151
|
Tian Y, Guan P, Wen C, Lu M, Li T, Fan L, Yang Q, Guan Y, Kang X, Jiang Y, Ning C, Fu R, Tan G, Zhou L. Strong Biopolymer-Based Nanocomposite Hydrogel Adhesives with Removability and Reusability for Damaged Tissue Closure and Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54488-54499. [PMID: 36461925 DOI: 10.1021/acsami.2c14103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bioadhesives are widely used in a variety of medical settings due to their ease of use and efficient wound closure and repair. However, achieving both strong adhesion and removability/reusability is highly needed but challenging. Here, we reported an injectable mesoporous bioactive glass nanoparticle (MBGN)-incorporated biopolymer hydrogel bioadhesive that demonstrates a strong adhesion strength (up to 107.55 kPa) at physiological temperatures that is also removable and reusable. The incorporation of MBGNs in the biopolymer hydrogel significantly enhances the tissue adhesive strength due to an increased cohesive and adhesive property compared to the hydrogel adhesive alone. The detachment of bioadhesive results from temperature-induced weakening of interfacial adhesive strength. Moreover, the bioadhesive displays injectability, self-healing, and excellent biocompatibility. We demonstrate potential applications of the bioadhesive in vitro, ex vivo, and in vivo for hemostasis and intestinal leakage closure and accelerated skin wound healing compared to surgical wound closures. This work provides a novel design of strong and removable bioadhesives.
Collapse
Affiliation(s)
- Yu Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Pengfei Guan
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, P. R. China
| | - Chaoyao Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Manjia Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Tong Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Youjun Guan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xinchang Kang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yuhe Jiang
- Department of Computational Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Chengyun Ning
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Rumin Fu
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P. R. China
| |
Collapse
|
152
|
Lee M, Kim MC, Lee JY. Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. Int J Nanomedicine 2022; 17:6181-6200. [PMID: 36531116 PMCID: PMC9748845 DOI: 10.2147/ijn.s386763] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 08/28/2023] Open
Abstract
Cardiovascular disease is one of major causes of deaths, and its incidence has gradually increased worldwide. For cardiovascular diseases, several therapeutic approaches, such as drugs, cell-based therapy, and heart transplantation, are currently employed; however, their therapeutic efficacy and/or practical availability are still limited. Recently, biomaterial-based tissue engineering approaches have been recognized as promising for regenerating cardiac function in patients with cardiovascular diseases, including myocardial infarction (MI). In particular, materials mimicking the characteristics of native cardiac tissues can potentially prevent pathological progression and promote cardiac repair of the heart tissues post-MI. The mechanical (softness) and electrical (conductivity) properties of biomaterials as non-biochemical cues can improve the cardiac functions of infarcted hearts by mitigating myocardial cell death and subsequent fibrosis, which often leads to cardiac tissue stiffening and high electrical resistance. Consequently, electrically conductive hydrogels that can provide mechanical strength and augment the electrical activity of the infarcted heart tissue are considered new functional materials capable of mitigating the pathological progression to heart failure and stimulating cardiac regeneration. In this review, we highlight nanomaterial-incorporated hydrogels that can induce cardiac repair after MI. Nanomaterials, including carbon-based nanomaterials and recently discovered two-dimensional nanomaterials, offer great opportunities for developing functional conductive hydrogels owing to their excellent electrical conductivity, large surface area, and ease of modification. We describe recent results using nanomaterial-incorporated conductive hydrogels as cardiac patches and injectable hydrogels for cardiac repair. While further evaluations are required to confirm the therapeutic efficacy and toxicity of these materials, they could potentially be used for the regeneration of other electrically active tissues, such as nerves and muscles.
Collapse
Affiliation(s)
- Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Min Chul Kim
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
153
|
Jin P, Liu L, Chen X, Cheng L, Zhang W, Zhong G. Applications and prospects of different functional hydrogels in meniscus repair. Front Bioeng Biotechnol 2022; 10:1082499. [PMID: 36568293 PMCID: PMC9773848 DOI: 10.3389/fbioe.2022.1082499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
The meniscus is a kind of fibrous cartilage structure that serves as a cushion in the knee joint to alleviate the mechanical load. It is commonly injured, but it cannot heal spontaneously. Traditional meniscectomy is not currently recommended as this treatment tends to cause osteoarthritis. Due to their good biocompatibility and versatile regulation, hydrogels are emerging biomaterials in tissue engineering. Hydrogels are excellent candidates in meniscus rehabilitation and regeneration because they are fine-tunable, easily modified, and capable of delivering exogenous drugs, cells, proteins, and cytokines. Various hydrogels have been reported to work well in meniscus-damaged animals, but few hydrogels are effective in the clinic, indicating that hydrogels possess many overlooked problems. In this review, we summarize the applications and problems of hydrogels in extrinsic substance delivery, meniscus rehabilitation, and meniscus regeneration. This study will provide theoretical guidance for new therapeutic strategies for meniscus repair.
Collapse
Affiliation(s)
- Pan Jin
- Health Science Center, Yangtze University, Jingzhou, China,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China,*Correspondence: Pan Jin, ; Gang Zhong,
| | - Lei Liu
- Articular Surgery, The Second Nanning People’s Hospital (Third Affiliated Hospital of Guangxi Medical University), Nanning, China
| | - Xichi Chen
- Health Science Center, Yangtze University, Jingzhou, China
| | - Lin Cheng
- Health Science Center, Yangtze University, Jingzhou, China
| | - Weining Zhang
- Health Science Center, Yangtze University, Jingzhou, China
| | - Gang Zhong
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Pan Jin, ; Gang Zhong,
| |
Collapse
|
154
|
Shen Y, Cao X, Lu M, Gu H, Li M, Posner DA. Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies. SMART MEDICINE 2022; 1:e20220017. [PMID: 39188731 PMCID: PMC11235943 DOI: 10.1002/smmd.20220017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
Both traumatic and non-traumatic spinal cord injuries (SCIs) can be categorized as damages done to our central nervous system (CNS). The patients' physical and mental health may suffer greatly because of traumatic SCI. With the widespread use of motor vehicles and increasingly aged population, the occurrence of SCI is more frequent than before, creating a considerable burden to global public health. The regeneration process of the spinal cord is hampered by a series of events that occur following SCI like edema, hemorrhage, formation of cystic cavities, and ischemia. An effective strategy for the treatment of SCI and functional recovery still has not been discovered; however, recent advances have been made in bioengineering fields that therapies based on cells, biomaterials, and biomolecules have proved effective in the repair of the spinal cord. In the light of worldwide importance of treatments for SCI, this article aims to provide a review of recent advances by first introducing the physiology, etiology, epidemiology, and mechanisms of SCI. We then put emphasis on the widely used clinical treatments and bioengineering strategies (cell-based, biomaterial-based, and biomolecule-based) for the functional regeneration of the spinal cord as well as challenges faced by scientists currently. This article provides scientists and clinicians with a comprehensive outlook on the recent advances of preclinical and clinical treatments of SCI, hoping to help them find keys to the functional regeneration of SCI.
Collapse
Affiliation(s)
- Yingbo Shen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minhui Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Hongcheng Gu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minli Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - David A. Posner
- Molecular Immunity UnitCambridge Institute of Therapeutic Immunology and Infectious DiseasesDepartment of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
155
|
Wang H, Zhang H, Xie Z, Chen K, Ma M, Huang Y, Li M, Cai Z, Wang P, Shen H. Injectable hydrogels for spinal cord injury repair. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
156
|
Liu Z, Guo S, Dong L, Wu P, Li K, Li X, Li X, Qian H, Fu Q. A tannic acid doped hydrogel with small extracellular vesicles derived from mesenchymal stem cells promotes spinal cord repair by regulating reactive oxygen species microenvironment. Mater Today Bio 2022; 16:100425. [PMID: 36186847 PMCID: PMC9523385 DOI: 10.1016/j.mtbio.2022.100425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022] Open
Abstract
Spinal cord injury (SCI) is a serious disease of the central nervous system that is associated with a poor prognosis; furthermore, existing clinical treatments cannot restore nerve function in an effective manner. Inflammatory responses and the increased production of reactive oxygen species (ROS) in the microenvironment of the lesion are major obstacles that inhibit the recovery of SCI. Small extracellular vesicles (sEVs), derived from mesenchymal stem cells, are suitable options for cell-free therapy and have been shown to exert therapeutic effects in SCI, thus providing a potential strategy for microenvironment regulation. However, the effective retention, controlled release, and integration of small extracellular vesicles into injured spinal cord tissue are still a major challenge. Herein, we fabricated an N-acryloyl glycinamide/gelatin methacrylate/Laponite/Tannic acid (NAGA/GelMA/LPN/TA, NGL/T) hydrogel with sustainable sEV release (sEVs-NGL/T) to promote the recovery of motor function after SCI. The newly developed functional sEVs-NGL/T hydrogel exhibited excellent antioxidant properties in an H2O2-simulated peroxidative microenvironment in vitro. Implantation of the functional sEVs-NGL/T hydrogel in vivo could encapsulate sEVs, exhibiting efficient retention and the sustained release of sEVs, thereby synergistically inducing significant restoration of motor function and urinary tissue preservation. These positive effects can be attributed to the effective mitigation of the inflammatory and ROS microenvironment. Therefore, sEVs-NGL/T therapy provides a promising strategy for the sEV-based therapy in the treatment of SCI by comprehensively regulating the pathological microenvironment.
