151
|
Goh KKK, Toh WGH, Hee DKH, Ting EZW, Chua NGS, Zulkifli FIB, Sin LJ, Tan TT, Kwa ALH, Lim TP. Quantification of Fosfomycin in Combination with Nine Antibiotics in Human Plasma and Cation-Adjusted Mueller-Hinton II Broth via LCMS. Antibiotics (Basel) 2022; 11:antibiotics11010054. [PMID: 35052932 PMCID: PMC8772704 DOI: 10.3390/antibiotics11010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Fosfomycin-based combination therapy has emerged as an attractive option in our armamentarium due to its synergistic activity against carbapenem-resistant Gram-negative bacteria (CRGNB). The ability to simultaneously measure fosfomycin and other antibiotic drug levels will support in vitro and clinical investigations to develop rational antibiotic combination dosing regimens against CRGNB infections. We developed an analytical assay to measure fosfomycin with nine important antibiotics in human plasma and cation-adjusted Mueller–Hinton II broth (CAMHB). We employed a liquid-chromatography tandem mass spectrometry method and validated the method based on accuracy, precision, matrix effect, limit-of-detection, limit-of-quantification, specificity, carryover, and short-term and long-term stability on U.S. Food & Drug Administration (FDA) guidelines. Assay feasibility was assessed in a pilot clinical study in four patients on antibiotic combination therapy. Simultaneous quantification of fosfomycin, levofloxacin, meropenem, doripenem, aztreonam, piperacillin/tazobactam, ceftolozane/tazobactam, ceftazidime/avibactam, cefepime, and tigecycline in plasma and CAMHB were achieved within 4.5 min. Precision, accuracy, specificity, and carryover were within FDA guidelines. Fosfomycin combined with any of the nine antibiotics were stable in plasma and CAMHB up to 4 weeks at −80 °C. The assay identified and quantified the respective antibiotics administered in the four subjects. Our assay can be a valuable tool for in vitro and clinical applications.
Collapse
Affiliation(s)
- Kelvin Kau-Kiat Goh
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore
| | - Wilson Ghim-Hon Toh
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Daryl Kim-Hor Hee
- Shimadzu (Asia Pacific) Pte Ltd., 79 Science Park Dr, #02-01/08 Cintech IV, Singapore 118264, Singapore; (E.Z.-W.T.); (D.K.-H.H.)
| | - Edwin Zhi-Wei Ting
- Shimadzu (Asia Pacific) Pte Ltd., 79 Science Park Dr, #02-01/08 Cintech IV, Singapore 118264, Singapore; (E.Z.-W.T.); (D.K.-H.H.)
| | - Nathalie Grace Sy Chua
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Farah Iffah Binte Zulkifli
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Li-Jiao Sin
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Thuan-Tong Tan
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Department of Infectious Diseases, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Emerging Infectious Diseases Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (A.L.-H.K.); (T.-P.L.); Tel.: +65-6321-3401 (A.L.-H.K.); +65-6326-6959 (T.-P.L.)
| | - Tze-Peng Lim
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Correspondence: (A.L.-H.K.); (T.-P.L.); Tel.: +65-6321-3401 (A.L.-H.K.); +65-6326-6959 (T.-P.L.)
| |
Collapse
|
152
|
Duivelshof BL, Beck A, Guillarme D, D'Atri V. Bispecific antibody characterization by a combination of intact and site-specific/chain-specific LC/MS techniques. Talanta 2022; 236:122836. [PMID: 34635226 DOI: 10.1016/j.talanta.2021.122836] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 01/07/2023]
Abstract
Bispecific antibodies (bsAbs) are considered as an important class of biopharmaceutical drugs, with about 160 products in clinical trials. From an analytical point of view, the correct chain-association is one of the most critical challenge to monitor during bsAbs development and production. In the present study, a full analytical workflow has been developed based on the use of various chromatographic modes: size exclusion chromatography (SEC), ion exchange chromatography (IEX), reversed phase liquid chromatography (RPLC), and hydrophilic interaction chromatography (HILIC), all combined with high resolution mass spectrometry (MS). This analytical strategy was applied to Hemlibra® (emicizumab), which is certainly the most successful commercial bsAb to date. Using this strategy, it was possible to monitor the presence of mispaired bsAb species and detect and identify additional post-translational modifications (PTMs).
Collapse
Affiliation(s)
- Bastiaan L Duivelshof
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland
| | - Alain Beck
- IRPF - Centre d'Immunologie Pierre-Fabre (CIPF), 5 Avenue Napoléon III, BP 60497, Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland
| | - Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211, Geneva 4, Switzerland.
| |
Collapse
|
153
|
Current clinical testing approach of COVID. SENSING TOOLS AND TECHNIQUES FOR COVID-19 2022. [PMCID: PMC9334984 DOI: 10.1016/b978-0-323-90280-9.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
154
|
Massano M, Incardona C, Gerace E, Negri P, Alladio E, Salomone A, Vincenti M. Development and validation of a UHPLC-HRMS-QTOF method for the detection of 132 New Psychoactive Substances and synthetic opioids, including fentanyl, in Dried Blood Spots. Talanta 2022; 241:123265. [DOI: 10.1016/j.talanta.2022.123265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
155
|
Schulz J, Michelet R, Joseph JF, Zeitlinger M, Schumacher F, Mikus G, Kloft C. A versatile high-performance LC-MS/MS assay for the quantification of voriconazole and its N-oxide metabolite in small sample volumes of multiple human matrices for biomedical applications. J Pharm Biomed Anal 2021; 210:114551. [PMID: 34999435 DOI: 10.1016/j.jpba.2021.114551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/18/2023]
Abstract
Voriconazole (VRC) pharmacokinetics, in particular its complex metabolism, is still not fully understood which challenges its optimal therapeutic use. To increase knowledge on the pharmacokinetics of this antifungal drug, it is essential to broaden the perspective and expand in vitro and clinical in vivo investigations in particular to aspects such as unbound plasma, target-site and metabolite concentrations. Innovative sampling approaches such as microdialysis, a minimally-invasive technique for the analysis of compound concentrations in target-site human tissue fluids, are associated with bioanalytical challenges, i.e. small sample volumes and low concentrations. Thus, a bioanalytical LC-MS/MS assay for the simultaneous quantification of VRC and its main N-oxide (NO) metabolite in human plasma, ultrafiltrate and microdialysate was developed and validated according to the European Medicines Agency guideline. Quantification was rapid, simple and feasible for clinically relevant concentrations from 5 to 5000 ng/mL in plasma and ultrafiltrate as well as from 4 to 4000 ng/mL in microdialysate. Due to the high sensitivity of the assay, only 20 µL of plasma or ultrafiltrate and 5 µL of microdialysate were required. For VRC and NO in all matrices, between-run accuracy was high with a maximum mean deviation of 7.0% from the nominal value and between-run precision was demonstrated by ≤ 11.8% coefficient of variation. Both compounds proved stable under various conditions. The assay suitability was demonstrated by the application to a clinical study quantifying simultaneously VRC and NO concentrations in plasma, ultrafiltrate and microdialysate. Additionally, the assay was successfully adapted for pharmacokinetic analyses in human tissue-derived in vitro experiments. Overall, by reducing the required sample volume, the bioanalytical method allows for an increased number of plasma samples in vulnerable populations, e.g. infants, and enables the generation of concentration-time profiles with a higher temporal resolution in microdialysis studies. Consequently, the developed assay is apt to elucidate the complex pharmacokinetics of VRC in clinical settings as prerequisite for therapy optimisation.
Collapse
Affiliation(s)
- Josefine Schulz
- Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany.
| | - Robin Michelet
- Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany.
| | - Jan F Joseph
- Core Facility BioSupraMol PharmaMS, Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Straße 2+4, 14195 Berlin, Germany.
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Fabian Schumacher
- Core Facility BioSupraMol PharmaMS, Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Straße 2+4, 14195 Berlin, Germany; Department of Pharmacology & Toxicology, Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Straße 2+4, 14195 Berlin, Germany.
| | - Gerd Mikus
- Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany; Department Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Charlotte Kloft
- Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany.
| |
Collapse
|
156
|
DiBattista A, Ogrel S, MacKenzie AE, Chakraborty P. Quantitation of phosphatidylethanols in dried blood spots to determine rates of prenatal alcohol exposure in Ontario. Alcohol Clin Exp Res 2021; 46:243-251. [PMID: 34939205 DOI: 10.1111/acer.14766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Estimating rates of prenatal alcohol exposure (PAE) in a population is necessary to ensure that proper medical and social supports and interventions are in place. This study sought to estimate PAE in Ontario, Canada by quantifying phosphatidylethanol (PEth) homologues in over 2000 residual neonatal dried blood spots (DBS). METHODS A random selection of 2011 residual DBS collected over a 1-week time period were anonymized and extracted. A targeted liquid chromatography-mass spectrometry method was used to quantify 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanol (PEth (16:0/18:1) or POPEth), the clinically accepted biomarker, and six additional PEth homologues. A POPEth level above the United States Drug Testing Laboratories (USDTL) cutoff up to 4 weeks predelivery was indicative of PAE. All PEth homologues were correlated to one another and logistic regression was used to determine the association between PAE status and infant characteristics. RESULTS The estimated rate of PAE in Ontario, up to the last 4 weeks of gestation, was 15.5% (POPEth >28.5 nM). Most PEth homologues were moderately to strongly correlated to one another. A low birth weight and preterm birth were both associated with PAE, while being small for gestational age had lower odds of PAE. CONCLUSIONS The results of this study suggest that PAE may be more prevalent in Ontario than previous estimates by self-report or meconium testing. These findings support the need to consider the effectiveness of current interventions and the design of new interventions to address this significant public health issue.
Collapse
Affiliation(s)
- Alicia DiBattista
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Svetlana Ogrel
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
157
|
Zaikin VG, Borisov RS. Mass Spectrometry as a Crucial Analytical Basis for Omics Sciences. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [PMCID: PMC8693159 DOI: 10.1134/s1061934821140094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review is devoted to the consideration of mass spectrometric platforms as applied to omics sciences. The most significant attention is paid to omics related to life sciences (genomics, proteomics, meta-bolomics, lipidomics, glycomics, plantomics, etc.). Mass spectrometric approaches to solving the problems of petroleomics, polymeromics, foodomics, humeomics, and exosomics, related to inorganic sciences, are also discussed. The review comparatively presents the advantages of various principles of separation and mass spectral techniques, complementary derivatization, used to obtain large arrays of various structural and quantitative information in the mentioned omics sciences.
