201
|
Sajjad F, Sun NN, Chen T, Yan YJ, Margetić D, Chen ZL. Evaluation of antimicrobial photodynamic activities of 5-aminolevulinic acid derivatives. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:296-305. [PMID: 33404073 DOI: 10.1111/phpp.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Antibiotic resistance is increasing day by day, thereby increase the chances of more infections by resistant bacteria. In this situation, antimicrobial photodynamic therapy (aPDT) is gaining more attraction. OBJECTIVE To evaluate the antimicrobial effect of ALA derivatives using photodynamic therapy. MATERIALS AND METHODS In this study, we evaluated the aPDT effect of different derivatives of 5-ALA. In vivo and in vitro studies were performed to measure the antimicrobial activity. Different light doses and different concentrations of drugs were used to test anti-bacterial effect of drugs as well as to detect any physiological changes in animal model after the treatment. RESULTS In vivo studies revealed that ALA-methyl ester, ALA-hexyl ester, and ALA-13A are potent photosensitizers. In vitro studies involved wound healing rate, body weight, and dietary intake were evaluated, and results showed that ALA, ALA-methyl ester, ALA-hexyl ester, and ALA-13A had good anti-bacterial effects, fast healing rate, and no effect on other physical parameters. CONCLUSION Photodynamic therapy is increasingly used to treat different types of skin infections caused by bacterial strains. Our studies revealed that ALA-methyl ester, ALA-hexyl ester, and ALA-13A are promising photosensitizers for photodynamic therapy to inhibit the growth of resistant bacterial strains.
Collapse
Affiliation(s)
- Faiza Sajjad
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, DongHua University, Shanghai, China
| | - Ning-Ning Sun
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, DongHua University, Shanghai, China
| | - Ting Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, DongHua University, Shanghai, China
| | - Yi-Jia Yan
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | - Davor Margetić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, DongHua University, Shanghai, China
| |
Collapse
|
202
|
Laborde RJ, Ishimura ME, Abreu-Butin L, Nogueira CV, Grubaugh D, Cruz-Leal Y, Luzardo MC, Fernández A, Mesa C, Pazos F, Álvarez C, Alonso ME, Starnbach MN, Higgins DE, Fernández LE, Longo-Maugéri IM, Lanio ME. Sticholysins, pore-forming proteins from a marine anemone can induce maturation of dendritic cells through a TLR4 dependent-pathway. Mol Immunol 2021; 131:144-154. [PMID: 33422341 DOI: 10.1016/j.molimm.2020.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Sticholysins (Sts) I and II (StI and StII) are pore-forming proteins (PFPs), purified from the Caribbean Sea anemone Stichodactyla helianthus. StII encapsulated into liposomes induces a robust antigen-specific cytotoxic CD8+ T lymphocytes (CTL) response and in its free form the maturation of bone marrow-derived dendritic cells (BM-DCs). It is probable that the latter is partially supporting in part the immunomodulatory effect on the CTL response induced by StII-containing liposomes. In the present work, we demonstrate that the StII's ability of inducing maturation of BM-DCs is also shared by StI, an isoform of StII. Using heat-denatured Sts we observed a significant reduction in the up-regulation of maturation markers indicating that both PFP's ability to promote maturation of BM-DCs is dependent on their conformational characteristics. StII-mediated DC maturation was abrogated in BM-DCs from toll-like receptor (TLR) 4 and myeloid differentiation primary response gene 88 (MyD88)-knockout mice but not in cells from TLR2-knockout mice. Furthermore, the antigen-specific CTL response induced by StII-containing liposomes was reduced in TLR4-knockout mice. These results indicate that StII, and probably by extension StI, has the ability to induce maturation of DCs through a TLR4/MyD88-dependent pathway, and that this activation contributes to the CTL response generated by StII-containing liposomes.
Collapse
Affiliation(s)
- Rady J Laborde
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| | - Mayari E Ishimura
- Discipline of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), 04023-062, São Paulo, Brazil.
| | - Lianne Abreu-Butin
- Discipline of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), 04023-062, São Paulo, Brazil
| | - Catarina V Nogueira
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, MA, USA.
| | - Daniel Grubaugh
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, MA, USA.
| | - Yoelys Cruz-Leal
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| | - María C Luzardo
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| | - Audry Fernández
- Immunobiology Division, Center of Molecular Immunology (CIM), Havana, 11600, Cuba.
| | - Circe Mesa
- Immunobiology Division, Center of Molecular Immunology (CIM), Havana, 11600, Cuba.
| | - Fabiola Pazos
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| | - Carlos Álvarez
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| | - María E Alonso
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, MA, USA.
| | - Darren E Higgins
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, MA, USA.
| | - Luis E Fernández
- Immunobiology Division, Center of Molecular Immunology (CIM), Havana, 11600, Cuba.
| | - Ieda M Longo-Maugéri
- Discipline of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), 04023-062, São Paulo, Brazil.
| | - María E Lanio
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| |
Collapse
|
203
|
Alam A, Imam N, Siddiqui MF, Ali MK, Ahmed MM, Ishrat R. Human gene expression profiling identifies key therapeutic targets in tuberculosis infection: A systematic network meta-analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 87:104649. [PMID: 33271338 DOI: 10.1016/j.meegid.2020.104649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) is one of the deadliest diseases since ancient times and is still a global health problem. So, there is a need to develop new approaches for early detection of TB and understand the host-pathogen relationship. In the present study, we have analyzed microarray data sets and compared the transcriptome profiling of the healthy individual with latent infection (LTBI) and active TB (TB) patients, and identified the differentially expressed genes (DEGs). Next, we performed the systematic network meta-analysis of the DEGs, which identified the seven most influencing hub genes (IL6, IL1B, TNF, NFKB1, STAT1, JAK2, and MAPK8) as the potential therapeutic target in the tuberculosis disease. These target genes are involved in many biological processes like cell cycle control, apoptosis, complement signalling, enhanced cytokine & chemokine signalling, pro-inflammatory responses, and host immune responses. Additionally, we also identified 22 inferred genes that are mainly engaged in the induction of innate immune response, cellular response to interleukin-6, inflammatory response, apoptotic process, I-kappaB-phosphorylation, JAK-STAT signalling pathway, macrophage activation, cell growth, and cell signalling. The proper attention of these inferred genes may open up a new horizon to understand the defensive mechanisms of TB disease. The transcriptome profiling and network approach can enhance the understanding of the molecular pathogenesis of tuberculosis infection and have implications for the plan and execution of mRNA expression tools to support early diagnostics and treatment of Mycobacterium tuberculosis (M.tb).
Collapse
Affiliation(s)
- Aftab Alam
- Center for Interdisciplinary Research in Basic sciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Nikhat Imam
- Center for Interdisciplinary Research in Basic sciences, Jamia Millia Islamia University, New Delhi 110025, India; Institute of Computer Science & Information Technology, Department of Mathematics, Magadh University, Bodh Gaya 824234, Bihar, India
| | - Mohd Faizan Siddiqui
- International Medical Faculty, Osh State University, Osh City 723500, Kyrgyzstan
| | - Md Kaisar Ali
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Mohd Murshad Ahmed
- Center for Interdisciplinary Research in Basic sciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic sciences, Jamia Millia Islamia University, New Delhi 110025, India.
| |
Collapse
|
204
|
Das S, Tiwari M, Mondal D, Sahoo BR, Tiwari DK. Growing tool-kit of photosensitizers for clinical and non-clinical applications. J Mater Chem B 2020; 8:10897-10940. [PMID: 33165483 DOI: 10.1039/d0tb02085k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photosensitizers are photosensitive molecules utilized in clinical and non-clinical applications by taking advantage of light-mediated reactive oxygen generation, which triggers local and systemic cellular toxicity. Photosensitizers are used for diverse biological applications such as spatio-temporal inactivation of a protein in a living system by chromophore-assisted light inactivation, localized cell photoablation, photodynamic and immuno-photodynamic therapy, and correlative light-electron microscopy imaging. Substantial efforts have been made to develop several genetically encoded, chemically synthesized, and nanotechnologically driven photosensitizers for successful implementation in redox biology applications. Genetically encoded photosensitizers (GEPS) or reactive oxygen species (ROS) generating proteins have the advantage of using them in the living system since they can be manipulated by genetic engineering with a variety of target-specific genes for the precise spatio-temporal control of ROS generation. The GEPS variety is limited but is expanding with a variety of newly emerging GEPS proteins. Apart from GEPS, a large variety of chemically- and nanotechnologically-empowered photosensitizers have been developed with a major focus on photodynamic therapy-based cancer treatment alone or in combination with pre-existing treatment methods. Recently, immuno-photodynamic therapy has emerged as an effective cancer treatment method using smartly designed photosensitizers to initiate and engage the patient's immune system so as to empower the photosensitizing effect. In this review, we have discussed various types of photosensitizers, their clinical and non-clinical applications, and implementation toward intelligent efficacy, ROS efficiency, and target specificity in biological systems.
Collapse
Affiliation(s)
- Suman Das
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao Plateau, Goa 403206, India.
| | | | | | | | | |
Collapse
|
205
|
Srivastava A, Makarenkova HP. Innate Immunity and Biological Therapies for the Treatment of Sjögren's Syndrome. Int J Mol Sci 2020; 21:E9172. [PMID: 33271951 PMCID: PMC7730146 DOI: 10.3390/ijms21239172] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disorder affecting approximately 3% of the population in the United States. This disease has a female predilection and affects exocrine glands, including lacrimal and salivary glands. Dry eyes and dry mouths are the most common symptoms due to the loss of salivary and lacrimal gland function. Symptoms become more severe in secondary SS, where SS is present along with other autoimmune diseases like systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. It is known that aberrant activation of immune cells plays an important role in disease progression, however, the mechanism for these pathological changes in the immune system remains largely unknown. This review highlights the role of different immune cells in disease development, therapeutic treatments, and future strategies that are available to target various immune cells to cure the disease.
