nursing or post-weaning piglets are known to cause diarrhea, which can lead to commercial losses. Probiotic supplementation is used as a prophylactic or therapeutic approach to dealing with microbial infections in humans and animals. To evaluate the effect of probiotic bacteria on porcine rotavirus infections, non-transformed porcine intestinal epithelial IPEC-J2 cells were used as an in vitro model, and three different procedures were tested. When cells were exposed to seven probiotics at concentrations of 105, 106, or 107 CFU/mL for 16 h and removed before rotavirus challenge, infection reduction rates determined by flow cytometry were as follows: 15% (106) and 18% (105) for Bifidobacterium longum R0175, 15% (107) and 16% (106) for B. animalis lactis A026, and 15% (105) for Lactobacillus plantarum 299V. When cells were exposed to three selected probiotic strains for 1 h at higher concentrations, that is, 108 and 5 × 108 CFU/mL, before infection with rotavirus, no significant reduction was observed. When the probiotic bacteria were incubated with the virus before cell infection, a significant 14% decrease in the infection rate was observed for B. longum R0175. The results obtained using a cell-probiotics-virus platform combined with flow cytometry analysis suggest that probiotic bacteria can have a protective effect on IPEC-J2 cells before infection and can also prevent rotavirus infection of the cells.
Collapse
Affiliation(s)
- Danielle Leblanc
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Yves Raymond
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Marie-Josée Lemay
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Claude P Champagne
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Julie Brassard
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada.
| |
Collapse
|
194
|
Aggarwal A, Akerman A, Milogiannakis V, Silva MR, Walker G, Stella AO, Kindinger A, Angelovich T, Waring E, Amatayakul-Chantler S, Roth N, Manni S, Hauser T, Barnes T, Condylios A, Yeang M, Wong M, Jean T, Foster CSP, Christ D, Hoppe AC, Munier ML, Darley D, Churchill M, Stark DJ, Matthews G, Rawlinson WD, Kelleher AD, Turville SG. SARS-CoV-2 Omicron BA.5: Evolving tropism and evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. EBioMedicine 2022; 84:104270. [PMID: 36130476 PMCID: PMC9482529 DOI: 10.1016/j.ebiom.2022.104270] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 09/02/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. The introduction of global vaccine programs has contributed to lower COVID-19 hospitalisation and mortality rates, particularly in developed countries. In late 2021, Omicron BA.1 emerged, with substantially altered genetic differences and clinical effects from other variants of concern. Shortly after dominating global spread in early 2022, BA.1 was supplanted by the genetically distinct Omicron lineage BA.2. A sub-lineage of BA.2, designated BA.5, presently has an outgrowth advantage over BA.2 and other BA.2 sub-lineages. Here we study the neutralisation of Omicron BA.1, BA.2 and BA.5 and pre-Omicron variants using a range of vaccine and convalescent sera and therapeutic monoclonal antibodies using a live virus neutralisation assay. Using primary nasopharyngeal swabs, we also tested the relative fitness of BA.5 compared to pre-Omicron and Omicron viral lineages in their ability to use the ACE2-TMPRSS2 pathway. METHODS Using low passage clinical isolates of Clade A.2.2, Beta, Delta, BA.1, BA.2 and BA.5, we determined humoral neutralisation in vitro in vaccinated and convalescent cohorts, using concentrated human IgG pooled from thousands of plasma donors, and licensed monoclonal antibody therapies. We then determined infectivity to particle ratios in primary nasopharyngeal samples and expanded low passage isolates in a genetically engineered ACE2/TMPRSS2 cell line in the presence and absence of the TMPRSS2 inhibitor Nafamostat. FINDINGS Peak responses to 3 doses of BNT162b2 vaccine were associated with a 9-fold reduction in neutralisation for Omicron lineages BA.1, BA.2 and BA.5. Concentrated pooled human IgG from convalescent and vaccinated donors and BNT162b2 vaccination with BA.1 breakthrough infections were associated with greater breadth of neutralisation, although the potency was still reduced 7-fold across all Omicron lineages. Testing of clinical grade antibodies revealed a 14.3-fold reduction using Evusheld and 16.8-fold reduction using Sotrovimab for the BA.5. Whilst the infectivity of BA.1 and BA.2 was attenuated in ACE2/TMPRSS2 entry, BA.5 was observed to be equivalent to that of an early 2020 circulating clade and had greater sensitivity to the TMPRSS2 inhibitor Nafamostat. INTERPRETATION Observations support all Omicron variants to significantly escape neutralising antibodies across a range of vaccination and/or convalescent