Collapse
Affiliation(s)
- V. G. Zaikin
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - R. S. Borisov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
- RUDN University, 117198 Moscow, Russia
- Core Facility Center “Arktika,” Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia
| |
Collapse
|
158
|
Amir M, Narula P, Bano F. Analytical Techniques for the Analysis of Lopinavir and Ritonavir in Pharmaceutical Dosage Form and Biological Matrices: A Review. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412918666211217145200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Lopinavir and Ritonavir are the protease inhibitor type of anti-retroviral drugs. Both are used for the treatment of HIV/AIDS. This paper reviews many analytical methods for the analysis of LPV and RTV in pharmaceutical formulations (tablet, capsule, syrup, and bulk) and biological fluids (human plasma, serum, cerebrospinal fluid, rat plasma, and human hair).
Objective:
The study aims to summarize various ana¬lytical techniques, such as Chromatography, Spectrophotometry; and also hyphenated techniques, such as LC-MS/MS, UPLC-MS for analysis of Lopinavir and Ritonavir.
Method:
The review deals with com¬prehensive details about the type of various analytical techniques, such as spectroscopy (UV), chromatography (RP-HPLC, HPTLC, UPLC), and hyphenated techniques, i.e., LC-MS/MS, UPLC-MS for the analysis of lopinavir and ritonavir. These techniques are either explored for the quantification, de¬tection of metabolite or for stability studies of the LPV & RTV.
Conclusion:
The present studies revealed that the HPLC technique along with the spectro-scopic, have been most widely used for the analysis. Out of the developed methods, hyphenated UPLC-MS and LC-MS are very sensitive and helps in the easy estimation of drugs compared to that of the other techniques. This review may provide comprehensive details to the researchers working in the area of analytical research of LPV & RTV.
Collapse
Affiliation(s)
- Mohammad Amir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| | - Puneet Narula
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| | - Farzana Bano
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
159
|
Handling unstable analytes: literature review and expert panel survey by Japan Bioanalysis Forum Discussion Group. Bioanalysis 2021; 14:169-185. [PMID: 34894755 DOI: 10.4155/bio-2021-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analyzing unstable small molecule drugs and metabolites in blood continues to be challenging for bioanalysis. Although scientific countermeasures such as immediate cooling, immediate freezing, addition of enzyme inhibitors, pH adjustment, dried blood spot or derivatization have been developed, selecting the best practices has become an issue in the pharmaceutical industry as the number of drugs with such problems is increasing, even for generic drugs. In this study, we conducted a comprehensive literature review and a questionnaire survey to determine a suitable practice for evaluating instability and implementing countermeasures. Three areas of focus, matrix selection, effect of hemolysis and selection of esterase inhibitors, are discussed.
Collapse
|
160
|
Aghayeva AG, Streatfield SJ, Huseynova IM. AZ-130 Strain from Oil-Contaminated Soil of Azerbaijan: Isolation, Antibacterial Screening, and Optimization of Cultivation Conditions. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
161
|
Phapale P. Pharmaco-metabolomics opportunities in drug development and clinical research. ANALYTICAL SCIENCE ADVANCES 2021; 2:611-616. [PMID: 38715865 PMCID: PMC10989535 DOI: 10.1002/ansa.202000178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 07/18/2024]
Abstract
Pharmaco-metabolomics uses metabolic phenotypes for the prediction of inter-individual variations in drug response and helps in understanding the mechanisms of drug action. The field has made significant progress over the last 14 years with numerous studies providing clinical evidence for personalised medicine. However, discovered pharmaco-metabolomic biomarkers are not yet translated into clinics due to a lack of large-scale validation. Integration of targeted and untargeted metabolomics workflows into pharmacokinetic analysis and drug development can advance the field from bench to bedside. Also, Indian pharmaceutical research and its bioanalytical infrastructure are in a position to take on these opportunities by addressing challenges such as appropriate training and regulatory compliance.
Collapse
Affiliation(s)
- Prasad Phapale
- European Molecular Biology LabMetabolomics Core FacilityHeidelbergGermany
| |
Collapse
|
162
|
A fabric phase sorptive extraction method for the LC-UV determination of bisphenol A and leaching monomers from dental materials in human saliva. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123073. [PMID: 34864606 DOI: 10.1016/j.jchromb.2021.123073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
A rapid and simple fabric phase sorptive extraction (FPSE) procedure is developed for the simultaneous extraction of four monomers (Bisphenol A, BPA; Triethylene glycol dimethacrylate, TEGDMA; Urethane dimethacrylate, UDMA; Bisphenol A-glycidyl methacrylate, BisGMA) in human saliva, prior to the determination by high pressure liquid chromatography with an ultraviolet-visible detector. FPSE is a green sample preparation technique, harmonized with the principles of Green Analytical Chemistry (GAC), which utilizes a flexible surface, such as cellulose, chemically coated with a polymeric material using sol-gel technology. FPSE membranes are characterized by superior chemical stability and any solvent or solvent mixture can be used for elution. Among twelve different sol-gel coated membranes, an FPSE membrane coated with sol-gel polytetrahydrofuran (sol-gel PTHF) was found optimum to extract four target compounds from saliva samples, which were first centrifuged. Parameters with most significant impact on the extraction efficiency of FPSE including elution solvent, utilization of magnetic stirring, extraction time have been comprehensively studied and optimized. The studied compounds' separation was carried out by a Perfect Sil 120 ODS-2 chromatographic column (250 mm × 4.0 mm, 5 μm), using a mobile phase constituting of acetonitrile-water 70:30 % v/v (isocratic elution). The total analysis time was 10 min. Detection was achieved by an ultraviolet-visible detector at 220 nm. The method was validated in terms of sensitivity, linearity, trueness, precision, selectivity and stability of samples. For all four compounds, the limit of detection and the limit of quantification were 0.075 ng/μL and 0.25 ng/μL, respectively. Relative recovery rates were between 90.0 and 106.7%, while RSD values were <8.1 and 12% for interday and intraday repeatability, respectively. Youden & Steiner approach was applied to study method's ruggedness and reusability of the media was tested, which enhanced the green nature of technique.
Collapse
|
163
|
Analysis of urinary organic acids by gas chromatography tandem mass spectrometry method for metabolic profiling applications. J Chromatogr A 2021; 1658:462590. [PMID: 34666271 DOI: 10.1016/j.chroma.2021.462590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
A sensitive, accurate and precise method was developed for the quantification of a large number of organic acids in human urine by GC-MS/MS. The analytes were selected based on their role as key metabolic intermediates; intermediates of Krebs cycle, fatty acid oxidation, glycolysis, down-stream metabolites of neurotransmitter synthesis and degradation, metabolites indicative of nutritional deficiencies, byproducts of microbial activity in the gastrointestinal tract (GI) etc. The most efficient sample preparation protocol was selected based on tests for extraction with different solvents such as MTBE and ethyl acetate under acidic conditions, whereas finally a more general protocol was applied with methanol. Regarding derivatization, methoxyamine with MSTFA, 1% TMCS was applied. The method was extensively validated, including stability study, ensuring accurate determination of the studied organic acids in human urine. Proof of its utility was exhibited in a set of samples from human volunteers. The method can find wide applicability in the context of metabolomics for clinical or nutritional studies.
Collapse
|
164
|
LC-MS/MS method for simultaneous quantification of the first-line anti-tuberculosis drugs and six primary metabolites in patient plasma: Implications for therapeutic drug monitoring. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1185:122986. [PMID: 34688197 DOI: 10.1016/j.jchromb.2021.122986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
The pharmacokinetic profiling of drug substances and corresponding metabolites in the biological matrix is one of the most informative tools for the treatment efficacy assessment. Therefore, to satisfy the need for comprehensive monitoring of anti-tuberculosis drugs in human plasma, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous quantification of first-line anti-tuberculosis drugs (ethambutol, isoniazid, pyrazinamide, and rifampicin) along with their six primary metabolites. Simple single-step protein precipitation with methanol was chosen as the most convenient sample pre-treatment method. Chromatographic separation of the ten analyte mixture was achieved within 10 minutes on a reverse-phase C8 column using mobile phase gradient mode. The multiple reaction monitoring mode (MRM) was used for analyte detection and quantification in patient samples. The chosen quantification ranges fully covered expected plasma concentrations. The method exhibited acceptable selectivity; the within- and between-run accuracy ranged from 87.2 to 113.6%, but within- and between-run precision was between 1.6 and 14.9% (at the LLOQ level CV < 20%). Although the response of the isonicotinic acid varied depending on the matrix source (CV 21.8%), validation results proved that such inconsistency does not affect the accuracy and precision of results. If stored at room temperature plasma samples should be processed within 4 h after collection, temporary storage at -20 °C up to 24 h is acceptable due to stability issues of analytes. The developed method was applied for the patient sample analysis (n = 34) receiving anti-tuberculosis treatment with the first-line drugs.
Collapse
|
165
|
Solevåg AL, Zykova SN, Thorsby PM, Schmölzer GM. Metabolomics to Diagnose Oxidative Stress in Perinatal Asphyxia: Towards a Non-Invasive Approach. Antioxidants (Basel) 2021; 10:antiox10111753. [PMID: 34829624 PMCID: PMC8615205 DOI: 10.3390/antiox10111753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
There is a need for feasible and non-invasive diagnostics in perinatal asphyxia. Metabolomics is the study of small molecular weight products of cellular metabolism that may, directly and indirectly, reflect the level of oxidative stress. Saliva analysis is a novel approach that has a yet unexplored potential in metabolomics in perinatal asphyxia. The aim of this review was to give an overview of metabolomics studies of oxidative stress in perinatal asphyxia, particularly searching for studies analyzing non-invasively collected biofluids including saliva. We searched the databases PubMed/Medline and included 11 original human and 4 animal studies. In perinatal asphyxia, whole blood, plasma, and urine are the most frequently used biofluids used for metabolomics analyses. Although changes in oxidative stress-related salivary metabolites have been reported in adults, the utility of this approach in perinatal asphyxia has not yet been explored. Human and animal studies indicate that, in addition to antioxidant enzymes, succinate and hypoxanthine, as well acylcarnitines may have discriminatory diagnostic and prognostic properties in perinatal asphyxia. Researchers may utilize the accumulating evidence of discriminatory metabolic patterns in perinatal asphyxia to develop bedside methods to measure oxidative stress metabolites in perinatal asphyxia. Although only supported by indirect evidence, saliva might be a candidate biofluid for such point-of-care diagnostics.