Collapse
Key Words
- 4-HNE, 4-hydroxynonenal
- 8-OHdG, 8-hydroxy-2′-deoxyguanosine
- ChAT, choline acetyl transferase
- GFAP, glial fibrillary acidic protein
- HucMSCs, Human umbilical cord mesenchymal stem cells
- Hydrogel
- Mesenchymal stem cell
- NF, neurofilament
- NGL/T, N-acryloyl glycinamide/gelatinmethacrylate/Laponite/Tannic acid
- ROS, reactive oxygen species
- Reactive oxygen species
- SCI, spinal cord injury
- Small extracellular vesicle
- Spinal cord injury
- Tannic acid
- sEVs, small extracellular vesicles
Collapse
Affiliation(s)
- Zhong Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Song Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Lanlan Dong
- School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240, PR China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kewei Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xinhua Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240, PR China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, PR China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| |
Collapse
|
157
|
Li S, Ke Z, Peng X, Fan P, Chao J, Wu P, Xiao P, Zhou Y. Injectable and fast gelling hyaluronate hydrogels with rapid self-healing ability for spinal cord injury repair. Carbohydr Polym 2022; 298:120081. [PMID: 36241273 DOI: 10.1016/j.carbpol.2022.120081] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 12/30/2022]
|
158
|
Inui S, Fujikawa A, Gonoi W, Kawano S, Sakurai K, Uchida Y, Ishida M, Abe O. Comparison of CT findings of coronavirus disease 2019 (COVID-19) pneumonia caused by different major variants. Jpn J Radiol 2022; 40:1246-1256. [PMID: 35763239 PMCID: PMC9244322 DOI: 10.1007/s11604-022-01301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore the CT findings and pneumonnia progression pattern of the Alpha and Delta variants of SARS-CoV-2 by comparing them with the pre-existing wild type. METHOD In this retrospective comparative study, a total of 392 patients with COVID-19 were included: 118 patients with wild type (70 men, 56.8 ± 20.7 years), 137 with Alpha variant (93 men, 49.4 ± 17.0 years), and 137 with Delta variant (94 men, 45.4 ± 12.4). Chest CT evaluation included opacities and repairing changes as well as lesion distribution and laterality. Chest CT severity score was also calculated. These parameters were statistically compared across the variants. RESULTS Ground glass opacity (GGO) with consolidation and repairing changes were more frequent in the order of Delta variant, Alpha variant, and wild type throughout the disease course. Delta variant showed GGO with consolidation more conspicuously than did the other two on days 1-4 (vs. wild type, Bonferroni corrected p = 0.01; vs. Alpha variant, Bonferroni corrected p = 0.003) and days 5-8 (vs. wild type, Bonferroni corrected p < 0.001; vs. Alpha variant, Bonferroni corrected-p = 0.003). Total lung CT severity scores of Delta variant were higher than those of wild type on days 1-4 and 5-8 (Bonferroni corrected p = 0.01 and Bonferroni corrected p = 0.005, respectively) and that of Alpha variant on days 1-4 (Bonferroni corrected p = 0.002). There was no difference in the CT findings between wild type and Alpha variant. CONCLUSIONS Pneumonia progression of Delta variant may be more rapid and severe in the early stage than in the other two.
Collapse
Affiliation(s)
- Shohei Inui
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Department of Radiology, Japan Self-Defense Forces Central Hospital, 1-2-24, Ikejiri, Setagaya-ku, Tokyo, 154-0001, Japan.
| | - Akira Fujikawa
- Department of Radiology, Japan Self-Defense Forces Central Hospital, 1-2-24, Ikejiri, Setagaya-ku, Tokyo, 154-0001, Japan
| | - Wataru Gonoi
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shuichi Kawano
- Department of Respiratory Medicine, Japan Self-Defense Forces Central Hospital, 1-2-24, Ikejiri, Setagaya-ku, Tokyo, 154-0001, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Yuto Uchida
- Department of Neurology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Masanori Ishida
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
159
|
Asta L, Persico AM. Differential Predictors of Response to Early Start Denver Model vs. Early Intensive Behavioral Intervention in Young Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Brain Sci 2022; 12:1499. [PMID: 36358426 PMCID: PMC9688546 DOI: 10.3390/brainsci12111499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 08/12/2023] Open
Abstract
The effectiveness of early intensive interventions for Autism Spectrum Disorder (ASD) is now well-established, but there continues to be great interindividual variability in treatment response. The purpose of this systematic review is to identify putative predictors of response to two different approaches in behavioral treatment: Early Intensive Behavioral Interventions (EIBI) and the Early Start Denver Model (ESDM). Both are based upon the foundations of Applied Behavioral Analysis (ABA), but the former is more structured and therapist-driven, while the latter is more naturalistic and child-driven. Four databases (EmBase, PubMed, Scopus and WebOfScience) were systematically screened, and an additional search was conducted in the reference lists of relevant articles. Studies were selected if participants were children with ASD aged 12-48 months at intake, receiving either EIBI or ESDM treatment. For each putative predictor, p-values from different studies were combined using Fisher's method. Thirteen studies reporting on EIBI and eleven on ESDM met the inclusion criteria. A higher IQ at intake represents the strongest predictor of positive response to EIBI, while a set of social cognitive skills, including intention to communicate, receptive and expressive language, and attention to faces, most consistently predict response to ESDM. Although more research will be necessary to reach definitive conclusions, these findings begin to shed some light on patient characteristics that are predictive of preferential response to EIBI and ESDM, and may provide clinically useful information to begin personalizing treatment.
Collapse
Affiliation(s)
| | - Antonio M. Persico
- Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
160
|
ECM-Mimicking Hydrogels Loaded with Bone Mesenchymal Stem Cell-Derived Exosomes for the Treatment of Cartilage Defects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3450672. [PMID: 36387356 PMCID: PMC9649317 DOI: 10.1155/2022/3450672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022]
Abstract
It is well-established that treating articular cartilage injuries is clinically challenging since they lack blood arteries, nerves, and lymphoid tissue. Recent studies have revealed that bone marrow stem cell-derived exosomes (BMSCs-Exos) exert significant chondroprotective effects through paracrine secretions, and hydrogel-based materials can synergize the exosomes through sustained release. Therefore, this research aims to synthesize an ECM (extracellular matrix)-mimicking gelatin methacryloyl (GelMA) hydrogel modified by gelatin combined with BMSCs-derived exosomes to repair cartilage damage. We first isolated and characterized exosomes from BMSCs supernatant and then loaded the exosomes into GelMA hydrogel to investigate cartilage repair effects in in vitro and in vivo experiments. The outcomes showed that the GelMA hydrogel has good biocompatibility with a 3D (three-dimensional) porous structure, exhibiting good carrier characteristics for exosomes. Furthermore, BMSCs-Exos had a significant effect on promoting chondrocyte ECM production and chondrocyte proliferation, and the GelMA hydrogel could enhance this effect through a sustained-release effect. Similarly, in vivo experiments showed that GelMA-Exos promoted cartilage regeneration in rat joint defects and the synthesis of related cartilage matrix proteins.
Collapse
|
161
|
Li X, Shu X, Shi Y, li H, Pei X. MOFs and bone: Application of MOFs in bone tissue engineering and bone diseases. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
162
|
Liu X, Zhang J, Cheng X, Liu P, Feng Q, Wang S, Li Y, Gu H, Zhong L, Chen M, Zhou L. Integrated printed BDNF-stimulated HUCMSCs-derived exosomes/collagen/chitosan biological scaffolds with 3D printing technology promoted the remodelling of neural networks after traumatic brain injury. Regen Biomater 2022; 10:rbac085. [PMID: 36683754 PMCID: PMC9847532 DOI: 10.1093/rb/rbac085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
The restoration of nerve dysfunction after traumatic brain injury (TBI) faces huge challenges due to the limited self-regenerative abilities of nerve tissues. In situ inductive recovery can be achieved utilizing biological scaffolds combined with endogenous human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomes (MExos). In this study, brain-derived neurotrophic factor-stimulated HUCMSCs-derived exosomes (BMExos) were composited with collagen/chitosan by 3D printing technology. 3D-printed collagen/chitosan/BMExos (3D-CC-BMExos) scaffolds have excellent mechanical properties and biocompatibility. Subsequently, in vivo experiments showed that 3D-CC-BMExos therapy could improve the recovery of neuromotor function and cognitive function in a TBI model in rats. Consistent with the behavioural recovery, the results of histomorphological tests showed that 3D-CC-BMExos therapy could facilitate the remodelling of neural networks, such as improving the regeneration of nerve fibres, synaptic connections and myelin sheaths, in lesions after TBI.
Collapse
Affiliation(s)
- Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jian Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingbo Feng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shan Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuanyou Li
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoran Gu
- The 947th Hospital of Chinese People’s Liberation Army, Xinjiang Uygur Autonomous Region, Kashgar 844000, China
| | - Lin Zhong
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Miao Chen
- Intensive Care Unit, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region and Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
163
|
Feng W, Wang Z. Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing. Carbohydr Polym 2022; 294:119824. [PMID: 35868773 DOI: 10.1016/j.carbpol.2022.119824] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 01/12/2023]
Abstract
Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| |
Collapse
|
164
|
Wu M, Chen F, Liu H, Wu P, Yang Z, Zhang Z, Su J, Cai L, Zhang Y. Bioinspired sandwich-like hybrid surface functionalized scaffold capable of regulating osteogenesis, angiogenesis, and osteoclastogenesis for robust bone regeneration. Mater Today Bio 2022; 17:100458. [PMID: 36278143 PMCID: PMC9583582 DOI: 10.1016/j.mtbio.2022.100458] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
Recently, strategies that focus on biofunctionalized implant surfaces to enhance bone defect healing through the synergistic regulation of osteogenesis, angiogenesis, and osteoclastogenesis have attracted increasing attention in the bone tissue engineering field. Studies have shown that the Wnt/β-catenin signaling pathway has an imperative effect of promoting osteogenesis and angiogenesis while reducing osteoclastogenesis. However, how to prepare biofunctionalized bone implants with balanced osteogenesis, angiogenesis, and osteoclastogenesis by activating the Wnt/β-catenin pathway has seldom been investigated. Herein, through a bioinspired dopamine chemistry and self-assembly method, BML-284 (BML), a potent and highly selective Wnt signaling activator, was loaded on a mussel-inspired polydopamine (PDA) layer that had been immobilized on the porous beta-tricalcium calcium phosphate (β-TCP) scaffold surface and subsequently modified by a biocompatible carboxymethyl chitosan hydrogel to form a sandwich-like hybrid surface. β-TCP provides a biomimetic three-dimensional porous microenvironment similar to that of natural cancellous bone, and the BML-loaded sandwich-like hybrid surface endows the scaffold with multifunctional properties for potential application in bone regeneration. The results show that the sustained release of BML from the sandwich-like hybrid surface significantly facilitates the adhesion, migration, proliferation, spreading, and osteogenic differentiation of MC3T3-E1 cells as well as the angiogenic activity of human umbilical vein endothelial cells. In addition to osteogenesis and angiogenesis, the hybrid surface also exerts critical roles in suppressing osteoclastic activity. Remarkably, in a critical-sized cranial defect model, the biofunctionalized β-TCP scaffold could potentially trigger a chain of biological events: stimulating the polarization of M2 macrophages, recruiting endogenous stem cells and endothelial cells at the injury site to enable a favorable microenvironment for greatly accelerating bone ingrowth and angiogenesis while compromising osteoclastogenesis, thereby promoting bone healing. Therefore, these surface-biofunctionalized β-TCP implants, which regulate the synergies of osteogenesis, angiogenesis, and anti-osteoclastogenesis, indicate strong potential for clinical application as advanced orthopedic implants.