Collapse
Affiliation(s)
| | - Helen P. Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA;
| |
Collapse
|
206
|
Ma VT, Katzman CS, Palmbos PL, Patel RM, Gudjonsson JE, Alva AS. NB-UVB phototherapy in the treatment of anti-PD-1 inhibitor induced psoriasis: A case report. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2020. [DOI: 10.1016/j.cpccr.2020.100004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
207
|
Sudbury EL, Clifford V, Messina NL, Song R, Curtis N. Mycobacterium tuberculosis-specific cytokine biomarkers to differentiate active TB and LTBI: A systematic review. J Infect 2020; 81:873-881. [PMID: 33007340 DOI: 10.1016/j.jinf.2020.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES New tests are needed to overcome the limitations of existing immunodiagnostic tests for tuberculosis (TB) infection, including their inability to differentiate between active TB and latent TB infection (LTBI). This review aimed to identify the most promising cytokine biomarkers for use as stage-specific markers of TB infection. METHODS A systematic review was done using electronic databases to identify studies that have investigated Mycobacterium tuberculosis (MTB)-specific cytokine responses as diagnostic tools to differentiate between LTBI and active TB. RESULTS The 56 studies included in this systematic review measured the MTB-specific responses of 100 cytokines, the most frequently studied of which were IFN-γ, IL-2, TNF-α, IP-10, IL-10 and IL-13. Ten studies assessed combinations of cytokines, most commonly IL-2 and IFN-γ. For most cytokines, findings were heterogenous between studies. The variation in results likely relates to differences in the study design and laboratory methods, as well as participant and environmental factors. CONCLUSIONS Although several cytokines show promise as stage-specific markers of TB infection, this review highlights the need for further well-designed studies, in both adult and paediatric populations, to establish which cytokine(s) will be of most use in a new generation of immunodiagnostic tests.
Collapse
Affiliation(s)
- Eva L Sudbury
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia.
| | - Vanessa Clifford
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital, Parkville, Australia.
| | - Nicole L Messina
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia.
| | - Rinn Song
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital, Parkville, Australia.
| |
Collapse
|
208
|
Abouelezz K, Khanapara D, Batiha GES, Ahmed EA, Hetta HF. Cytotoxic Chemotherapy as an Alternative for Systemic Treatment of Advanced Hepatocellular Carcinoma in Developing Countries. Cancer Manag Res 2020; 12:12239-12248. [PMID: 33273860 PMCID: PMC7707432 DOI: 10.2147/cmar.s280631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023] Open
Abstract
Systemic therapy options nowadays for advanced hepatocellular carcinoma (HCC) are either immunotherapy with immune checkpoint inhibitors or targeted therapy. As the incidence of liver cancer is much higher in developing countries, these new medications are not readily accessible for most of the patients. Cytotoxic chemotherapy agents are more available and affordable in developing countries. We are trying to explore the effectiveness of the newer cytotoxic agents in the systematic treatment for advanced HCC. This is a systematic review of all randomized controlled trials since 1997 that utilized systemic cytotoxic chemotherapy agents in the systemic treatment for advanced HCC using Scopus, PubMed, and Cochrane library up to February 2020. Six randomized trials were found. Different drugs and dosages were used, so it was statistically inappropriate to conduct a meta-analysis. No Phase III trial showed statistically significant overall survival (OS) benefit for cytotoxic chemotherapy, except subgroup analysis of Chinese patients in one study who had leucovorin, fluorouracil, and oxaliplatin (FOLFOX) regimen. There was no significant progression-free survival (PFS) or response rate in the Phase II trials. There are not enough data to infer the actual benefits of systemic cytotoxic chemotherapy in advanced HCC. However, oxaliplatin-based regimens may give feasible results. Health systems with limited access to targeted therapy and immunotherapy agents may use oxaliplatin-based regimens in clinical trials for advanced HCC. These results should be confirmed in multiple future randomized clinical trials.
Collapse
Affiliation(s)
- Khaled Abouelezz
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Dipen Khanapara
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour 22511, Egypt
| | - Esraa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.,Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Helal F Hetta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
209
|
Jarak I, Varela CL, Tavares da Silva E, Roleira FFM, Veiga F, Figueiras A. Pluronic-based nanovehicles: Recent advances in anticancer therapeutic applications. Eur J Med Chem 2020; 206:112526. [PMID: 32971442 DOI: 10.1016/j.ejmech.2020.112526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Pluronics are a class of amphiphilic tri-block copolymers with wide pharmaceutical applicability. In the past decades, the ability to form biocompatible nanosized micelles was exploited to formulate stable drug nanovehicles with potential use in antitumor therapy. Due to the great potential for tuning physical and structural properties of Pluronic unimers, a panoply of drug or polynucleotide-loaded micelles was prepared and tested for their antitumoral activity. The attractive inherent antitumor properties of Pluronic polymers in combination with cell targeting and stimuli-responsive ligands greatly improved antitumoral therapeutic effects of tested drugs. In spite of that, the extraordinary complexity of biological challenges in the delivery of micellar drug payload makes their therapeutic potential still not exploited to the fullest. In this review paper we attempt to present the latest developments in the field of Pluronic based nanovehicles and their application in anticancer therapy with an overview of the chemistry involved in the preparation of these nanovehicles.
Collapse
Affiliation(s)
- Ivana Jarak
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Carla L Varela
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Elisiário Tavares da Silva
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Fernanda F M Roleira
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal; Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal; Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal.
| |
Collapse
|
210
|
Tondolo JSM, Loreto ES, de Jesus FPK, Ledur PC, Verdi CM, Santurio JM. Immunotherapy based on Pythium insidiosum mycelia drives a Th1/Th17 response in mice. Med Mycol 2020; 58:1120-1125. [PMID: 32396166 DOI: 10.1093/mmy/myaa023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Pythium insidiosum is an oomycete that affects mammals, especially humans and horses, causing a difficult-to-treat disease. Typically, surgical interventions associated with antimicrobial therapy, immunotherapy, or both are the preferred treatment choices. PitiumVac® is a therapeutic vaccine prepared from the mycelial mass of P. insidiosum and is used to treat Brazilian equine pythiosis. To better understand how PitiumVac® works, we analyzed the composition of PitiumVac® and the immune response triggered by this immunotherapy in mice. We performed an enzymatic quantification that showed a total glucan content of 21.05% ± 0.94 (α-glucan, 6.37% ± 0.77 and (1,3)(1,6)-β-glucan, 14.68% ± 0.60) and mannose content of 1.39% ± 0.26; the protein content was 0.52 mg ml-1 ± 0.07 mg ml-1. Healthy Swiss mice (n = 3) were subcutaneously preimmunized with one, two, or three shots of PitiumVac®, and immunization promoted a relevant Th1 and Th17 responses compared to nonimmunization of mice. The highest cytokine levels were observed after the third immunization, principally for IFN-γ, IL-17A, IL-6, and IL-10 levels. Results of infected untreated (Pythiosis) and infected treated (Pythiosis + PVAC) mice (n = 3) showed that PitiumVac® reinforces the Th1/Th17 response displayed by untreated mice. The (1,3)(1,6)-β-glucan content can be, at least in part, related to this Th1/Th17 response.
Collapse
Affiliation(s)
- Juliana S M Tondolo
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.,Sobresp Faculdade de Ciências da Saúde, Santa Maria, RS, Brazil
| | - Erico S Loreto
- Sobresp Faculdade de Ciências da Saúde, Santa Maria, RS, Brazil
| | - Francielli P K de Jesus
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Pauline C Ledur
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Camila M Verdi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Janio M Santurio
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| |
Collapse
|
211
|
Szulc-Kielbik I, Brzostek A, Gatkowska J, Kielbik M, Klink M. Determination of in vitro and in vivo immune response to recombinant cholesterol oxidase from Mycobacterium tuberculosis. Immunol Lett 2020; 228:103-111. [PMID: 33166528 DOI: 10.1016/j.imlet.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 11/04/2020] [Indexed: 01/10/2023]
Abstract
Cholesterol oxidase (ChoD) is an enzyme that is involved but is dispensable in the process of cholesterol degradation by Mycobacterium tuberculosis (Mtb). Interestingly, ChoD is a virulence factor of Mtb, and it strongly modulates the function of human macrophages in vitro, allowing the intracellular survival of bacteria. Here, we determined the immunogenic activity of recombinant ChoD from Mtb in a mouse model. We found that peritoneal exudate cells obtained from mice injected i.p. with ChoD but not those from mice injected with PBS responded in vitro with highly spontaneous, as well as phorbol 12-myristate 13-acetate (PMA)-stimulated, production of reactive oxygen species (ROS). However, ChoD significantly reduced the ROS response to PMA in re-stimulated cells in vitro. The cytokine secretion pattern in mice immunized s.c. with ChoD emulsified with incomplete Freund's adjuvant (IFA) showed evidence of Th2-induced or proinflammatory immune responses. The main cytokines detected in sera were interleukin (IL) 6 and 5, tumour necrosis factor α (TNF-α) and monocyte chemoattractant protein 1, while IL-2 and IL-12 as well as interferon γ were undetectable. Similarly, ChoD protein alone activated THP-1-derived macrophages to release proinflammatory IL-6, IL-8 and TNF-α, in vitro. Moreover, a statistically significant predominance of the IgG1 isotype over that of IgG2a in the sera of mice immunized with ChoD/IFA was observed. In conclusion, we demonstrated here that ChoD of Mtb is an active protein, which is able to induce the immune response both in vivo and in vitro.
