151
|
Bräutigam K, Skok K, Szymonski K, Rift CV, Karamitopoulou E. Tumor immune microenvironment in pancreatic ductal adenocarcinoma revisited - Exploring the "Space". Cancer Lett 2025; 622:217699. [PMID: 40204149 DOI: 10.1016/j.canlet.2025.217699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most deadly malignancies with a highly immunosuppressive tumor immune microenvironment (TIME) that hinders effective therapy. PDAC is characterized by significant heterogeneity in immune cell composition, spatial distribution and activation states, which impacts tumor progression and treatment response. Tumour-infiltrating lymphocytes (TILs), including CD4+ T-helper cells, CD8+ cytotoxic T-cells and FOXP3+ regulatory T-cells, play a key role in immune regulation, yet PDAC is largely an immunologically "cold" tumour with limited effector T-cell infiltration. The surrounding cellular microenvironment, particularly Cancer Associated Fibroblasts (CAFs) and macrophages, contributes to immune evasion by promoting a fibrotic and desmoplastic barrier that limits TIL infiltration. The prognostic significance of TILs is increasingly recognized, with higher densities correlating with improved survival, whereas regulatory T-cell infiltration and immunosuppressive stromal interactions are associated with poor outcomes. Emerging therapeutic strategies targeting the TIME (e.g., CAFs), immune checkpoint inhibitors, and TIL-based therapies offer the potential to overcome resistance. Future research must focus on optimizing immunotherapy strategies and unravelling the complex stromal-immune interactions to improve clinical translation.
Collapse
Affiliation(s)
- Konstantin Bräutigam
- Institute of Cancer Research, Centre for Evolution and Cancer, London, SM2 5NG, United Kingdom; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland.
| | - Kristijan Skok
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Institute of Biomedical Sciences, Medical Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Krzysztof Szymonski
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Eva Karamitopoulou
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
152
|
Wang Q, Long T, Tang P, Xu C, Wang L, Liu J. Metabolic reprogramming in cholangiocarcinoma cancer stem cells: Emerging therapeutic paradigms. Cancer Lett 2025; 622:217714. [PMID: 40209849 DOI: 10.1016/j.canlet.2025.217714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy characterized by limited therapeutic options and poor prognosis, largely attributed to the presence of cancer stem cells (CSCs). These CSCs serve as pivotal drivers of tumor heterogeneity, chemotherapy resistance, and disease recurrence. CSCs in CCA exhibit remarkable plasticity, a characteristic sustained through metabolic state alterations and intricate interactions with the tumor microenvironment (TME), which collectively enhance their self-renewal and survival potential. While advancements have been made in understanding metabolic reprogramming of CCA CSCs, translating these findings into clinical applications encounters significant challenges, including insufficient target specificity, complex metabolic heterogeneity, and the profound complexity of the TME. This review provides a systematic evaluation of metabolic reprogramming mechanisms in CCA CSCs, with critical analysis of stemness-maintaining signaling pathways, oxidative phosphorylation (OXPHOS), nutrient utilization, metabolic crosstalk within the TME, autophagy regulation, and ferroptosis resistance. We emphasize emerging strategies to therapeutically target the interconnected metabolic networks essential for CSC functionality and survival, with the goal of establishing a theoretical basis for innovative precision therapies to enhance clinical outcomes for CCA patients.
Collapse
Affiliation(s)
- Qi Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China
| | - Tanqing Long
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Peijuan Tang
- Weifang Hospital of Traditional Chinese Medicine, Shandong Second Medical University, 261000, Weifang, Shandong Province, China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Liang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China.
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China; Key Laboratory of Digital Intelligence Hepatology, Ministry of Education, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 102218, Beijing, China.
| |
Collapse
|
153
|
Zhou J, Xu Y, Li Y, Zhang Q, Zhong L, Pan W, Ji K, Zhang S, Chen Z, Liu Y, Fan L, Liu C, Chen Q, Wang Z. Cancer-associated fibroblasts derived amphiregulin promotes HNSCC progression and drug resistance of EGFR inhibitor. Cancer Lett 2025; 622:217710. [PMID: 40216150 DOI: 10.1016/j.canlet.2025.217710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
In clinical oncology, lack of sustained treatment response is very common in cancer patients and largely limits the efficiency of most anticancer targeted-therapies. While anti-EGFR therapeutics have been extensively employed in head and neck squamous cell carcinoma (HNSCC) management, their clinical efficacy remains limited due to unresolved resistance mechanisms. Notably, the functional role of EGFR ligand proteins in both tumor progression and therapeutic response has not been fully elucidated. Here we reveal that amphiregulin (AREG) as a potential driver of drug resistance of EGFR-targeted treatment in HNSCC patients. We identify a PDGFRβ+FAP+αSMA+ myofibroblast (myCAF) subset as the major source of AREG in tumor microenvironment. TCGA database and clinical cohort demonstrated that patients with high AREG expression exhibited significantly higher lymph node metastasis rates (59.35 %) and poorer prognosis (median 5-year survival: 2.2 years). In contrast, patients with low AREG expression showed reduced metastatic potential (metastasis rate: 45.16 %) and more favorable clinical outcomes (median 5-year survival: 4.8 years). Mechanistically, AREG promotes vascular mimicry formation via epithelial-endothelial transition of tumor cells to offer extra blood supply and metastasis channels. Further, live-cell imaging revealed that AREG induces plasma membrane stabilization of over 90 % receptor proteins while concurrently enhancing receptor recycling, driving EGFR inhibitor resistance. Collectively, our study reveals the crucial role of AREG in tumor landscape, informing a new predictive biomarker of EGFR inhibitor efficiency as well as a new potential therapeutic target of HNSCC.
Collapse
Affiliation(s)
- Jinhan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yining Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qiyue Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Liang Zhong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Weiyi Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Keyan Ji
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Shangjun Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yu Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lijie Fan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Chuanxia Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Zhiyong Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
154
|
Cai S, Deng Y, Zou Z, Tian W, Tang Z, Li J, Tan Z, Wu Z, Han Z, Wen B, Feng Y, Liu R, Zhu X, Wu Y, Xiao H, He H, Ye J, Zhong W. Metformin inhibits the progression of castration-resistant prostate cancer by regulating PDE6D induced purine metabolic alternation and cGMP / PKG pathway activation. Cancer Lett 2025; 622:217694. [PMID: 40216151 DOI: 10.1016/j.canlet.2025.217694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
The castration-resistant prostate cancer (CRPC) remains an incurable disease. Metformin has demonstrated a potential therapeutic effect on CRPC. However, the poor clinical performance of metformin against cancer may be due to its clinical dose being much lower than the anticancer concentration used in pre-clinical experiments. The challenge is to determine a way to enhance sensitivity to metformin at an appropriate concentration on CRPC. In this study, a mouse model of low-dose metformin treatment for CRPC cells were established. Metabolomic-seq and transcriptomic-seq was used to investigate changes in CRPC xenografts. We discovered that low-dose metformin inhibits the progression of CRPC by regulating PDE6D, which induces alterations in purine metabolism and activates the cGMP/PKG pathway. Furthermore, we found that cells with high expression of PDE6D were more resistant to metformin. When combined with the PDE6D inhibitor TMX-4100, the inhibitory effect on tumors was enhanced, and TMX-4100 demonstrated favorable biosafety in animal models. In conclusion, we found that low-dose metformin inhibits the progression of CRPC by regulating PDE6D-induced alterations in purine metabolism and activating the cGMP/PKG pathway. Moreover, patients with high PDE6D expression may exhibit greater resistance to metformin. Combining metformin with TMX-4100 could further improve the inhibitory effects on tumors.
Collapse
Affiliation(s)
- Shanghua Cai
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yulin Deng
- Department of Urology, The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710, Dongguan, Guangdong, China
| | - Zhihao Zou
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Weicheng Tian
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Zhenfeng Tang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Jinchuang Li
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Zeheng Tan
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Zhenjie Wu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Zhaodong Han
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Biyan Wen
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yuanfa Feng
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Ren Liu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Xuejin Zhu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Yongding Wu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Haiyin Xiao
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Huichan He
- Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China.
| | - Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macao Special Administrative Region of China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China.
| | - Weide Zhong
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macao Special Administrative Region of China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China.
| |
Collapse
|
155
|
Abusharieh E, Aslam N, Zihlif MA, Bustanji Y, Wehaibi S, Abuarqoub D, Shahin D, Saadeh H, Barham R, Awidi AS. In vitro investigation of epigenetic regulators related to chemo-resistance and stemness of CD133 +VE cells sorted from U87MG cell line. Gene 2025; 956:149432. [PMID: 40157620 DOI: 10.1016/j.gene.2025.149432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Glioblastoma (GBM) is the most common and malignant adult primary brain tumor with frequent relapse and resistance to therapies. Glioma stem cells, a rare population, is thought to be the reason behind the treatment's failure. It is imperative to investigate the disease mechanisms and identify the biomarkers by which glioma stem cells would contribute to treatment relapse and resistance to already available chemotherapeutic agents. The CD133+VE cells were isolated from U87MG cell line and characterized by morphological features, cell viability, self-renewal efficiency, migration potential and karyotyping. Doxorubicin Cisplatin, Irinotecan, Etoposide and Temozolomide were used to determine the anti-proliferative effect on CD133+VE cells. Confocal microcopy was used to localize the chemotherapeutic agents in the CD133+VE cells. In quest of epigenetic biomarkers, RNA sequencing was performed to find the role of lncRNAs in stemness and resistance to therapies. U87cell line and CD133-VE cells were kept as controls for all the experiments. It was found that CD133+VEcells were highly proliferative with increased migration potential, elevated IC50 values against chemotherapeutic agents and showed distinct karyotyping related to pluripotency. Chemotherapeutic agent such as Doxorubicin was localized outside the nucleus revealing the drug resistance as evident by confocal microscopy. RNA sequencing revealed 126 differentially expressed lncRNAs (DELs) in CD133+VEcells among which lncRNA LOXL1-AS1 was highly upregulated and lncRNA PAX8-AS1 was significantly downregulated. These lncRNAs has been reported to be related to drug resistance, migration and epithelial- to- mesenchymal transmission (EMT), self-renewal and stemness properties contributing to poor prognosis and disease relapse.
Collapse
Affiliation(s)
- Elham Abusharieh
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-zaytoonah University of Jordan, Amman 11733, Jordan; Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; Department of Clinical Pharmacy and Biopharmaceutics, Faculty of Pharmacy, The University of Jordan, Amman, Jordan.
| | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Malek A Zihlif
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Yasser Bustanji
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Pharmacy and Biopharmaceutics, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra. Amman 11196, Jordan
| | - Diana Shahin
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Heba Saadeh
- Department of Computer Science, KASIT, The University of Jordan, Amman, 11942 Jordan
| | - Raghad Barham
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Abdalla S Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
156
|
Almonte AA, Thomas S, Zitvogel L. Microbiota-centered interventions to boost immune checkpoint blockade therapies. J Exp Med 2025; 222:e20250378. [PMID: 40261296 PMCID: PMC12013646 DOI: 10.1084/jem.20250378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Immune checkpoint blockade therapies have markedly advanced cancer treatment by invigorating antitumor immunity and extending patient survival. However, therapeutic resistance and immune-related toxicities remain major concerns. Emerging evidence indicates that microbial dysbiosis diminishes therapeutic response rates, while a diverse gut ecology and key beneficial taxa correlate with improved treatment outcomes. Therefore, there is a growing understanding that manipulating the gut microbiota could boost therapy efficacy. This review examines burgeoning methods that target the gut microbiome to optimize therapy and innovative diagnostic tools to detect dysbiosis, and highlights challenges that remain to be addressed in the field.