responses. Potency of therapeutic monoclonal antibodies is also reduced and differs across Omicron lineages. The key difference of BA.5 from other Omicron sub-variants is the reversion in tropism back to using the well-known ACE2-TMPRSS2 pathway, utilised efficiently by pre-Omicron lineages. Monitoring if these changes influence transmission and/or disease severity will be key for ongoing tracking and management of Omicron waves globally. FUNDING This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (ST, GM & WDR), MRF2001684 (ADK and ST) and Medical Research Future Fund Antiviral Development Call grant (WDR), Medical Research Future Fund COVID-19 grant (MRFF2001684, ADK & SGT) and the New South Wales Health COVID-19 Research Grants Round 2 (SGT).
Collapse
Affiliation(s)
- Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Anouschka Akerman
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | | | - Mariana Ruiz Silva
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Gregory Walker
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | | | - Andrea Kindinger
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Thomas Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Emily Waring
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | | | - Nathan Roth
- Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Sandro Manni
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Thomas Hauser
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Thomas Barnes
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Anna Condylios
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Malinna Yeang
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Maureen Wong
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Tyra Jean
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Charles S P Foster
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Mee Ling Munier
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - David Darley
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Melissa Churchill
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Damien J Stark
- Molecular Diagnostic Medicine Laboratory, Sydpath, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Gail Matthews
- The Kirby Institute, University of New South Wales, New South Wales, Australia; St Vincent's Hospital, Sydney, New South Wales, Australia
| | - William D Rawlinson
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, New South Wales, Australia; St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, New South Wales, Australia.
| |
Collapse
|
195
|
Cook SE, Vogel H, Castillo D, Olsen M, Pedersen N, Murphy BG. Investigation of monotherapy and combined anticoronaviral therapies against feline coronavirus serotype II in vitro. J Feline Med Surg 2022; 24:943-953. [PMID: 34676775 PMCID: PMC10812298 DOI: 10.1177/1098612x211048647] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Feline infectious peritonitis (FIP), caused by genetic mutants of feline enteric coronavirus known as FIPV, is a highly fatal disease of cats with no currently available vaccine or US Food and Drug Administration-approved cure. Dissemination of FIPV in affected cats results in a range of clinical signs, including cavitary effusions, anorexia, fever and lesions of pyogranulomatous vasculitis and perivasculitis, with or without central nervous system or ocular involvement. The objectives of this study were to screen an array of antiviral compounds for anti-FIPV (serotype II) activity, determine cytotoxicity safety profiles of identified compounds with anti-FIPV activity and strategically combine identified monotherapies to assess compound synergy against FIPV in vitro. Based upon clinically successful combination treatment strategies for human patients with HIV and hepatitis C virus infections, we hypothesized that a combined anticoronaviral therapy approach featuring concurrent multiple mechanisms of drug action would result in an additive or synergistic antiviral effect. METHODS This study screened 90 putative antiviral compounds for efficacy and cytotoxicity using a multimodal in vitro strategy, including plaque bioassays, real-time RT-PCR viral inhibition and cytotoxicity assays. RESULTS Through this process, we identified 26 compounds with effective antiviral activity against FIPV, representing a variety of drug classes and mechanisms of antiviral action. The most effective compounds include GC376, GS-441524, EIDD2081 and EIDD2931. We documented antiviral efficacy for combinations of antiviral agents, with a few examined drug combinations demonstrating evidence of limited synergistic antiviral activity. CONCLUSIONS AND RELEVANCE Although evidence of compound synergy was identified for several combinations of antiviral agents, monotherapies were ultimately determined to be the most effective in the inhibition of viral transcription.