Collapse
Affiliation(s)
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
212
|
Ding X, Zhao T, Lee CC, Yan C, Du H. Lysosomal Acid Lipase Deficiency Controls T- and B-Regulatory Cell Homeostasis in the Lymph Nodes of Mice with Human Cancer Xenotransplants. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:353-367. [PMID: 33159889 DOI: 10.1016/j.ajpath.2020.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022]
Abstract
Utilization of proper preclinical models accelerates development of immunotherapeutics and the study of the interplay between human malignant cells and immune cells. Lysosomal acid lipase (LAL) is a critical lipid hydrolase that generates free fatty acids and cholesterol. Ablation of LAL suppresses immune rejection and allows growth of human lung cancer cells in lal-/- mice. In the lal-/- lymph nodes, the percentages of both T- and B-regulatory cells (Tregs and Bregs, respectively) are increased, with elevated expression of programmed death-ligand 1 and IL-10, and decreased expression of interferon-γ. Levels of enzymes in the glucose and glutamine metabolic pathways are elevated in Tregs and Bregs of the lal-/- lymph nodes. Pharmacologic inhibitor of pyruvate dehydrogenase, which controls the transition from glycolysis to the citric acid cycle, effectively reduces Treg and Breg elevation in the lal-/- lymph nodes. Blocking the mammalian target of rapamycin or reactivating peroxisome proliferator-activated receptor γ, an LAL downstream effector, reduces lal-/- Treg and Breg elevation and PD-L1 expression in lal-/- Tregs and Bregs, and improves human cancer cell rejection. Treatment with PD-L1 antibody also reduces Treg and Breg elevation in the lal-/- lymph nodes and improves human cancer cell rejection. These observations conclude that LAL-regulated lipid metabolism is essential to maintain antitumor immunity.
Collapse
Affiliation(s)
- Xinchun Ding
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ting Zhao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chih-Chun Lee
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
213
|
De Silva P, Saad MA, Thomsen HC, Bano S, Ashraf S, Hasan T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization - a Thomas Dougherty Award for Excellence in PDT paper. J PORPHYR PHTHALOCYA 2020; 24:1320-1360. [PMID: 37425217 PMCID: PMC10327884 DOI: 10.1142/s1088424620300098] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic therapy is a photochemistry-based approach, approved for the treatment of several malignant and non-malignant pathologies. It relies on the use of a non-toxic, light activatable chemical, photosensitizer, which preferentially accumulates in tissues/cells and, upon irradiation with the appropriate wavelength of light, confers cytotoxicity by generation of reactive molecular species. The preferential accumulation however is not universal and, depending on the anatomical site, the ratio of tumor to normal tissue may be reversed in favor of normal tissue. Under such circumstances, control of the volume of light illumination provides a second handle of selectivity. Singlet oxygen is the putative favorite reactive molecular species although other entities such as nitric oxide have been credibly implicated. Typically, most photosensitizers in current clinical use have a finite quantum yield of fluorescence which is exploited for surgery guidance and can also be incorporated for monitoring and treatment design. In addition, the photodynamic process alters the cellular, stromal, and/or vascular microenvironment transiently in a process termed photodynamic priming, making it more receptive to subsequent additional therapies including chemo- and immunotherapy. Thus, photodynamic priming may be considered as an enabling technology for the more commonly used frontline treatments. Recently, there has been an increase in the exploitation of the theranostic potential of photodynamic therapy in different preclinical and clinical settings with the use of new photosensitizer formulations and combinatorial therapeutic options. The emergence of nanomedicine has further added to the repertoire of photodynamic therapy's potential and the convergence and co-evolution of these two exciting tools is expected to push the barriers of smart therapies, where such optical approaches might have a special niche. This review provides a perspective on current status of photodynamic therapy in anti-cancer and anti-microbial therapies and it suggests how evolving technologies combined with photochemically-initiated molecular processes may be exploited to become co-conspirators in optimization of treatment outcomes. We also project, at least for the short term, the direction that this modality may be taking in the near future.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanna C. Thomsen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
214
|
Pearson JRD, Cuzzubbo S, McArthur S, Durrant LG, Adhikaree J, Tinsley CJ, Pockley AG, McArdle SEB. Immune Escape in Glioblastoma Multiforme and the Adaptation of Immunotherapies for Treatment. Front Immunol 2020; 11:582106. [PMID: 33178210 PMCID: PMC7594513 DOI: 10.3389/fimmu.2020.582106] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequently occurring primary brain tumor and has a very poor prognosis, with only around 5% of patients surviving for a period of 5 years or more after diagnosis. Despite aggressive multimodal therapy, consisting mostly of a combination of surgery, radiotherapy, and temozolomide chemotherapy, tumors nearly always recur close to the site of resection. For the past 15 years, very little progress has been made with regards to improving patient survival. Although immunotherapy represents an attractive therapy modality due to the promising pre-clinical results observed, many of these potential immunotherapeutic approaches fail during clinical trials, and to date no immunotherapeutic treatments for GBM have been approved. As for many other difficult to treat cancers, GBM combines a lack of immunogenicity with few mutations and a highly immunosuppressive tumor microenvironment (TME). Unfortunately, both tumor and immune cells have been shown to contribute towards this immunosuppressive phenotype. In addition, current therapeutics also exacerbate this immunosuppression which might explain the failure of immunotherapy-based clinical trials in the GBM setting. Understanding how these mechanisms interact with one another, as well as how one can increase the anti-tumor immune response by addressing local immunosuppression will lead to better clinical results for immune-based therapeutics. Improving therapeutic delivery across the blood brain barrier also presents a challenge for immunotherapy and future therapies will need to consider this. This review highlights the immunosuppressive mechanisms employed by GBM cancers and examines potential immunotherapeutic treatments that can overcome these significant immunosuppressive hurdles.
Collapse
Affiliation(s)
- Joshua R. D. Pearson
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stefania Cuzzubbo
- Université de Paris, PARCC, INSERM U970, Paris, France
- Laboratoire de Recherches Biochirurgicales (Fondation Carpentier), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Simon McArthur
- Institute of Dentistry, Barts & the London School of Medicine & Dentistry, Blizard Institute, Queen Mary, University of London, London, United Kingdom
| | - Lindy G. Durrant
- Scancell Ltd, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Jason Adhikaree
- Academic Oncology, Nottingham University NHS Trusts, City Hospital Campus, Nottingham, United Kingdom
| | - Chris J. Tinsley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - A. Graham Pockley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephanie E. B. McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
215
|
Prolonged residence of an albumin-IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nat Biomed Eng 2020; 5:387-398. [PMID: 33046864 DOI: 10.1038/s41551-020-00627-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Interleukin-4 (IL-4) suppresses the development of multiple sclerosis in a murine model of experimental autoimmune encephalomyelitis (EAE). Here, we show that, in mice with EAE, the accumulation and persistence in the lymph nodes and spleen of a systemically administered serum albumin (SA)-IL-4 fusion protein leads to higher efficacy in preventing disease development than the administration of wild-type IL-4 or of the clinically approved drug fingolimod. We also show that the SA-IL-4 fusion protein prevents immune-cell infiltration in the spinal cord, decreases integrin expression in antigen-specific CD4+ T cells, increases the number of granulocyte-like myeloid-derived suppressor cells (and their expression of programmed-death-ligand-1) in spinal cord-draining lymph nodes and decreases the number of T helper 17 cells, a pathogenic cell population in EAE. In mice with chronic EAE, SA-IL-4 inhibits immune-cell infiltration into the spinal cord and completely abrogates immune responses to myelin antigen in the spleen. The SA-IL-4 fusion protein may be prophylactically and therapeutically advantageous in the treatment of multiple sclerosis.
Collapse
|
216
|
Angnardo L, Wolfe CM, Green WH, Cognetta AB. Comparison of Grenz ray and photodynamic therapy for field treatment of actinic keratoses on the forearm: A case series. Australas J Dermatol 2020; 62:64-68. [PMID: 33040339 DOI: 10.1111/ajd.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Actinic Keratosis is an intraepidermal neoplasm that represents the second most common reason for dermatologic visits in the United States. Sustained clearance with existing therapies is highly variable. OBJECTIVE To assess the effects of combination and monotherapy with photodynamic therapy (PDT), grenz ray therapy, and PDT with microneedling (microchannel skin system) for actinic damage of the dorsal forearms and hands. METHODS Full ethics approval was obtained through a Human Subjects Committee. Four patients with diffuse actinic field damage on their forearms and hands were recruited for the study. The dorsal forearm and hand from the elbow to the metacarpophalangeal joint were divided into four equal sections. Section 1 was treated with PDT. Section 2 was treated with grenz ray. Section 3 was treated with PDT plus microneedling. Section 4 was treated with grenz ray and PDT with microneedling. Lesion counts were recorded with transparent grids, photographed and evaluated by the same investigator at baseline, 1, 2, 3 and 6 months. RESULTS At month 6 post treatment, lesion counts, as a per cent reduction from baseline, were 91.7% in section 1 (PDT); 97.3% in section 2 (grenz ray); 92.9% in section 3 (PDT + microneedle); and 93.9% in section 4 (grenz ray + PDT + microneedle). CONCLUSION The greatest reduction occurred in the grenz ray monotherapy section and the second greatest reduction in the grenz ray, PDT, microneedling section. Further research on the efficacy of grenz ray therapy for field treatment of actinic keratosis of the forearms and hands is needed.