Collapse
Affiliation(s)
- Andrew A. Almonte
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
| | - Simon Thomas
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| |
Collapse
|
157
|
Lange TE, Naji A, van der Hoeven R, Liang H, Zhou Y, Hammond GR, Hancock JF, Cho KJ. MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids. J Cell Biol 2025; 224:e202403126. [PMID: 40314454 PMCID: PMC12047185 DOI: 10.1083/jcb.202403126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/08/2024] [Accepted: 10/18/2024] [Indexed: 05/03/2025] Open
Abstract
KRAS, a small GTPase involved in cell proliferation and differentiation, frequently gains activating mutations in human cancers. For KRAS to function, it must bind the plasma membrane (PM) via interactions between its membrane anchor and phosphatidylserine (PtdSer). Therefore, depleting PM PtdSer abrogates KRAS PM binding and activity. From a genome-wide siRNA screen to identify genes regulating KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatases: myotubularin-related proteins (MTMR) 2, 3, 4, and 7. Here, we show that silencing MTMR 2/3/4/7 disrupts KRAS PM interactions by reducing PM PI 4-phosphate (PI4P) levels, thereby disrupting the localization and operation of ORP5, a lipid transfer protein maintaining PM PtdSer enrichment. Concomitantly, silencing MTMR 2/3/4/7 elevates PM PI3P levels while reducing PM and total PtdSer levels. We also observed MTMR 2/3/4/7 expression is interdependent. We propose that the PI 3-phosphatase activity of MTMR is required for generating PM PI, necessary for PM PI4P synthesis, promoting the PM localization of PtdSer and KRAS.
Collapse
Affiliation(s)
- Taylor E. Lange
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ali Naji
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ransome van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Gerald R.V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
158
|
Chen CH, Reva B, Katabi N, Wizel A, Xu H, Ho AL, Morris LG, Bakst RL, Parikh AS, Drier Y, Deborde S, Wong RJ. Sympathetic axonogenesis promotes adenoid cystic carcinoma progression. J Exp Med 2025; 222:e20242250. [PMID: 40272482 PMCID: PMC12020745 DOI: 10.1084/jem.20242250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/07/2025] [Accepted: 03/12/2025] [Indexed: 04/25/2025] Open
Abstract
Nerves are integral to the adenoid cystic carcinoma (ACC) microenvironment. The strong association of ACC with perineural invasion (PNI) is considered a hallmark of this disease. In human salivary ACC, we identify intratumoral, small-caliber, disorganized sympathetic nerves not observed in other salivary neoplasms. Norepinephrine or sympathetic ganglia explants enhance ACC proliferation in vitro. Two novel orthotopic ACC patient-derived xenograft (PDX) models recapitulate ACC morphology and demonstrate sympathetic innervation. Pharmacologic or surgical blockade of sympathetic nerves decreases ACC PDX growth. Bulk RNA sequencing of salivary ACC reveals correlations between noradrenergic nerve development signatures and worse patient survival. Metastatic ACC foci exhibit lower nerve signature gene expression levels than primary ACC. Sympathetic innervation in ACC is distinct from PNI and reflects tumor axonogenesis driven by noradrenergic neural development programs. These programs support ACC progression, are associated with poor prognosis, and may be inhibited as a therapeutic strategy.
Collapse
Affiliation(s)
- Chun-Hao Chen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Mount Sinai Medical Center, New York, NY, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Avishai Wizel
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hongbo Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Alan L. Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G.T. Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard L. Bakst
- Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY, USA
| | - Anuraag S. Parikh
- Department of Otolaryngology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sylvie Deborde
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
159
|
Li Y, He Y, Zhang C, Gan L, Zhang H. Discovery of potent focal adhesion kinase (FAK) inhibitor A8 with enhanced antitumor activity. Eur J Med Chem 2025; 291:117593. [PMID: 40239484 DOI: 10.1016/j.ejmech.2025.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
FAK has emerged as a promising therapeutic target for cancer treatment due to its role in tumor survival, metastasis, and invasion. Herein, we report the rational design, synthesis, and comprehensive evaluation of a novel FAK inhibitor, compound A8. Our structure-activity relationship (SAR) studies identified A8 as a potent FAK inhibitor, with an FAK-IC50 value of 0.87 nM, superior to VS6063 (1.49 nM). In vitro studies demonstrated that A8 significantly suppressed tumor cell viability, cancer stem cell activity, and cell migration in A549 and SKOV-3 cell lines. Mechanistic insights were provided by surface plasmon resonance (SPR) analysis, revealing high-affinity binding of A8 to FAK with a Kd value of 15 μM. Radiolabeling studies with [18F]A8 highlighted favorable tumor uptake and retention in S180 tumor-bearing mice. Notably, A8 efficiently penetrated the blood-brain barrier, with brain uptake values reaching 2.63 ± 0.63 %ID/g at 15 min and 1.62 ± 0.77 %ID/g at 120 min. In vivo antitumor efficacy trials in A549 and SKOV-3 tumor models confirmed A8's robust activity, with tumor inhibition rates of 59.15 % and 57.9 %, respectively, surpassing VS6063 and standard chemotherapeutics. Combination therapy with paclitaxel further enhanced A8's antitumor effects in SKOV-3 models. Acute toxicity studies indicated that A8 was well-tolerated up to 2000 mg/kg in mice, with no observed acute toxicity. Molecular docking and dynamics simulations substantiated the stable binding of A8 to the FAK protein. Collectively, our findings underscore the potential of compound A8 as a lead candidate for FAK-targeted cancer therapeutics, warranting further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, China
| | - Yong He
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Chenyu Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Lu Gan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Huabei Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
| |
Collapse
|
160
|
Jiang M, Ma S, Xuan Y, Chen K. Synthetic approaches and clinical application of KRAS inhibitors for cancer therapy. Eur J Med Chem 2025; 291:117626. [PMID: 40252381 DOI: 10.1016/j.ejmech.2025.117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are among the most common oncogenic alterations in various cancers, including pancreatic, colorectal, and non-small cell lung cancer (NSCLC). Targeting KRAS has long been considered a difficult challenge due to its high affinity for guanosine triphosphate (GTP) and the lack of a druggable binding site. However, recent advancements in small-molecule inhibitor design have led to the development of targeted therapies aimed at KRAS mutations, particularly the KRASG12C mutation. Inhibitors such as Sotorasib and Adagrasib have shown promise in preclinical and clinical studies by irreversibly binding to the mutant KRAS protein, locking it in an inactive state and disrupting downstream signaling pathways critical for tumor growth and survival. These inhibitors have demonstrated clinical efficacy in treating patients with KRASG12C-mutated cancers, leading to tumor regression, prolonged progression-free survival, and improved patient outcomes. This review discusses the synthetic strategies employed to develop these KRAS inhibitor and also examines the clinical application of these inhibitors, highlighting the challenges and successes encountered during clinical trials. Ultimately, KRAS inhibitors represent a breakthrough in cancer therapy, offering a promising new treatment option for patients with KRAS-driven tumors.
Collapse
Affiliation(s)
- Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shaowei Ma
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xuan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kuanbing Chen
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
161
|
Ma C, Sun H, Shen C, Li X, Shen Y. Discovery of a first-in-class protein arginine methyltransferase 1 (PRMT1) degrader for nonenzymatic functions studies. Eur J Med Chem 2025; 291:117625. [PMID: 40245820 DOI: 10.1016/j.ejmech.2025.117625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Among the type I Protein Arginine Methyltransferases (PRMTs), PRMT1 plays a predominant part in catalyzing asymmetric dimethylation of arginine residues on histone or nonhistone substrates. PRMT1 level is abnormally elevated in numerous cancer cell types and inflammation diseases. Compared to the enzymatic functions of PRMT1, its nonenzymatic functions are shortly investigated in diseases. Previous study has confirmed that the stability of orphan receptor TR3, a binding partner of PRMT1, is closely regulated by PRMT1, but the effect is independent of PRMT1's methyltransferase activity, but depends on the physical binding of PRMT1. To date, multiple inhibitors targeting methyltransferase enzymatic activity of PRMT1 are developed, but all of them lack selectivity for PRMT1. Among them, only GSK3368715 advanced to clinical trials but was discontinued in phase I due to inadequate efficacy and thrombosis toxicity. Currently, small molecule degraders are gaining significant attention due to their advantages in efficacy and selectivity in therapeutic applications. Presumably, a potent and selective PRMT1 degrader could serve as a valuable alternative in the treatment of PRMT1-driven diseases and act as an instrumental tool in uncovering additional nonenzymatic functions of PRMT1. To date, however, the development of a PRMT1 degrader remains a challenge, with no such agents reported. In this study, we present the design, synthesis and characterization of CM112 (compound 12), a first-in-class PRMT1 degrader, designed by tethering adamantane to MS023, a type I PRMTs pan inhibitor, via a 5-PEG linker. CM112 demonstrates a concentration- and time-dependent ability to induce PRMT1 degradation in various solid cancer cell lines. Additionally, CM112 shows high selectivity for PRMT1 degradation, without causing degradation of other type I PRMTs (PRMT3/4/6), although it retains potent inhibitory effects on their enzymatic activity. Pharmacokinetics studies indicated that CM112 possesses favorable bioavailability in mice. Notably, as anticipated, CM112 could target PRMT1's nonenzymatic function by downregulating the stability of the orphan receptor TR3, an effect not observed with the PRMT1 inhibitor MS023, that is in consistence with the previous findings. Taken together, CM112 represents a valuable tool for elucidating the unknown, methyltransferase-independent roles of PRMT1 in disease progression and pave the way for developing more potent and drug like PRMT1 degraders in future.
Collapse
Affiliation(s)
- Chenning Ma
- Shanghai Frontiers Science Center of Targeted Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanyin Sun
- Shanghai Frontiers Science Center of Targeted Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Shen
- Shanghai Frontiers Science Center of Targeted Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Li
- School of Pharmacy, East China University of Science and Technology, Shanghai 201424, China
| | - Yudao Shen
- Shanghai Frontiers Science Center of Targeted Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Central Research Institute, State Key Laboratory of Innovative Immunotherapy Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai 201203, China; Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
162
|
Yim H, Sun R, Xu Z, Kim HS, Kim M, Cao T, Xie L, Chen X, Kaniskan HÜ, Jin J. Discovery of the first-in-class DOT1L PROTAC degrader. Eur J Med Chem 2025; 291:117595. [PMID: 40186895 PMCID: PMC12045715 DOI: 10.1016/j.ejmech.2025.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
DOT1L is the lysine methyltransferase responsible for histone H3 lysine 79 (H3K79) methylation and plays a crucial role in leukemia progression. Furthermore, DOT1L has biological functions that are independent of its methyltransferase activity. Therefore, targeting and degrading DOT1L with PROteolysis TArgeting Chimeras (PROTACs) could represent a promising therapeutic strategy. Here, we report the discovery of the first-in-class DOT1L PROTAC degrader, compound 13 (MS2133), which potently induces DOT1L degradation in a concentration- and time-dependent manner, without affecting DOT1L mRNA expression. The DOT1L degradation induced by 13 requires binding to the E3 ligase von Hippel-Lindau (VHL) and DOT1L and occurs through the ubiquitin-proteasome system. 13 is selective for DOT1L over other methyltransferases and effectively inhibits the growth of mixed lineage leukemia-rearranged (MLL-r) leukemia cells while having no toxicity on normal cells. Overall, 13 is a valuable chemical biology tool for further studying functions of DOT1L and a potential therapeutic for DOT1L-dependent cancers.