Collapse
Affiliation(s)
- Sarah E Cook
- Graduate Group Integrative Pathobiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Helena Vogel
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Diego Castillo
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ, USA
| | - Niels Pedersen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Brian G Murphy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
196
|
Aggarwal A, Akerman A, Milogiannakis V, Silva MR, Walker G, Stella AO, Kindinger A, Angelovich T, Waring E, Amatayakul-Chantler S, Roth N, Manni S, Hauser T, Barnes T, Condylios A, Yeang M, Wong M, Jean T, Foster CSP, Christ D, Hoppe AC, Munier ML, Darley D, Churchill M, Stark DJ, Matthews G, Rawlinson WD, Kelleher AD, Turville SG. SARS-CoV-2 Omicron BA.5: Evolving tropism and evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. EBioMedicine 2022; 84:104270. [PMID: 36130476 DOI: 10.1101/2021.12.14.21267772] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 09/02/2022] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. The introduction of global vaccine programs has contributed to lower COVID-19 hospitalisation and mortality rates, particularly in developed countries. In late 2021, Omicron BA.1 emerged, with substantially altered genetic differences and clinical effects from other variants of concern. Shortly after dominating global spread in early 2022, BA.1 was supplanted by the genetically distinct Omicron lineage BA.2. A sub-lineage of BA.2, designated BA.5, presently has an outgrowth advantage over BA.2 and other BA.2 sub-lineages. Here we study the neutralisation of Omicron BA.1, BA.2 and BA.5 and pre-Omicron variants using a range of vaccine and convalescent sera and therapeutic monoclonal antibodies using a live virus neutralisation assay. Using primary nasopharyngeal swabs, we also tested the relative fitness of BA.5 compared to pre-Omicron and Omicron viral lineages in their ability to use the ACE2-TMPRSS2 pathway. METHODS Using low passage clinical isolates of Clade A.2.2, Beta, Delta, BA.1, BA.2 and BA.5, we determined humoral neutralisation in vitro in vaccinated and convalescent cohorts, using concentrated human IgG pooled from thousands of plasma donors, and licensed monoclonal antibody therapies. We then determined infectivity to particle ratios in primary nasopharyngeal samples and expanded low passage isolates in a genetically engineered ACE2/TMPRSS2 cell line in the presence and absence of the TMPRSS2 inhibitor Nafamostat. FINDINGS Peak responses to 3 doses of BNT162b2 vaccine were associated with a 9-fold reduction in neutralisation for Omicron lineages BA.1, BA.2 and BA.5. Concentrated pooled human IgG from convalescent and vaccinated donors and BNT162b2 vaccination with BA.1 breakthrough infections were associated with greater breadth of neutralisation, although the potency was still reduced 7-fold across all Omicron lineages. Testing of clinical grade antibodies revealed a 14.3-fold reduction using Evusheld and 16.8-fold reduction using Sotrovimab for the BA.5. Whilst the infectivity of BA.1 and BA.2 was attenuated in ACE2/TMPRSS2 entry, BA.5 was observed to be equivalent to that of an early 2020 circulating clade and had greater sensitivity to the TMPRSS2 inhibitor Nafamostat. INTERPRETATION Observations support all Omicron variants to significantly escape neutralising antibodies across a range of vaccination and/or convalescent responses. Potency of therapeutic monoclonal antibodies is also reduced and differs across Omicron lineages. The key difference of BA.5 from other Omicron sub-variants is the reversion in tropism back to using the well-known ACE2-TMPRSS2 pathway, utilised efficiently by pre-Omicron lineages. Monitoring if these changes influence transmission and/or disease severity will be key for ongoing tracking and management of Omicron waves globally. FUNDING This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (ST, GM & WDR), MRF2001684 (ADK and ST) and Medical Research Future Fund Antiviral Development Call grant (WDR), Medical Research Future Fund COVID-19 grant (MRFF2001684, ADK & SGT) and the New South Wales Health COVID-19 Research Grants Round 2 (SGT).