Collapse
Affiliation(s)
- Anne Lee Solevåg
- The Department of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Nydalen, Norway
- Correspondence: ; Tel.: +47-4146-9314
| | - Svetlana N. Zykova
- Biochemical Endocrinology and Metabolism Research Group, The Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, 0424 Nydalen, Norway; (S.N.Z.); (P.M.T.)
| | - Per Medbøe Thorsby
- Biochemical Endocrinology and Metabolism Research Group, The Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, 0424 Nydalen, Norway; (S.N.Z.); (P.M.T.)
| | - Georg M. Schmölzer
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, AB 23821, Canada;
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB 23821, Canada
| |
Collapse
|
166
|
F Garrido P, Rodríguez-Dafonte P, García-Río L, Piñeiro Á. Simple ApproximaTion for Aggregation Number Determination by Isothermal Titration Calorimetry: STAND-ITC. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11781-11792. [PMID: 34570499 DOI: 10.1021/acs.langmuir.1c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new proposal to obtain aggregation numbers from isothermal titration calorimetry dilution experiments is described and tested using dodecyl trimethyl ammonium bromide, dodecyl methylimidazolium chloride, dodecyl methylimidazolium sulfonate, and didecyl methylimidazolium chloride aqueous solutions at different temperatures. The results were compared to those obtained from fluorescence measurements and also with data from the literature. In addition to the aggregation number, the molar free energy to transfer a solute molecule from the aggregate to the bulk solution, the enthalpy corresponding to the formation of the self-assembled suprastructures, the molar heat corresponding to the dilution of monomers and aggregates, and an offset parameter to account for unpredictable external contributions are simultaneously obtained using the same method. The new equations are compared to those obtained from previous proposals, and they are also analyzed in detail to assess the impact of each fitting parameter in the profile of the calorimetric isotherm. This new approach has been implemented in a computational code that automatically determines the fitting parameters as well as the corresponding statistical uncertainties for the large variety of calorimetric profiles that have been tested. Given the high sensitivity of the dilution experiments to the aggregation number for relatively small assemblies, our approach is proposed also to quantify the oligomerization state of biomolecules such as proteins and peptides.
Collapse
Affiliation(s)
- Pablo F Garrido
- Departamento de Fisica de Aplicada, Facultade de Fisica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Pedro Rodríguez-Dafonte
- CIQUS, Departamento de Quimica Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Luis García-Río
- CIQUS, Departamento de Quimica Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Fisica de Aplicada, Facultade de Fisica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
167
|
Larsen SE, Berube BJ, Pecor T, Cross E, Brown BP, Williams BD, Johnson E, Qu P, Carter L, Wrenn S, Kepl E, Sydeman C, King NP, Baldwin SL, Coler RN. Qualification of ELISA and neutralization methodologies to measure SARS-CoV-2 humoral immunity using human clinical samples. J Immunol Methods 2021; 499:113160. [PMID: 34599915 PMCID: PMC8481082 DOI: 10.1016/j.jim.2021.113160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
In response to the SARS-CoV-2 pandemic many vaccines have been developed and evaluated in human clinical trials. The humoral immune response magnitude, composition and efficacy of neutralizing SARS-CoV-2 are essential endpoints for these trials. Robust assays that are reproducibly precise, linear, and specific for SARS-CoV-2 antigens would be beneficial for the vaccine pipeline. In this work we describe the methodologies and clinical qualification of three SARS-CoV-2 endpoint assays. We developed and qualified Endpoint titer ELISAs for total IgG, IgG1, IgG3, IgG4, IgM and IgA to evaluate the magnitude of specific responses to the trimeric spike (S) antigen and total IgG specific to the spike receptor binding domain (RBD) of SARS-CoV-2. We also qualified a pseudovirus neutralization assay which evaluates functional antibody titers capable of inhibiting the entry and replication of a lentivirus containing the Spike antigen of SARS-CoV-2. To complete the suite of assays we qualified a plaque reduction neutralization test (PRNT) methodology using the 2019-nCoV/USA-WA1/2020 isolate of SARS-CoV-2 to assess neutralizing titers of antibodies in plasma from normal healthy donors and convalescent COVID-19 individuals. Precision, Linearity, and Specificity are essential for Clinical Assay Qualification. Vaccine or Infection-induced humoral response magnitude can be evaluated by high-throughput ELISAs. Neutralization of SARS-CoV-2 is the gold-standard for in vitro vaccine efficacy evaluations. ELISA, pseudovirus neutralization and PRNT assays are Clinically Qualified for SARS-CoV-2 vaccine trials. Positive WHO control sample of 250 ABU equals 4.7 EPT for total IgG against SARS-CoV-2 trimeric spike antigen in ELISAs.
Collapse
Affiliation(s)
- Sasha E Larsen
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America
| | - Bryan J Berube
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America; HDT BioCorp., Seattle, WA, United States of America
| | - Tiffany Pecor
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America
| | - Evan Cross
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America
| | - Bryan P Brown
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America
| | - Brittany D Williams
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America; Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Emma Johnson
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America
| | - Pingping Qu
- Seattle Children's Research Institute, Biostatistics Epidemiology and Analytics in Research, Seattle, WA, United States of America
| | - Lauren Carter
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, United States of America
| | - Samuel Wrenn
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, United States of America
| | - Elizabeth Kepl
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, United States of America
| | - Claire Sydeman
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, United States of America
| | - Neil P King
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, United States of America
| | - Susan L Baldwin
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America
| | - Rhea N Coler
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America; Department of Global Health, University of Washington, Seattle, WA, United States of America; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States of America.
| |
Collapse
|
168
|
McArdle A, Washington KE, Chazarin Orgel B, Binek A, Manalo DM, Rivas A, Ayres M, Pandey R, Phebus C, Raedschelders K, Fert-Bober J, Van Eyk JE. Discovery Proteomics for COVID-19: Where We Are Now. J Proteome Res 2021; 20:4627-4639. [PMID: 34550702 PMCID: PMC8482317 DOI: 10.1021/acs.jproteome.1c00475] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the pandemic coronavirus disease 2019 (COVID-19), which has had a devastating impact on society. Here, we summarize proteomic research that has helped elucidate hallmark proteins associated with the disease with respect to both short- and long-term diagnosis and prognosis. Additionally, we review the highly variable humoral response associated with COVID-19 and the increased risk of autoimmunity.
Collapse
Affiliation(s)
- Angela McArdle
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Kirstin E. Washington
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Blandine Chazarin Orgel
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Aleksandra Binek
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Danica-Mae Manalo
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Alejandro Rivas
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Matthew Ayres
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Rakhi Pandey
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Connor Phebus
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Koen Raedschelders
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Justyna Fert-Bober
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department
of Cardiology, Smidt Heart Institute, Cedars-Sinai
Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E. Van Eyk
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department
of Cardiology, Smidt Heart Institute, Cedars-Sinai
Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
169
|
Masenga W, Paganotti GM, Seatla K, Gaseitsiwe S, Sichilongo K. A fast-screening dispersive liquid-liquid microextraction-gas chromatography-mass spectrometry method applied to the determination of efavirenz in human plasma samples. Anal Bioanal Chem 2021; 413:6401-6412. [PMID: 34557941 DOI: 10.1007/s00216-021-03604-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
We demonstrate the suitability of a fast, green, easy-to-perform, and modified sample extraction procedure, i.e., dispersive liquid-liquid microextraction (DLLME) for the determination of efavirenz (EFV) in human plasma. Data acquisition was done by gas chromatography-mass spectrometry (GC-MS) in the selected ion monitoring (SIM) mode. The simplicity of the method lies in, among others, the avoidance of the use of large organic solvent volumes as mobile phases and non-volatile buffers that tend to block the plumbing in high-performance liquid chromatography (HPLC). Chromatographic and mass spectral parameters were optimized using bovine whole blood for matrix matching due to insufficient human plasma. Method validation was accomplished using the United States Food and Drug Administration (USFDA) 2018 guidelines. The calibration curve was linear with a dynamic range of 0.10-2.0 μg/mL and an R2 value of 0.9998. The within-run accuracy and precision were both less than 20% at the lower limit of quantification (LLOQ) spike level. The LLOQ was 0.027 μg/mL which compared well with some values but was also orders of magnitude better than others reported in the literature. The percent recovery was 91.5% at the LLOQ spike level. The DLLME technique was applied in human plasma samples from patients who were on treatment with EFV. The human plasma samples gave concentrations of EFV ranging between 0.14-1.00 μg/mL with three samples out of seven showing concentrations that fell within or close to the recommended therapeutic range.
Collapse
Affiliation(s)
- Wangu Masenga
- Department of Chemistry, Faculty of Science, University of Botswana, PB 00704, Gaborone, Botswana
| | - Giacomo Maria Paganotti
- Botswana - University of Pennsylvania Partnership (BUP), Box AC 157 ACH, Gaborone, Botswana.,Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, PB 00713, Gaborone, Botswana
| | - Kaelo Seatla
- Botswana Harvard AIDS institute partnership (BHP), P.O. Box BO, 320, Gaborone, Botswana.,Department of Medical Laboratory Sciences, School of Allied Health Professionals, University of Botswana, Gaborone, Botswana
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS institute partnership (BHP), P.O. Box BO, 320, Gaborone, Botswana.,Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Kwenga Sichilongo
- Department of Chemistry, Faculty of Science, University of Botswana, PB 00704, Gaborone, Botswana.
| |
Collapse
|
170
|
Salivary metabolomics – A diagnostic and biologic signature for oral cancer. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2021. [DOI: 10.1016/j.ajoms.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
171
|
Metz A, Wollenhaupt J, Glöckner S, Messini N, Huber S, Barthel T, Merabet A, Gerber HD, Heine A, Klebe G, Weiss MS. Frag4Lead: growing crystallographic fragment hits by catalog using fragment-guided template docking. Acta Crystallogr D Struct Biol 2021; 77:1168-1182. [PMID: 34473087 PMCID: PMC8411975 DOI: 10.1107/s2059798321008196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
In recent years, crystallographic fragment screening has matured into an almost routine experiment at several modern synchrotron sites. The hits of the screening experiment, i.e. small molecules or fragments binding to the target protein, are revealed along with their 3D structural information. Therefore, they can serve as useful starting points for further structure-based hit-to-lead development. However, the progression of fragment hits to tool compounds or even leads is often hampered by a lack of chemical feasibility. As an attractive alternative, compound analogs that embed the fragment hit structurally may be obtained from commercial catalogs. Here, a workflow is reported based on filtering and assessing such potential follow-up compounds by template docking. This means that the crystallographic binding pose was integrated into the docking calculations as a central starting parameter. Subsequently, the candidates are scored on their interactions within the binding pocket. In an initial proof-of-concept study using five starting fragments known to bind to the aspartic protease endothiapepsin, 28 follow-up compounds were selected using the designed workflow and their binding was assessed by crystallography. Ten of these compounds bound to the active site and five of them showed significantly increased affinity in isothermal titration calorimetry of up to single-digit micromolar affinity. Taken together, this strategy is capable of efficiently evolving the initial fragment hits without major synthesis efforts and with full control by X-ray crystallography.