Collapse
Affiliation(s)
- Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Renhong Sun
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Zhongli Xu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Huen Suk Kim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Minjeong Kim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Tao Cao
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States.
| |
Collapse
|
163
|
Han C, Guo C, Zheng X, Zhao L, Sun M, Li J, Wang S, Zhang Z, Wang Z, Wu L. Discovery of 2,4-dianilinopyrimidine derivatives as novel p90 ribosomal S6 protein kinase (RSK) inhibitors. Eur J Med Chem 2025; 291:117590. [PMID: 40199026 DOI: 10.1016/j.ejmech.2025.117590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/14/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
RSK, or p90 ribosomal S6 kinase, plays a crucial role in tumor cell proliferation and survival, making it an appealing target for cancer therapies. With the aim to explore novel RSK inhibitors as anticancer agents, a series of 2,4-dianilinopyrimidine derivatives 2b-2n and 3a-3n have been designed and synthesized. Among them, compound 3e displayed substantial kinase inhibitory activity against RSK2 (IC50 = 37.89 ± 3.08 nM) and a potent antiproliferative effect against a range of cell lines, including HeLa, MIA PaCa-2, U937, SW620, HT-29, AGS, and two kinds of EGFR mutant cells (IC50s = 0.189-0.572 μM). Additionally, compound 3e exhibited a high affinity for RSK and effectively inhibited RSK activity in HeLa cells. It triggered significant apoptosis and caused cell cycle arrest in the G2/M phase. Moreover, 3e displayed considerable in vivo anticancer activity while maintaining an acceptable safety profile. These findings imply that compound 3e, featuring a 2,4-dianilinopyrimidine scaffold, could serve as a promising RSK inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Chun Han
- Key Laboratory of Antitumor Drugs and Companion Diagnostic Reagents, Department of Chemistry, Changzhi University, Changzhi, 046011, China
| | - Chaohua Guo
- Key Laboratory of Antitumor Drugs and Companion Diagnostic Reagents, Department of Chemistry, Changzhi University, Changzhi, 046011, China; School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, 030006, China
| | - Xumei Zheng
- Key Laboratory of Antitumor Drugs and Companion Diagnostic Reagents, Department of Chemistry, Changzhi University, Changzhi, 046011, China; School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, 030006, China
| | - Lin Zhao
- Key Laboratory of Antitumor Drugs and Companion Diagnostic Reagents, Department of Chemistry, Changzhi University, Changzhi, 046011, China; School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, 030006, China
| | - Miao Sun
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jian Li
- Key Laboratory of Antitumor Drugs and Companion Diagnostic Reagents, Department of Chemistry, Changzhi University, Changzhi, 046011, China
| | - Shijun Wang
- Key Laboratory of Antitumor Drugs and Companion Diagnostic Reagents, Department of Chemistry, Changzhi University, Changzhi, 046011, China
| | - Zhang Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Zhijun Wang
- Key Laboratory of Antitumor Drugs and Companion Diagnostic Reagents, Department of Chemistry, Changzhi University, Changzhi, 046011, China.
| | - Lintao Wu
- Key Laboratory of Antitumor Drugs and Companion Diagnostic Reagents, Department of Chemistry, Changzhi University, Changzhi, 046011, China.
| |
Collapse
|
164
|
Saadh MJ, Omar TM, Ballal S, Mahdi MS, Chahar M, Verma R, A Al-Hussein RK, Adil M, Jawad MJ, Al-Nuaimi AMA. Notch signaling and cancer: Insights into chemoresistance, immune evasion, and immunotherapy. Gene 2025; 955:149461. [PMID: 40164241 DOI: 10.1016/j.gene.2025.149461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The Notch signaling pathway is a fundamental and highly conserved cell-to-cell communication system vital for embryonic development and tissue maintenance. However, its dysregulation has been associated with the initiation, progression, and chemoresistance of various cancers. In this comprehensive review, we will take an in-depth look at the multiple roles of the Notch family in cancer pathogenesis, immune response, and resistance to chemotherapy. We delve into the complicated mechanisms by which Notch signaling promotes tumor growth and development, including its influence on TME remodeling and immune evasion strategies. We will also be discussing recent studies that shed light on the connection between cancer stemness and chemoresistance mediated through the activation of Notch signaling pathways. Elucidation of the interplay between the Notch pathway and major constituents of the TME, including immune cells and cancer-associated fibroblasts, is necessary for the development of targeted therapies against Notch-driven tumors. We further discuss the potential of targeting Notch signaling alone or in combination with standard chemotherapy and immunotherapy as a potent strategy to overcome chemoresistance and improve patient outcomes. We conclude by discussing the challenges and future prospects of using Notch signaling as a therapeutic target in cancer treatment, focusing on how precision medicine and combination approaches are important.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | | | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| | | | - Mohaned Adil
- College of Pharmacy, Al-Farahidi University, Baghdad, Iraq
| | | | - Ali M A Al-Nuaimi
- Department of Pharmacy, Gilgamesh Ahliya University, Baghdad 10022, Iraq
| |
Collapse
|
165
|
Saadh MJ, Allela OQB, Kareem RA, Baldaniya L, Ballal S, Vashishth R, Parmar M, Sameer HN, Hamad AK, Athab ZH, Adil M. Prognostic gene expression profile of colorectal cancer. Gene 2025; 955:149433. [PMID: 40122415 DOI: 10.1016/j.gene.2025.149433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer is a major global health burden, with significant heterogeneity in clinical outcomes among patients. Identifying robust prognostic gene expression signatures can help stratify patients, guide treatment decisions, and improve clinical management. This review provides an overview of current prognostic gene expression profiles in colorectal cancer research. We have synthesized evidence from numerous published studies investigating the association between tumor gene expression patterns and patient survival outcomes. The reviewed literature reveals several promising gene signatures that have demonstrated the ability to predict disease-free survival and overall survival in CRC patients, independent of standard clinicopathological risk factors. These genes are crucial in fundamental biological processes, including cell cycle control, epithelial-mesenchymal transition, and immune regulation. The implementation of prognostic gene expression tests in clinical practice holds great potential for enabling more personalized management strategies for colorectal cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Manisha Parmar
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India.
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq.
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | | |
Collapse
|
166
|
Miao H, Zhang B, Li Y, Ma X, Yang Y, Lin Z, Liu Y. Rosuvastatin inhibits carcinogenesis through Ca 2+ triggered endoplasmic reticulum stress pathway in pancreatic cancer. Cell Signal 2025; 131:111753. [PMID: 40107481 DOI: 10.1016/j.cellsig.2025.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/17/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Pancreatic cancer remains one of the most challenging malignancies to treat due to its late-stage diagnosis, aggressive progression, and high resistance to existing therapies. Rosuvastatin (ROV), known for its hypolipidemic effects, which significantly inhibited clonogenic capacity and epithelial-mesenchymal transition (EMT) in prostate cancer cells. However, the anti-cancer mechanisms of ROV in PC have not yet been fully explored. PURPOSE This study aimed to investigate the potential anti-cancer effects of ROV on PC cells and to elucidate the underlying mechanisms. METHODS Cytotoxicity was detected via MTT assay, while epithelial-mesenchymal transition (EMT) markers, Ca2+ levels, and endoplasmic reticulum (ER) stress were observed with fluorescence microscopy. RNA-seq analysis was used to identify significantly changed mRNA expression following ROV treatment. Additionally, western blotting and immunohistochemistry (IHC) were conducted to examine proteins involving in the cell cycle, EMT, Ca2+ signaling, and endoplasmic reticulum stress (ERS) in vitro and in vivo. RESULTS ROV inhibited PC cell proliferation by arresting the cell cycle at the G1/S phase and partially reducing cell mobility during the EMT process. A total of 1336 significantly different RNAs (P < 0.05 and |logFC|>1) were identified and analyzed through RNA-seq, revealing the Ca2+ and ER pathways in PC cells treated with ROV. ROV treatment significantly altered the level of intracellular Ca2+, triggering the ERS pathway and modulating the Ca2+/CaM/CaMKII/ERK pathway. Furthermore, ROV inhibited key proteins within the Ca2+ and ERS pathways, leading to reduced cell proliferation, mobility and G1/S phase arrest. In tumor tissues, the expression of Ki67, EMT markers, Calmodulin, and ATF6 corroborated the in vitro findings. CONCLUSION ROV inhibited proliferation and metastasis in PC cells by inhibiting the EMT process through the Ca2+/CaM/CaMKII/ERK and Ca2+-mediated ERS pathways, highlighting its potential as a prophylactic and therapeutic agent for PC.
Collapse
Affiliation(s)
- Hui Miao
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Dunhua City Hospital, Dunhua 133700, China
| | - Baojian Zhang
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China
| | - Yue Li
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China
| | - Xiao Ma
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China
| | - Yang Yang
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China
| | - Zhenhua Lin
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China
| | - Yanqun Liu
- Central Laboratory, Yanbian University Hospital, Yanji 133000, China; Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji 133002, China.
| |
Collapse
|
167
|
Zhou JJ, Jing-Li, Luo CL, He YH, Qian YL. NEK2 inhibition reverses vascular remodeling in pulmonary arterial hypertension associated with congenital heart disease. Cell Signal 2025; 131:111720. [PMID: 40064279 DOI: 10.1016/j.cellsig.2025.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVE Pulmonary arterial hypertension (PAH) is a serious consequence of congenital heart disease (CHD). PAH is characterized by a cancer-like pro-proliferative and anti-apoptotic phenotype of pulmonary artery smooth muscle cells (PASMCs). Never in mitosis a-related kinase 2 (NEK2) has recently been identified as a key factor in tumor cell proliferation and migration whlie the functional importance of NEK2 in PAH associated with CHD (CHD-PAH) has not been elucidated yet. METHODS NEK2 expression in the pulmonary arterioles of rats with CHD-PAH and shunt-related PAH was evaluated. For this purpose, human PASMCs (hPASMCs) were transfected with lentiviruses for NEK2 knockdown or overexpression, and changes in expression of phenotypic markers in hPASMCs were determined. The proliferation, migration and apoptosis abilities of hPASMCs were respectively detected. Changes in vascular remodeling following NEK2 suppression were also observed in the shunt-related PAH rat model. RESULTS NEK2 was found to be highly expressed both in the PASMCs of the middle pulmonary arterioles of patients with CHD-PAH and shunt-related PAH rats. Additionally, overexpression of NEK2 enhanced phenotypic switch, proliferation, migration, and apoptosis resistance of hPAMSCs by activating the nuclear factor kappa B pathway. Moreover, hemodynamic parameters and pulmonary vascular remodeling were both found to be improved considerably following suppression of NEK2 expression by intratracheal instillation of adeno-associated virus in shunt-related PAH rats. CONCLUSION We demonstrated for the first time that NEK2 is a potential regulator of PASMCs function. Targeting NEK2 may be an effective strategy for the treatment of CHD-PAH.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Beijing Key Laboratory of Maternal-Fetal Medicine and Fetal Heart Disease & Echocardiography Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing-Li
- Beijing Key Laboratory of Maternal-Fetal Medicine and Fetal Heart Disease & Echocardiography Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chun-Lei Luo
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province 315010, China.