Collapse
Affiliation(s)
- Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Anouschka Akerman
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | | | - Mariana Ruiz Silva
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Gregory Walker
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | | | - Andrea Kindinger
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Thomas Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Emily Waring
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | | | - Nathan Roth
- Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Sandro Manni
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Thomas Hauser
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Thomas Barnes
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Anna Condylios
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Malinna Yeang
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Maureen Wong
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Tyra Jean
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Charles S P Foster
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Mee Ling Munier
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - David Darley
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Melissa Churchill
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Damien J Stark
- Molecular Diagnostic Medicine Laboratory, Sydpath, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Gail Matthews
- The Kirby Institute, University of New South Wales, New South Wales, Australia; St Vincent's Hospital, Sydney, New South Wales, Australia
| | - William D Rawlinson
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, New South Wales, Australia; St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, New South Wales, Australia.
| |
Collapse
|
197
|
Hu H, Mady Traore MD, Li R, Yuan H, He M, Wen B, Gao W, Jonsson CB, Fitzpatrick EA, Sun D. Optimization of the Prodrug Moiety of Remdesivir to Improve Lung Exposure/Selectivity and Enhance Anti-SARS-CoV-2 Activity. J Med Chem 2022; 65:12044-12054. [PMID: 36070561 PMCID: PMC9469953 DOI: 10.1021/acs.jmedchem.2c00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 01/08/2023]
Abstract
COVID-19 patients with severe symptoms still lack antiviral treatment options. Although remdesivir is the only FDA-approved drug for those patients, its efficacy is limited by premature hydrolysis to nucleoside (NUC), low accumulation in the disease-targeted tissue (lungs), and low antiviral potency. In this study, we synthesized a new series of remdesivir analogues by modifying the ProTide moiety. In comparison with remdesivir, the lead compound MMT5-14 showed 2- to 7-fold higher antiviral activity in four variants of SARS-CoV-2. By reducing premature hydrolysis in hamsters, MMT5-14 increased the prodrug concentration by 200- to 300-fold in the plasma and lungs but also enhanced lung accumulation of the active metabolite triphosphate nucleosides (NTP) by 5-fold. Compared to remdesivir, MMT5-14 also increased the intracellular uptake and activation in lung epithelial cells by 4- to 25-fold. These data suggest that MMT5-14 could be a potential antiviral drug to treat COVID-19 patients with severe symptoms.