Collapse
Affiliation(s)
- Alexander Metz
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Steffen Glöckner
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Niki Messini
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Simon Huber
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Tatjana Barthel
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Ahmed Merabet
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Hans-Dieter Gerber
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Andreas Heine
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Gerhard Klebe
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Manfred S. Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| |
Collapse
|
172
|
Abstract
Antibiotics, nowadays, are not only used for the treatment of human diseases but also used in animal and poultry farming to increase production. Overuse of antibiotics leads to their circulation in the food chain due to unmanaged discharge. These circulating antibiotics and their residues are a major cause of antimicrobial resistance (AMR), so comprehensive and multifaceted measures aligning with the One Health approach are crucial to curb the emergence and dissemination of antibiotic resistance through the food chain. Different chromatographic techniques and capillary electrophoresis (CE) are being widely used for the separation and detection of antibiotics and their residues from food samples. However, the matrix present in food samples interferes with the proper detection of the antibiotics, which are present in trace concentrations. This review is focused on the scientific literature published in the last decade devoted to the detection of antibiotics in food products. Various extraction methods are employed for the enrichment of antibiotics from a wide variety of food samples; however, solid-phase extraction (SPE) techniques are often used for the extraction of antibiotics from food products and biological samples. In addition, this review has scrutinized how changing instrumental composition, organization, and working parameters in the chromatography and CE can greatly impact the identification and quantification of antibiotic residues. This review also summarized recent advancements in other detection methods such as immunological assays, surface-enhanced Raman spectroscopy (SERS)-based assays, and biosensors which have emerged as rapid, sensitive, and selective tools for accurate detection and quantification of traces of antibiotics.
Collapse
|
173
|
Karastogianni S, Diamantidou D, Girousi S. Selective Voltammetric Detection of Ascorbic Acid from Rosa Canina on a Modified Graphene Oxide Paste Electrode by a Manganese(II) Complex. BIOSENSORS 2021; 11:294. [PMID: 34562884 PMCID: PMC8465974 DOI: 10.3390/bios11090294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 05/27/2023]
Abstract
Voltammetric techniques have been considered as an important analytical tool applied to the determination of trace concentrations of many biological molecules including ascorbic acid. In this paper, ascorbic acid was detected by square wave voltammetry, using graphene oxide paste as a working electrode, modified by a film of a manganese(II) complex compound. Various factors, such as the effect of pH, affecting the response characteristics of the modified electrode were investigated. The relationship between the peak height and ascorbic acid concentration within the modified working electrode was investigated, using the calibration graph. The equation of the calibration graph was found to be: I = 0.0550γac + 0.155 with R2 = 0.9998, where I is the SWV current and γac is the mass concentration of ascorbic acid. The LOD and LOQ of the proposed method were determined to be 1.288 μg/L and 3.903 μg/L, respectively. Several compounds, such as riboflavin, biotin, and ions, such as Fe and Cu, were tested and it seemed that they did not interfere with the analytic signal. The proposed procedure was successfully applied in the determination of ascorbic acid in Rosa canina hips.
Collapse
Affiliation(s)
| | | | - Stella Girousi
- Analytical Chemistry Laboratory, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (D.D.)
| |
Collapse
|
174
|
Woollard G, McWhinney B, Greaves RF, Punyalack W. Total pathway to method validation. Clin Chem Lab Med 2021; 58:e257-e261. [PMID: 32609639 DOI: 10.1515/cclm-2020-0525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/29/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Gerald Woollard
- Member RCPAQAP-AACB Advisory Committees, St Leonards, NSW, Australia
- Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Brett McWhinney
- Member RCPAQAP-AACB Advisory Committees, St Leonards, NSW, Australia
- Analytical Chemistry Unit, Department of Chemical Pathology, RBWH, Herston, QLD, Australia
| | - Ronda F Greaves
- Member RCPAQAP-AACB Advisory Committees, St Leonards, NSW, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Executive, Emerging Technologies Division, International Federation of Clinical Chemistry and Laboratory Medicine, Milan, Italy
| | - Wilson Punyalack
- Member RCPAQAP-AACB Advisory Committees, St Leonards, NSW, Australia
- The Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP), St Leonards, NSW, Australia
| |
Collapse
|
175
|
Thakur A, Tan Z, Kameyama T, El-Khateeb E, Nagpal S, Malone S, Jamwal R, Nwabufo CK. Bioanalytical strategies in drug discovery and development. Drug Metab Rev 2021; 53:434-458. [PMID: 34310243 DOI: 10.1080/03602532.2021.1959606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A reliable, rapid, and effective bioanalytical method is essential for the determination of the pharmacokinetic, pharmacodynamic, and toxicokinetic parameters that inform the safety and efficacy profile of investigational drugs. The overall goal of bioanalytical method development is to elucidate the procedure and operating conditions under which a method can sufficiently extract, qualify, and/or quantify the analyte(s) of interest and/or their metabolites for the intended purpose. Given the difference in the physicochemical properties of small and large molecule drugs, different strategies need to be adopted for the development of an effective and efficient bioanalytical method. Herein, we provide an overview of different sample preparation strategies, analytical platforms, as well as procedures for achieving high throughput for bioanalysis of small and large molecule drugs.
Collapse
Affiliation(s)
- Aarzoo Thakur
- Innovations in Food and Chemical Safety, Agency for Science, Technology, and Research, Singapore, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Zhiyuan Tan
- Department of Early Clinical Development, dMed-Clinipace, Shanghai, China
| | - Tsubasa Kameyama
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eman El-Khateeb
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Shakti Nagpal
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | | | - Rohitash Jamwal
- College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
176
|
Effect of Polymerization Time on Residual Monomer Release in Dental Composite: In Vitro Study. INT J POLYM SCI 2021. [DOI: 10.1155/2021/8101075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light activated resin-based composites are the most accepted and used materials among clinicians. The aim of this study is to determine the amount of residual monomer released from nanofiller composite resins for different polymerization times and storage periods in vitro. To this purpose, Tetric Ceram (Ivoclar, Liechtenstein), Clearfil Majesty Posterior (Kuraray, Japan), Grandio (VOCO, Germany), and Filtek Ultimate Universal (3M, USA) were used as nanofiller resin composites samples. Four groups (
, diameter: 5 mm, thickness: 2 mm) of each material were fabricated, and each group was exposed to three different polymerization time (10, 20 and 40 sec). High-performance liquid chromatography (HPLC) was used to measure the amount of monomers released over 1, 15, and 30 days. The highest amount of monomer release was seen in Tetric EvoCream composite, while the least monomer release was seen in Clearfil Majesty composite. Regardless of the polymerization time, material, or storage period, the highest amount of eluted monomer was Bis-GMA. It is observed that there is no statistically significant difference between various polymerization times. Monomer release reached its highest level on the 15th day and decreased on the 30th day for all composites. Polymerization time did not affect the monomer release from the composites, but the type of the monomers and concentration of the filler used in the composites affected the amount of released monomers. The use of TEGDMA (co)monomer reduced the monomer release.
Collapse
|
177
|
Märtson AG, Edwina AE, Burgerhof JGM, Berger SP, de Joode A, Damman K, Verschuuren EAM, Blokzijl H, Bakker M, Span LF, van der Werf TS, Touw DJ, Sturkenboom MGG, Knoester M, Alffenaar JWC. Ganciclovir therapeutic drug monitoring in transplant recipients. J Antimicrob Chemother 2021; 76:2356-2363. [PMID: 34160036 PMCID: PMC8361328 DOI: 10.1093/jac/dkab195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/18/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The use of (val)ganciclovir is complicated by toxicity, slow response to treatment and acquired resistance. OBJECTIVES To evaluate a routine therapeutic drug monitoring (TDM) programme for ganciclovir in a transplant patient population. METHODS An observational study was performed in transplant recipients from June 2018 to February 2020. Dose adjustments were advised by the TDM pharmacist as part of clinical care. For prophylaxis, a trough concentration (Cmin) of 1-2 mg/L and an AUC24h of >50 mg·h/L were aimed for. For treatment, a Cmin of 2-4 mg/L and an AUC24h of 80-120 mg·h/L were aimed for. RESULTS Ninety-five solid organ and stem cell transplant patients were enrolled. Overall, 450 serum concentrations were measured; with a median of 3 (IQR = 2-6) per patient. The median Cmin and AUC24h in the treatment and prophylaxis groups were 2.0 mg/L and 90 mg·h/L and 0.9 mg/L and 67 mg·h/L, respectively. Significant intra- and inter-patient patient variability was observed. The majority of patients with an estimated glomerular filtration rate of more than 120 mL/min/1.73 m2 and patients on continuous veno-venous haemofiltration showed underexposure. The highest Cmin and AUC24h values were associated with the increase in liver function markers and decline in WBC count as compared with baseline. CONCLUSIONS This study revealed that a standard weight and kidney function-based dosing regimen resulted in highly variable ganciclovir Cmin and under- and over-exposure were observed in patients on dialysis and in patients with increased renal function. Clearly there is a need to explore the impact of concentration-guided dose adjustments in a prospective study.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- Corresponding author. E-mail:
| | - Angela E. Edwina
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Johannes G. M. Burgerhof
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Stefan P. Berger
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Groningen, The Netherlands
| | - Anoek de Joode
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Groningen, The Netherlands
| | - Kevin Damman
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Erik A. M. Verschuuren
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands
| | - Hans Blokzijl
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Martijn Bakker
- University of Groningen, University Medical Center Groningen, Department of Hematology, Groningen, The Netherlands
| | - Lambert F. Span
- University of Groningen, University Medical Center Groningen, Department of Hematology, Groningen, The Netherlands
| | - Tjip S. van der Werf
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands
| | - Daan J. Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Marieke G. G. Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Marjolein Knoester
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Jan W. C. Alffenaar
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, New South Wales, Sydney, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
178
|
Antioxidant Activity, α-Glucosidase Inhibition and UHPLC-ESI-MS/MS Profile of Shmar ( Arbutus pavarii Pamp). PLANTS 2021; 10:plants10081659. [PMID: 34451703 PMCID: PMC8398081 DOI: 10.3390/plants10081659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 01/09/2023]
Abstract
The genus Arbutus (Ericaceae) has been traditionally used in folk medicine due to its phytomedicinal properties, especially Arbutus pavarii Pamp. However, this plant has not been evaluated for its efficacy, quality, and consistency to support the traditional uses, potentially in treating diabetes. Despite previous studies that revealed the biological activities of A. pavarii as antioxidant and α-glucosidase inhibitory agents, scientific reports on the bioactive compounds that contribute to its health benefits are still scarce. Therefore, this research focused on the evaluation of antioxidant and α-glucosidase inhibitory activities of the methanol crude extracts and various fractions of the leaf and stem bark, as well as on metabolite profiling of the methanol crude extracts. The extracts and fractions were evaluated for total phenolic (TPC) and total flavonoid (TFC) contents, as well as the DPPH free radical scavenging, ferric reducing antioxidant power (FRAP), and α-glucosidase inhibitory activities. Methanol crude extracts of the leaf and stem bark were then subjected to UHPLC-ESI-MS/MS. To the best of our knowledge, the comparative evaluation of the antioxidant and α-glucosidase inhibitory activities of the leaf and stem bark of A. pavarii, as well as of the respective solvent fractions, is reported herein for the first time. Out of these extracts, the methanolic crude extracts and polar fractions (ethyl acetate and butanol fractions) showed significant bioactivities. The DPPH free radical and α-glucosidase inhibitions was highest in the leaf ethyl acetate fraction, with IC50 of 6.39 and 4.93 µg/mL, respectively, while the leaf methanol crude extract and butanol fraction exhibited the highest FRAP with 82.95 and 82.17 mmol Fe (II)/g extract. The UHPLC-ESI-MS/MS analysis resulted in the putative identification of a total of 76 compounds from the leaf and stem bark, comprising a large proportion of plant phenolics (flavonoids and phenolic acids), terpenoids, and fatty acid derivatives. Results from the present study showed that the different parts of A. pavarii had potent antioxidant and α-glucosidase inhibitory activities, which could potentially prevent oxidative damage or diabetes-related problems. These findings may strengthen the traditional claim on the medicinal value of A. pavarii.