| | - Yi-Hua He
- Beijing Key Laboratory of Maternal-Fetal Medicine and Fetal Heart Disease & Echocardiography Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Yu-Ling Qian
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Clinical Laboratory Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College; Beijing, China.
| |
Collapse
|
168
|
Yao Z, Liu T, Wang J, Fu Y, Zhao J, Wang X, Li Y, Yang X, He Z. Targeted delivery systems of siRNA based on ionizable lipid nanoparticles and cationic polymer vectors. Biotechnol Adv 2025; 81:108546. [PMID: 40015385 DOI: 10.1016/j.biotechadv.2025.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
As an emerging therapeutic tool, small interfering RNA (siRNA) had the capability to down-regulate nearly all human mRNAs via sequence-specific gene silencing. Numerous studies have demonstrated the substantial potential of siRNA in the treatment of broad classes of diseases. With the discovery and development of various delivery systems and chemical modifications, six siRNA-based drugs have been approved by 2024. The utilization of siRNA-based therapeutics has significantly propelled efforts to combat a wide array of previously incurable diseases and advanced at a rapid pace, particularly with the help of potent targeted delivery systems. Despite encountering several extracellular and intracellular challenges, the efficiency of siRNA delivery has been gradually enhanced. Currently, targeted strategies aimed at improving potency and reducing toxicity played a crucial role in the druggability of siRNA. This review focused on recent advancements on ionizable lipid nanoparticles (LNPs) and cationic polymer (CP) vectors applied for targeted siRNA delivery. Based on various types of targeted modifications, we primarily described delivery systems modified with receptor ligands, peptides, antibodies, aptamers and amino acids. Finally, we discussed the challenges and opportunities associated with siRNA delivery systems based on ionizable LNPs and CPs vectors.
Collapse
Affiliation(s)
- Ziying Yao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingwen Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhai Fu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhua Zhao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaodong Yang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
169
|
Gao H, Sun L, Wang H, Ji X, Shen Q, Chen D, Jiao Y, Ni D, Zheng X, Bao Z. In situ non-canonical activation and sensitization of cGAS-STING pathway with manganese telluride nanosheets. Biomaterials 2025; 318:123170. [PMID: 39933314 DOI: 10.1016/j.biomaterials.2025.123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/02/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Immune checkpoint blockade (ICB) has achieved encouraging outcome in various malignant tumors. However, the low immunogenicity and insufficient infiltration of T cells within tumors severely limit the curative effects. Herein, we reported synthesis and experimental evaluation of H2O2-responsive MnTe2 nanosheets (NSs) for improving anti-tumor immune responses. Within the tumor microenvironment characterized by high level of H2O2, the MnTe2 NSs were degraded to release Mn2+ and TeO42- which subsequently induced cellular endoplasmic reticulum (ER) stress and non-canonically activated the cGAS-STING pathway. Moreover, the cellular Mn2+ ions enhanced the sensitivity of cGAS-STING pathway and the maturation of dendritic cells (DCs) concurrently. Ultimately, the MnTe2 NSs exhibited favorable in vivo anti-tumor immune effects, especially in combination with PD-L1 checkpoint inhibitors. These findings provided compelling evidence for exploration and utilization of nanomedicine to leverage innate immune system for better tumor immunotherapy.
Collapse
Affiliation(s)
- Hongbo Gao
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, PR China
| | - Li Sun
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, PR China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Xiuru Ji
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Qianwen Shen
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, PR China
| | - Di Chen
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, PR China
| | - Yuxin Jiao
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, PR China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, PR China; Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
170
|
Yan R, Cheng X, Song Y, Wang H, Zhang R, Jin Y, Li X, Chen Y, Xiang H. Cuproptosis nanoprodrug-initiated self-promoted cascade reactions for postoperative tumor therapy. Biomaterials 2025; 318:123176. [PMID: 39954313 DOI: 10.1016/j.biomaterials.2025.123176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Cancer metastasis and recurrence remain a regular cause of postoperative death in patients, implying that extra consolidation treatment strategies are needed. Here, a cuproptosis nanoprodrug, termed as Lipo@CP@DQ NPs, is developed to initiate self-promoted cascade reactions to achieve the combinational effect of cuproptosis, in situ chemotherapy, and oxidative stress amplification for effectively suppressing tumor recurrence and metastasis after postoperative treatment. Lipo@CP@DQ NPs are fabricated by loading copper peroxides (Cu2O2, CP) and hydrogen peroxide (H2O2)-repsonsive prodrug DQ into liposomal nanoparticles. Lipo@CP@DQ NPs rapidly dissociate in the acidic tumor microenvironment to release copper ions, H2O2, and prodrug DQ. Subsequently, the excessive accumulation of Cu ions induces cuproptosis and produces highly cytotoxic hydroxyl radicals (•OH). Meanwhile, the self-supplied H2O2 catalyzes the decomposition of DQ to diethyldithiocarbamate (DTC), which is chelated with self-supplied Cu ions to form the anticancer compound, Cu(DTC)2. The another decomposition product, quinone methide (QM), acts as a glutathione (GSH) scavenger for oxidative stress amplification. The synergistic effect of Lipo@CP@DQ NPs-mediated cuproptosis, in situ chemotherapy, and oxidative stress amplification effectively inhibits the growth and postoperative recurrence of triple-negative breast cancer. This work furnishes a strategy for developing cuproptosis-based nanomedicines for effective antitumor treatment after surgery.
Collapse
Affiliation(s)
- Ruiqi Yan
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xuan Cheng
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yujing Song
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Haiyue Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Run Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yiqi Jin
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
171
|
Liu W, Yang X, Zhou Y, Huang Z, Huang J. Gut microbiota in melanoma: Effects and pathogeneses. Microbiol Res 2025; 296:128144. [PMID: 40120565 DOI: 10.1016/j.micres.2025.128144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
The gut microbiota exhibits intricate connections with the body's immune system and holds significant implications for various diseases and cancers. Currently, accumulating evidence suggests a correlation between the composition of the gut microbiota and the development, treatment, and prognosis of melanoma. However, the underlying pathogenesis remains incompletely elucidated. In this comprehensive review, we present an in-depth review of the role played by gut microbiota in melanoma tumorigenesis, growth, metastasis, treatment response, and prognosis. Furthermore, we discuss the potential utility of gut microbiota as a promising prognostic marker. Lastly, we summarize three routes through which gut microbiota influences melanoma: immunity, aging, and the endocrine system. By modulating innate and adaptive immunity in patients with melanoma across different age groups and genders, the gut microbiota plays a crucial role in anti-tumor immune regulation from tumorigenesis to prognosis management, thereby impacting tumor growth and metastasis. This review also addresses current study limitations while highlighting future research prospects.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xin Yang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuwei Zhou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ziru Huang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jian Huang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan, China.
| |
Collapse
|
172
|
Yang Y, Li L, Dai F, Deng L, Yang K, He C, Chen Y, Yang X, Song L. Fibroblast-derived versican exacerbates periodontitis progression by regulating macrophage migration and inflammatory cytokine secretion. Cell Signal 2025; 131:111755. [PMID: 40112905 DOI: 10.1016/j.cellsig.2025.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Versican (VCAN), a prominent extracellular matrix component upregulated in inflammatory diseases, demonstrates context-specific regulatory mechanisms. Periodontitis, a chronic inflammatory disease leading to periodontal tissue destruction and tooth loss, the pathological role of it remains poorly defined. Our study aims to examine VCAN-mediated mechanisms in periodontitis. METHODS We conducted a comprehensive analysis of bulk RNA sequencing and single-cell RNA sequencing data to examine VCAN expression level and source in periodontitis. Functional and correlation analyses were used to explore its biological functions. We then validated VCAN expression using quantitative real-time polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining in animal models and investigated its biological functions in inflammation through in vitro experiments. RESULTS Our findings reveal that VCAN is mainly generated by fibroblast in periodontitis, and its expression significantly upregulated at both mRNA and protein levels. Using VCAN-overexpressing L929 cells, we demonstrated enhanced proliferative capacity and inflammatory potential. Co-culture experiments with RAW264.7 cells showed promoted migration, adhesion, M1 polarization, and mitogen-activated protein kinase (MAPK) pathway activation. CONCLUSION VCAN enhances fibroblast proliferation and migration, and upregulates inflammatory cytokines expression. Furthermore, fibroblast-derived VCAN not only induces macrophage chemotaxis, migration, adhesion, and polarization toward the proinflammatory M1 phenotype, but also activates MAPK signaling of macrophage, which may amplify inflammatory cascades to exacerbate periodontal tissue destruction. Targeted regulation of VCAN expression may become a promising precision treatment strategy for periodontitis.
Collapse
Affiliation(s)
- Yuting Yang
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Li Li
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Fang Dai
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China
| | - Libin Deng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| | - Kaiqiang Yang
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Chenjiang He
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Yeke Chen
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Xinbo Yang
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Li Song
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China.
| |
Collapse
|
173
|
Klingl YE, Petrauskas A, Jaślan D, Grimm C. TPCs: FROM PLANT TO HUMAN. Physiol Rev 2025; 105:1695-1732. [PMID: 40197126 DOI: 10.1152/physrev.00044.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/15/2024] [Accepted: 03/08/2025] [Indexed: 04/05/2025] Open
Abstract
In 2005, the Arabidopsis thaliana two-pore channel TPC1 channel was identified as a vacuolar Ca2+-release channel. In 2009, three independent groups published studies on mammalian TPCs as nicotinic acid adenine dinucleotide phosphate (NAADP)-activated endolysosomal Ca2+ release channels, results that were eventually challenged by two other groups, claiming mammalian TPCs to be phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]-activated Na+ channels. By now this dispute seems to have been largely reconciled. Lipophilic small molecule agonists of TPC2, mimicking either the NAADP or the PI(3,5)P2 mode of channel activation, revealed, together with structural evidence, that TPC2 can change its selectivity for Ca2+ versus Na+ in a ligand-dependent fashion (N- vs. P-type activation). Furthermore, the NAADP-binding proteins Jupiter microtubule-associated homolog 2 protein (JPT2) and Lsm12 were discovered, corroborating the hypothesis that NAADP activation of TPCs only works in the presence of these auxiliary NAADP-binding proteins. Pathophysiologically, loss or gain of function of TPCs has effects on autophagy, exocytosis, endocytosis, and intracellular trafficking, e.g., LDL cholesterol trafficking leading to fatty liver disease or viral and bacterial toxin trafficking, corroborating the roles of TPCs in infectious diseases such as Ebola or COVID-19. Defects in the trafficking of epidermal growth factor receptor and β1-integrin suggested roles in cancer. In neurodegenerative lysosomal storage disease models, P-type activation of TPC2 was found to have beneficial effects on both in vitro and in vivo hallmarks of Niemann-Pick disease type C1, Batten disease, and mucolipidosis type IV. Here, we cover the latest on the structure, function, physiology, and pathophysiology of these channels with a focus initially on plants followed by mammalian TPCs, and we discuss their potential as drug targets, including currently available pharmacology.