Collapse
Affiliation(s)
- Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Huifan Liu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China
| | - Ping Wu
- College of Life Science and Technology Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Yang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China
| | - Zhe Zhang
- National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, China
| | - Jiajia Su
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Corresponding author.
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China,Corresponding author.
| | - Yufeng Zhang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China,Corresponding author.
| |
Collapse
|
165
|
Zhang H, Hu T, Xiong M, Li S, Li WX, Liu J, Zhou X, Qi J, Jiang GB. Cannabidiol-loaded injectable chitosan-based hydrogels promote spinal cord injury repair by enhancing mitochondrial biogenesis. Int J Biol Macromol 2022; 221:1259-1270. [PMID: 36075309 DOI: 10.1016/j.ijbiomac.2022.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
The treatment of traumatic spinal cord injury (SCI) remains challenging as the neuron regeneration is impaired by irregular cavity and apoptosis. An injectable in situ gelling hydrogel is therefore developed for the local delivery of cannabidiol (CBD) through a novel method based on polyelectrolyte (PEC) interaction of sodium carboxymethylcellulose (CMC) and chitosan (CS). It can be injected into the spinal cord cavity with a 26-gauge syringe before gelation, and gelled after 110 ± 10 s. Of note, the in-situ forming hydrogel has mechanical properties similar to spinal cord. Moreover, the CBD-loaded hydrogels sustain delivery of CBD for up to 72 h, resulting in reducing apoptosis in SCI by enhancing mitochondrial biogenesis. Importantly, the CBD-loaded hydrogels raise neurogenesis more than pure hydrogels both in vivo and in vitro, further achieving significant recovery of motor and urinary function in SCI rats. Thus, it suggested that CMC/CS/CBD hydrogels could be used as promising biomaterials for tissue engineering and SCI.
Collapse
Affiliation(s)
- Hongyan Zhang
- College of Veterinary, South China Agricultural University, Guangzhou 510642, China; College of Materials and energy, South China Agricultural University, Guangzhou 510642, China.
| | - Tian Hu
- College of Materials and energy, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Xiong
- College of Materials and energy, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Li
- College of Materials and energy, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Xiong Li
- College of Veterinary, South China Agricultural University, Guangzhou 510642, China; College of Materials and energy, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Liu
- College of Materials and energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Qi
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Gang-Biao Jiang
- College of Veterinary, South China Agricultural University, Guangzhou 510642, China; College of Materials and energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
166
|
Yari H, Mikhailova MV, Mardasi M, Jafarzadehgharehziaaddin M, Shahrokh S, Thangavelu L, Ahmadi H, Shomali N, Yaghoubi Y, Zamani M, Akbari M, Alesaeidi S. Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: a groundbreaking cell-free approach. Stem Cell Res Ther 2022; 13:423. [PMID: 35986375 PMCID: PMC9389725 DOI: 10.1186/s13287-022-03122-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Accumulating proofs signify that pleiotropic effects of mesenchymal stromal cells (MSCs) are not allied to their differentiation competencies but rather are mediated mainly by the releases of soluble paracrine mediators, making them a reasonable therapeutic option to enable damaged tissue repair. Due to their unique immunomodulatory and regenerative attributes, the MSC-derived exosomes hold great potential to treat neurodegeneration-associated neurological diseases. Exosome treatment circumvents drawbacks regarding the direct administration of MSCs, such as tumor formation or reduced infiltration and migration to brain tissue. Noteworthy, MSCs-derived exosomes can cross the blood-brain barrier (BBB) and then efficiently deliver their cargo (e.g., protein, miRNAs, lipid, and mRNA) to damaged brain tissue. These biomolecules influence various biological processes (e.g., survival, proliferation, migration, etc.) in neurons, oligodendrocytes, and astrocytes. Various studies have shown that the systemic or local administration of MSCs-derived exosome could lead to the favored outcome in animals with neurodegeneration-associated disease mainly by supporting BBB integrity, eliciting pro-angiogenic effects, attenuating neuroinflammation, and promoting neurogenesis in vivo. In the present review, we will deliver an overview of the therapeutic benefits of MSCs-derived exosome therapy to ameliorate the pathological symptoms of acute and chronic neurodegenerative disease. Also, the underlying mechanism behind these favored effects has been elucidated.
Collapse
Affiliation(s)
- Hadi Yari
- Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Maria V. Mikhailova
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C, Evin, Tehran, Iran
| | - Mohsen Jafarzadehgharehziaaddin
- Translational Neuropsychology Lab, Department of Education and Psychology and William James Center for Research (WJCR), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Somayeh Shahrokh
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Hosein Ahmadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yoda Yaghoubi
- School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Alesaeidi
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
167
|
Zhang S, Long J, Chen L, Zhang J, Fan Y, Shi J, Huang Y. Treatment methods toward improving the anti-infection ability of poly(etheretherketone) implants for medical applications. Colloids Surf B Biointerfaces 2022; 218:112769. [PMID: 35994991 DOI: 10.1016/j.colsurfb.2022.112769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Due to its favorable chemical stability, biocompatibility, and mechanical properties, Poly(etheretherketone) (PEEK) is a promising material for repairing bone and dental hard tissue defects. However, there are critical disadvantages: PEEK is biologically and chemically inert, which influences osseointegration of implants and bonding strength of prostheses, and its mechanical properties still cannot meet the requirements for some medical applications. Furthermore, bacterial infections and inflammatory reactions often accompany bone defects caused by trauma or inflammation or teeth loss caused by periodontitis. Previous studies mainly focused on enhancing PEEK's bioactivity and mechanical performance, but PEEK also lacks effective anti-infection ability. Thus, it is necessary to improve its anti-infection ability, and this is considered in this paper from two aspects. The first is to inhibit the attachment and growth of bacteria on the material, and the second is to endow the material with immunoregulatory ability, which means mobilizing the host immune system to protect tissue from inflammation. In this review, we analyze and discuss the existing treatment methods to improve the antibacterial and immunomodulatory abilities of PEEK addressing their limitations, relevant future challenges, and required research efforts.
Collapse
Affiliation(s)
- Shuqi Zhang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jiazhen Long
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Lin Chen
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jie Zhang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Yunjian Fan
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jiayu Shi
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Yuanjin Huang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| |
Collapse
|
168
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 279] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
169
|
Chellew T, Barbaro J, Freeman NC. The Early Childhood Signs of Autism in Females: a Systematic Review. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2022. [DOI: 10.1007/s40489-022-00337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
AbstractCompared to males, females are at a much greater likelihood of receiving a later diagnosis of autism, which impacts their opportunity to receive early support. To assist with early identification, this systematic literature review aimed to ascertain whether females differ from males in the early childhood signs of autism. The small number of heterogeneous studies made it difficult to draw conclusions, although it appears that females and males under 6 years of age are more similar than different in terms of their expression of autistic behaviours. Given the discrepant sex/gender ratio in autism, these findings highlight the importance of exploring whether there are different and/or specific, not yet identified, early signs of autism in females and males.
Collapse
|
170
|
Zarepour A, Bal Öztürk A, Koyuncu Irmak D, Yaşayan G, Gökmen A, Karaöz E, Zarepour A, Zarrabi A, Mostafavi E. Combination Therapy Using Nanomaterials and Stem Cells to Treat Spinal Cord Injuries. Eur J Pharm Biopharm 2022; 177:224-240. [PMID: 35850168 DOI: 10.1016/j.ejpb.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
As a part of the central nervous system, the spinal cord (SC) provides most of the communications between the brain and other parts of the body. Any damage to SC interrupts this communication, leading to serious problems, which may remain for the rest of their life. Due to its significant impact on patients' quality of life and its exorbitant medical costs, SC injury (SCI) is known as one of the most challengeable diseases in the world. Thus, it is critical to introduce highly translatable therapeutic platforms for SCI treatment. So far, different strategies have been introduced, among which utilizing various types of stem cells is one of the most interesting ones. The capability of stem cells to differentiate into several types of cell lines makes them promising candidates for the regeneration of injured tissues. One of the other interesting and novel strategies for SCI treatment is the application of nanomaterials, which could appear as a carrier for therapeutic agents or as a platform for culturing the cells. Combining these two approaches, stem cells and nanomaterials, could provide promising therapeutic strategies for SCI management. Accordingly, in this review we have summarized some of the recent advancements in which the applications of different types of stem cells and nanomaterials, alone and in combination forms, were evaluated for SCI treatment.