Collapse
|
179
|
Deprez S, Stove CP. Fully Automated Dried Blood Bpot Extraction coupled to Liquid Chromatography-tandem Mass Spectrometry for Therapeutic Drug Monitoring of Immunosuppressants. J Chromatogr A 2021; 1653:462430. [PMID: 34384960 DOI: 10.1016/j.chroma.2021.462430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Patients receiving immunosuppressant therapy, require intensive follow-up via therapeutic drug monitoring (TDM). This puts quite a burden on the patient involving frequent hospital visits and venipunctures and could (partially) be resolved by the use of dried blood microsamples (e.g. dried blood spots, DBS). One of the drawbacks of the use of DBS is the requirement for a dedicated, manual sample preparation. Fully automated DBS extraction systems, online coupled to standard liquid chromatography-tandem mass spectrometry (LC-MS/MS) configurations, could provide a solution for that. The aim of this study was to evaluate the use of the DBS-MS 500, online coupled to an LC-MS/MS system, for the TDM of immunosuppressants using DBS. Two methods for the quantification of tacrolimus, sirolimus, everolimus and cyclosporin A, in both DBS and whole blood, were developed and validated based on international guidelines. For the DBS method also DBS-specific parameters were taken into account. Both methods proved to be accurate and reproducible with biases below 11% (20% for the LLOQ) and CVs (%) below 14% (with a single exception) (20% for the LLOQ) over a calibration range from 1 to 50 ng/mL for tacrolimus, sirolimus and everolimus and 20 to 1500 ng/mL for cyclosporin A. Reproducible (CV < 15%) IS-compensated relative recovery values were obtained. However, a hematocrit-dependent relative recovery was observed for DBS, with lower hematocrit values yielding higher relative recoveries (and vice versa). Relative to the reference hematocrit of 0.37, this difference exceeded 15% at hematocrit extremes (0.18 and 0.60). Application on venous left-over patient samples showed reasonable agreement between the results of both methodologies (8,6,9 and 9/10 mean DBS results within 20% of the mean whole blood result for tacrolimus, sirolimus, everolimus and cyclosporin A, respectively), although also here an impact of the hematocrit could be discerned. As a next step, larger patient sets are needed to allow a better insight on how (correction for) the hct effect affects the quantification of immunosuppressants via fully automated DBS analysis.
Collapse
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
180
|
Zhang Z, Ghosh A, Connolly PJ, King P, Wilde T, Wang J, Dong Y, Li X, Liao D, Chen H, Tian G, Suarez J, Bonnette WG, Pande V, Diloreto KA, Shi Y, Patel S, Pietrak B, Szewczuk L, Sensenhauser C, Dallas S, Edwards JP, Bachman KE, Evans DC. Gut-Restricted Selective Cyclooxygenase-2 (COX-2) Inhibitors for Chemoprevention of Colorectal Cancer. J Med Chem 2021; 64:11570-11596. [PMID: 34279934 DOI: 10.1021/acs.jmedchem.1c00890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective cyclooxygenase (COX)-2 inhibitors have been extensively studied for colorectal cancer (CRC) chemoprevention. Celecoxib has been reported to reduce the incidence of colorectal adenomas and CRC but is also associated with an increased risk of cardiovascular events. Here, we report a series of gut-restricted, selective COX-2 inhibitors characterized by high colonic exposure and minimized systemic exposure. By establishing acute ex vivo 18F-FDG uptake attenuation as an efficacy proxy, we identified a subset of analogues that demonstrated statistically significant in vivo dose-dependent inhibition of adenoma progression and survival extension in an APCmin/+ mouse model. However, in vitro-in vivo correlation analysis showed their chemoprotective effects were driven by residual systemic COX-2 inhibition, rationalizing their less than expected efficacies and highlighting the challenges associated with COX-2-mediated CRC disease chemoprevention.
Collapse
Affiliation(s)
- Zhuming Zhang
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Avijit Ghosh
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Peter J Connolly
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Peter King
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Thomas Wilde
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Jianyao Wang
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Yawei Dong
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Xueliang Li
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Daohong Liao
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Hao Chen
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Gaochao Tian
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Javier Suarez
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - William G Bonnette
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Vineet Pande
- Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Karen A Diloreto
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Yifan Shi
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Shefali Patel
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Beth Pietrak
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Lawrence Szewczuk
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Carlo Sensenhauser
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Shannon Dallas
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - James P Edwards
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Kurtis E Bachman
- Oncology Discovery, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - David C Evans
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
181
|
Tagwerker C, Baig I, Brunson EJ, Dutra-Smith D, Carias MJ, de Zoysa RS, Smith DJ. Multiplex Analysis of 230 Medications and 30 Illicit Compounds in Dried Blood Spots and Urine. J Anal Toxicol 2021; 45:581-592. [PMID: 32886782 DOI: 10.1093/jat/bkaa125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/24/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Drugs of abuse and medication reconciliation testing can benefit from analysis methods capable of detecting a broader range of drug classes and analytes. Mass spectrometry analysis of a wide variety of commonly prescribed medications and over-the-counter drugs per sample also allows for application of a drug-drug interaction (DDI) algorithm to detect adverse drug reactions. In order to prevent adulteration of commonly collected clinical samples such as urine, dried blood spots (DBS) present a reliable alternative. A novel method is described for qualitative and quantitative multiplex analysis of 230 parent drugs, 30 illicit drugs and 43 confirmatory metabolites by HPLC-MS-MS This method is applicable to DBS specimens collected by volumetric absorptive microsamplers and confirmable in urine specimens. A patient cohort (n = 67) providing simultaneous urine specimens and DBS resulted in 100% positive predictive values of medications or illicits confirmed by detection of a parent drug and/or its metabolite during routine medication adherence analysis. An additional 5,508 DBS specimens screened (n = 5,575) showed 5,428 (97%) with an inconsistent positive compared to the provided medication list (including caffeine, cotinine or ethanol metabolites), 29 (0.5%) with no medication list and no unexpected positive results (consistent negative) and 22 (0.4%) showed all positive results matching the provided medication list (consistent positive). A DDI algorithm applied to all positive results revealed 17% with serious and 56% with moderate DDI warnings. Comprehensive DBS analysis proves a reliable alternative to urine drug testing for extended medication reconciliation, with the added advantage of detecting DDIs.
Collapse
Affiliation(s)
- Christian Tagwerker
- NRCC (CC/CT) - Alcala Testing and Analysis Services, 3703 Camino del Rio South #100-A, San Diego, CA, 92108
| | | | | | | | | | | | - David J Smith
- Laboratory and Medical Director - Alcala Testing and Analysis Services
| |
Collapse
|
182
|
Alffenaar JWC, Jongedijk EM, van Winkel CAJ, Sariko M, Heysell SK, Mpagama S, Touw DJ. A mobile microvolume UV/visible light spectrophotometer for the measurement of levofloxacin in saliva. J Antimicrob Chemother 2021; 76:423-429. [PMID: 33089322 PMCID: PMC7816168 DOI: 10.1093/jac/dkaa420] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) for personalized dosing of fluoroquinolones has been recommended to optimize efficacy and reduce acquired drug resistance in the treatment of MDR TB. Therefore, the aim of this study was to develop a simple, low-cost, robust assay for TDM using mobile UV/visible light (UV/VIS) spectrophotometry to quantify levofloxacin in human saliva at the point of care for TB endemic settings. METHODS All experiments were performed on a mobile UV/VIS spectrophotometer. The levofloxacin concentration was quantified by using the amplitude of the second-order spectrum between 300 and 400 nm of seven calibrators. The concentration of spiked samples was calculated from the spectrum amplitude using linear regression. The method was validated for selectivity, specificity, linearity, accuracy and precision. Drugs frequently co-administered were tested for interference. RESULTS The calibration curve was linear over a range of 2.5-50.0 mg/L for levofloxacin, with a correlation coefficient of 0.997. Calculated accuracy ranged from -5.2% to 2.4%. Overall precision ranged from 2.1% to 16.1%. Application of the Savitsky-Golay method reduced the effect of interferents on the quantitation of levofloxacin. Although rifampicin and pyrazinamide showed analytical interference at the lower limit of quantitation of levofloxacin concentrations, this interference had no implication on decisions regarding the levofloxacin dose. CONCLUSIONS A simple UV/VIS spectrophotometric method to quantify levofloxacin in saliva using a mobile nanophotometer has been validated. This method can be evaluated in programmatic settings to identify patients with low levofloxacin drug exposure to trigger personalized dose adjustment.