Collapse
Affiliation(s)
- Yvonne Eileen Klingl
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
| | - Arnas Petrauskas
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
| | - Dawid Jaślan
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
| | - Christian Grimm
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
- Department of Pharmacology, Faculty of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
174
|
Fu W, Sun A, Dai H. Lipid metabolism involved in progression and drug resistance of breast cancer. Genes Dis 2025; 12:101376. [PMID: 40256431 PMCID: PMC12008617 DOI: 10.1016/j.gendis.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/13/2024] [Accepted: 06/22/2024] [Indexed: 04/22/2025] Open
Abstract
Breast cancer is the most common malignant tumor threatening women's health. Alteration in lipid metabolism plays an important role in the occurrence and development of many diseases, including breast cancer. The uptake, synthesis, and catabolism of lipids in breast cancer cells are significantly altered, among which the metabolism of fatty acids, cholesterols, sphingolipids, and glycolipids are most significantly changed. The growth, progression, metastasis, and drug resistance of breast cancer cells are tightly correlated with the increased uptake and biosynthesis of fatty acids and cholesterols and the up-regulation of fatty acid oxidation. Cholesterol and its metabolite 27-hydroxycholesterol promote the progression of breast cancer in a variety of ways. The alteration of lipid metabolism could promote the epithelial-mesenchymal transition of breast cancer cells and lead to changes in the tumor immune microenvironment that are conducive to the survival of cancer cells. While the accumulation of ceramide in cancer cells shows an inhibitory effect on breast cancer. This review focuses on lipid metabolism and elaborates on the research progress of the correlation between different lipid metabolism and the growth, progression, and drug resistance of breast cancer.
Collapse
Affiliation(s)
- Wenxiang Fu
- Renji School of Clinical Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Aijun Sun
- Department of Thyroid and Breast Oncological Surgery, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, Jiangsu 223001, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
175
|
Li L, Wei C, Xie Y, Su Y, Liu C, Qiu G, Liu W, Liang Y, Zhao X, Huang D, Wu D. Expanded insights into the mechanisms of RNA-binding protein regulation of circRNA generation and function in cancer biology and therapy. Genes Dis 2025; 12:101383. [PMID: 40290118 PMCID: PMC12022641 DOI: 10.1016/j.gendis.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 04/30/2025] Open
Abstract
RNA-binding proteins (RBPs) regulate the generation of circular RNAs (circRNAs) by participating in the reverse splicing of circRNA and thereby influencing circRNA function in cells and diseases, including cancer. Increasing evidence has demonstrated that the circRNA-RBP network plays a complex and multifaceted role in tumor progression. Thus, a better understanding of this network may provide new insights for the discovery of cancer drugs. In this review, we discuss the characteristics of RBPs and circRNAs and how the circRNA-RBP network regulates tumor cell phenotypes such as proliferation, metastasis, apoptosis, metabolism, immunity, drug resistance, and the tumor environment. Moreover, we investigate the factors that influence circRNA-RBP interactions and the regulation of downstream pathways related to tumor development, such as the tumor microenvironment and N6-methyladenosine modification. Furthermore, we discuss new ideas for targeting circRNA-RBP interactions using various RNA technologies.
Collapse
Affiliation(s)
- Lixia Li
- Cancer Hospital, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Chunhui Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yu Xie
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yanyu Su
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Caixia Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Guiqiang Qiu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Weiliang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yanmei Liang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xuanna Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Dan Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| |
Collapse
|
176
|
Duan Y, Liu Z, Wang Q, Zhang J, Liu J, Zhang Z, Li C. Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology. Genes Dis 2025; 12:101435. [PMID: 40290126 PMCID: PMC12022651 DOI: 10.1016/j.gendis.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 04/30/2025] Open
Abstract
MYC is dysregulated in approximately 70% of human cancers, strongly suggesting its essential function in cancer. MYC regulates many biological processes, such as cell cycle, metabolism, cellular senescence, apoptosis, angiogenesis, and immune escape. MYC plays a central role in carcinogenesis and is a key regulator of tumor development and drug resistance. Therefore, MYC is one of the most alluring therapeutic targets for developing cancer drugs. Although the search for direct inhibitors of MYC is challenging, MYC cannot simply be assumed to be undruggable. Targeting the MYC-MAX complex has been an effective method for directly targeting MYC. Alternatively, indirect targeting of MYC represents a more pragmatic therapeutic approach, mainly including inhibition of the transcriptional or translational processes of MYC, destabilization of the MYC protein, and blocking genes that are synthetically lethal with MYC overexpression. In this review, we delineate the multifaceted roles of MYC in cancer progression, highlighting a spectrum of therapeutic strategies and inhibitors for cancer therapy that target MYC, either directly or indirectly.
Collapse
Affiliation(s)
- Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
177
|
Desai O, Rathore M, Boutros CS, Wright M, Bryson E, Curry K, Wang R. HER3: Unmasking a twist in the tale of a previously unsuccessful therapeutic pursuit targeting a key cancer survival pathway. Genes Dis 2025; 12:101354. [PMID: 40290122 PMCID: PMC12022662 DOI: 10.1016/j.gendis.2024.101354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 04/30/2025] Open
Abstract
HER3, formally referred to as ERB-B2 receptor tyrosine kinase 3, is a member of the ErbB receptor tyrosine kinases (also known as EGFR) family. HER3 plays a significant pro-cancer role in various types of cancer due to its overexpression and abnormal activation, which initiates downstream signaling pathways crucial in cancer cell survival and progression. As a result, numerous monoclonal antibodies have been developed to block HER3 activation and subsequent signaling pathways. While pre-clinical investigations have effectively showcased significant anti-cancer effects of HER3-targeted therapies, these therapies have had little impact on cancer patient outcomes in the clinic, except for patients with rare NRG1 fusion mutations. This review offers a comprehensive description of the oncogenic functions of HER3, encompassing its structure and mediating signaling pathways. More importantly, it provides an in-depth exploration of past and ongoing clinical trials investigating HER3-targeted therapies for distinct types of cancer and discusses the tumor microenvironment and other critical determinants that may contribute to the observed suboptimal outcomes in most clinical studies using HER3-targeted therapies. Lastly, we suggest alternative approaches and the exploration of novel strategies to potentially improve the efficacy of targeting the pivotal oncogenic HER3 signaling pathway in future translational investigations.
Collapse
Affiliation(s)
- Omkar Desai
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Moeez Rathore
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christina S. Boutros
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Michel'le Wright
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth Bryson
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kimberly Curry
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
178
|
Wang T, Shi X, Xu X, Zhang J, Ma Z, Meng C, Jiao D, Wang Y, Chen Y, He Z, Zhu Y, Liu HN, Zhang T, Jiang Q. Emerging prodrug and nano-drug delivery strategies for the detection and elimination of senescent tumor cells. Biomaterials 2025; 318:123129. [PMID: 39922127 DOI: 10.1016/j.biomaterials.2025.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Tumor cellular senescence, characterized by reversible cell cycle arrest following anti-cancer therapies, presents a complex paradigm in oncology. Given that senescent tumor cells may promote angiogenesis, tumorigenesis, and metastasis, selective killing senescent cells (SCs)-a strategy termed senotherapy-has emerged as a promising approach to improve cancer treatment. However, the clinical implementation of senotherapy faces significant hurdles, including lack of precise methods for SCs identification and the potential for adverse effects associated with highly cytotoxic senolytic agents. In this account, we elucidate recent advancement in developing novel approaches for the detection and selective elimination of SCs, encompassing prodrugs, nanoparticles, and other cutting-edge drug delivery systems such as PROTAC technology and CAR T cell therapy. Furthermore, we explore the paradoxical nature of SCs, which can induce growth arrest in adjacent neoplastic cells and recruit immunomodulatory cells that contribute to tumor suppression. Therefore, we utilize SCs membrane as vehicles to elicit antitumor immunity and potentially augment existing anti-cancer therapies. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of SCs detection, elimination or utilization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaolan Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaming Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengdi Ma
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chen Meng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dian Jiao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yubo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
179
|
Liu Y, Feng LL, Han B, Cai LJ, Liu RY, Tang S, Yang Q. Exploring the molecular mechanisms through which overexpression of TET3 alleviates liver fibrosis in mice via ferroptosis in hepatic stellate cells. Cell Signal 2025; 131:111747. [PMID: 40096933 DOI: 10.1016/j.cellsig.2025.111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
Hepatic stellate cell (HSC) activation is crucial in the onset and progression of liver fibrosis, and inhibiting or eliminating activated HSCs is a key therapeutic strategy. Ferroptosis may help eliminate activated HSCs; however, its role and regulatory pathways in liver fibrosis remain unclear. As a DNA demethylase, TET3 regulates gene expression via DNA demethylation. We previously demonstrated that TET3 overexpression alleviates CCL4-induced liver fibrosis in mice; however, the specific mechanisms, including whether TET3 affects ferroptosis in HSCs, remain unexplored. Thus, we aimed to explore the molecular mechanisms wherein TET3 overexpression improves liver fibrosis in mice via ferroptosis in HSCs. Our in vivo observations showed that overexpression of TET3 ameliorate liver fibrosis in mice, and is associated with increased levels of malondialdehyde (MDA) and Fe2+ in liver tissue, as well as decreased protein expression of SLC7A11, GPX4, and FTH1. Further in vitro studies on HSCs showed that TET3 overexpression inhibits the expression of SLC7A11, GPX4, and FTH1, and reduces intracellular GSH levels, leading to accumulation of MDA and iron ions. This induces ferroptosis in HSC-LX2 cells, while simultaneously decreasing ECM accumulation in HSCs. Furthermore, hMeDIP-SEQ and ChIP-qPCR analyses revealed that TET3 directly interacts with the promoter regions of GPX4 and FTH1 to regulate their transcriptional expression. We propose that overexpression of TET3 modulates the gene methylation status of ferroptosis-related proteins, thereby regulating HSC ferroptosis, reducing activated HSCs, and decreasing ECM deposition in the liver. This may represent one of the molecular mechanisms wherein TET3 overexpression ameliorates liver fibrosis in mice.