Collapse
Affiliation(s)
- Arezou Zarepour
- Radiology Department, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| | - Ayça Bal Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey; Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Zeytinburnu, Turkey
| | | | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Aylin Gökmen
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, Besiktas, Istanbul, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Manufacturing (LivMedCell), İstanbul, Turkey
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
171
|
Xun X, Qiu J, Zhang J, Wang H, Han F, Xu X, Yuan R. Triple-functional injectable liposome-hydrogel composite enhances bacteriostasis and osteo/angio-genesis for advanced maxillary sinus floor augmentation. Colloids Surf B Biointerfaces 2022; 217:112706. [PMID: 35870422 DOI: 10.1016/j.colsurfb.2022.112706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Bone-grafting biological materials are commonly used to increase the height of the alveolar bone in the maxillary posterior region during maxillary sinus floor augmentation. However, there has been little research on the development of an injectable bone-grafting material with bacteriostatic, angiogenic, and osteogenic properties. In this work, we developed a triple-functional vancomycin/deferoxamine/dexamethasone (Van/DFO/Dex) liposome-hydrogel composite with desirable injectability. The release kinetics confirmed orderly sustained release of Van (a bacteriostat), DFO (a vascularised small molecule), and Dex (an osteogenic small molecule). In vitro findings demonstrated the favourable cytocompatibility and antibacterial ability of this composite against Staphylococcus aureus. Additionally, the angiogenic ability of human umbilical vein endothelial cells and osteogenic differentiation activity of MC3T3-E1 cells were enhanced. An in vivo bacteriostasis assay and rabbit maxillary sinus floor augmentation model corroborated the enhanced bacteriostasis and vascularised bone regeneration properties of this functionalised composite. Overall, the favourable injectability to be fit for the minimally invasive procedure, locally sustained release property, and prominent biological functions underscore the clinical potential of Van/DFO/Dex as an ideal bone-grafting material for irregular bone defect repairs, such as maxillary sinus floor augmentation.
Collapse
Affiliation(s)
- Xingxiang Xun
- School of Stomatology of Qingdao University, Qingdao 266003, PR China
| | - Jianzhong Qiu
- Center of Oral Medicine, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China
| | - Jing Zhang
- Department of Operation, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China
| | - Hejing Wang
- School of Stomatology of Qingdao University, Qingdao 266003, PR China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xiao Xu
- Center of Oral Medicine, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China.
| | - Rongtao Yuan
- School of Stomatology of Qingdao University, Qingdao 266003, PR China; Center of Oral Medicine, Qingdao Municipal Hospital Affiliated to Qingdao University, #5 Donghai Middle Road, Qingdao 266000, PR China.
| |
Collapse
|
172
|
Li M, Yin S, Lin M, Chen X, Pan Y, Peng Y, Sun J, Kumar A, Liu J. Current status and prospects of metal-organic frameworks for bone therapy and bone repair. J Mater Chem B 2022; 10:5105-5128. [PMID: 35766423 DOI: 10.1039/d2tb00742h] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the development of society, traumatic bone defects caused by accidents, diseases and surgeries have become common, eventually resulting in an increase in bone defects. The treatment of bone defects is characterized by a long period of treatment, high cost and uncontrollable outcomes. Also, it results in complications such as infection and bone discontinuity. Hence, due to this situation, the physical, mental and financial aspects of the patient are severely affected. What's more, such outcomes pose a challenge to orthopaedic surgeons. As a result, bone therapy and bone repair have become a hot topic of interest. In repairing bone defects, materials other than autogenous bone are still unable to provide good biocompatibility, osteogenesis, osteoconductivity and osteoinduction properties at the same time. In addition, the scarcity of autologous bone sources has forced the search for new autologous bone replacement materials. Metal organic frameworks (MOFs) are a new class of developed functional materials that have been widely used in the biomedical field during the recent years due to their porous nature, large specific surface area and diverse structures. With the progress in the investigation into bone treatment and repair, more and more investigators are using MOFs in bone therapy and bone repair. With these viewpoints, in the present perspective, the use of MOFs in bone therapy and bone repair has been summarized, and an insight into the future of MOFs in bone therapy and bone repair has been provided.
Collapse
Affiliation(s)
- Minmin Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Shihai Yin
- Hand Surgery Department, Liaobu Hospital of Guangdong Medical University, Dongguan, China
| | - Mingzi Lin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Xuelin Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Jianbo Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| |
Collapse
|
173
|
Wu H, Zhao C, Lin K, Wang X. Mussel-Inspired Polydopamine-Based Multilayered Coatings for Enhanced Bone Formation. Front Bioeng Biotechnol 2022; 10:952500. [PMID: 35875492 PMCID: PMC9301208 DOI: 10.3389/fbioe.2022.952500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
Repairing bone defects remains a challenge in clinical practice and the application of artificial scaffolds can enhance local bone formation, but the function of unmodified scaffolds is limited. Considering different application scenarios, the scaffolds should be multifunctionalized to meet specific demands. Inspired by the superior adhesive property of mussels, polydopamine (PDA) has attracted extensive attention due to its universal capacity to assemble on all biomaterials and promote further adsorption of multiple external components to form PDA-based multilayered coatings with multifunctional property, which can induce synergistic enhancement of new bone formation, such as immunomodulation, angiogenesis, antibiosis and antitumor property. This review will summarize mussel-inspired PDA-based multilayered coatings for enhanced bone formation, including formation mechanism and biofunction of PDA coating, as well as different functional components. The synergistic enhancement of multiple functions for better bone formation will also be discussed. This review will inspire the design and fabrication of PDA-based multilayered coatings for different application scenarios and promote deeper understanding of their effect on bone formation, but more efforts should be made to achieve clinical translation. On this basis, we present a critical conclusion, and forecast the prospects of PDA-based multilayered coatings for bone regeneration.
Collapse
Affiliation(s)
| | | | - Kaili Lin
- *Correspondence: Kaili Lin, ; Xudong Wang,
| | | |
Collapse
|
174
|
Fan C, Yang W, Zhang L, Cai H, Zhuang Y, Chen Y, Zhao Y, Dai J. Restoration of spinal cord biophysical microenvironment for enhancing tissue repair by injury-responsive smart hydrogel. Biomaterials 2022; 288:121689. [DOI: 10.1016/j.biomaterials.2022.121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
|
175
|
Xu X, Wang L, Jing J, Zhan J, Xu C, Xie W, Ye S, Zhao Y, Zhang C, Huang F. Conductive Collagen-Based Hydrogel Combined With Electrical Stimulation to Promote Neural Stem Cell Proliferation and Differentiation. Front Bioeng Biotechnol 2022; 10:912497. [PMID: 35782495 PMCID: PMC9247657 DOI: 10.3389/fbioe.2022.912497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Injectable biomimetic hydrogels are a promising strategy for enhancing tissue repair after spinal cord injury (SCI) by restoring electrical signals and increasing stem cell differentiation. However, fabricating hydrogels that simultaneously exhibit high electrical conductivities, excellent mechanical properties, and biocompatibility remains a great challenge. In the present study, a collagen-based self-assembling cross-linking polymer network (SCPN) hydrogel containing poly-pyrrole (PPy), which imparted electroconductive properties, is developed for potential application in SCI repair. The prepared collagen/polypyrrole (Col/PPy)-based hydrogel exhibited a continuous and porous structure with pore sizes ranging from 50 to 200 μm. Mechanical test results indicated that the Young’s moduli of the prepared hydrogels were remarkably enhanced with PPy content in the range 0–40 mM. The conductivity of Col/PPy40 hydrogel was 0.176 ± 0.07 S/cm, which was beneficial for mediating electrical signals between tissues and accelerating the rate of nerve repair. The investigations of swelling and degradation of the hydrogels indicated that PPy chains interpenetrated and entangled with the collagen, thereby tightening the network structure of the hydrogel and improving its stability. The cell count kit-8 (CCK-8) assay and live/dead staining assay demonstrated that Col/PPy40 coupled with electrical simulation promoted the proliferation and survival of neural stem cells (NSCs). Compared with the other groups, the immunocytochemical analysis, qPCR, and Western blot studies suggested that Col/PPy40 coupled with ES maximally induced the differentiation of NSCs into neurons and inhibited the differentiation of NSCs into astrocytes. The results also indicated that the neurons in ES-treated Col/PPy40 hydrogel have longer neurites (170.8 ± 37.2 μm) and greater numbers of branch points (4.7 ± 1.2). Therefore, the prepared hydrogel system coupled with ES has potential prospects in the field of SCI treatment.
Collapse
Affiliation(s)
- Xinzhong Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Wang
- Department of Orthopaedics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junfeng Zhan
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chungui Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wukun Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chi Zhang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Chi Zhang, ; Fei Huang,
| | - Fei Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Chi Zhang, ; Fei Huang,
| |
Collapse
|
176
|
Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022; 8:2764-2797. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Tahereh Masalehdan
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16444, Iran
| | - Robert M I Kapsa
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Anita Quigley
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephanie J Franks
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard J Williams
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
177
|
Deliogullari B, Ilhan‐Ayisigi E, Cakmak B, Saglam‐Metiner P, Kaya N, Coskun‐Akar G, Yesil‐Celiktas O. Synthesis of an injectable heparin conjugated poloxamer hydrogel with high elastic recoverability for temporomandibular joint disorders. J Appl Polym Sci 2022. [DOI: 10.1002/app.52736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Buse Deliogullari
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences Ege University Bornova Izmir Turkey
| | - Esra Ilhan‐Ayisigi
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
- Genetic and Bioengineering Department, Faculty of Engineering and Architecture Kirsehir Ahi Evran University Kirsehir Turkey
| | - Betul Cakmak
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| | - Pelin Saglam‐Metiner
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| | - Nusret Kaya
- Department of Materials Science and Engineering, Faculty of Engineering and Architecture Izmir Katip Celebi University Cigli Izmir Turkey
| | - Gulcan Coskun‐Akar
- Department of Prosthodontics, Faculty of Dentistry Ege University Izmir Turkey
| | - Ozlem Yesil‐Celiktas
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences Ege University Bornova Izmir Turkey
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| |
Collapse
|
178
|
Chen Y, Lin J, Yan W. A Prosperous Application of Hydrogels With Extracellular Vesicles Release for Traumatic Brain Injury. Front Neurol 2022; 13:908468. [PMID: 35720072 PMCID: PMC9201053 DOI: 10.3389/fneur.2022.908468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability worldwide, becoming a heavy burden to the family and society. However, the complexity of the brain and the existence of blood-brain barrier (BBB) do limit most therapeutics effects through simple intravascular injection. Hence, an effective therapy promoting neurological recovery is urgently required. Although limited spontaneous recovery of function post-TBI does occur, increasing evidence indicates that exosomes derived from stem cells promote these endogenous processes. The advantages of hydrogels for transporting drugs and stem cells to target injured sites have been discussed in multitudinous studies. Therefore, the combined employment of hydrogels and exosomes for TBI is worthy of further study. Herein, we review current research associated with the application of hydrogels and exosomes for TBI. We also discuss the possibilities and advantages of exosomes and hydrogels co-therapies after TBI.