Collapse
Affiliation(s)
- Lauren Angnardo
- Division of Dermatology, Mohs Micrographic Surgery Clinic Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Christopher M Wolfe
- Division of Dermatology, Mohs Micrographic Surgery Clinic Florida State University College of Medicine, Tallahassee, Florida, USA
| | - W Harris Green
- Division of Dermatology, Mohs Micrographic Surgery Clinic Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Armand B Cognetta
- Division of Dermatology, Mohs Micrographic Surgery Clinic Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
217
|
Teplický T, Kalafutová A, Jerigová M, Čunderlíková B. Modulation of aminolevulinic acid-based photoinactivation efficacy by iron in vitro is cell type dependent. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112048. [PMID: 33142214 DOI: 10.1016/j.jphotobiol.2020.112048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022]
Abstract
Iron availability to cells may be modified in the tumour microenvironment, which may be involved in treatment response. Iron availability affects the conversion of protoporphyrin IX to heme, which likely determines the efficacy of aminolevulinic acid-based photodynamic therapy (ALA-based PDT). We compared photoinactivation efficacy in three oesophageal cell lines in culture media differing in iron content, DMEM and RPMI 1640, and in RPMI 1640 supplemented with iron to understand the importance of iron presence for ALA-based PDT outcome. ALA-based PDT was more efficacious in DMEM than in RPMI 1640 in all tested cell lines. Consistently, the highest protoporphyrin IX fluorescence signals, indicating the highest level of protoporphyrin IX production, were detected from cell colonies incubated in DMEM compared to those incubated in RPMI 1640 irrespective of iron presence. Components in the culture media other than iron ions are likely to be responsible for the observed differences in two culture media. Nevertheless, iron supplementation to RPMI 1640 showed that the presence of ferric ions in the concentration range 0-8 mg/l affected ALA-based PDT efficacy in a cell type-dependent manner. In poorly differentiated carcinoma cells, the increased efficacy of ALA-induced photoinactivation in the presence of 0.1 mg/l of supplemented iron was found. At the same iron concentration, the slightly different mitochondrial potential at no modifications of the iron labile pool was observed. The efficacy of ALA-based PDT in vitro depends on the choice of culture medium and the presence of iron ions in culture medium depending on intrinsic properties of cells.
Collapse
Affiliation(s)
- Tibor Teplický
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Adriana Kalafutová
- Faculty of Natural Sciences, University of SS. Cyril and Methodius, Trnava, Slovakia
| | - Monika Jerigová
- International Laser Centre, Bratislava, Slovakia; Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Beata Čunderlíková
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; International Laser Centre, Bratislava, Slovakia.
| |
Collapse
|
218
|
Niitsuma S, Kudo H, Kikuchi A, Hayashi T, Kumakura S, Kobayashi S, Okuyama Y, Kumagai N, Niihori T, Aoki Y, So T, Funayama R, Nakayama K, Shirota M, Kondo S, Kagami S, Tsukaguchi H, Iijima K, Kure S, Ishii N. Biallelic variants/mutations of IL1RAP in patients with steroid-sensitive nephrotic syndrome. Int Immunol 2020; 32:283-292. [PMID: 31954058 DOI: 10.1093/intimm/dxz081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Nephrotic syndrome (NS) is a renal disease characterized by severe proteinuria and hypoproteinemia. Although several single-gene mutations have been associated with steroid-resistant NS, causative genes for steroid-sensitive NS (SSNS) have not been clarified. While seeking to identify causative genes associated with SSNS by whole-exome sequencing, we found compound heterozygous variants/mutations (c.524T>C; p.I175T and c.662G>A; p.R221H) of the interleukin-1 receptor accessory protein (IL1RAP) gene in two siblings with SSNS. The siblings' parents are healthy, and each parent carries a different heterozygous IL1RAP variant/mutation. Since IL1RAP is a critical subunit of the functional interleukin-1 receptor (IL-1R), we investigated the effect of these variants on IL-1R subunit function. When stimulated with IL-1β, peripheral blood mononuclear cells from the siblings with SSNS produced markedly lower levels of cytokines compared with cells from healthy family members. Moreover, IL-1R with a variant IL1RAP subunit, reconstituted on a hematopoietic cell line, had impaired binding ability and low reactivity to IL-1β. Thus, the amino acid substitutions in IL1RAP found in these NS patients are dysfunctional variants/mutations. Furthermore, in the kidney of Il1rap-/- mice, the number of myeloid-derived suppressor cells, which require IL-1β for their differentiation, was markedly reduced although these mice did not show significantly increased proteinuria in acute nephrotic injury with lipopolysaccharide treatment. Together, these results identify two IL1RAP variants/mutations in humans for the first time and suggest that IL1RAP might be a causative gene for familial NS.
Collapse
Affiliation(s)
- Sou Niitsuma
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan.,Department of Pediatrics, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Hiroki Kudo
- Department of Pediatrics, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Takaya Hayashi
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Satoshi Kumakura
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan.,Department of Nephrology, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Shuhei Kobayashi
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Yuko Okuyama
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Naonori Kumagai
- Department of Pediatrics, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuji Kondo
- Department of Pediatrics, Tokushima University Graduate School, Tokushima, Japan.,Department of Pediatrics, NHO Shikoku Medical Center for Children and Adults, Zentsuji, Japan
| | - Shoji Kagami
- Department of Pediatrics, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroyasu Tsukaguchi
- Second Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigeo Kure
- Department of Pediatrics, Endocrinology and Vascular Medicine, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Endocrinology and Vascular Medicine, Sendai, Japan
| |
Collapse
|
219
|
White MPJ, Johnston CJC, Grainger JR, Konkel JE, O'Connor RA, Anderton SM, Maizels RM. The Helminth Parasite Heligmosomoides polygyrus Attenuates EAE in an IL-4Rα-Dependent Manner. Front Immunol 2020; 11:1830. [PMID: 33117327 PMCID: PMC7552805 DOI: 10.3389/fimmu.2020.01830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites are effective in biasing Th2 immunity and inducing regulatory pathways that minimize excessive inflammation within their hosts, thus allowing chronic infection to occur whilst also suppressing bystander atopic or autoimmune diseases. Multiple sclerosis (MS) is a severe autoimmune disease characterized by inflammatory lesions within the central nervous system; there are very limited therapeutic options for the progressive forms of the disease and none are curative. Here, we used the experimental autoimmune encephalomyelitis (EAE) model to examine if the intestinal helminth Heligmosomoides polygyrus and its excretory/secretory products (HES) are able to suppress inflammatory disease. Mice infected with H. polygyrus at the time of immunization with the peptide used to induce EAE (myelin-oligodendrocyte glycoprotein, pMOG), showed a delay in the onset and peak severity of EAE disease, however, treatment with HES only showed a marginal delay in disease onset. Mice that received H. polygyrus 4 weeks prior to EAE induction were also not significantly protected. H. polygyrus secretes a known TGF-β mimic (Hp-TGM) and simultaneous H. polygyrus infection with pMOG immunization led to a significant expansion of Tregs; however, administering the recombinant Hp-TGM to EAE mice failed to replicate the EAE protection seen during infection, indicating that this may not be central to the disease protecting mechanism. Mice infected with H. polygyrus also showed a systemic Th2 biasing, and restimulating splenocytes with pMOG showed release of pMOG-specific IL-4 as well as suppression of inflammatory IL-17A. Notably, a Th2-skewed response was found only in mice infected with H. polygyrus at the time of EAE induction and not those with a chronic infection. Furthermore, H. polygyrus failed to protect against disease in IL-4Rα−/− mice. Together these results indicate that the EAE disease protective mechanism of H. polygyrus is likely to be predominantly Th2 deviation, and further highlights Th2-biasing as a future therapeutic strategy for MS.