Collapse
Affiliation(s)
- Yin Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Lin-Lin Feng
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Bing Han
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Li-Jun Cai
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Ran-Yang Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Shuang Tang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Qin Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, Guizhou, China.
| |
Collapse
|
180
|
Liu X, Lv M, Feng B, Gong Y, Min Q, Wang Y, Wu Q, Chen J, Zhao D, Li J, Zhang W, Zhan Q. SQLE amplification accelerates esophageal squamous cell carcinoma tumorigenesis and metastasis through oncometabolite 2,3-oxidosqualene repressing Hippo pathway. Cancer Lett 2025; 621:217528. [PMID: 39924077 DOI: 10.1016/j.canlet.2025.217528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancers worldwide, characterized by a dismal prognosis and elusive therapeutic targets. Dysregulated cholesterol metabolism is a critical hallmark of cancer cells, facilitating tumor progression. Here, we used whole genome sequencing data from several ESCC cohorts to identify the important role of squalene epoxidase (SQLE) in promoting ESCC tumorigenesis and metastasis. Specifically, our findings highlight the significance of 2,3-oxidosqualene, an intermediate metabolite of cholesterol biosynthesis, synthesized by SQLE and metabolized by lanosterol synthase (LSS), as a key regulator of ESCC progression. Mechanistically, the interaction between 2,3-oxidosqualene and vinculin enhances the nuclear accumulation of Yes-associated protein 1 (YAP), thereby increasing YAP/TEAD-dependent gene expression and accelerating both tumor growth and metastasis. In a 4-nitroquinoline 1-oxide (4-NQO)-induced ESCC mouse model, overexpression of Sqle resulted in accelerated tumorigenesis compared to wild-type controls, highlighting the pivotal role of SQLE in vivo. Furthermore, elevated SQLE expression in ESCC patients correlates with a poorer prognoses, suggesting potential therapeutic avenues for treatment. In conclusion, our study elucidates the oncogenic function of 2,3-oxidosqualene as a naturally occurring metabolite and proposes modulation of its levels as a promising therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Peking University International Cancer Institute, Beijing, 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Bicong Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Ying Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongyu Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Peking University International Cancer Institute, Beijing, 100191, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Soochow University Cancer Institute, Suzhou, 215127, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| |
Collapse
|
181
|
Lv X, Liu Z, Qi P, Chen K. Thermosensitive hydrogel loaded with nanozyme and BPTES for enhanced tumor catalytic therapy. Colloids Surf B Biointerfaces 2025; 251:114600. [PMID: 40036989 DOI: 10.1016/j.colsurfb.2025.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Single-atom enzymes (SAZ) show great promise in cancer therapy, particularly chemodynamic therapy, due to their high catalytic activity. They can increase reactive oxygen species (ROS) in tumor cells, causing cell damage and death. However, glutathione (GSH) in tumors can neutralize ROS, reducing SAZ effectiveness. Lowering GSH levels can enhance the effectiveness of SAZ in killing tumor cells, and inhibiting its synthesis at the source might be a promising approach. Glutaminase (GLS1) inhibitors like BPTES can reduce GSH by disrupting glutamine metabolism. This study develops a thermosensitive hydrogel with Fe-based SAZ and BPTES. Upon infrared laser irradiation, the hydrogel releases FeSAZ and BPTES into tumor cells. FeSAZ generates ▪OH from H2O2, while BPTES reduces glutathione (GSH) synthesis in tumor cells, weakening their defenses and enhancing the cytotoxic effects of ▪OH. This combined strategy shows strong potential for effective tumor suppression. Our strategy provides new insights into cancer treatments, potentially offering a more effective therapeutic options for patients.
Collapse
Affiliation(s)
- Xiangyun Lv
- Department of Ophthalmology, The Third Hospital of Wuhan, Wuhan 430033, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengyuan Qi
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Kang Chen
- Department of Thoracic Cardiovascular Surgery, The Third Hospital of Wuhan, Wuhan 430033, China.
| |
Collapse
|
182
|
Chen S, Cheng J, Liu S, Shan D, Wang T, Wang X. Urinary exosomal lnc-TAF12-2:1 promotes bladder cancer progression through the miR-7847-3p/ASB12 regulatory axis. Genes Dis 2025; 12:101384. [PMID: 40297540 PMCID: PMC12036056 DOI: 10.1016/j.gendis.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/02/2024] [Accepted: 06/22/2024] [Indexed: 04/30/2025] Open
Abstract
Exosomes encompass a great deal of valuable biological information and play a critical role in tumor development. However, the mechanism of exosomal lncRNAs remains poorly elucidated in bladder cancer (BCa). In this study, we identified exosomal lnc-TAF12-2:1 as a novel biomarker in BCa diagnosis and aimed to investigate the underlying biological function. Dual luciferase reporter assay, RNA immunoprecipitation (RIP), RNA pulldown assays, and xenograft mouse model were used to verify the competitive endogenous RNA mechanism of lnc-TAF12-2:1. We found exosomal lnc-TAF12-2:1 up-regulated in urinary exosomes, tumor tissues of patients, and BCa cells. Down-regulation of lnc-TAF12-2:1 impaired BCa cell proliferation and migration, and promoted cell cycle arrest at the G0/G1 phase and cell apoptosis. The opposite effects were also observed when lnc-TAF12-2:1 was overexpressed. lnc-TAF12-2:1 was transferred by intercellular exosomes to modulate malignant biological behavior. Mechanistically, lnc-TAF12-2:1 packaged in the exosomes relieved the miRNA-mediated silence effect on ASB12 via serving as a sponger of miR-7847-3p to accelerate progression in BCa. ASB12 was also first proved as an oncogene to promote cell proliferation and migration and depress cell cycle arrest and cell apoptosis in our data. In conclusion, exosomal lnc-TAF12-2:1, located in the cytoplasm of BCa, might act as a competitive endogenous RNA to competitively bind to miR-7847-3p, and then be involved in miR-7847-3p/ASB12 regulatory axis to promote tumorigenesis, which provided a deeper insight into the molecular mechanism of BCa.
Collapse
Affiliation(s)
- Song Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Institute of Urology, Wuhan University, Wuhan, Hubei 430071, China
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, Hubei 430071, China
| | - Jie Cheng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shuangtai Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Institute of Urology, Wuhan University, Wuhan, Hubei 430071, China
| | - Danni Shan
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, Hubei 430071, China
| | - Ting Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Institute of Urology, Wuhan University, Wuhan, Hubei 430071, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Institute of Urology, Wuhan University, Wuhan, Hubei 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei 430071, China
- Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, Hubei 430071, China
- TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
183
|
Hu M, Wang F, Zhu Y, Yao Y, Pei H, Liu Z, Zhang P. NADK tetramer defective mutants affect lung cancer response to chemotherapy via controlling NADK activity. Genes Dis 2025; 12:101510. [PMID: 40330153 PMCID: PMC12052686 DOI: 10.1016/j.gendis.2024.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/25/2024] [Accepted: 12/18/2024] [Indexed: 05/08/2025] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) kinase (NADK) phosphorylates NAD+ to generate NADP+, which plays a crucial role in maintaining NAD+/NADP+ homeostasis, cellular redox balance, and metabolism. However, how human NADK activity is regulated, and how dysregulation or mutation of NADK is linked to human diseases, such as cancers, are still not fully understood. Here, we present a cryo-EM structure of human tetrameric NADK and elaborate on the necessity of the NADK tetramer for its activity. The N-terminal region of human NADK, which does not exist in bacterial NADKs, modulates tetramer conformation, thereby regulating its activity. A methylation-deficient mutant, R45H, within the N-terminal region results in increased NADK activity and confers cancer chemotherapy resistance. Conversely, mutations in NADK identified among cancer patients alter the tetramer conformation, resulting in NADK inactivation and increasing the sensitivity of lung cancer cells to chemotherapy. Our findings partially unveil the structural basis for NADK regulation, offering insights into the cancer etiology of patients carrying NADK mutations.
Collapse
Affiliation(s)
- Mengxue Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fuxing Wang
- School of Medicine, Kobilka Institute of Innovative Drug Discovery, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, China
| | - Yue Zhu
- Department of Radiotherapy, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Zheng Liu
- School of Medicine, Kobilka Institute of Innovative Drug Discovery, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
184
|
Zhang X, Xie G, Rao L, Tian C. Citrullination in health and disease: From physiological function to gene regulation. Genes Dis 2025; 12:101355. [PMID: 40271192 PMCID: PMC12017988 DOI: 10.1016/j.gendis.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 04/25/2025] Open
Abstract
Protein citrullination involves the deimination of arginine or methylarginine residues in peptide chains to form citrulline by peptidyl arginine deiminases. This process is an important protein post-translational modification that affects molecular structure and function of various proteins, including histones. In recent years, protein citrullination has attracted widespread attention for its influence on gene transcription. Studies on the impact of protein citrullination modification on chromatin structure remodeling and the establishment of gene regulatory networks have made rapid progress. In this review, we briefly summarize the physiological functions of protein citrullination modification. Specifically, we comprehensively outline the latest progress in the study of the role of protein citrullination modification in gene transcription regulation, focusing on the interaction of protein citrullination with other post-translational modifications.
Collapse
Affiliation(s)
- Xiaoya Zhang
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Pharmacy, Jilin University, Changchun 130012, China
| | - Guiqiu Xie
- School of Pharmacy, Jilin University, Changchun 130012, China
| | - Lang Rao
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chaoguang Tian
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
185
|
Sun C, He Q, Yang X, Wang J, Xia D, Xia T, Liao H, Xiong X, Liao Y, Shen H, Sun Q, Yuan Y, He Y, Liu L. A novel NIR-dependent IDO-inhibiting ethosomes treatment melanoma through PTT/PDT/immunotherapy synergy. Colloids Surf B Biointerfaces 2025; 251:114565. [PMID: 39999696 DOI: 10.1016/j.colsurfb.2025.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Phototherapy is a treatment method that uses the characteristics of different bands of light to treat diseases. Tumor immunotherapy, on the other hand, treats tumors by regulating the body's immune system. The combination of phototherapy and immunotherapy can significantly enhance the treatment of melanoma. In this study, we prepared and characterized INEs, a novel ethosome composed of the photosensitizer IR251 and the Indoleamine-2, 3-dioxygenase (IDO) inhibitor NLG919. INEs demonstrated excellent phototherapeutic properties, strong phototoxicity, and a notable ability to inhibit IDO. Under 808 nm laser irradiation, INEs effectively induced immunogenic cell death (ICD) in melanoma cells. In vivo experiments demonstrated that INEs injection into primary tumors triggered ICD, promoted maturation of DC cells, and activated naive T cells, leading to the production of effector T cells (specifically CD4+ and CD8+ T cells) that targeted and killed tumor cells. Both primary and distant tumors were treated simultaneously with favorable biosafety. In conclusion, INEs represent a promising strategy for melanoma treatment by a combination of phototherapy and immunotherapy with high safety. This study provides new insights and a theoretical basis for the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Luzhou Key Laboratory of Research and Development of Medical Institution Preparations and Large-scale Health Products, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qingqing He
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xun Yang
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianv Wang
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Dengmei Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hongye Liao
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yongmei Liao
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hongping Shen
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Luzhou Key Laboratory of Research and Development of Medical Institution Preparations and Large-scale Health Products, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qin Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Luzhou Key Laboratory of Research and Development of Medical Institution Preparations and Large-scale Health Products, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuan Yuan
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Luzhou Key Laboratory of Research and Development of Medical Institution Preparations and Large-scale Health Products, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
186
|
Lou Y, Dong C, Jiang Q, He Z, Yang S. Protein succinylation mechanisms and potential targeted therapies in urinary disease. Cell Signal 2025; 131:111744. [PMID: 40090556 DOI: 10.1016/j.cellsig.2025.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Succinylation is a relatively common post-translational modification. It occurs in the cytoplasm, mitochondria, and the nucleus, where its essential precursor, succinyl-CoA, is present, allowing for the modification of non-histone and histone proteins. In normal cells, succinylation levels are carefully regulated to sustain a dynamic balance, necessitating the involvement of various regulatory mechanisms, including non-enzymatic reactions, succinyltransferases, and desuccinylases. Among these regulatory factors, sirtuin 5, the first identified desuccinylase, plays a significant role and has been extensively researched. The level of succinylation has a significant effect on multiple metabolic pathways, including the tricarboxylic acid cycle, redox balance, and fatty acid metabolism. Dysregulated succinylation can contribute to the progression or exacerbation of various urinary diseases. Succinylation predominantly affects disease progression by altering the expression of key genes and modulating the activity of enzymes involved in vital metabolic processes. Desuccinylases primarily affect enzymes associated with Warburg's effect, thereby affecting the energy supply of tumor cells, while succinyltransferases can regulate gene transcription to alter cell phenotype, thereby involving the development of urinary diseases. Considering these effects, targeting succinylation-related enzymes to regulate metabolic pathways or gene expression may offer a promising therapeutic strategy for treating urinary diseases.