Collapse
Affiliation(s)
- Jan-Willem C Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead Hospital, Sydney, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Erwin M Jongedijk
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Claudia A J van Winkel
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | | | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Stellah Mpagama
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro, Tanzania
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| |
Collapse
|
183
|
Piendl SK, Schönfelder T, Polack M, Weigelt L, van der Zwaag T, Teutenberg T, Beckert E, Belder D. Integration of segmented microflow chemistry and online HPLC/MS analysis on a microfluidic chip system enabling enantioselective analyses at the nanoliter scale. LAB ON A CHIP 2021; 21:2614-2624. [PMID: 34008641 DOI: 10.1039/d1lc00078k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we introduce an approach to merge droplet microfluidics with an HPLC/MS functionality on a single chip to analyze the contents of individual droplets. This is achieved by a mechanical rotor-stator interface that precisely positions a microstructured PEEK rotor on a microfluidic chip in a pressure-tight manner. The developed full-body fused silica chip, manufactured by selective laser-induced etching, contained a segmented microflow compartment followed by a packed HPLC channel, which were interconnected by the microfluidic PEEK rotor on the fused silica lid with hair-thin through-holes. This enabled the targeted and leakage-free transfer of 10 nL fractions of droplets as small as 25 nL from the segmented microflow channel into the HPLC compartment that operated at pressures of up to 60 bar. In a proof of concept study, this approach was successfully applied to monitor reactions at the nanoliter scale and to distinguish the formed enantiomers.
Collapse
Affiliation(s)
- Sebastian K Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Thomas Schönfelder
- Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Laura Weigelt
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Till van der Zwaag
- Institut für Energie - und Umwelttechnik e. V., Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Thorsten Teutenberg
- Institut für Energie - und Umwelttechnik e. V., Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Erik Beckert
- Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| |
Collapse
|
184
|
Han F, Li W, Jin Y, Wang F, Yuan B, Xu H. Rapid and Sensitive LC-MS/MS Method for Simultaneous Determination of Three First-Line Oral Antituberculosis Drug in Plasma. J Chromatogr Sci 2021; 59:432-438. [PMID: 33434918 DOI: 10.1093/chromsci/bmaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/30/2020] [Accepted: 11/29/2020] [Indexed: 11/14/2022]
Abstract
A bioanalytical method for simultaneous quantification of isoniazid (INH), pyrazinamide (PZA) and ethambutol (EMB) in plasma was developed and validated using high-performance liquid chromatography with tandem mass spectrometry. After extracted by protein precipitation with acetonitrile, the analytes were separated on a Waters XBridge Amide column by isocratic elution with acetonitrile and 5 mM ammonium acetate solution containing 0.3% formic acid (77:23, v/v) at a flow rate of 0.5 mL/min. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source in positive mode by monitoring the selected ion transitions at m/z 205.2 → 116.1, m/z 137.9 → 121.2, m/z 124.3 → 78.9 and m/z 213.1 → 122.4 for EMB, INH, PZA and EMB-d8 Internal standard (IS), respectively. The calibration curves were linear over the range of 0.0125-2.00 μg/mL for EMB, 0.0625-10.0 μg/mL for INH and 0.250-40.0 μg/mL for PZA. Neither cross-analytes inter-conversion nor matrix effects were observed. The intra- and inter-assay precision (%RSD) values were within 8.80%, and accuracy (%RE) ranged from -11.13 to 13.49%, indicating that the precision and accuracy were well within the acceptable limits of variation. The method would be helpful for analysis of EMB, INH and PZA in plasma samples from clinical pharmacokinetics and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Fei Han
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weiwei Li
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Jin
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fang Wang
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Yuan
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haiyan Xu
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
185
|
Vejar-Vivar C, García-Valverde MT, Mardones C, Lucena R, Cárdenas S. Polydopamine coated hypodermic needles as a microextraction device for the determination of tricyclic antidepressants in oral fluid by direct infusion MS/MS. RSC Adv 2021; 11:22683-22690. [PMID: 35480419 PMCID: PMC9034363 DOI: 10.1039/d1ra02721b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 01/24/2023] Open
Abstract
In-needle microextraction consists of the confinement of the sorbent, by coating or packing, inside a metallic needle. The size of the needles reduces the eluent requirements providing an efficient preconcentration of the analytes. In this work, hypodermic needles coated with polydopamine (PDA) are presented as microextraction devices to isolate six tricyclic antidepressants from oral fluid samples. The coating consists of the in-surface polymerization of dopamine at pH 8.5 and mild conditions (room temperature and water as solvent). The PDA coating over the stainless-steel surface confers the needles with a high extraction ability towards the target analytes. After the extraction, the eluates were analyzed by direct infusion MS spectrometry, working in multiple reaction monitoring (MRM) mode, which provided a sample throughput of 30 samples per hour. The variables affecting the synthesis (number of coating cycles, the concentration of dopamine, and needle surface pre-treatment) and the extraction (sample salinity, sample loading cycles, and the number of elution strokes) were studied in depth. Under the optimum conditions, a matrix-matched calibration model was built. The limits of quantification are between 2 and 5 ng mL−1 with linear ranges up to 1000 ng mL−1 for all analytes. The precision, expressed as relative standard deviation (RSD), is better than 10% for all analytes. Accuracy was calculated as recovery, and the obtained values are between 84% and 107%. A single-blind assay was also performed to evaluate the suitability of the method for real application. Hypodermic needles coated with polydopamine for the extraction of antidepressants.![]()
Collapse
Affiliation(s)
- Carmina Vejar-Vivar
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain .,Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción Casilla 237, Correo 3 Concepción Chile
| | - María Teresa García-Valverde
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción Casilla 237, Correo 3 Concepción Chile
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain
| |
Collapse
|
186
|
Karastogianni S, Girousi S. Square Wave Voltammetric (SWV) Determination of Cyanocobalamin (Vitamin B12) in Pharmaceuticals and Supplements on a Carbon Paste Electrode (CPE) Modified by a Manganese(II) Polymeric Film. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1937195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sophia Karastogianni
- Chemistry Department, Analytical Chemistry Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stella Girousi
- Chemistry Department, Analytical Chemistry Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
187
|
Xu X, Hu Q, Liu D, Qiu H, Shameem M, Li N. Characterization of Proteinaceous Particles in Monoclonal Antibody Drug Products Using Mass Spectrometry. J Pharm Sci 2021; 110:3403-3409. [PMID: 34139261 DOI: 10.1016/j.xphs.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
In recent years, monoclonal antibodies (mAb) have become one of the most important classes of therapeutic proteins. Among many of the quality attributes monitored and controlled throughout therapeutic antibody development, particulate matter is one of the critical quality attributes (CQAs) for drug products. Visible and subvisible particulates in drug products may pose safety and immunogenicity risks to patients and therefore are tightly controlled and regulated. Characterization of the particle composition in drug products is essential to understand the origin of particulates and their mechanism of formation. In this study, we developed a liquid chromatography-mass spectrometry (LC-MS) based method and integrated it into the typical particulate characterization workflow to identify and quantify the composition of proteinaceous particles isolated from a therapeutic mAb drug product. The LC-MS workflow provides a useful tool to study particle formation and monitor the protein composition of particulates during therapeutic mAb development.
Collapse
Affiliation(s)
- Xiaobin Xu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Qingyan Hu
- Formulation Development, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Dingjiang Liu
- Formulation Development, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Mohammed Shameem
- Formulation Development, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
188
|
Rao PV, Rao AL, Maheswara Prasad SVU. Development and Validation of a Method for Simultaneous Estimation of Sitagliptin and Ertugliflozin in Rat Plasma by LC-MS method. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200630123120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The development of sound bioanalytical LC-MS (liquid chromatography-mass
spectroscopy) method(s) is of paramount importance during the process of drug discovery, development
and culminating in a marketing approval. The use of oral antidiabetic agents has been increased
significantly from the last decades and till now no bioanalytical method is available for quantitation of
sitagliptin (SG) and ertugliflozin (EG) in biological matrix which can be applied to pharmacokinetic
studies using LC-MS/MS.
Objective:
To develop a new, rapid and sensitive LC–MS/MS method for the simultaneous estimation of sitagliptin (SG)
and ertugliflozin (EG) in rat plasma by liquid–liquid extraction method (LLE) using deutereated sitagliptin (SGd6) and
ertugliflozin (EGd6).
Methods:
Chromatographic separation was carried out on a reverse phase Waters, Xetrra C18 (150mm x
4.6mm, 2μm) column using a mixture of acetonitrile and OPA buffer (50:50v/v) at a flow rate of
1ml/min in isocratic mode. Quantification was achieved using an electrospray ion interface operating in
positive mode, under Multiple Reaction Monitoring (MRM) conditions.
Results:
The method showed excellent linearity over the concentration range of 5.00- 75.00pg/mL for sitagliptin and 0.75-
11.35pg/mL ertugliflozin. The intra-batch and inter batch precision (%CV) was ≤ 4.3% and matrix effect (%CV) was
0.02% and 0.12% for sitagliptin at HQC and LQC, respectively. Matrix effect (%CV) was 0.08% and 0.33% for
ertugliflozin at HQC and LQC, respectively.
Conclusion:
The simplicity of the method allows for application in laboratories, presents a valuable tool for
pharmacokinetic studies. The particular assay has been proficiently put on pharmacokinetic study in rats subjects.
Collapse
Affiliation(s)
| | - Atmakuri Lakshmana Rao
- Vallabhaneni Venkatadri. Institute of Pharmaceutical Sciences, Gudlavalleru, A.P-521 356, India
| | | |
Collapse
|
189
|
Tian F, Li SY. Determination of Epsilon Aminocaproic Acid Based on Charge Transfer Complexation with p-Nitrophenlol by Spectrophotometry. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666200211104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Spectrophotometry was investigated for the determination of epsilon aminocaproic
acid (EACA) with p-nitrophenol (PNP). The method was based on Charge Transfer (CT)
complexation of this drug as n-electron donor with π-acceptor PNP.
Methods:
The experiment indicated that CT complexation was carried out at room temperature for 10
minutes in dimethyl sulfoxide solvent. The spectrum obtained for EACA/PNP system showed the maximum
absorption band at a wavelength of 425 nm. The stoichiometry of the CT complex was found to
be a 1:1 ratio by Job’s method between the donor and the acceptor. Different variables affecting the
complexation were carefully studied and optimized. At the optimum reaction conditions, Beer’s law
was obeyed in a concentration limit of 1~6 μg mL-1. The relative standard deviation was less than
2.9%. The apparent molar absorptivity was determined to be 1.86×104 L mol-1cm-1 at 425 nm. The CT
complexation was also confirmed by both FTIR and 1H NMR measurements.
Results:
The thermodynamic properties and reaction mechanism of the CT complexation have been
discussed.
Conclusion:
The developed method could be applied successfully for the determination of the studied
compound in its pharmaceutical dosage forms with good precision and accuracy compared to the official
method comprising t- and F-tests.