Collapse
Affiliation(s)
- Madeleine P J White
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Chris J C Johnston
- Clinical Surgery, Royal Infirmary of Edinburgh and University of Edinburgh, Edinburgh, United Kingdom
| | - John R Grainger
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Joanne E Konkel
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Richard A O'Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
220
|
Zhu J, Pasternak AL, Crona DJ. The future of research into genetics and the precision dosing of tacrolimus: what do we need to know? Pharmacogenomics 2020; 21:1061-1064. [PMID: 32896220 DOI: 10.2217/pgs-2020-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jing Zhu
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amy L Pasternak
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmacy, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Daniel J Crona
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.,UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA.,Department of Pharmacy, UNC Hospitals & Clinics, Chapel Hill, NC 27514, USA
| |
Collapse
|
221
|
Lifshits LM, Roque Iii JA, Konda P, Monro S, Cole HD, von Dohlen D, Kim S, Deep G, Thummel RP, Cameron CG, Gujar S, McFarland SA. Near-infrared absorbing Ru(ii) complexes act as immunoprotective photodynamic therapy (PDT) agents against aggressive melanoma. Chem Sci 2020; 11:11740-11762. [PMID: 33976756 PMCID: PMC8108386 DOI: 10.1039/d0sc03875j] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mounting evidence over the past 20 years suggests that photodynamic therapy (PDT), an anticancer modality known mostly as a local treatment, has the capacity to invoke a systemic antitumor immune response, leading to protection against tumor recurrence. For aggressive cancers such as melanoma, where chemotherapy and radiotherapy are ineffective, immunomodulating PDT as an adjuvant to surgery is of interest. Towards the development of specialized photosensitizers (PSs) for treating pigmented melanomas, nine new near-infrared (NIR) absorbing PSs based on a Ru(ii) tris-heteroleptic scaffold [Ru(NNN)(NN)(L)]Cln, were explored. Compounds 2, 6, and 9 exhibited high potency toward melanoma cells, with visible EC50 values as low as 0.292–0.602 μM and PIs as high as 156–360. Single-micromolar phototoxicity was obtained with NIR-light (733 nm) with PIs up to 71. The common feature of these lead NIR PSs was an accessible low-energy triplet intraligand (3IL) excited state for high singlet oxygen (1O2) quantum yields (69–93%), which was only possible when the photosensitizing 3IL states were lower in energy than the lowest triplet metal-to-ligand charge transfer (3MLCT) excited states that typically govern Ru(ii) polypyridyl photophysics. PDT treatment with 2 elicited a pro-inflammatory response alongside immunogenic cell death in mouse B16F10 melanoma cells and proved safe for in vivo administration (maximum tolerated dose = 50 mg kg−1). Female and male mice vaccinated with B16F10 cells that were PDT-treated with 2 and challenged with live B16F10 cells exhibited 80 and 55% protection from tumor growth, respectively, leading to significantly improved survival and excellent hazard ratios of ≤0.2. Ru(ii) photosensitizers (PSs) destroy aggressive melanoma cells, triggering an immune response that leads to protection against tumor challenge and mouse survival.![]()
Collapse
Affiliation(s)
- Liubov M Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - John A Roque Iii
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA .,Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada
| | - Susan Monro
- Department of Chemistry, Acadia University Wolfville Nova Scotia B4P 2R6 Canada
| | - Houston D Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - David von Dohlen
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine Winston Salem NC 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine Winston Salem NC 27157 USA
| | - Randolph P Thummel
- Department of Chemistry, University of Houston 112 Fleming Building Houston Texas 77204-5003 USA
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada .,Department of Pathology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada.,Department of Biology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada.,Beatrice Hunter Cancer Research Institute Halifax Nova Scotia B3H 4R2 Canada
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| |
Collapse
|
222
|
Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Recent advances in myeloid-derived suppressor cell biology. Front Med 2020; 15:232-251. [PMID: 32876877 DOI: 10.1007/s11684-020-0797-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022]
Abstract
In recent years, studying the role of myeloid-derived suppressor cells (MDSCs) in many pathological inflammatory conditions has become a very active research area. Although the role of MDSCs in cancer is relatively well established, their role in non-cancerous pathological conditions remains in its infancy resulting in much confusion. Our objectives in this review are to address some recent advances in MDSC research in order to minimize such confusion and to provide an insight into their function in the context of other diseases. The following topics will be specifically focused upon: (1) definition and characterization of MDSCs; (2) whether all MDSC populations consist of immature cells; (3) technical issues in MDSC isolation, estimation and characterization; (4) the origin of MDSCs and their anatomical distribution in health and disease; (5) mediators of MDSC expansion and accumulation; (6) factors that determine the expansion of one MDSC population over the other; (7) the Yin and Yang roles of MDSCs. Moreover, the functions of MDSCs will be addressed throughout the text.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ammar Daoud
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
223
|
Balhorn R, Balhorn MC. Therapeutic applications of the selective high affinity ligand drug SH7139 extend beyond non-Hodgkin's lymphoma to many other types of solid cancers. Oncotarget 2020; 11:3315-3349. [PMID: 32934776 PMCID: PMC7476732 DOI: 10.18632/oncotarget.27709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023] Open
Abstract
SH7139, the first of a series of selective high affinity ligand (SHAL) oncology drug candidates designed to target and bind to the HLA-DR proteins overexpressed by B-cell lymphomas, has demonstrated exceptional efficacy in the treatment of Burkitt lymphoma xenografts in mice and a safety profile that may prove to be unprecedented for an oncology drug. The aim of this study was to determine how frequently the HLA-DRs targeted by SH7139 are expressed by different subtypes of non-Hodgkin’s lymphoma and by other solid cancers that have been reported to express HLA-DR. Binding studies conducted with SH7129, a biotinylated analog of SH7139, reveal that more than half of the biopsy sections obtained from patients with different types of non-Hodgkin’s lymphoma express the HLA-DRs targeted by SH7139. Similar analyses of tumor biopsy tissue obtained from patients diagnosed with eighteen other solid cancers show the majority of these tumors also express the HLA-DRs targeted by SH7139. Cervical, ovarian, colorectal and prostate cancers expressed the most HLA-DR. Only a few esophageal and head and neck tumors bound the diagnostic. Within an individual’s tumor, cell to cell differences in HLA-DR target expression varied by only 2 to 3-fold while the expression levels in tumors obtained from different patients varied as much as 10 to 100-fold. The high frequency with which SH7129 was observed to bind to these cancers suggests that many patients diagnosed with B-cell lymphomas, myelomas, and other non-hematological cancers should be considered potential candidates for new therapies such as SH7139 that target HLA-DR-expressing tumors.
Collapse
Affiliation(s)
- Rod Balhorn
- SHAL Technologies Inc., Livermore, CA 94550, USA
| | | |
Collapse
|
224
|
Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, Dimitrijević M, Aleksić A, Neffe-Skocińska K, Zielińska D, Kołożyn-Krajewska D, Salehi B, Milton Prabu S, Schutz F, Docea AO, Martins N, Calina D. Probiotics: Versatile Bioactive Components in Promoting Human Health. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E433. [PMID: 32867260 PMCID: PMC7560221 DOI: 10.3390/medicina56090433] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
The positive impact of probiotic strains on human health has become more evident than ever before. Often delivered through food, dietary products, supplements, and drugs, different legislations for safety and efficacy issues have been prepared. Furthermore, regulatory agencies have addressed various approaches toward these products, whether they authorize claims mentioning a disease's diagnosis, prevention, or treatment. Due to the diversity of bacteria and yeast strains, strict approaches have been designed to assess for side effects and post-market surveillance. One of the most essential delivery systems of probiotics is within food, due to the great beneficial health effects of this system compared to pharmaceutical products and also due to the increasing importance of food and nutrition. Modern lifestyle or various diseases lead to an imbalance of the intestinal flora. Nonetheless, as the amount of probiotic use needs accurate calculations, different factors should also be taken into consideration. One of the novelties of this review is the presentation of the beneficial effects of the administration of probiotics as a potential adjuvant therapy in COVID-19. Thus, this paper provides an integrative overview of different aspects of probiotics, from human health care applications to safety, quality, and control.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
| | - Célia F. Rodrigues
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Marina Dimitrijević
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 44340847, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Selvaraj Milton Prabu
- Department of Zoology, Annamalai University, Annamalai Nagar 608002, Chidambaram, India;
| | - Francine Schutz
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Natália Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
225
|
Auguste M, Balbi T, Ciacci C, Canesi L. Conservation of Cell Communication Systems in Invertebrate Host-Defence Mechanisms: Possible Role in Immunity and Disease. BIOLOGY 2020; 9:E234. [PMID: 32824821 PMCID: PMC7464772 DOI: 10.3390/biology9080234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Innate immunity is continuously revealing multiple and highly conserved host-defence mechanisms. Studies on mammalian immunocytes are showing different communication systems that may play a role in coordinating innate immune responses also in invertebrates. Extracellular traps (ETs) are an immune response by which cells release net-like material, including DNA, histones and proteins. ETs are thought to immobilise and kill microorganisms, but are also involved in inflammation and autoimmune disease. Immune cells are also known to communicate through extracellular vesicles secreted in the extracellular environment or exosomes, which can carry a variety of different signalling molecules. Tunnelling nanotubes (TNTs) represent a direct cell-to-cell communication over a long distance, that allow for bi- or uni-directional transfer of cellular components between cells. Their functional role in a number of physio-pathological processes, including immune responses and pathogen transfer, has been underlined. Although ETs, exosomes, and TNTs have been described in invertebrate species, their possible role in immune responses is not fully understood. In this work, available data on these communication systems are summarised, in an attempt to provide basic information for further studies on their relevance in invertebrate immunity and disease.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| | - Teresa Balbi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University “Carlo Bo” of Urbino, 61029 Urbino, Italy;
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| |
Collapse
|
226
|
Tong F, Ye Y, Chen B, Gao J, Liu L, Ou J, van Hest JCM, Liu S, Peng F, Tu Y. Bone-Targeting Prodrug Mesoporous Silica-Based Nanoreactor with Reactive Oxygen Species Burst for Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34630-34642. [PMID: 32635715 DOI: 10.1021/acsami.0c08992] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer remains a primary threat to human lives. Recently, amplification of tumor-associated reactive oxygen species (ROS) has been used as a boosting strategy to improve tumor therapy. Here, we report on a bone-targeting prodrug mesoporous silica-based nanoreactor for combined photodynamic therapy (PDT) and enhanced chemotherapy for osteosarcoma. Because of surface modification of a bone-targeting biphosphate moiety and the enhanced permeability and retention effect, the formed nanoreactor shows efficient accumulation in osteosarcoma and exhibits long-term retention in the tumor microenvironment. Upon laser irradiation, the loaded photosensitizer chlorin e6 (Ce6) produces in situ ROS, which not only works for PDT but also functions as a trigger for controlled release of doxorubicin (DOX) and doxycycline (DOXY) from the prodrugs based on a thioketal (TK) linkage. The released DOXY further promotes ROS production, thus perpetuating subsequent DOX/DOXY release and ROS burst. The ROS amplification induces long-term high oxidative stress, which increases the sensitivity of the osteosarcoma to chemotherapy, therefore resulting in enhanced tumor cell inhibition and apoptosis. The as-developed nanoreactor with combined PDT and enhanced chemotherapy based on ROS amplification shows significant promise as a potential platform for cancer treatment.