Collapse
|
179
|
Born LJ, McLoughlin ST, Dutta D, Mahadik B, Jia X, Fisher JP, Jay SM. Sustained released of bioactive mesenchymal stromal cell-derived extracellular vesicles from 3D-printed gelatin methacrylate hydrogels. J Biomed Mater Res A 2022; 110:1190-1198. [PMID: 35080115 PMCID: PMC11570911 DOI: 10.1002/jbm.a.37362] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) represent an emerging class of therapeutics with significant potential and broad applicability. However, a general limitation is their rapid clearance after administration. Thus, methods to enable sustained EV release are of great potential value. Here, we demonstrate that EVs from mesenchymal stem/stromal cells (MSCs) can be incorporated into 3D-printed gelatin methacrylate (GelMA) hydrogel bioink, and that the initial burst release of EVs can be reduced by increasing the concentration of crosslinker during gelation. Further, the data show that MSC EV bioactivity in an endothelial gap closure assay is retained after the 3D printing and photocrosslinking processes. Our group previously showed that MSC EV bioactivity in this assay correlates with pro-angiogenic bioactivity in vivo, thus these results indicate the therapeutic potential of MSC EV-laden GelMA bioinks.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Shannon T. McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Dipankar Dutta
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
180
|
Xia L, Zhang C, Su K, Fan J, Niu Y, Yu Y, Chai R. Oriented Growth of Neural Stem Cell–Derived Neurons Regulated by Magnetic Nanochains. Front Bioeng Biotechnol 2022; 10:895107. [PMID: 35677297 PMCID: PMC9168218 DOI: 10.3389/fbioe.2022.895107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neural stem cell therapy has become a promising cure in the treatment of neurodegenerative disorders. Owing to the anisotropy of the nervous system, the newly derived neurons need not only the functional integrity but also the oriented growth to contact with the partner cells to establish functional connections. So the oriented growth of the newly derived neurons is a key factor in neural stem cell–based nerve regeneration. Nowadays, various biomaterials have been applied to assist in the oriented growth of neural stem cell–derived neurons. However, among these biomaterials, the magnetic materials applied in guiding the neuronal growth are still fewer than the other materials, such as the fibers. So in this work, we developed the magnetic nanochains to guide the oriented growth of neural stem cell–derived neurons. With the guidance of the magnetic nanochains, the seeded neural stem cells exhibited a good arrangement, and the neural stem cell–derived neurons showed well-oriented growth with the orientation of the nanochains. We anticipated that the magnetic nanochains would have huge potential in stem cell–based nerve regeneration.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Kaiming Su
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Academy of Medical Science, Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Jiangang Fan, ; Yuguang Niu, ; Yafeng Yu, ; Renjie Chai,
| | - Yuguang Niu
- Department of Ambulatory Medicine, The First Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Jiangang Fan, ; Yuguang Niu, ; Yafeng Yu, ; Renjie Chai,
| | - Yafeng Yu
- Department of Otolaryngology, First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Jiangang Fan, ; Yuguang Niu, ; Yafeng Yu, ; Renjie Chai,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- *Correspondence: Jiangang Fan, ; Yuguang Niu, ; Yafeng Yu, ; Renjie Chai,
| |
Collapse
|
181
|
Wang Y, Zhang S, Nie B, Qu X, Yue B. Approaches to Biofunctionalize Polyetheretherketone for Antibacterial: A Review. Front Bioeng Biotechnol 2022; 10:895288. [PMID: 35646862 PMCID: PMC9136111 DOI: 10.3389/fbioe.2022.895288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Due to excellent mechanical properties and similar elastic modulus compared with human cortical bone, polyetheretherketone (PEEK) has become one of the most promising orthopedic implant materials. However, implant-associated infections (IAIs) remain a challenging issue since PEEK is bio-inert. In order to fabricate an antibacterial bio-functional surface, modifications of PEEK had been widely investigated. This review summarizes the modification strategies to biofunctionalize PEEK for antibacterial. We will begin with reviewing different approaches, such as surface-coating modifications and controlled release of antimicrobials. Furthermore, blending modifications and 3D printing technology were discussed. Finally, we compare the effects among different approaches. We aimed to provide an in-depth understanding of the antibacterial modification and optimize the design of the PEEK orthopedic implant.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bin’en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Bing Yue,
| |
Collapse
|
182
|
Li Y, Fu R, Duan Z, Zhu C, Fan D. Injectable Hydrogel Based on Defect-Rich Multi-Nanozymes for Diabetic Wound Healing via an Oxygen Self-Supplying Cascade Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200165. [PMID: 35373522 DOI: 10.1002/smll.202200165] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Diabetic wound healing remains challenging owing to the risk for bacterial infection, hypoxia, excessive glucose levels, and oxidative stress. Glucose-activated cascade reactions can consume glucose and eradicate bacteria, avoiding the direct use of hydrogen peroxide (H2 O2 ) and wound pH restriction on peroxidase-like activity. However, the anoxic microenvironment in diabetic wounds impedes the cascade reaction due to the oxygen (O2 ) dependence of glucose oxidation. Herein, defect-rich molybdenum disulfide nanosheets loaded with bovine serum albumin-modified gold nanoparticle (MoS2 @Au@BSA NSs) heterostructures are designed and anchored onto injectable hydrogels to promote diabetic wound healing through an O2 self-supplying cascade reaction. BSA decoration decreases the particle size of Au, increasing the activity of multiple enzymes. Glucose oxidase-like Au catalyzes the oxidation of glucose into gluconic acid and H2 O2 , which is transformed into a hydroxyl radical (•OH) catalyzed by peroxidase-like MoS2 @Au@BSA to eradicate bacteria. When the wound pH reaches an alkalescent condition, MoS2 @Au@BSA mimicks superoxide dismutase to transform superoxide anions into O2 and H2 O2 , and decomposes endogenous and exogenous H2 O2 into O2 via catalase-like mechanisms, reducing oxidative stress, alleviating hypoxia, and facilitating glucose oxidation. The MoS2 @Au@BSA nanozyme-anchored injectable hydrogel, composed of oxidized dextran and glycol chitosan crosslinked through a Schiff base, significantly accelerates diabetic wound healing.