Collapse
Affiliation(s)
- Hongxiang Hu
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Ruiting Li
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Miao He
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and
Biochemistry and the Regional Biocontainment Laboratory, University of
Tennessee Health Science Center, Memphis, Tennessee38163, United
States
| | - Elizabeth A. Fitzpatrick
- Department of Microbiology, Immunology and
Biochemistry and the Regional Biocontainment Laboratory, University of
Tennessee Health Science Center, Memphis, Tennessee38163, United
States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Michigan, Ann Arbor, Michigan48109,
United States
| |
Collapse
|
198
|
Chen KD, Ma FK, Wang QJ, Wang Y, Zhuang XY, Zhang XN, Mao HY, Zhang YJ. Disinfection Effect of Hexadecyl Pyridinium Chloride on SARS-CoV-2 in vitro. Intervirology 2022; 66:8-15. [PMID: 36103866 DOI: 10.1159/000526241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2023] Open
Abstract
The novel coronavirus (COVID-19 or 2019-nCoV) is a respiratory virus that can exist in the mouth and saliva of patients and spreads through aerosol dispersion. Therefore, stomatological hospitals and departments have become high-infection-risk environments. Accordingly, oral disinfectants that can effectively inactivate the virus have become a highly active area of research. Hexadecyl pyridinium chloride, povidone-iodine, and other common oral disinfectants are the natural primary choices for stomatological hospitals. Therefore, this study investigated the inhibitory effect of hexadecyl pyridinium chloride on severe acute respiratory syndrome coronavirus (SARS-CoV-2) in vitro. Vero cells infected with SARS-CoV-2 were used to determine the disinfection effect; the CCK-8 method was used to determine cytotoxicity, and viral load was determined by real-time PCR. The results showed that hexadecyl pyridinium chloride has no obvious cytotoxic effect on Vero cells in the concentration range of 0.0125-0.05 mg/mL. The in vitro experiments showed that hexadecyl pyridinium chloride significantly inhibits the virus at concentrations of 0.1 mg/mL or above at 2 min of action. Thus, the results provide experimental support for the use of hexadecyl pyridinium chloride in stomatological hospitals.
Collapse
Affiliation(s)
- Ke-da Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Fei-Ke Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Qing-Jing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ying Wang
- Department of Prosthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Xin-Yi Zhuang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xu-Ning Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hai-Yan Mao
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yan-Jun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
199
|
Hour MJ, Chen Y, Lin CS, Baltina LA, Kan JY, Tsai YT, Kiu YT, Lai HC, Baltina LA, Petrova SF, Lin CW. Glycyrrhizic Acid Derivatives Bearing Amino Acid Residues in the Carbohydrate Part as Dengue Virus E Protein Inhibitors: Synthesis and Antiviral Activity. Int J Mol Sci 2022; 23:10309. [PMID: 36142222 PMCID: PMC9499324 DOI: 10.3390/ijms231810309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) is one of the most geographically distributed mosquito-borne flaviviruses, like Japanese encephalitis virus (JEV), and Zika virus (ZIKV). In this study, a library of the known and novel Glycyrrhizic acid (GL) derivatives bearing amino acid residues or their methyl/ethyl esters in the carbohydrate part were synthesized and studied as DENV inhibitors in vitro using the cytopathic effect (CPE), viral infectivity and virus yield assays with DENV1 and DENV-2 in Vero E6 and A549 cells. Among the GL conjugates tested, compound hits GL-D-ValOMe 3, GL-TyrOMe 6, GL-PheOEt 11, and GL-LysOMe 21 were discovered to have better antiviral activity than GL, with IC50 values ranging from <0.1 to 5.98 μM on the in vitro infectivity of DENV1 and DENV2 in Vero E6 and A549 cells. Compound hits 3, 6, 11, and 21 had a concentration-dependent inhibition on the virus yield in Vero E6, in which GL-D-ValOMe 3 and GL-PheOEt 11 were the most active inhibitors of DENV2 yield. Meanwhile, the time-of-addition assay indicated that conjugates GL-D-ValOMe 3 and GL-PheOEt 11 exhibited a substantial decrease in the DENV2 attachment stage. Subsequently, chimeric single-round infectious particles (SRIPs) of DENV2 C-prM-E protein/JEV replicon and DENV2 prM-E/ZIKV replicon were utilized for the DENV envelope I protein-mediated attachment assay. GL conjugates 3 and 11 significantly reduced the attachment of chimeric DENV2 C-prM-E/JEV and DENV2 prM-E/ZIKV SRIPs onto Vero E6 cells in a concentration-dependent manner but did not impede the attachment of wild-type JEV CprME/JEV and ZIKV prM-E/ZIKV SRIPs, indicating the inhibition of Compounds 3 and 11 on DENV2 E-mediated attachment. Molecular docking data revealed that Compounds 3 and 11 have hydrophobic interactions within a hydrophobic pocket among the interfaces of Domains I, II, and the stem region of the DENV2 envelope (E) protein. These results displayed that Compounds 3 and 11 were the lead compounds targeting the DENV E protein. Altogether, our findings provide new insights into the structure−activity relationship of GL derivatives conjugated with amino acid residues and can be the new fundamental basis for the search and development of novel flavivirus inhibitors based on natural compounds.