Collapse
Affiliation(s)
- Fei Tong
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Junbin Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lu Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Juanfeng Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jan C M van Hest
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
227
|
Mishra A, Singh VK, Actor JK, Hunter RL, Jagannath C, Subbian S, Khan A. GM-CSF Dependent Differential Control of Mycobacterium tuberculosis Infection in Human and Mouse Macrophages: Is Macrophage Source of GM-CSF Critical to Tuberculosis Immunity? Front Immunol 2020; 11:1599. [PMID: 32793233 PMCID: PMC7390890 DOI: 10.3389/fimmu.2020.01599] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
Although classically associated with myelopoiesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) is being increasingly recognized for its potential role in innate resistance against tuberculosis (TB). While the GM-CSF is produced by a variety of host cells, including conventional and non-conventional T cells, macrophages, alveolar epithelial cells, the cell population that promotes GM-CSF mediated innate protection against Mycobacterium tuberculosis infection remains unclear. This is because studies related to the role of GM-CSF so far have been carried out in murine models of experimental TB, which is inherently susceptible to TB as compared to humans, who exhibit a resolution of infection in majority of cases. We found a significantly higher amount of GM-CSF production by human macrophages, compared to mouse macrophages, after infection with M. tuberculosis in vitro. The higher levels of GM-CSF produced by human macrophages were also directly correlated with their increased life span and ability to control M. tuberculosis infection. Other evidence from recent studies also support that M. tuberculosis infected human macrophages display heterogeneity in their antibacterial capacity, and cells with increased expression of genes involved in GM-CSF signaling pathway can control intracellular M. tuberculosis growth more efficiently. Collectively, these emerging evidence indicate that GM-CSF produced by lung resident macrophages could be vital for the host resistance against M. tuberculosis infection in humans. Identification of GM-CSF dependent key cellular pathways/processes that mediate intracellular host defense can lay the groundwork for the development of novel host directed therapies against TB as well as other intracellular infections.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Vipul Kumar Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, United States
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Selvakumar Subbian
- Department of Medicine, New Jersey Medical School, Public Health Research Institute, Newark, NJ, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
228
|
Pires L, Demidov V, Wilson BC, Salvio AG, Moriyama L, Bagnato VS, Vitkin IA, Kurachi C. Dual-Agent Photodynamic Therapy with Optical Clearing Eradicates Pigmented Melanoma in Preclinical Tumor Models. Cancers (Basel) 2020; 12:cancers12071956. [PMID: 32708501 PMCID: PMC7409296 DOI: 10.3390/cancers12071956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Treatment using light-activated photosensitizers (photodynamic therapy, PDT) has shown limited efficacy in pigmented melanoma, mainly due to the poor penetration of light in this tissue. Here, an optical clearing agent (OCA) was applied topically to a cutaneous melanoma model in mice shortly before PDT to increase the effective treatment depth by reducing the light scattering. This was used together with cellular and vascular-PDT, or a combination of both. The effect on tumor growth was measured by longitudinal ultrasound/photoacoustic imaging in vivo and by immunohistology after sacrifice. In a separate dorsal window chamber tumor model, angiographic optical coherence tomography (OCT) generated 3D tissue microvascular images, enabling direct in vivo assessment of treatment response. The optical clearing had minimal therapeutic effect on the in control, non-pigmented cutaneous melanomas but a statistically significant effect (p < 0.05) in pigmented lesions for both single- and dual-photosensitizer treatment regimes. The latter enabled full-depth eradication of tumor tissue, demonstrated by the absence of S100 and Ki67 immunostaining. These studies are the first to demonstrate complete melanoma response to PDT in an immunocompromised model in vivo, with quantitative assessment of tumor volume and thickness, confirmed by (immuno) histological analyses, and with non-pigmented melanomas used as controls to clarify the critical role of melanin in the PDT response. The results indicate the potential of OCA-enhanced PDT for the treatment of pigmented lesions, including melanoma.
Collapse
Affiliation(s)
- Layla Pires
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Valentin Demidov
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Brian C. Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Correspondence: ; Tel.: +1-416-634-8778
| | | | - Lilian Moriyama
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| | - I. Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| |
Collapse
|
229
|
Cramer GM, Moon EK, Cengel KA, Busch TM. Photodynamic Therapy and Immune Checkpoint Blockade
†. Photochem Photobiol 2020; 96:954-961. [DOI: 10.1111/php.13300] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Gwendolyn M. Cramer
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Edmund K. Moon
- Department of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Keith A. Cengel
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Theresa M. Busch
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
230
|
Kenny HC, Tascher G, Ziemianin A, Rudwill F, Zahariev A, Chery I, Gauquelin-Koch G, Barielle MP, Heer M, Blanc S, O'Gorman DJ, Bertile F. Effectiveness of Resistive Vibration Exercise and Whey Protein Supplementation Plus Alkaline Salt on the Skeletal Muscle Proteome Following 21 Days of Bed Rest in Healthy Males. J Proteome Res 2020; 19:3438-3451. [PMID: 32609523 DOI: 10.1021/acs.jproteome.0c00256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Muscle atrophy is a deleterious consequence of physical inactivity and is associated with increased morbidity and mortality. The aim of this study was to decipher the mechanisms involved in disuse muscle atrophy in eight healthy men using a 21 day bed rest with a cross-over design (control, with resistive vibration exercise (RVE), or RVE combined with whey protein supplementation and an alkaline salt (NEX)). The main physiological findings show a significant reduction in whole-body fat-free mass (CON -4.1%, RVE -4.3%, NEX -2.7%, p < 0.05), maximal oxygen consumption (CON -20.5%, RVE -6.46%, NEX -7.9%, p < 0.05), and maximal voluntary contraction (CON -15%, RVE -12%, and NEX -9.5%, p < 0.05) and a reduction in mitochondrial enzyme activity (CON -30.7%, RVE -31.3%, NEX -17%, p < 0.05). The benefits of nutrition and exercise countermeasure were evident with an increase in leg lean mass (CON -1.7%, RVE +8.9%, NEX +15%, p < 0.05). Changes to the vastus lateralis muscle proteome were characterized using mass spectrometry-based label-free quantitative proteomics, the findings of which suggest alterations to cell metabolism, mitochondrial metabolism, protein synthesis, and degradation pathways during bed rest. The observed changes were partially mitigated during RVE, but there were no significant pathway changes during the NEX trial. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD006882. In conclusion, resistive vibration exercise, when combined with whey/alkalizing salt supplementation, could be an effective strategy to prevent skeletal muscle protein changes, muscle atrophy, and insulin sensitivity during medium duration bed rest.
Collapse
Affiliation(s)
- Helena C Kenny
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin 9, Ireland.,National Institute for Cellular and Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Georg Tascher
- Département Sciences Analytiques, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg 67087, France.,Centre National d'Etudes Spatiales (CNES), Paris 75001, France.,Institute of Biochemistry II, Goethe University Hospital, D-60590 Frankfurt am Main, Germany
| | - Anna Ziemianin
- Département Sciences Analytiques, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg 67087, France.,Centre National d'Etudes Spatiales (CNES), Paris 75001, France
| | - Floriane Rudwill
- Départment d'Ecologie, Physiologie et Ethologie, Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien. CNRS, UMR 7178, Strasbourg 67087, France
| | - Alexandre Zahariev
- Départment d'Ecologie, Physiologie et Ethologie, Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien. CNRS, UMR 7178, Strasbourg 67087, France
| | - Isabelle Chery
- Départment d'Ecologie, Physiologie et Ethologie, Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien. CNRS, UMR 7178, Strasbourg 67087, France
| | | | | | - Martina Heer
- Profil, Hellersbergstrasse 9, Neuss D-41460, Germany.,Institute of Nutrition and Food Sciences, University of Bonn, Bonn D-53113, Germany
| | - Stephane Blanc
- Départment d'Ecologie, Physiologie et Ethologie, Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien. CNRS, UMR 7178, Strasbourg 67087, France
| | - Donal J O'Gorman
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin 9, Ireland.,National Institute for Cellular and Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Fabrice Bertile
- Département Sciences Analytiques, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg 67087, France
| |
Collapse
|
231
|
Notch-1 Signaling Modulates Macrophage Polarization and Immune Defense against Mycobacterium avium paratuberculosis Infection in Inflammatory Diseases. Microorganisms 2020; 8:microorganisms8071006. [PMID: 32635645 PMCID: PMC7409363 DOI: 10.3390/microorganisms8071006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the extensive research on Notch signaling involvement in inflammation, its specific role in macrophage response in autoimmune disease and defense mechanisms against bacterial infection, such as Mycobacterium avium paratuberculosis (MAP), remains unknown. In this study, we investigated the molecular role of Notch-1 signaling in the macrophage response during MAP infection. In particular, we measured the in vitro effect of MAP on Notch-1 signaling and downstream influence on interleukin (IL)-6 and myeloid cell leukemia sequence-1 (MCL-1) and consequent cellular apoptosis, MAP viability, and macrophage polarization. Overall, the data show significant upregulation in Notch-1, IL-6, and MCL-1 in MAP-infected macrophages, parallel with a decrease in apoptosis and elevated pro-inflammatory response in these infected cells. On the contrary, blocking Notch signaling with γ-secretase inhibitor (DAPT) decreased MAP survival and burden, increased apoptosis, and diminished the pro-inflammatory response. In particular, the treatment of infected macrophages with DAPT shifted macrophage polarization toward M2 anti-inflammatory phenotypic response. The outcome of this study clearly demonstrates the critical role of Notch signaling in macrophage response during infection. We conclude that MAP infection in macrophages activates Notch-1 signaling and downstream influence on IL-6 which hijack MCL-1 dependent inhibition of apoptosis leading to its chronic persistence, and further inflammation. This study supports Notch-1 signaling as a therapeutic target to combat infection in autoimmune diseases such as Crohn’s disease and Rheumatoid Arthritis.