Collapse
Affiliation(s)
- Yuanquan Lou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Qinhong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
187
|
Wang Q, Sun S, Sun G, Han B, Zhang S, Zheng X, Chen L. Histone modification inhibitors: An emerging frontier in thyroid Cancer therapy. Cell Signal 2025; 131:111703. [PMID: 40044017 DOI: 10.1016/j.cellsig.2025.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Thyroid cancer (TC) is the most common endocrine cancer and is a serious health concern due to its aggressiveness and high incidence. Histone modifications affect DNA accessibility and gene transcriptional activity by altering the structure of chromatin. Abnormal histone modifications may affect genome stability and disrupt gene expression patterns, leading to many diseases, including cancer. A growing body of research suggests that histone modifications and TC progression are inextricably linked. This article discusses the impact of aberrant histone modification patterns on TC. By targeting specific histone-modifying enzymes, it may be possible to regulate gene expression and inhibit the growth of TC. Finally, we summarize the relevant histone modification inhibitors to better understand the development stage of the use of these drugs to inhibit histone-modifying enzymes in cancer treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shu Sun
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Guojun Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bing Han
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Song Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaowei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Lu Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| |
Collapse
|
188
|
Xiao X, Huang L, Li M, Zhang Q. Intersection between lung cancer and neuroscience: Opportunities and challenges. Cancer Lett 2025; 621:217701. [PMID: 40194655 DOI: 10.1016/j.canlet.2025.217701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Lung cancer, which has the highest morbidity and mortality rates worldwide, involves intricate interactions with the nervous system. Research indicates that the nervous system not only plays a role in the origin of lung cancer, but also engages in complex interactions with cancer cells through neurons, neurotransmitters, and various neuroactive molecules during tumor proliferation, invasion, and metastasis, especially in brain metastases. Cancer and its therapies can remodel the nervous system. Despite advancements in immunotherapy and targeted therapies in recent years, drug resistance of lung cancer cells after treatment limits improvements in patient survival and prognosis. The emergence of neuroscience has created new opportunities for the treatment of lung cancer. However, it also presents challenges. This review emphasizes that a deeper understanding of the interactions between the nervous system and lung cancer, along with the identification of new therapeutic targets, may lead to significant advancements or even a revolution in treatment strategies for patients with lung cancer.
Collapse
Affiliation(s)
- Xiang Xiao
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China
| | - Lingli Huang
- The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China; Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, PR China
| | - Ming Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China.
| | - Quanli Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
189
|
Luo R, Liu J, Wang T, Zhao W, Wang Y, Wen J, Wang H, Ding S, Zhou X. The landscape of malignant transition: Unraveling cancer cell-of-origin and heterogeneous tissue microenvironment. Cancer Lett 2025; 621:217591. [PMID: 40054660 PMCID: PMC12040592 DOI: 10.1016/j.canlet.2025.217591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/12/2025]
Abstract
Understanding disease progression and sophisticated tumor ecosystems is imperative for investigating tumorigenesis mechanisms and developing novel prevention strategies. Here, we dissected heterogeneous microenvironments during malignant transitions by leveraging data from 1396 samples spanning 13 major tissues. Within transitional stem-like subpopulations highly enriched in precancers and cancers, we identified 30 recurring cellular states strongly linked to malignancy, including hypoxia and epithelial senescence, revealing a high degree of plasticity in epithelial stem cells. By characterizing dynamics in stem-cell crosstalk with the microenvironment along the pseudotime axis, we found differential roles of ANXA1 at different stages of tumor development. In precancerous stages, reduced ANXA1 levels promoted monocyte differentiation toward M1 macrophages and inflammatory responses, whereas during malignant progression, upregulated ANXA1 fostered M2 macrophage polarization and cancer-associated fibroblast transformation by increasing TGF-β production. Our spatiotemporal analysis further provided insights into mechanisms responsible for immunosuppression and a potential target to control evolution of precancer and mitigate the risk for cancer development.
Collapse
Affiliation(s)
- Ruihan Luo
- Laboratory of Hepatic AI Translation, Frontier Science Center for Disease-Related Molecular Network and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Jiajia Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tiangang Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Weiling Zhao
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanfei Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jianguo Wen
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hongyu Wang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Center for Nursing Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shanli Ding
- Graduate School of Biomedical Sciences, The University of MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
190
|
Song Y, Zhang K, Zhang J, Li Q, Huang N, Ma Y, Hou N, Han F, Kan C, Sun X. Epigenetic regulation of nuclear receptors: Implications for endocrine-related diseases and therapeutic strategies. Genes Dis 2025; 12:101481. [PMID: 40290121 PMCID: PMC12022648 DOI: 10.1016/j.gendis.2024.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 04/30/2025] Open
Abstract
The expression and function of the receptor are controlled by epigenetic changes, such as DNA methylation, histone modification, and noncoding RNAs. These modifications play a pivotal role in receptor activity and can lead to or exacerbate endocrine-related diseases. This review examines the epigenetic alterations of nuclear receptors and their significant impact on conditions such as diabetes, thyroid disorders, and endocrine-related tumors. It highlights current therapies targeting these epigenetic mechanisms, including gene editing, epigenetic drugs, and various other therapeutic approaches. This review offers fresh insight into the mechanisms of endocrine-associated disorders, highlighting the latest progress in the development of novel epigenetic therapies that can be used to address receptor-endocrine interactions.
Collapse
Affiliation(s)
- Yixin Song
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Qinying Li
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Na Huang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, China
| |
Collapse
|
191
|
Yuan Q, Xia X, Yuan Y, Chen Q, Feng X. A YAP-derived peptide blocks YAP-TEAD signaling and suppresses cell proliferation. Cell Signal 2025; 131:111738. [PMID: 40081550 DOI: 10.1016/j.cellsig.2025.111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Yes-associated protein (YAP), a pivotal transcriptional co-activator in cell growth regulation, exerts its function through interactions with transcriptional factors like TEAD. Ectopic activation of YAP causes excessive cell proliferation, leading to multiple human diseases, including cancers. However, current pharmacological YAP inhibition lacks specificity and may have unintended effects, necessitating the development of direct YAP-derived inhibitors. In this study, we designed a novel YAP-derived peptide, TBDi, that specifically disrupted YAP-TEAD interaction and exhibited robust inhibition of TEAD activity. Mechanistically, TBDi directly binds to TEAD, blocking the physical interaction between YAP and TEAD. Transcriptomic analysis revealed that TBDi significantly altered gene expression profiles associated with TEAD activity, including downregulation of signature genes like CYR61 and CTGF. Functionally, TBDi emerged as a potent suppressor of cell proliferation, inhibiting cell proliferation to a degree comparable to YAP/TAZ knockdown. Altogether, our study not only identifies TBDi as a promising tool to block YAP-TEAD axis, but also offers insights for potential therapeutic interventions in diseases.
Collapse
Affiliation(s)
- Qiuyun Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, Zhejiang 310006, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
192
|
Bu J, Miao Z, Yang Q. GOT2: New therapeutic target in pancreatic cancer. Genes Dis 2025; 12:101370. [PMID: 40247913 PMCID: PMC12005923 DOI: 10.1016/j.gendis.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 04/19/2025] Open
Abstract
In recent years, the incidence and mortality rates of pancreatic cancer have been steadily increasing, and conventional therapies have shown a high degree of tolerance. Therefore, the search for new therapeutic targets remains a key issue in current research. Mitochondrial glutamic-oxaloacetic transaminase 2 (GOT2) is an important component of the malate-aspartate shuttle system, which plays an important role in the maintenance of cellular redox balance and amino acid metabolism, and has the potential to become a promising target for anti-cancer therapy. In this paper, we will elaborate on the metabolic and immune effects of GOT2 in pancreatic cancer based on existing studies, with a view to opening up new avenues for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jiarui Bu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
193
|
Jia Y, Jia R, Chen Y, Lin X, Aishan N, li H, Wang L, Zhang X, Ruan J. The role of RNA binding proteins in cancer biology: A focus on FMRP. Genes Dis 2025; 12:101493. [PMID: 40271197 PMCID: PMC12017997 DOI: 10.1016/j.gendis.2024.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 04/25/2025] Open
Abstract
RNA-binding proteins (RBPs) act as crucial regulators of gene expression within cells, exerting precise control over processes such as RNA splicing, transport, localization, stability, and translation through their specific binding to RNA molecules. The diversity and complexity of RBPs are particularly significant in cancer biology, as they directly impact a multitude of RNA metabolic events closely associated with tumor initiation and progression. The fragile X mental retardation protein (FMRP), as a member of the RBP family, is central to the neurodevelopmental disorder fragile X syndrome and increasingly recognized in the modulation of cancer biology through its influence on RNA metabolism. The protein's versatility, stemming from its diverse RNA-binding domains, enables it to govern a wide array of transcript processing events. Modifications in FMRP's expression or localization have been associated with the regulation of mRNAs linked to various processes pertinent to cancer, including tumor proliferation, metastasis, epithelial-mesenchymal transition, cellular senescence, chemotherapy/radiotherapy resistance, and immunotherapy evasion. In this review, we emphasize recent findings and analyses that suggest contrasting functions of this protein family in tumorigenesis. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention of cancer, some of which have already moved into clinical trials or clinical practice.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Ruyin Jia
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xuanyi Lin
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Nadire Aishan
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Han li
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
194
|
Peng X, Feng J, Yang H, Xia P, Pu F. Nrf2: A key regulator in chemoradiotherapy resistance of osteosarcoma. Genes Dis 2025; 12:101335. [PMID: 40242036 PMCID: PMC12000747 DOI: 10.1016/j.gendis.2024.101335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2025] Open
Abstract
Osteosarcoma (OS), frequently observed in children and adolescents, is one of the most common primary malignant tumors of the bone known to be associated with a high capacity for invasion and metastasis. The incidence of osteosarcoma in children and adolescents is growing annually, although improvements in survival remain limited. With the clinical application of neoadjuvant chemotherapy, chemotherapy combined with limb-preserving surgery has gained momentum as a major intervention. However, certain patients with OS experience treatment failure owing to chemoradiotherapy resistance or metastasis. Nuclear factor E2-related factor 2 (Nrf2), a key antioxidant factor in organisms, plays a crucial role in maintaining cellular physiological homeostasis; however, its overactivation in cancer cells restricts reactive oxygen species production, promotes DNA repair and drug efflux, and ultimately leads to chemoradiotherapy resistance. Recent studies have also identified the functions of Nrf2 beyond its antioxidative function, including the promotion of proliferation, metastasis, and regulation of metabolism. The current review describes the multiple mechanisms of chemoradiotherapy resistance in OS and the substantial role of Nrf2 in the signaling regulatory network to elucidate the function of Nrf2 in promoting OS chemoradiotherapy resistance and formulating relevant therapeutic strategies.