Collapse
Affiliation(s)
- Fang Tian
- Department of Chemistry, Taiyuan Normal University, Jinzhong,China
| | - Sheng-Yun Li
- Department of Chemistry, Taiyuan Normal University, Jinzhong,China
| |
Collapse
|
190
|
Structural and Biophysical Characterization of the HCV E1E2 Heterodimer for Vaccine Development. Viruses 2021; 13:v13061027. [PMID: 34072451 PMCID: PMC8227786 DOI: 10.3390/v13061027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
An effective vaccine for the hepatitis C virus (HCV) is a major unmet medical and public health need, and it requires an antigen that elicits immune responses to multiple key conserved epitopes. Decades of research have generated a number of vaccine candidates; based on these data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice. One bottleneck in the development of an E1E2-based vaccine is that the antigen is challenging to produce in large quantities and at high levels of purity and antigenic/functional integrity. This review describes the production and characterization of E1E2-based vaccine antigens, both membrane-associated and a novel secreted form of E1E2, with a particular emphasis on the major challenges facing the field and how those challenges can be addressed.
Collapse
|
191
|
Handayani I, Saad H, Ratnakomala S, Lisdiyanti P, Kusharyoto W, Krause J, Kulik A, Wohlleben W, Aziz S, Gross H, Gavriilidou A, Ziemert N, Mast Y. Mining Indonesian Microbial Biodiversity for Novel Natural Compounds by a Combined Genome Mining and Molecular Networking Approach. Mar Drugs 2021; 19:316. [PMID: 34071728 PMCID: PMC8227522 DOI: 10.3390/md19060316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Indonesia is one of the most biodiverse countries in the world and a promising resource for novel natural compound producers. Actinomycetes produce about two thirds of all clinically used antibiotics. Thus, exploiting Indonesia's microbial diversity for actinomycetes may lead to the discovery of novel antibiotics. A total of 422 actinomycete strains were isolated from three different unique areas in Indonesia and tested for their antimicrobial activity. Nine potent bioactive strains were prioritized for further drug screening approaches. The nine strains were cultivated in different solid and liquid media, and a combination of genome mining analysis and mass spectrometry (MS)-based molecular networking was employed to identify potential novel compounds. By correlating secondary metabolite gene cluster data with MS-based molecular networking results, we identified several gene cluster-encoded biosynthetic products from the nine strains, including naphthyridinomycin, amicetin, echinomycin, tirandamycin, antimycin, and desferrioxamine B. Moreover, 16 putative ion clusters and numerous gene clusters were detected that could not be associated with any known compound, indicating that the strains can produce novel secondary metabolites. Our results demonstrate that sampling of actinomycetes from unique and biodiversity-rich habitats, such as Indonesia, along with a combination of gene cluster networking and molecular networking approaches, accelerates natural product identification.
Collapse
Affiliation(s)
- Ira Handayani
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia; (P.L.); (W.K.)
| | - Hamada Saad
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (H.S.); (S.A.); (H.G.)
- Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Shanti Ratnakomala
- Research Center for Biology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia;
| | - Puspita Lisdiyanti
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia; (P.L.); (W.K.)
| | - Wien Kusharyoto
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia; (P.L.); (W.K.)
| | - Janina Krause
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
| | - Andreas Kulik
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
| | - Wolfgang Wohlleben
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
| | - Saefuddin Aziz
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (H.S.); (S.A.); (H.G.)
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (H.S.); (S.A.); (H.G.)
| | - Athina Gavriilidou
- Applied Natural Products Genome Mining, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (A.G.); (N.Z.)
| | - Nadine Ziemert
- Applied Natural Products Genome Mining, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (A.G.); (N.Z.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Yvonne Mast
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- Department of Microbiology, Technical University of Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
192
|
Sharma TSK, Hwa KY. Facile Synthesis of Ag/AgVO 3/N-rGO Hybrid Nanocomposites for Electrochemical Detection of Levofloxacin for Complex Biological Samples Using Screen-Printed Carbon Paste Electrodes. Inorg Chem 2021; 60:6585-6599. [PMID: 33878862 DOI: 10.1021/acs.inorgchem.1c00389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silver vanadate nanorods (β-AgVO3) with silver nanoparticles (Ag-NPs) decorated on the surface of the rods were synthesized by using simple hydrothermal technique and later anchored onto nitrogen-doped reduced graphene oxide (N-rGO) to make a novel nanocomposite. Experimental analyses were carried out to identify the electronic configuration by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis, which revealed monoclinic patterns of the C12/m1 space group with Wulff construction forming beta silver vanadate (β-AgVO3) crystals with optical density and phase transformations. Ag nucleation showed consistent results with metallic formation and electronic changes occurring in [AgO5] and [AgO3] clusters. Transmission electron microscopy and field-emission scanning electron microscopy with elemental mapping and EDX analysis of the morphology reveals the nanorod structure for β-AgVO3 with AgNPs on the surface and sheets for N-rGO. Additionally, a novel electrochemical sensor is constructed by using Ag/AgVO3/N-rGO on screen-printed carbon paste electrodes for the detection of antiviral drug levofloxacin (LEV) which is used as a primary antibiotic in controlling COVID-19. Using differential pulse voltammetry, LEV is determined with a low detection limit of 0.00792 nm for a linear range of 0.09-671 μM with an ultrahigh sensitivity of 152.19 μA μM-1 cm-2. Furthermore, modified electrode performance is tested by real-time monitoring using biological and river samples.
Collapse
Affiliation(s)
- Tata Sanjay Kanna Sharma
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan.,Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan.,Center for Biomedical Industry, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kuo-Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan.,Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan.,Center for Biomedical Industry, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
193
|
Sharma B, Shahanshah MFH, Gupta S, Gupta V. Recent advances in the diagnosis of COVID-19: a bird's eye view. Expert Rev Mol Diagn 2021; 21:475-491. [PMID: 33423567 PMCID: PMC7938659 DOI: 10.1080/14737159.2021.1874354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The COVID-19 pandemic is still escalating and has shaped an extraordinary and pressing need for rapid diagnostics with high sensitivity and specificity. Prompt diagnosis is the key to mitigate this situation. As several diagnostic tools for COVID-19 are already available and others are still under development, mandating a comprehensive review of the efficacy of existing tools and evaluate the potential of others. AREAS COVERED Currently explored platforms for SARS-CoV-2 diagnostics and surveillance centered on qRT-PCR, RT-PCR, CRISPR, microarray, LAMP, lateral flow immunoassays, proteomics-based approaches, and radiological scans are overviewed and summarized in this review along with their advantages and downsides. A narrative literature review was carried out by accessing the freely available online databases to encapsulate the developments in medical diagnostics. EXPERT OPINION An ideal detection method should be sensitive, specific, rapid, cost-effective, and should allow early diagnosis of the infection as near as possible to the point of care that could alter the current situation for the better. Medical diagnostics is a highly dynamic field as no diagnostic method available for SARS-CoV-2 detection offers a perfect solution and requires more attention and continuous R&D to challenge the present-day pandemic situation.
Collapse
Affiliation(s)
- Bhawna Sharma
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | | | - Sanjay Gupta
- Independent Scholar Former Head and Professor, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
194
|
Breunis LJ, Wassenaar S, Sibbles BJ, Aaldriks AA, Bijma HH, Steegers EAP, Koch BCP. Objective assessment of alcohol consumption in early pregnancy using phosphatidylethanol: a cross-sectional study. BMC Pregnancy Childbirth 2021; 21:342. [PMID: 33931032 PMCID: PMC8086351 DOI: 10.1186/s12884-021-03804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background Alcohol consumption during pregnancy is associated with major birth defects and developmental disabilities. Questionnaires concerning alcohol consumption during pregnancy underestimate alcohol use while the use of a reliable and objective biomarker for alcohol consumption enables more accurate screening. Phosphatidylethanol can detect low levels of alcohol consumption in the previous two weeks. In this study we aimed to biochemically assess the prevalence of alcohol consumption during early pregnancy using phosphatidylethanol in blood and compare this with self-reported alcohol consumption. Methods To evaluate biochemically assessed prevalence of alcohol consumption during early pregnancy using phosphatidylethanol levels, we conducted a prospective, cross-sectional, single center study in the largest tertiary hospital of the Netherlands. All adult pregnant women who were under the care of the obstetric department of the Erasmus MC and who underwent routine blood testing at a gestational age of less than 15 weeks were eligible. No specified informed consent was needed. Results The study was conducted between September 2016 and October 2017. In total, we received 1,002 residual samples of 992 women. After applying in- and exclusion criteria we analyzed 684 samples. Mean gestational age of all included women was 10.3 weeks (SD 1.9). Of these women, 36 (5.3 %) tested positive for phosphatidylethanol, indicating alcohol consumption in the previous two weeks. Of women with a positive phosphatidylethanol test, 89 % (n = 32) did not express alcohol consumption to their obstetric care provider. Conclusions One in nineteen women consumed alcohol during early pregnancy with a high percentage not reporting this use to their obstetric care provider. Questioning alcohol consumption by an obstetric care provider did not successfully identify (hazardous) alcohol consumption. Routine screening with phosphatidylethanol in maternal blood can be of added value to identify women who consume alcohol during pregnancy.
Collapse
Affiliation(s)
- Leonieke J Breunis
- Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands.
| | - Sophie Wassenaar
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Barbara J Sibbles
- Department of Pediatrics, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Ab A Aaldriks
- Department of Psychiatry, Reinier de Graaf Hospital, Reinier de Graafweg 5, 2625 AD, Delft, the Netherlands
| | - Hilmar H Bijma
- Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| |
Collapse
|
195
|
Kim KH, Lee SY, Baek JH, Lee SY, Kim JY, Yoo JS. Measuring fucosylated alpha-fetoprotein in hepatocellular carcinoma: A comparison of μTAS and parallel reaction monitoring. Proteomics Clin Appl 2021; 15:e2000096. [PMID: 33764665 DOI: 10.1002/prca.202000096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Fucosylation of alpha-fetoprotein (AFP) is closely correlated with the diagnosis of patients with hepatocellular carcinoma (HCC). In current, a micro-total analysis system (μTAS) using immunoassay has been developed for determining fucosylated AFP EXPERIMENTAL DESIGN: We compared two analytical methods, μTAS and liquid chromatography-parallel reaction monitoring mass spectrometry (LC-PRM MS), for the measurement of fucosylated AFP in serum to evaluate the usefulness of the results. For this purpose, serum samples were used (cirrhosis, n = 105; HCC, n = 105), and we have discussed the analytical performance of these two methods RESULTS: We observed a correlation (R2 = 0.84) between LC-PRM MS and μTAS using samples where fucosylated levels were measured by both methods. The fucosylated level of AFP by LC-PRM MS better differentiated between cirrhosis and HCC patients than those by μTAS (AUC = 0.910 vs. 0.861), particularly in subgroups with a level of total AFP < 20 ng/mL (0.973 vs. 0.874) and in early stage (I and II) patients (0.922 vs. 0.835) CONCLUSIONS AND CLINICAL RELEVANCE: From this comparative study we can suggest that the LC-PRM MS is applicable in the measurement of fucosylated AFP from human serum and is more useful for early diagnosis of HCC. CLINICAL RELEVANCE Fucosylation of AFP is used for the detection of HCC. A micro-total analysis system (μTAS) has been only developed for measuring fucosylation of AFP in clinical research. This study reports the fucosylation of AFP in human serum samples from cirrhosis and HCC patients using the μTAS and a LC-PRM MS to evaluate fucosylation of AFP from each method. As a result, LC-PRM MS is complementary to the conventional μTAS method. Furthermore, LC-PRM MS provides a higher diagnostic accuracy than the μTAS in patients with low AFP levels and an early stage.