Collapse
|
232
|
Mortazavi Moghaddam SG, Namaei MH, Eslami Manoochehri R, Zardast M. The sequential assay of interleukin-10 and 13 serum levels in relation to radiographic changes during pulmonary tuberculosis treatment. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:63. [PMID: 33088300 PMCID: PMC7554419 DOI: 10.4103/jrms.jrms_116_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/15/2019] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
Background: We evaluated the sequential changes of interleukin (IL)-10 and IL-13 serum levels with tuberculosis (TB)-related radiographic changes during pulmonary TB (PTB) treatment. Materials and Methods: In this cross-sectional study during two consecutive years, forty cases with PTB were recorded, and finally, 24 cases were completed the study. Serum levels of IL-10 and IL-13 were measured on admission time, and 6 months later. Furthermore, chest radiography was performed on admission and 6 months later in the treatment course. Results: Radiography at the baseline indicated pulmonary infiltration in all patients (n = 24). Fifteen (62.5%) cases had abnormal and 9 (37.5%) cases had normal radiography at the end of 6 months treatment course. IL-10 and IL-13 upregulated during the treatment time course, and their relationship with radiographic changes shifted from negative (r = −0.14 and P = 0.71) on admission to positive (r = 0.80 and P < 0.001) at the end of 6 months treatment course in normal radiography group. IL-10 level at the start of the treatment was 121.90 ± 88.81 in patients with normal and 82.68 ± 41.50 in patients with abnormal radiography (P = 0.31). Conclusion: Sequential increase in IL-10 and IL-13 during PTB treatment course may have a role in clearing the TB-related radiographic infiltration and preventing scar formation.
Collapse
Affiliation(s)
- Sayyed Gholamreza Mortazavi Moghaddam
- Department of Internal Medicine, Division of Pulmonary, School of Medicine, Vali-e-Asr Hospital, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hasan Namaei
- Infectius Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Eslami Manoochehri
- Department of Internal Medicine, School of Medicine, Vali-e-Asr Hospital, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmood Zardast
- Department of Pathology, School of Medicine, Vali-e-Asr Hospital, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
233
|
Lin C, Zhang Y, Zhao Q, Sun P, Gao Z, Cui S. Analysis of the short-term effect of photodynamic therapy on primary bronchial lung cancer. Lasers Med Sci 2020; 36:753-761. [PMID: 32594348 PMCID: PMC8121718 DOI: 10.1007/s10103-020-03080-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023]
Abstract
To analyze the short-term clinical effect of photodynamic therapy on bronchial lung cancer and provide relevant practical experience for its better application in clinical practice. Twenty patients with bronchial lung cancer diagnosed by pathology were treated with photodynamic therapy or interventional tumor reduction combined with photodynamic therapy. Follow-up at 3 months after treatment, the chest CT and bronchoscopy were reexamined. The lesions were observed under a microscope, and the pathological specimens of living tissues were stained with HE and TUNEL to evaluate the short-term clinical effect. The volume of the tumor in the trachea or bronchus was smaller than before and the obstruction improved after the PDT from the chest CT. We could conclude that after PDT, the tumor volume was reduced and the pathological tissue appeared necrotic, the surface was pale, and the blood vessels were fewer while compared with before, and less likely to bleed when touched from the results of the bronchoscopy. HE staining showed that before treatment, there were a large number of tumor cells, closely arranged and disordered, or agglomerated and distributed unevenly. The cell morphology was not clear and the sizes were various with large and deeply stained nucleus, and the intercellular substance was less. After treatment, the number of tumor cells decreased significantly compared with before and the arrangement was relatively loose and orderly. The cells were roughly the same size; the intercellular substance increased obviously and showed uniform staining. The nuclei morphology was incomplete and fragmented, and tumor cells were evenly distributed among the intercellular substance. TUNEL staining showed that the number of cells was large and the nucleus morphology was regular before treatment; the nuclear membrane was clear and only a small number of apoptotic cells could be seen. However, the number of cells decreased and arranged loosely after treatment, with evenly stained cytoplasm. The nuclear morphology was irregular and the nuclear membrane cannot be seen clearly. Apoptotic cells with typical characteristics such as karyopyknosis, karyorrhexis, and karyolysis were common. Photodynamic therapy for bronchial lung cancer can achieve a satisfactory short-term clinical treatment effect and improve the life quality of patients, but the long-term clinical effect remains to be further studied.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yuanyuan Zhang
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qian Zhao
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Pingping Sun
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhe Gao
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Shichao Cui
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
234
|
Novel Therapies Boosting T Cell Immunity in Epstein Barr Virus-Associated Nasopharyngeal Carcinoma. Int J Mol Sci 2020; 21:ijms21124292. [PMID: 32560253 PMCID: PMC7352617 DOI: 10.3390/ijms21124292] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumour of the head and neck affecting localised regions of the world, with the highest rates described in Southeast Asia, Northern Africa, and Greenland. Its high morbidity rate is linked to both late-stage diagnosis and unresponsiveness to conventional anti-cancer treatments. Multiple aetiological factors have been described including environmental factors, genetics, and viral factors (Epstein Barr Virus, EBV), making NPC treatment that much more complex. The most common forms of NPCs are those that originate from the epithelial tissue lining the nasopharynx and are often linked to EBV infection. Indeed, they represent 75–95% of NPCs in the low-risk populations and almost 100% of NPCs in high-risk populations. Although conventional surgery has been improved with nasopharyngectomy’s being carried out using more sophisticated surgical equipment for better tumour resection, recent findings in the tumour microenvironment have led to novel treatment options including immunotherapies and photodynamic therapy, able to target the tumour and improve the immune system. This review provides an update on the disease’s aetiology and the future of NPC treatments with a focus on therapies activating T cell immunity.
Collapse
|
235
|
Yapasert R, Sripanidkulchai B, Teerachaisakul M, Banchuen K, Banjerdpongchai R. Anticancer effects of a traditional Thai herbal recipe Benja Amarit extracts against human hepatocellular carcinoma and colon cancer cell by targeting apoptosis pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112732. [PMID: 32142865 DOI: 10.1016/j.jep.2020.112732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A preparation of Benja Amarit (BJA) has been effectively used in folk medicine to treat diseases related to the liver and colon and forms of cancer for hundreds of years in Thailand. However, there has not been any research on BJA with regard to its anticancer activity against human hepatocellular carcinoma and colon cancer cells. AIM OF THE STUDY This study was to obtain the scientific supports for the traditional usage in anticancer potential of BJA extracts on hepatocellular carcinoma and colon cancer. MATERIALS AND METHODS The cytotoxic effects were determined using MTT assay. Apoptosis was quantitated by annexin V-FITC/PI staining. Caspases activities were measured by using specific substrates and colorimetric analysis. The protein expressions were determined by Western blot analysis. Reactive oxygen species (ROS) generation, mitochondrial transmembrane potential, and calcium ion levels were measured by specific fluorescence probes and flow cytometry. The chick embryo chorioallantoic membrane model has been used to study the in vivo anticancer activity. The phytochemical identification was performed by GC-MS and LC-MS. RESULTS Notably, 95% (BJA-95) and 50% (BJA-50) ethanolic extract of BJA inhibited hepatocellular carcinoma and colon cancer cell viability in a dose-dependent manner. While, the water extract of BJA (BJA-W) was not found to be toxic to both kinds of cancer cell lines. BJA extract induced both the extrinsic and intrinsic or mitochondria-mediated apoptosis pathways. Moreover, BJA-95 caused ROS generation and endoplasmic reticulum stress-mediated apoptosis. The extract exhibited the growth inhibitory effects on cancer cells in vivo. Phytochemical analysis revealed that the major active compounds were piperine, xanthotoxol and dihydrogambogic acid. CONCLUSION This study is the first to demonstrate anticancer efficiency of BJA extracts on human cancer cells. We consider BJA extract to be a potentially alternative cancer treatment and to be a promising candidate in the future development of antitumor agents.