Collapse
Affiliation(s)
- Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
- Biotech. and Biomed. Research Institute, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
- Biotech. and Biomed. Research Institute, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
- Biotech. and Biomed. Research Institute, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
- Biotech. and Biomed. Research Institute, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
- Biotech. and Biomed. Research Institute, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
183
|
Fan L, Liu C, Chen X, Zheng L, Zou Y, Wen H, Guan P, Lu F, Luo Y, Tan G, Yu P, Chen D, Deng C, Sun Y, Zhou L, Ning C. Exosomes-Loaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105586. [PMID: 35253394 PMCID: PMC9069372 DOI: 10.1002/advs.202105586] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/30/2022] [Indexed: 05/19/2023]
Abstract
Electroconductive hydrogels are very attractive candidates for accelerated spinal cord injury (SCI) repair because they match the electrical and mechanical properties of neural tissue. However, electroconductive hydrogel implantation can potentially aggravate inflammation, and hinder its repair efficacy. Bone marrow stem cell-derived exosomes (BMSC-exosomes) have shown immunomodulatory and tissue regeneration effects, therefore, neural tissue-like electroconductive hydrogels loaded with BMSC-exosomes are developed for the synergistic treatment of SCI. These exosomes-loaded electroconductive hydrogels modulate microglial M2 polarization via the NF-κB pathway, and synergistically enhance neuronal and oligodendrocyte differentiation of neural stem cells (NSCs) while inhibiting astrocyte differentiation, and also increase axon outgrowth via the PTEN/PI3K/AKT/mTOR pathway. Furthermore, exosomes combined electroconductive hydrogels significantly decrease the number of CD68-positive microglia, enhance local NSCs recruitment, and promote neuronal and axonal regeneration, resulting in significant functional recovery at the early stage in an SCI mouse model. Hence, the findings of this study demonstrate that the combination of electroconductive hydrogels and BMSC-exosomes is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Lei Fan
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyNo. 381, Wushan Road, Tianhe DistrictGuangzhou510641China
| | - Can Liu
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiuxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityNo. 107, Yanjiang West Road, Yuexiu District, GuangzhouGuangzhou510120China
| | - Lei Zheng
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityNo. 1838, Guangzhou Avenue North, Baiyun DistrictGuangzhouGuangdong510515China
| | - Yan Zou
- Department of Radiologythe Third Affiliated Hospital of Sun Yat‐sen UniversityNo. 600, Tianhe Road, Tianhe DistrictGuangzhou510630China
| | - Huiquan Wen
- Department of Radiologythe Third Affiliated Hospital of Sun Yat‐sen UniversityNo. 600, Tianhe Road, Tianhe DistrictGuangzhou510630China
| | - Pengfei Guan
- Department of Pediatric OrthopedicCenter for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityNo.183, Zhongshan Avenue WestGuangzhou510515China
| | - Fang Lu
- School of Preclinical MedicineBeijing University of Chinese MedicineNo.11, North Third Ring East Road, Chaoyang DistrictBeijing100029China
| | - Yian Luo
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyNo.100, Waihuan West Road, Panyu DistrictGuangzhou510006China
| | - Guoxin Tan
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyNo.100, Waihuan West Road, Panyu DistrictGuangzhou510006China
| | - Peng Yu
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyNo. 381, Wushan Road, Tianhe DistrictGuangzhou510641China
| | - Dafu Chen
- Laboratory of Bone Tissue EngineeringBeijing Research Institute of Orthopaedics and TraumatologyBeijing JiShuiTan HospitalNo.31, Xinjiekou East Street, Xicheng DistrictBeijing100035China
| | - Chunlin Deng
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyNo. 381, Wushan Road, Tianhe DistrictGuangzhou510641China
| | - Yongjian Sun
- Department of Pediatric OrthopedicCenter for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityNo.183, Zhongshan Avenue WestGuangzhou510515China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and TreatmentDepartment of Spine SurgeryThe Third Affiliated HospitalGuangzhou Medical UniversityNo. 63, Duobao Road, Liwan DistrictGuangzhou510150China
| | - Chengyun Ning
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyNo. 381, Wushan Road, Tianhe DistrictGuangzhou510641China
| |
Collapse
|
184
|
Gao C, Song S, Lv Y, Huang J, Zhang Z. Recent Development of Conductive Hydrogels for Tissue Engineering: Review and Perspective. Macromol Biosci 2022; 22:e2200051. [PMID: 35472125 DOI: 10.1002/mabi.202200051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Indexed: 11/11/2022]
Abstract
In recent years, tissue engineering techniques have been rapidly developed and offer a new therapeutic approach to organ or tissue damage repair. However, most of tissue engineering scaffolds are nonconductive and cannot establish effective electrical coupling with tissue for the electroactive tissues. Electroconductive hydrogels (ECHs) have received increasing attention in tissue engineering owing to their electroconductivity, biocompatibility and high water content. In vitro, ECHs can not only promote the communication of electrical signals between cells, but also mediate the adhesion, proliferation, migration, and differentiation of different kinds of cells. In vivo, ECHs can transmit the electric signal to electroactive tissues and activate bioelectrical signaling pathways to promote tissue repair. As a result, implanting ECHs into damaged tissues can effectively reconstruct physiological functions related to electrical conduction. In this review, we first present an overview about the classifications and the fabrication methods of ECHs. And then, the applications of ECHs in tissue engineering, including cardiac, nerve, skin and skeletal muscle tissue, are highlighted. At last, we provide some rational guidelines for designing ECHs towards clinical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chen Gao
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Shaoshuai Song
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| | - Yinjuan Lv
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Jie Huang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| | - Zhijun Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| |
Collapse
|
185
|
Jin Y, Wang Y, Chen Y, Han T, Chen Y, Wang C. Enhanced Antibacterial Ability and Bioactivity of Polyetherketoneketone Modified with LL-37. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4578-4588. [PMID: 35380840 DOI: 10.1021/acs.langmuir.1c03319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyetherketoneketone (PEKK) is considered to be a potential substitute material for metal bone implants because of its advantageous biocompatibility, chemical stability, and mechanical properties, but clinical application has been severely restricted due to PEKK's lack of antibacterial ability and biological activity. In this study, LL-37, a natural human antimicrobial peptide, was successfully modified on the PEKK surface with polydopamine as the intermediate layer and released continuously for more than 6 days. The results of the MTT assay, colony counts, and Live/Dead staining demonstrated that compared to unmodified PEKK, the LL-37-modified PEKK significantly inhibited the adhesion, vitality, and bacterial biofilm growth of Staphylococcus aureus and Escherichia coli in a concentration-dependent way. Furthermore, the LL-37-modified PEKK enhanced biocompatibility (cell adhesion and viability) and promoted osteogenic differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Our data suggested that LL-37-modified PEKK might be a promising material for use in orthopedic implants.
Collapse
Affiliation(s)
- Yabing Jin
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yijin Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yuhong Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Tianlei Han
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yiyi Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
186
|
Yang ZL, Rao J, Lin FB, Liang ZY, Xu XJ, Lin YK, Chen XY, Wang CH, Chen CM. The Role of Exosomes and Exosomal Noncoding RNAs From Different Cell Sources in Spinal Cord Injury. Front Cell Neurosci 2022; 16:882306. [PMID: 35518647 PMCID: PMC9062236 DOI: 10.3389/fncel.2022.882306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) not only affects the quality of life of patients but also poses a heavy burden on their families. Therefore, it is essential to prevent the occurrence of SCI; for unpreventable SCI, it is critical to develop effective treatments. In recent years, various major breakthroughs have been made in cell therapy to protect and regenerate the damaged spinal cord via various mechanisms such as immune regulation, paracrine signaling, extracellular matrix (ECM) modification, and lost cell replacement. Nevertheless, many recent studies have shown that the cell therapy has many disadvantages, such as tumorigenicity, low survival rate, and immune rejection. Because of these disadvantages, the clinical application of cell therapy is limited. In recent years, the role of exosomes in various diseases and their therapeutic potential have attracted much attention. The same is true for exosomal noncoding RNAs (ncRNAs), which do not encode proteins but affect transcriptional and translational processes by targeting specific mRNAs. This review focuses on the mechanism of action of exosomes obtained from different cell sources in the treatment of SCI and the regulatory role and therapeutic potential of exosomal ncRNAs. This review also discusses the future opportunities and challenges, proposing that exosomes and exosomal ncRNAs might be promising tools for the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chun-Hua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chun-Mei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
187
|
Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Adv Healthc Mater 2022; 11:e2101577. [PMID: 34808031 PMCID: PMC8986557 DOI: 10.1002/adhm.202101577] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell-based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, "tissue chip" models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC-interfacing, conductive materials closer to clinical translation are discussed.
Collapse
Affiliation(s)
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, USA
| | - Joyce Huang
- Department of Bioengineering, University of California Los Angeles, USA
| | - Bushra Rajput
- Department of Bioengineering, University of California Los Angeles, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, USA
- David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ze Zhong Wang
- Department of Bioengineering, University of California Los Angeles, USA
| | | |
Collapse
|
188
|
Electroconductive and porous graphene-xanthan gum gel scaffold for spinal cord regeneration. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
189
|
Wei H, Song X, Liu P, Liu X, Yan X, Yu L. Antimicrobial coating strategy to prevent orthopaedic device-related infections: recent advances and future perspectives. BIOMATERIALS ADVANCES 2022; 135:212739. [PMID: 35929213 DOI: 10.1016/j.bioadv.2022.212739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria and biofilm-related infections (BRIs) has urgently called for new strategies to combat severe orthopaedic device-related infections (ODRIs). Antimicrobial coating has emerged as a promising strategy in halting the incidence of ODRIs and treating ODRIs in long term. With the advancement of material science and biotechnology, numerous antimicrobial coatings have been reported in literature, showing superior antimicrobial and osteogenic functions. This review has specifically discussed the currently developed antimicrobial coatings in the perspective of drug release from the coating system, focusing on their realization of controlled and on demand antimicrobial agents release, as well as multi-functionality. Acknowledging the multidisciplinary nature of antimicrobial coating, the conceptual design, the deposition method and the therapeutic effect of the antimicrobial coatings have been described in detail and discussed critically. Particularly, the challenges and opportunities on the way toward the clinical translation of antimicrobial coatings have been highlighted.
Collapse
Affiliation(s)
- Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
190
|
Bin-Bin Z, Da-Wa ZX, Chao L, Lan-Tao Z, Tao W, Chuan L, Chao-Zheng L, De-Chun L, Chang F, Shu-Qing W, Zu-Nan D, Xian-Wei P, Zhang ZX, Ke-Wen L. M2 macrophagy-derived exosomal miRNA-26a-5p induces osteogenic differentiation of bone mesenchymal stem cells. J Orthop Surg Res 2022; 17:137. [PMID: 35246197 PMCID: PMC8895825 DOI: 10.1186/s13018-022-03029-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/18/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells have always been a heated research topic in bone tissue regeneration and repair because of their self-renewal and multi-differentiation potential. A large number of studies have been focused on finding the inducing factors that will promote the osteogenic differentiation of bone marrow mesenchymal stem cells. Previous studies have shown that macrophage exosomes or miRNA-26a-5p can make it work, but the function of this kind of substance on cell osteogenic differentiation has not been public. METHODS M2 macrophages are obtained from IL-4 polarized bone marrow-derived macrophages. Exosomes were isolated from the supernatant of M2 macrophages and identified via transmission electron microscopy (TEM), western blotting, and DLS. Chondrogenic differentiation potential was detected by Alcian blue staining. Oil red O staining was used to detect the potential for lipogenic differentiation. And MTT would detect the proliferative capacity of cells. Western blot was performed to detect differential expression of osteogenic differentiation-related proteins. RESULTS The results showed that M2 macrophage exosomes will promote bone differentiation and at the same time inhibit lipid differentiation. In addition, M2 macrophage-derived exosomes have the function of promoting the expression of SOX and Aggrecan suppressing the level of MMP13. The exosome inhibitor GW4689 suppresses miRNA-26a-5p in M2 macrophage exosomes, and the treated exosomes do not play an important role in promoting bone differentiation. Moreover, miRNA-26a-5p can enable to promote bone differentiation and inhibit lipid differentiation. miRNA-26a-5p can promote the expression of ALP (alkaline phosphatase), RUNX-2 (Runt-related transcription factor 2), OPN(osteopontin), and Col-2(collagen type II). Therefore, it is speculated that exosomal miRNA-26a-5p is indispensable in osteogenic differentiation. CONCLUSIONS The present study indicated that M2 macrophage exosomes carrying miRNA-26a-5p can induce osteogenic differentiation of bone marrow-derived stem cells to inhibit lipogenic differentiation, and miRNA-26a-5p will also promote the expression of osteogenic differentiation-related proteins ALP, RUNX-2, OPN, and Col-2.