Collapse
Affiliation(s)
- Xianglin Peng
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Orthopedics, Wuhan No.1 Hospital, Wuhan 430022, China
| | - Jing Feng
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Orthopedics, Wuhan No.1 Hospital, Wuhan 430022, China
| | - Han Yang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ping Xia
- Department of Orthopedics, Wuhan Fourth Hospital, Wuhan 430030, China
| | - Feifei Pu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Orthopedics, Wuhan No.1 Hospital, Wuhan 430022, China
| |
Collapse
|
195
|
Wu W, Wang X, Ma R, Huang S, Li H, Lyu X. Deciphering the roles of neddylation modification in hepatocellular carcinoma: Molecular mechanisms and targeted therapeutics. Genes Dis 2025; 12:101483. [PMID: 40290125 PMCID: PMC12022649 DOI: 10.1016/j.gendis.2024.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 04/30/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of malignant liver tumor with high morbidity and mortality and severely threatens human health and life quality. Thus, it is of great significance to investigate the molecular mechanism underlying the pathogenesis of HCC and seek biomarkers for early diagnosis. Neddylation, one of the most conserved post-translational modification types in eukaryotes, plays vital roles in the progression of HCC. During the process of neddylation, NEDD8 is covalently conjugated to its substrate proteins, thereby modulating multiple necessary biological processes. Currently, increasing evidence shows that the aberrant activation of neddylation is positively correlated with the occurrence and development of tumors and the poor clinical prognosis of HCC patients. Based on the current investigations, neddylation modification has been reported to target both the cullins and non-cullin substrates and subsequently affect HCC progression, including the virus infection, malignant transformation, tumor cell proliferation, migration and invasion ability, and tumor microenvironment. Therefore, inhibitors targeting the neddylation cascade have been developed and entered clinical trials, indicating satisfactory anti-HCC treatment effects. This review aims to summarize the latest progress in the molecular mechanism of pathologically aberrant neddylation in HCC, as well as the advances of neddylation-targeted inhibitors as potential drugs for HCC treatment.
Collapse
Affiliation(s)
- Wenxin Wu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Xuanyi Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Ruijie Ma
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Hongguang Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xinxing Lyu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong 250117, China
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| |
Collapse
|
196
|
Cui R, Wang G, Liu F, Wang Y, Zhao Z, Mutailipu M, Mu H, Jiang X, Le W, Yang L, Chen B. Neurturin-induced activation of GFRA2-RET axis potentiates pancreatic cancer glycolysis via phosphorylated hexokinase 2. Cancer Lett 2025; 621:217583. [PMID: 39988080 DOI: 10.1016/j.canlet.2025.217583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Pancreatic cancer, characterized by its insidious onset, high invasiveness, resistance to chemotherapy, and a grim prognosis, with a five-year survival rate hovering below 10 %. The identification of novel therapeutic targets addressing tumor progression is therefore critically important. While perineural invasion (PNI) is recognized as a pathological hallmark and key driver of pancreatic cancer progression, its role in metabolic reprogramming of malignant cells has not been fully elucidated. Using integrated metabolomics approaches, we found perineural invasion in pancreatic cancer significantly enhancing glycolytic flux of pancreatic cancer. Our data delineate a neuroendocrine-paracrine signaling axis in which neurturin secreted by neuronal cells binds to the GFRA2 receptor on pancreatic cancer cells, inducing RET kinase recruitment and subsequent heterodimer assembly. This receptor tyrosine kinase complex phosphorylates hexokinase 2 (HK2) at the evolutionarily conserved Ser122 residue, augmenting its hexokinase activity, ultimately driving aerobic glycolysis flux and fueling pancreatic cancer growth. In vivo experiments corroborate our findings, revealing that neurturin blockade effectively halts pancreatic cancer progression and synergizes with RET inhibitors. Our research underscores neurturin as a promising therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ran Cui
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Gaoming Wang
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Fuguo Liu
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Yongkun Wang
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Zinan Zhao
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Muladili Mutailipu
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Huiling Mu
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China; Department of Biobank, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Xiaohua Jiang
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Wenjun Le
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China.
| | - Ludi Yang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| | - Bo Chen
- Department of Hepatopancreatobiliary Surgery, Frontier Science Center for Stem Cell Research & Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China.
| |
Collapse
|
197
|
Zhang Y, Plansinis M, Peak S, Weber E, Wei A, Xu Y, Ross M, Leagjeld A, Wallace DP, Zhang Y. Activation of toll-like receptor 2 promotes the expression of inflammatory mediators and cell proliferation of human polycystic kidney disease cells. Cell Signal 2025; 131:111749. [PMID: 40101851 PMCID: PMC11994280 DOI: 10.1016/j.cellsig.2025.111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive enlargement of fluid-filled cysts, leading to a decline in renal function. Toll-like receptors (TLR)-2 and TLR4 are pattern recognition receptors and components of the innate immune response. We found that mRNA levels for TLR2 and TLR4, an adaptor protein MyD88, and the transcription factor NF-κB were elevated in the kidneys of ADPKD patients and PKD mice. There was decreased expression of IκBα, an inhibitory protein sequestering NF-κB in the cytosol, and increased NF-κB nuclear translocation in human ADPKD kidneys compared with normal human kidneys (NHK). Pam3CSK4, a synthetic TLR2 agonist, increased the phosphorylation of IκBα, decreased its total levels, and caused NF-κB nuclear translocation and upregulation of pro-inflammatory mediators in cultured human ADPKD cells. Pam3CSK4 also increased phosphorylated ERK, a mitogen-activated protein kinase, and phosphorylated S6, a downstream target of the mTOR pathway, and accelerated ADPKD cell proliferation. By contrast, Pam3CSK4 did not affect NF-κB or ERK in NHK cells, but rather induced cytotoxicity, suggesting that TLR2 activation's effect was specific to ADPKD cells. Treatment with a TLR4 agonist did not affect NF-κB or ERK signaling in either ADPKD or NHK cells. Inhibition of TGF-β-activated kinase-1 (TAK1) effectively suppressed Pam3CSK4-induced NF-κB and ERK activation and the proliferation of ADPKD cells. These findings suggest that activation of TLR2 increases NF-κB-mediated-inflammatory mediators and ERK-dependent cell proliferation through TAK1 in ADPKD cells. We propose that the TLR2/TAK1 axis is a potential therapeutic target to reduce inflammation and cyst growth in ADPKD.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States; Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Matthew Plansinis
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Sophia Peak
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Elisabeth Weber
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Aiping Wei
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States; Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Yu Xu
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States; Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Madelyn Ross
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Abigail Leagjeld
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States
| | - Darren P Wallace
- Departments of Internal Medicine and Molecular and Integrative Physiology, and The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Yan Zhang
- Department of Biological Science, College of Sciences and Arts, Michigan Technological University, United States.
| |
Collapse
|
198
|
He F, Chen Q, Gu P, Liu X, Chen Y, Liu T, Li C. Exploring the Causal Relationships between Lipid Biomarkers and Anti-VEGF Treatment Response in Patients with Neovascular Age-related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2025; 5:100711. [PMID: 40225410 PMCID: PMC11986618 DOI: 10.1016/j.xops.2025.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 04/15/2025]
Abstract
Purpose To identify the connections between lipid biomarkers and the anti-VEGF therapy response in patients with neovascular age-related macular degeneration (nAMD). Design A bidirectional and multivariable Mendelian randomization study. Participants The summary statistics for anti-VEGF nAMD treatment response included a total of 128 responders, 51 nonresponders, and 6 908 005 genetic variants available for analysis. The sample size of lipid biomarkers is 441 016 and 12 321 875 genetic variants available for analysis. Methods Two-sample Mendelian randomization (MR) method was conducted to exhaustively appraise the causalities among 13 lipid biomarkers and the risk of different anti-VEGF treatment responses (including visual acuity [VA] and central retinal thickness [CRT]) for nAMD subtypes. Main Outcome Measures Thirteen lipid biomarkers, VA, and CRT. Results A positive causal relationship was identified between triglycerides (TGs), apolipoproteins (Apos) E2, ApoE3, total cholesterol (TC), and VA response to anti-VEGF therapy in patients with nAMD, as confirmed by MR-Egger, weighted median, and weighted mode models. The MR-Egger model yielded statistically significant results for TC, ApoA-I, ApoB, and ApoA-V in relation to the CRT response to anti-VEGF treatment in patients with nAMD. In the reverse MR, the MR-Egger model identified significant causal relationships between ApoA-I, low-density lipoprotein cholesterol (LDL-c), ApoE3, and ApoF and the VA response. However, this was not the case in the weighted median and weighted mode models. In the MR-Egger model, ApoB, LDL-c, ApoE3, and ApoM were identified as significantly influencing the CRT response. In the multisample MR analysis, TC, high-density lipoprotein cholesterol, LDL-c, and TG were found to be causally related to VA response, and TC was also identified as being causally related to the CRT response to anti-VEGF therapy in patients with nAMD. Conclusions This MR study suggests unidirectional causality between TG and ApoE3 and the response to anti-VEGF treatment in patients with nAMD. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Feixiang He
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qifang Chen
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Peilin Gu
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xuemei Liu
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yinglian Chen
- Western Institution of Health Data Science, Chongqing, China
| | - Ting Liu
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chongyi Li
- Department of Ophthalmology, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
199
|
Ma J, Wang S, Zhang P, Zheng S, Li X, Li J, Pei H. Emerging roles for fatty acid oxidation in cancer. Genes Dis 2025; 12:101491. [PMID: 40290117 PMCID: PMC12022645 DOI: 10.1016/j.gendis.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/09/2024] [Indexed: 04/30/2025] Open
Abstract
Fatty acid oxidation (FAO) denotes the mitochondrial aerobic process responsible for breaking down fatty acids (FAs) into acetyl-CoA units. This process holds a central position in the cancer metabolic landscape, with certain tumor cells relying primarily on FAO for energy production. Over the past decade, mounting evidence has underscored the critical role of FAO in various cellular processes such as cell growth, epigenetic modifications, tissue-immune homeostasis, cell signal transduction, and more. FAO is tightly regulated by multiple evolutionarily conserved mechanisms, and any dysregulation can predispose to cancer development. In this view, we summarize recent findings to provide an updated understanding of the multifaceted roles of FAO in tumor development, metastasis, and the response to cancer therapy. Additionally, we explore the regulatory mechanisms of FAO, laying the groundwork for potential therapeutic interventions targeting FAO in cancers within the metabolic landscape.
Collapse
Affiliation(s)
- Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
200
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|