Collapse
Affiliation(s)
- Kwang Hoe Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sang Yoon Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Je-Hyun Baek
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
196
|
Antiochia R. Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. BIOSENSORS 2021; 11:110. [PMID: 33917183 PMCID: PMC8067807 DOI: 10.3390/bios11040110] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the state of the art of paper-based biosensors (PBBs) for coronavirus disease 2019 (COVID-19) detection. Three categories of PBB are currently being been used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics, namely for viral gene, viral antigen and antibody detection. The characteristics, the analytical performance, the advantages and drawbacks of each type of biosensor are highlighted and compared with traditional methods. It is hoped that this review will be useful for scientists for the development of novel PBB platforms with enhanced performance for helping to contain the COVID-19 outbreak, by allowing early diagnosis at the point of care (POC).
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
197
|
Determination of Antiviral Drugs and Their Metabolites Using Micro-Solid Phase Extraction and UHPLC-MS/MS in Reversed-Phase and Hydrophilic Interaction Chromatography Modes. Molecules 2021; 26:molecules26082123. [PMID: 33917128 PMCID: PMC8067820 DOI: 10.3390/molecules26082123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
Two new ultra-high performance liquid chromatography (UHPLC) methods for analyzing 21 selected antivirals and their metabolites were optimized, including sample preparation step, LC separation conditions, and tandem mass spectrometry detection. Micro-solid phase extraction in pipette tips was used to extract antivirals from the biological material of Hanks balanced salt medium of pH 7.4 and 6.5. These media were used in experiments to evaluate the membrane transport of antiviral drugs. Challenging diversity of physicochemical properties was overcome using combined sorbent composed of C18 and ion exchange moiety, which finally allowed to cover the whole range of tested antivirals. For separation, reversed-phase (RP) chromatography and hydrophilic interaction liquid chromatography (HILIC), were optimized using extensive screening of stationary and mobile phase combinations. Optimized RP-UHPLC separation was carried out using BEH Shield RP18 stationary phase and gradient elution with 25 mmol/L formic acid in acetonitrile and in water. HILIC separation was accomplished with a Cortecs HILIC column and gradient elution with 25 mmol/L ammonium formate pH 3 and acetonitrile. Tandem mass spectrometry (MS/MS) conditions were optimized in both chromatographic modes, but obtained results revealed only a little difference in parameters of capillary voltage and cone voltage. While RP-UHPLC-MS/MS exhibited superior separation selectivity, HILIC-UHPLC-MS/MS has shown substantially higher sensitivity of two orders of magnitude for many compounds. Method validation results indicated that HILIC mode was more suitable for multianalyte methods. Despite better separation selectivity achieved in RP-UHPLC-MS/MS, the matrix effects were noticed while using both chromatographic modes leading to signal enhancement in RP and signal suppression in HILIC.
Collapse
|
198
|
Gausi K, Wiesner L, Norman J, Wallis CL, Onyango‐Makumbi C, Chipato T, Haas DW, Browning R, Chakhtoura N, Montepiedra G, Aaron L, McCarthy K, Bradford S, Vhembo T, Stranix‐Chibanda L, Masheto GR, Violari A, Mmbaga BT, Aurpibul L, Bhosale R, Nevrekhar N, Rouzier V, Kabugho E, Mutambanengwe M, Chanaiwa V, Nyati M, Mhembere T, Tongprasert F, Hesseling A, Shin K, Zimmer B, Costello D, Jean‐Philippe P, Sterling TR, Theron G, Weinberg A, Gupta A, Denti P. Pharmacokinetics and Drug-Drug Interactions of Isoniazid and Efavirenz in Pregnant Women Living With HIV in High TB Incidence Settings: Importance of Genotyping. Clin Pharmacol Ther 2021; 109:1034-1044. [PMID: 32909316 PMCID: PMC8048881 DOI: 10.1002/cpt.2044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/30/2020] [Indexed: 01/11/2023]
Abstract
The World Health Organization guidelines recommend that individuals living with HIV receive ≥ 6 months of isoniazid preventive therapy, including pregnant women. Yet, plasma isoniazid exposure during pregnancy, in the antiretroviral therapy era, has not been well-described. We investigated pregnancy-induced and pharmacogenetic-associated pharmacokinetic changes and drug-drug interactions between isoniazid and efavirenz in pregnant women. Eight hundred forty-seven women received isoniazid for 28 weeks, either during pregnancy or at 12 weeks postpartum, and 786 women received efavirenz. After adjusting for NAT2 and CYP2B6 genotype and weight, pregnancy increased isoniazid and efavirenz clearance by 26% and 15%, respectively. Isoniazid decreased efavirenz clearance by 7% in CYP2B6 normal metabolizers and 13% in slow and intermediate metabolizers. Overall, both isoniazid and efavirenz exposures were reduced during pregnancy, but the main determinants of drug concentration were NAT2 and CYP2B6 genotypes, which resulted in a five-fold difference for both drugs between rapid and slow metabolizers.
Collapse
Affiliation(s)
- Kamunkhwala Gausi
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Lubbe Wiesner
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Jennifer Norman
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | | | | | - Tsungai Chipato
- Department of Obstetrics and GynaecologyUniversity of Zimbabwe College of Health SciencesHarareZimbabwe
| | - David W. Haas
- Departments of Medicine, Pharmacology, Pathology, Microbiology, and ImmunologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Internal MedicineMeharry Medical CollegeNashvilleTennesseeUSA
| | - Renee Browning
- Division of AIDSNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Nahida Chakhtoura
- National Institutes of Health (NIH), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)BethesdaMarylandUSA
| | - Grace Montepiedra
- Center for Biostatistics in AIDS ResearchHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | - Lisa Aaron
- Center for Biostatistics in AIDS ResearchHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | | | | | - Tichaona Vhembo
- Department of Obstetrics and GynaecologyUniversity of Zimbabwe College of Health SciencesHarareZimbabwe
| | - Lynda Stranix‐Chibanda
- Department of Obstetrics and GynaecologyUniversity of Zimbabwe College of Health SciencesHarareZimbabwe
| | | | - Avy Violari
- The Perinatal HIV Research UnitUniversity of the WitwatersrandJohannesburgSouth Africa
| | | | - Linda Aurpibul
- Research Institute for Health SciencesChiang Mai UniversityChiang MaiThailand
| | | | - Neetal Nevrekhar
- Byramjee Jeejeebhoy Government College–Johns Hopkins Clinical Research SitePuneIndia
| | - Vanessa Rouzier
- Weill Cornell Center for Global Health New YorkNew YorkNew YorkUSA
- Centres GHESKIOPort‐au‐PrinceHaiti
| | | | - Mercy Mutambanengwe
- University of Zimbabwe College of Health Sciences Clinical Trials Research CentreHarareZimbabwe
| | - Vongai Chanaiwa
- University of Zimbabwe College of Health Sciences Clinical Trials Research CentreHarareZimbabwe
| | - Mandisa Nyati
- Perinatal HIV Research UnitUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Tsungai Mhembere
- University of Zimbabwe College of Health Sciences Clinical Trials Research CentreHarareZimbabwe
| | - Fuanglada Tongprasert
- Department of Obstetrics and GynecologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Anneke Hesseling
- Department of Paediatrics and Child HealthThe Desmond Tutu TB CenterStellenbosch UniversityTygerbergSouth Africa
| | - Katherine Shin
- Division of AIDSNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | | | | | - Patrick Jean‐Philippe
- Division of AIDSNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Timothy R. Sterling
- Vanderbilt Tuberculosis CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Gerhard Theron
- Department of Obstetrics and GynaecologyStellenbosch UniversityCape TownSouth Africa
| | - Adriana Weinberg
- University of Colorado Denver Anschutz Medical CampusAuroraColoradoUSA
| | - Amita Gupta
- Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Paolo Denti
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | | |
Collapse
|
199
|
Electrochemical sensors as a versatile tool for the quantitative analysis of Vitamin B12. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01574-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
200
|
Ahmed RS, Mohammed RS. Assessment of uranium concentration in blood of Iraqi females diagnosed with breast cancer. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:193-201. [PMID: 33221962 DOI: 10.1007/s00411-020-00881-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Cancer is a widespread significant health problem in Iraq and contributes 11% to total deaths. Throughout the Gulf Wars of 1991 and 2003, about 1200 tons of ammunition were dropped around Iraq. After the wars, cancer incidence in Iraq is about 7,000 to 8,000 cancers cases per year, and the overall incidence of lymphoma, leukemia, breast cancer, and lung cancer has increased twofold and even tripled, as compared to the time before the wars. This increase could result from environmental pollution with radioactive materials including uranium, as cancer can be caused by ionizing radiation. To investigate this hypothesis, uranium concentration in the blood of 64 Iraqi females has been measured by means of CR-39 track etch detectors (42 blood samples collected from females diagnosed with breast cancer and 22 blood samples from females without breast cancer). The results show that the uranium concentrations ranged from 19.1 ± 0.3 to 238.4 ± 0.4 with an average value of 94.9 ± 5.0 ng L-1 in the blood of women with breast cancer and from 5.2 ± 0.2 to 18.7 ± 0.04 with an average value of 10.5 ± 0.1 ng L-1 in the blood of women without breast cancer. In comparison with the literature data, elevated levels of uranium concentration were recorded in both groups, and significantly higher average uranium concentrations were found in the blood of women with breast cancer as compared to those in the blood samples of women without breast cancer. It is concluded that there is a correlation between the incidence of breast cancer in Iraqi women and elevated levels of uranium concentrations in their blood. Whether this is a casual relationship is unclear, because cancer can be caused by various carcinogens, including environmental pollution in the region.
Collapse
Affiliation(s)
- Rasha S Ahmed
- Department of Physiology, College of Medicine, Al-Nahrain University, Alkadhimiya, PO box 70010, Baghdad, Iraq.
| | - Raghad S Mohammed
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|