Collapse
Affiliation(s)
- Zhang Bin-Bin
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Zha Xi Da-Wa
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Li Chao
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Zhang Lan-Tao
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Wu Tao
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Lu Chuan
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Liu Chao-Zheng
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Li De-Chun
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Feng Chang
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Wei Shu-Qing
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Dong Zu-Nan
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Pei Xian-Wei
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Zhi-Xia Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Out-Patient, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Li Ke-Wen
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China.
| |
Collapse
|
191
|
Li TS, Gau SSF, Chou TL. Exploring social emotion processing in autism: evaluating the reading the mind in the eyes test using network analysis. BMC Psychiatry 2022; 22:161. [PMID: 35241030 PMCID: PMC8892759 DOI: 10.1186/s12888-022-03773-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Features of autism spectrum disorder (ASD) include difficulties in processing and interpreting socioemotional information. The "Reading the Mind in the Eyes" test (RMET) is a validated measurement for processing socioemotional ability. However, previous RMET studies did not explore patterns of incorrect answers and the emotional valence of the test items. This study used the Taiwanese version of the RMET and the network analysis methods to examine the differences in underlying mechanisms of socioemotional processes between 30 males with autism spectrum disorder (ASD) (mean age = 18 years) and 30 healthy control males (mean age = 17 years). For each test item, a picture of a person's eyes and partial face was shown with four words describing the emotional status on picture corners. Participants were instructed to choose one of the four words that best matched the person's thinking or feeling. We further classified the words into three valences of emotional categories to examine socioemotional processes. RESULTS Our results showed that ASD males performed poorer on the RMET than the controls. ASD males had higher network density and in-degree scores, especially in negative words, than control males. CONCLUSIONS The findings suggest that males with ASD might have deficits in mapping the best emotional concept words to the target item, especially for processing negative emotion.
Collapse
Affiliation(s)
- Tai-Shan Li
- Department of Psychology, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, No 7, Chung-Shan South Road, Taipei, 10002, Taiwan.
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| |
Collapse
|
192
|
Repetitive Trans Spinal Magnetic Stimulation Improves Functional Recovery and Tissue Repair in Contusive and Penetrating Spinal Cord Injury Models in Rats. Biomedicines 2021; 9:biomedicines9121827. [PMID: 34944643 PMCID: PMC8698720 DOI: 10.3390/biomedicines9121827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is an incurable condition in which the brain is disconnected partially or completely from the periphery. Mainly, SCIs are traumatic and are due to traffic, domestic or sport accidents. To date, SCIs are incurable and, most of the time, leave the patients with a permanent loss of sensitive and motor functions. Therefore, for several decades, researchers have tried to develop treatments to cure SCI. Among them, recently, our lab has demonstrated that, in mice, repetitive trans-spinal magnetic stimulation (rTSMS) can, after SCI, modulate the lesion scar and can induce functional locomotor recovery non-invasively. These results are promising; however, before we can translate them to humans, it is important to reproduce them in a more clinically relevant model. Indeed, SCIs do not lead to the same cellular events in mice and humans. In particular, SCIs in humans induce the formation of cystic cavities. That is why we propose here to validate the effects of rTSMS in a rat animal model in which SCI leads to the formation of cystic cavities after penetrating and contusive SCI. To do so, several techniques, including immunohistochemical, behavioral and MRI, were performed. Our results demonstrate that rTSMS, in both SCI models, modulates the lesion scar by decreasing the formation of cystic cavities and by improving axonal survival. Moreover, rTSMS, in both models, enhances functional locomotor recovery. Altogether, our study describes that rTSMS exerts positive effects after SCI in rats. This study is a further step towards the use of this treatment in humans.
Collapse
|
193
|
Yang B, Liang C, Chen D, Cheng F, Zhang Y, Wang S, Shu J, Huang X, Wang J, Xia K, Ying L, Shi K, Wang C, Wang X, Li F, Zhao Q, Chen Q. A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioact Mater 2021; 15:103-119. [PMID: 35386356 PMCID: PMC8941182 DOI: 10.1016/j.bioactmat.2021.11.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
The current effective method for treatment of spinal cord injury (SCI) is to reconstruct the biological microenvironment by filling the injured cavity area and increasing neuronal differentiation of neural stem cells (NSCs) to repair SCI. However, the method is characterized by several challenges including irregular wounds, and mechanical and electrical mismatch of the material-tissue interface. In the current study, a unique and facile agarose/gelatin/polypyrrole (Aga/Gel/PPy, AGP3) hydrogel with similar conductivity and modulus as the spinal cord was developed by altering the concentration of Aga and PPy. The gelation occurred through non-covalent interactions, and the physically crosslinked features made the AGP3 hydrogels injectable. In vitro cultures showed that AGP3 hydrogel exhibited excellent biocompatibility, and promoted differentiation of NSCs toward neurons whereas it inhibited over-proliferation of astrocytes. The in vivo implanted AGP3 hydrogel completely covered the tissue defects and reduced injured cavity areas. In vivo studies further showed that the AGP3 hydrogel provided a biocompatible microenvironment for promoting endogenous neurogenesis rather than glial fibrosis formation, resulting in significant functional recovery. RNA sequencing analysis further indicated that AGP3 hydrogel significantly modulated expression of neurogenesis-related genes through intracellular Ca2+ signaling cascades. Overall, this supramolecular strategy produces AGP3 hydrogel that can be used as favorable biomaterials for SCI repair by filling the cavity and imitating the physiological properties of the spinal cord. A facile strategy was developed to fabricate AGP3 hydrogel satisfying physiological requirements. AGP3 hydrogel promoted the differentiation of NSCs into neurons in vitro. AGP3 hydrogel could activate endogenous neurogenesis to repair spinal cord injury. AGP3 hydrogel modulated expression of neurogenesis-related genes in vitro.
Collapse
|
194
|
Wang L, Sun L, Gu Z, Li W, Guo L, Ma S, Guo L, Zhang W, Han B, Chang J. N-carboxymethyl chitosan/sodium alginate composite hydrogel loading plasmid DNA as a promising gene activated matrix for in-situ burn wound treatment. Bioact Mater 2021; 15:330-342. [PMID: 35356819 PMCID: PMC8935090 DOI: 10.1016/j.bioactmat.2021.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
Improving the degree of vascularization through the regulation of wound microenvironment is crucial for wound repair. Gene activated matrix (GAM) technology provides a new approach for skin regeneration. It is a local gene delivery system that can not only maintain a moist environment, but also increase the concentration of local active factors. For this purpose, we fabricated the mVEGF165/TGF-β1 gene-loaded N-carboxymethyl chitosan/sodium alginate hydrogel and studied its effect on promoting deep second degree burn wound repair. The average diameter of the hydrogel pores was 100 μm and the porosity was calculated as 50.9%. SEM and CLSM images showed that the hydrogel was suitable for cell adhesion and growth. The NS-GAM could maintain continuous expression for at least 9 days in vitro, showing long-term gene release and expression effect. Deep second-degree burn wound model was made on the backs of Wistar rats to evaluate the healing effect. The wounds were healed by day 22 in NS-GAM group with the prolonged high expression of VEGF and TGF-β1 protein. A high degree of neovascularization and high expression level of CD34 were observed in NS-GAM group in 21 days. The histological results showed that NS-GAM had good tissue safety and could effectively promote epithelialization and collagen regeneration. These results indicated that the NS-GAM could be applied as a promising local gene delivery system for the repair of deep second-degree burn wounds. The plasmids loaded in NS-GAM can achieve efficient gene delivery and expression in vitro and in vivo. The NS-GAM showed long-term controlled release function of the plasmids. The NS-GAM played a significant effect on neovascularization by means of gene delivery. The NS-GAM could achieve efficient in situ repair on deep second degree burn wounds.
Collapse
|
195
|
Wu C, Chen S, Zhou T, Wu K, Qiao Z, Zhang Y, Xin N, Liu X, Wei D, Sun J, Luo H, Zhou L, Fan H. Antioxidative and Conductive Nanoparticles-Embedded Cell Niche for Neural Differentiation and Spinal Cord Injury Repair. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52346-52361. [PMID: 34699166 DOI: 10.1021/acsami.1c14679] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following spinal cord injury (SCI), the transmission of electrical signals is interrupted, and an oxidative microenvironment is generated, hindering nerve regeneration and functional recovery. The strategies of regulating oxidative pathological microenvironment while restoring endogenous electrical signal transmission hold promise for SCI treatment. However, challenges are still faced in simply fabricating bioactive scaffolds with both antioxidation and conductivity. Herein, aiming to construct an antioxidative and conductive microenvironment for nerve regeneration, the difunctional polypyrrole (PPy) nanoparticles were developed and incorporated into bioactive collagen/hyaluronan hydrogel. Owing to the embedded PPy in hydrogel, the encapsulated bone marrow mesenchymal stem cells (BMSCs) can be protected from oxidative damage, and their neuronal differentiation was promoted by the synergy between conductivity and electrical stimulation, which is proved to be related to PI3K/Akt and the mitogen-activated protein kinase (MAPK) pathway. In SCI rats, the BMSC-laden difunctional hydrogel restored the transmission of bioelectric signals and inhibited secondary damage, thereby facilitating neurogenesis, resulting in prominent nerve regeneration and functional recovery. Overall, taking advantage of a difunctional nanomaterial to meet two essential requirements in SCI repair, this work provides intriguing insights into the design of biomaterials for nerve regeneration and tissue engineering.