Collapse
Affiliation(s)
- Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, No. 117 Shatian Road, Shalu District, Taichung 43303, Taiwan
| | - Lidia A. Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, 71 Prospect Oktyabrya, 450054 Ufa, Russia
| | - Ju-Ying Kan
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shin Road, Taichung 40402, Taiwan
| | - Yan-Ting Tsai
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng, Taichung 41354, Taiwan
| | - Yan-Tung Kiu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Hsueh-Chou Lai
- School of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Lia A. Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, 71 Prospect Oktyabrya, 450054 Ufa, Russia
| | - Svetlana F. Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, 71 Prospect Oktyabrya, 450054 Ufa, Russia
| | - Cheng-Wen Lin
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shin Road, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng, Taichung 41354, Taiwan
| |
Collapse
|
200
|
Wu S, Huang J, Li Y, Lei M, Zhao L, Liu Z. Integrated analysis of immune parameters, miRNA-mRNA interaction, and immune genes expression in the liver of rainbow trout following infectious hematopoietic necrosis virus infection. Front Immunol 2022; 13:970321. [PMID: 36119061 PMCID: PMC9479325 DOI: 10.3389/fimmu.2022.970321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) is an important economical cold-water fish worldwide. However, infection with infectious hematopoietic necrosis virus (IHNV) has severely restricted the development of aquaculture and caused huge economic losses. Currently, little is known about the immune defense mechanisms of rainbow trout against IHNV. In this study, we detected the changes of immune parameters over different post-infection periods (6-, 12-, 24-, 48-, 72-, 96-, 120-, and 144 hours post-infection (hpi)), mRNA and miRNA expression profiles under 48 hpi (T48L) compared to control (C48L), and key immune-related genes expression patterns in rainbow trout liver following IHNV challenge through biochemical methods, RNA-seq, and qRT-PCR, and the function of miR-330-y was verified by overexpression and silencing in vitro and in vivo. The results revealed that alkaline phosphatase (AKP), alanine aminotransferase (ALT), catalase (CAT), and total superoxide dismutase (T-SOD) activities, and lysozyme (LZM) content showed significant peaks at 48 hpi, whereas malondialdehyde (MDA) content and aspartate aminotransferase (AST) activity decreased continuously during infection, and acid phosphatase (ACP) activity varied slightly. From RNA-seq, a total of 6844 genes and 86 miRNAs were differentially expressed, and numerous immune-related differentially expressed genes (DEGs) involved in RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, and antigen processing and presentation were significantly upregulated in T48Lm group, including IFIH1, DHX58, MAVS, TRAF3, IRF3, IRF7, MX1, TLR3, TLR8, MYD88, NOD1, NOD2, IL-8, CXCR1, CD209, CD83, and TAP1. Integrated analysis identified seven miRNAs (miR-425-x, miR-185-x, miR-338-x, miR-330-y, miR-361-x, miR-505-y, and miR-191-x) that target at least three key immune-related DEGs. Expression analysis showed that IFIH1, DHX58, IRF3, IRF7, MX1, TLR3, TLR8, and MYD88 showed a marked increase after 24 hpi during infection. Further research confirmed TAP1 as one of the targets of miR-330-y, overexpression of miR-330-y with mimics or agomir significantly reduced the expression levels of TAP1, IRF3, and IFN, and the opposite effects were obtained by inhibitor. These results facilitate in-depth understanding of the immune mechanisms in rainbow trout against IHNV.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Jinqiang Huang,
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Mingquan Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|