Collapse
Affiliation(s)
- Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
196
|
Ronkin E, Tully EC, Branum-Martin L, Cohen LL, Hall C, Dilly L, Tone EB. Sex differences in social communication behaviors in toddlers with suspected autism spectrum disorder as assessed by the ADOS-2 toddler module. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 26:1282-1295. [PMID: 34657471 DOI: 10.1177/13623613211047070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LAY ABSTRACT When toddlers are suspected of autism spectrum disorder (ASD), the gold-standard assessment technique is with the Autism Diagnostic Observation Schedule, 2nd edition (ADOS-2) Toddler Module, a behavioral observation system. ASD is a neurodevelopmental condition more frequently diagnosed in toddler boys than in toddler girls. There is some evidence that the ADOS-2 assesses behaviors that are more characteristic of boys with ASD than girls. Thus, it is possible that focusing on these behaviors contributes at least in part to why more boys are diagnosed than girls. Specifically, girls may show more social skills than boys during the ADOS-2 assessment due to their socialization histories, which may lead to missed diagnoses of ASD in toddler girls. The current study examined eight social behaviors assessed by the ADOS-2 in a sample of toddlers with suspected ASD to see if they contributed differently to the total score of those items. Examination of those items suggested that those social communication behaviors work the same for boys and girls with suspected ASD, which was inconsistent with hypotheses. However, examination of particular items raises the possibility of examining creative/imaginative play as an area for future research.
Collapse
|
197
|
Li Z, Wang Q, Hu H, Zheng W, Gao C. Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury. Biomed Mater 2021; 16. [PMID: 34384071 DOI: 10.1088/1748-605x/ac1d3c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Traumatic spinal cord injury (SCI) usually results in restricted behaviour recovery and even life-changing paralysis, accompanied with numerous complications. Pathologically, the initial injuries trigger a series of secondary injuries, leading to an expansion of lesion site, a mass of neuron loss, and eventual failure of endogenous axon regeneration. As the advances rapidly spring up in regenerative medicine and tissue engineering biomaterials, regulation of these secondary injuries becomes possible, shedding a light on normal functional restoration. The successful tissue regeneration lies in proper regulation of the inflammatory microenvironment, including the inflammatory immune cells and inflammatory factors that lead to oxidative stress, inhibitory glial scar and neuroexcitatory toxicity. Specifically, the approaches based on microenvironment-regulating biomaterials have shown great promise in the repair and regeneration of SCI. In this review, the pathological inflammatory microenvironments of SCI are discussed, followed by the introduction of microenvironment-regulating biomaterials in terms of their impressive therapeutic effect in attenuation of secondary inflammation and promotion of axon regrowth. With the emphasis on regulating secondary events, the biomaterials for SCI treatment will become promising for clinical applications.
Collapse
Affiliation(s)
- Ziming Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China.,Dr Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
198
|
Rahaman MA, Lopa M, Uddin KMF, Baqui MA, Keya SP, Faruk MO, Sarker S, Basiruzzaman M, Islam M, AlBanna A, Jahan N, Chowdhury MAKA, Saha N, Hussain M, Colombi C, O'Rielly D, Woodbury-Smith M, Ghaziuddin M, Rahman MM, Uddin M. An Exploration of Physical and Phenotypic Characteristics of Bangladeshi Children with Autism Spectrum Disorder. J Autism Dev Disord 2021; 51:2392-2401. [PMID: 32975665 DOI: 10.1007/s10803-020-04703-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study explored the physical and clinical phenotype of Bangladeshi children with autism spectrum disorder (ASD). A totally of 283 children who were referred for screening and administered Module 1 of the Autism Diagnostic Observation Schedule (ADOS) were included. Overall, 209 met the ADOS algorithmic cutoff for ASD. A trend for greater weight and head circumference was observed in children with ASD versus non-ASD. Head circumference was significantly (p < 0.03) larger in ASD males compared with non-ASD males. A trend was also observed for symptom severity, higher in females than males (p = 0.068), with further analyses demonstrating that social reciprocity (p < 0.014) and functional play (p < 0.03) were significantly more impaired in ASD females than males. The findings help understand sex differences in ASD.
Collapse
Affiliation(s)
- Md Ashiquir Rahaman
- Centre for Precision Therapeutics, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - Maksuda Lopa
- Centre for Precision Therapeutics, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - K M Furkan Uddin
- Centre for Precision Therapeutics, NeuroGen Children's Healthcare, Dhaka, Bangladesh.,Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh.,Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | - Md Abdul Baqui
- Centre for Precision Therapeutics, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - Selina Parvin Keya
- Centre for Precision Therapeutics, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - Md Omar Faruk
- Centre for Precision Therapeutics, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - Shaoli Sarker
- Centre for Precision Therapeutics, NeuroGen Children's Healthcare, Dhaka, Bangladesh.,Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh.,Department of Paediatric Neuroscience, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Mohammed Basiruzzaman
- Centre for Precision Therapeutics, NeuroGen Children's Healthcare, Dhaka, Bangladesh.,Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - Mazharul Islam
- Centre for Precision Therapeutics, NeuroGen Children's Healthcare, Dhaka, Bangladesh.,Genetics and Genomic Medicine Centre, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - Ammar AlBanna
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,Al Jalila Specialty Children's Hospital, Dubai, UAE
| | - Nargis Jahan
- Centre for Precision Therapeutics, NeuroGen Children's Healthcare, Dhaka, Bangladesh
| | - M A K Azad Chowdhury
- Neonatology, Bangladesh Institute of Child Health, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Narayan Saha
- Department of Paediatric Neurology, National Institute of Neurosciences, Dhaka, Bangladesh
| | - Manzoor Hussain
- Department of Paediatric Cardiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Costanza Colombi
- Department of Paediatric Cardiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Darren O'Rielly
- Faculty of Medicine, Centre for Translational Genomics, Memorial University, St. Johns, Canada
| | - Marc Woodbury-Smith
- Department of Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | | | - Mohammad Mizanur Rahman
- Department of Paediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE. .,Department of Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
199
|
Wang Y, Wang J, Wu FX, Hayrat R, Liu J. AIMAFE: Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning. J Neurosci Methods 2020; 343:108840. [PMID: 32653384 DOI: 10.1016/j.jneumeth.2020.108840] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder that could cause problems in social communications. Clinically, diagnosing ASD mainly relies on behavioral criteria while this approach is not objective enough and could cause delayed diagnosis. Since functional magnetic resonance imaging (fMRI) can measure brain activity, it provides data for the study of brain dysfunction disorders and has been widely used in ASD identification. However, satisfactory accuracy for ASD identification has not been achieved. NEW METHOD To improve the performance of ASD identification, we propose an ASD identification method based on multi-atlas deep feature representation and ensemble learning. We first calculate multiple functional connectivity based on different brain atlases from fMRI data of each subject. Then, to get the more discriminative features for ASD identification, we propose a multi-atlas deep feature representation method based on stacked denoising autoencoder (SDA). Finally, we propose multilayer perceptron (MLP) and an ensemble learning method to perform the final ASD identification task. RESULTS Our proposed method is evaluated on 949 subjects (including 419 ASDs and 530 typical control (TCs)) from the Autism Brain Imaging Data Exchange (ABIDE) and achieves accuracy of 74.52% (sensitivity of 80.69%, specificity of 66.71%, AUC of 0.8026) for ASD identification. COMPARISON WITH EXISTING METHODS Compared with some previously published methods, our proposed method obtains the better performance for ASD identification. CONCLUSION The results suggest that our proposed method is efficient to improve the performance of ASD identification, and is promising for ASD clinical diagnosis.
Collapse
Affiliation(s)
- Yufei Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| | - Fang-Xiang Wu
- Division of Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9, Canada.
| | - Rahmatjan Hayrat
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| | - Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
200
|
Ochi M, Kawabe K, Ochi S, Miyama T, Horiuchi F, Ueno SI. School refusal and bullying in children with autism spectrum disorder. Child Adolesc Psychiatry Ment Health 2020; 14:17. [PMID: 32419839 PMCID: PMC7206817 DOI: 10.1186/s13034-020-00325-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Few studies have explored school refusal in children with autism spectrum disorder (ASD), despite being considered a serious problem. One of the leading causes of school refusal is bullying, which is defined by the feelings of students who are bullied or not, and psychological suffering caused by a psychological or physical attack. This study investigated the characteristics of school refusal in children with ASD. METHODS A total of 94 outpatients with school refusal and ASD and 143 outpatients with school refusal without ASD aged 6-18 years were included. Chi squared tests and Mann-Whitney tests were used to compare the characteristics of school refusal in children with and without ASD. Univariate and multivariate logistic regression analyses were performed to analyze the reasons for school refusal in children with ASD by sex. RESULTS School refusal significantly occurred earlier in children with ASD than in those without. In addition, "bullying" was significantly associated with school refusal in both boys and girls with ASD. CONCLUSIONS These findings suggest that school refusal should be monitored early in children with ASD. The importance of recognizing bullying among children with ASD should be highlighted as an opportunity for early intervention.
Collapse
Affiliation(s)
- Marina Ochi
- grid.255464.40000 0001 1011 3808Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan ,Horie Hospital, Matsuyama, Ehime 791-0295 Japan
| | - Kentaro Kawabe
- grid.255464.40000 0001 1011 3808Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan ,grid.452478.80000 0004 0621 7227Center for Child Health, Behavior and Development, Ehime University Hospital, Toon, Japan
| | - Shinichiro Ochi
- grid.255464.40000 0001 1011 3808Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| | - Tomoe Miyama
- grid.452478.80000 0004 0621 7227Center for Child Health, Behavior and Development, Ehime University Hospital, Toon, Japan ,Matsuyama Kinen Hospital, Matsuyama, Ehime 791-0295 Japan
| | - Fumie Horiuchi
- grid.255464.40000 0001 1011 3808Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan ,grid.452478.80000 0004 0621 7227Center for Child Health, Behavior and Development, Ehime University Hospital, Toon, Japan
| | - Shu-ichi Ueno
- grid.255464.40000 0001 1011 3808Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| |
Collapse
|