Collapse
Affiliation(s)
- Rittibet Yapasert
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bungorn Sripanidkulchai
- Center for Research and Development of Herbal Health Products, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Monthaka Teerachaisakul
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok, 10100, Thailand
| | - Kamonwan Banchuen
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok, 10100, Thailand
| | - Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
236
|
Nichols JM, Kummari E, Sherman J, Yang EJ, Dhital S, Gilfeather C, Yray G, Morgan T, Kaplan BLF. CBD Suppression of EAE Is Correlated with Early Inhibition of Splenic IFN-γ + CD8+ T Cells and Modest Inhibition of Neuroinflammation. J Neuroimmune Pharmacol 2020; 16:346-362. [PMID: 32440886 DOI: 10.1007/s11481-020-09917-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
Abstract
In this study cannabidiol (CBD) was administered orally to determine its effects and mechanisms in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). We hypothesized that 75 mg/kg of oral CBD given for 5 days after initiation of disease would reduce EAE severity through suppression of either the early peripheral immune or late neuroimmune response. EAE was induced in C57BL/6 mice at two different magnitudes, and peripheral inflammatory and neuroinflammatory responses were measured at days 3, 10, and 18. Th1, Th17, Tc1, Tc17, Tregs, and myeloid derived suppressor cells (MDSC) were identified from the lymph nodes and spleens of each mouse to determine if CBD altered the suppressor cell or inflammatory cell populations in secondary lymphoid tissues. Additionally, neuroinflammation was identified in brain and spinal cord tissues using various immunohistochemical techniques and flow cytometry. Early treatment of EAE with oral CBD reduced clinical disease at the day 18 timepoint which correlated with a significant decrease in the percentage of MOG35-55 specific IFN-γ producing CD8+ T cells in the spleen at day 10. Analysis of both T cell infiltration and lesion size within the spinal cord also showed a moderate reduction in neuroinflammation within the central nervous system (CNS). These results provide evidence that oral CBD suppressed the peripheral immune response that precedes neuroinflammation; however, analysis of the neuroinflammatory endpoints also suggest that the modest reduction in neuroinflammation was only partially responsible for CBD's neuroprotective capability. Graphical Abstract CBD was administered orally for the first 5 days following initiation of EAE. CBD attenuated clinical disease, and we found that CBD suppressed IFN-γ producing CD8+ T cells in the spleen at day 10. There was also modest suppression of neuroinflammation. Together these data demonstrate that early, oral administration of CBD protected mice from disease, but the modest effects on neuroinflammation suggest other mechanisms participate in CBD's neuroprotective effect in EAE.
Collapse
Affiliation(s)
- James M Nichols
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Evangel Kummari
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Jessica Sherman
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Eun-Ju Yang
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Saphala Dhital
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Christa Gilfeather
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Gabriella Yray
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Timothy Morgan
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
237
|
Saleh R, Toor SM, Taha RZ, Al-Ali D, Sasidharan Nair V, Elkord E. DNA methylation in the promoters of PD-L1, MMP9, ARG1, galectin-9, TIM-3, VISTA and TGF-β genes in HLA-DR - myeloid cells, compared with HLA-DR + antigen-presenting cells. Epigenetics 2020; 15:1275-1288. [PMID: 32419601 PMCID: PMC7678924 DOI: 10.1080/15592294.2020.1767373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myeloid cells, including antigen-presenting cells (APCs) and myeloid-derived suppressor cells (MDSCs) play opposing roles to orchestrate innate and adaptive immune responses during physiological and pathological conditions. We investigated the role of DNA methylation in regulating the transcription of inhibitory/suppressive molecules in myeloid suppressive cells (identified as CD33+HLA-DR-) in comparison to APCs. We selected a number of immune checkpoints (ICs), IC ligands, and immunosuppressive molecules that have been implicated in MDSC function, including PD-L1, TIM-3, VISTA, galectin-9, TGF-β, ARG1 and MMP9. We examined their mRNA expression levels, and investigated whether DNA methylation regulates their transcription in sorted myeloid cell subpopulations. We found that mRNA levels of PD-L1, TIM-3, TGF-β, ARG1 and MMP9 in CD33+HLA-DR- cells were higher than APCs. However, VISTA and galectin-9 mRNA levels were relatively similar in both myeloid subpopulations. CpG islands in the promoter regions of TGF-β1, TIM-3 and ARG1 were highly unmethylated in CD33+HLA-DR-cells, compared with APCs, suggesting that DNA methylation is one of the key mechanisms, which regulate their expression. However, we did not find differences in the methylation status of PD-L1 and MMP9 between CD33+HLA-DR- and APCs, suggesting that their transcription could be regulated via other genetic and epigenetic mechanisms. The promoter methylation status of VISTA was relatively similar in both myeloid subpopulations. This study provides novel insights into the epigenetic mechanisms, which control the expression of inhibitory/suppressive molecules in circulating CD33+HLA-DR- cells in a steady-state condition, possibly to maintain immune tolerance and haemostasis.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Rowaida Z Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | | | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| |
Collapse
|
238
|
Kim DH, Seo J, Na K. pH-Sensitive Carbon Dots for Enhancing Photomediated Antitumor Immunity. Mol Pharm 2020; 17:2532-2545. [DOI: 10.1021/acs.molpharmaceut.0c00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Da Hye Kim
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jeongdeok Seo
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
239
|
Li XY, Tan LC, Dong LW, Zhang WQ, Shen XX, Lu X, Zheng H, Lu YG. Susceptibility and Resistance Mechanisms During Photodynamic Therapy of Melanoma. Front Oncol 2020; 10:597. [PMID: 32528867 PMCID: PMC7247862 DOI: 10.3389/fonc.2020.00597] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the most aggressive malignant skin tumor and arises from melanocytes. The resistance of melanoma cells to various treatments results in rapid tumor growth and high mortality. As a local therapeutic modality, photodynamic therapy has been successfully applied for clinical treatment of skin diseases. Photodynamic therapy is a relatively new treatment method for various types of malignant tumors in humans and, compared to conventional treatment methods, has fewer side effects, and is more accurate and non-invasive. Although several in vivo and in vitro studies have shown encouraging results regarding the potential benefits of photodynamic therapy as an adjuvant treatment for melanoma, its clinical application remains limited owing to its relative inefficiency. This review article discusses the use of photodynamic therapy in melanoma treatment as well as the latest progress made in deciphering the mechanism of tolerance. Lastly, potential targets are identified that may improve photodynamic therapy against melanoma cells.
Collapse
Affiliation(s)
- Xin-Ying Li
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liu-Chang Tan
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Li-Wen Dong
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wan-Qi Zhang
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao-Xiao Shen
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan-Gang Lu
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
240
|
Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand J Immunol 2020; 92:e12883. [PMID: 32243617 DOI: 10.1111/sji.12883] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Monocytes are important cells of the innate system. They are a heterogeneous type of cells consisting of phenotypically and functionally distinct subpopulations, which play a specific role in the control, development and escalation of the immunological processes. Based on the expression of superficial CD14 and CD16 in flow cytometry, they can be divided into three subsets: classical, intermediate and non-classical. Variation in the levels of human monocyte subsets in the blood can be observed in patients in numerous pathological states, such as infections, cardiovascular and inflammatory diseases, cancer and autoimmune diseases. The aim of this review is to summarize current knowledge of human monocyte subsets and their significance in homeostasis and in pathological conditions.
Collapse
|
241
|
Martynov V, Havryliuk V, Skliar T, Sokolova I. Comparative analysis of the composition of intestinal microbiome in patients with liver diseases. SCIENCERISE: BIOLOGICAL SCIENCE 2020. [DOI: 10.15587/2519-8025.2020.192721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
242
|
Shahi A, Afzali S, Salehi S, Aslani S, Mahmoudi M, Jamshidi A, Amirzargar A. IL-27 and autoimmune rheumatologic diseases: The good, the bad, and the ugly. Int Immunopharmacol 2020; 84:106538. [PMID: 32361567 DOI: 10.1016/j.intimp.2020.106538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
The footprint of cytokines is evident in almost every biological process, such as development, as well as the pathogenesis of the different diseases, immune responses to pathogens, etc. These small proteins are categorized into different functional classes; for instance, they can play a pro-inflammatory or anti-inflammatory role in different situations, or they can confer a polarization to the immune system. Interleukin (IL)-27 is a member of the IL-12 family. Antigen-presenting cells are the primary source of IL-27 production, which exerts its effects by bindings to the IL-27 receptor expressed on the surface of target cells. Interaction of IL-27 and IL-27 receptor leads to activation of the JAK-STAT and p38 MAPK signaling pathways. Most studies focused on the inflammatory effects of this cytokine, but gradually anti-inflammatory effects were also revealed for this cytokine, which changed the traditional perception of the function of this cytokine. The functionality of IL-27 in the pathogenesis of rheumatic diseases has been attributed to a double-blade sword. Hence, novel therapeutic approaches have been devised targeting IL-12 family that has been accompanied with promising results. In this review, we focused on the inflammatory and anti-inflammatory properties of IL-27 in different autoimmune rheumatologic diseases and its plausible therapeutic potentials.
Collapse
Affiliation(s)
- Abbas Shahi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
243
|
Chang D, Sharma L, Dela Cruz CS. Chitotriosidase: a marker and modulator of lung disease. Eur Respir Rev 2020; 29:29/156/190143. [PMID: 32350087 PMCID: PMC9488994 DOI: 10.1183/16000617.0143-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Chitotriosidase (CHIT1) is a highly conserved and regulated chitinase secreted by activated macrophages; it is a member of the 18-glycosylase family (GH18). CHIT1 is the most prominent chitinase in humans, can cleave chitin and participates in the body's immune response and is associated with inflammation, infection, tissue damage and remodelling processes. Recently, CHIT1 has been reported to be involved in the molecular pathogenesis of pulmonary fibrosis, bronchial asthma, COPD and pulmonary infections, shedding new light on the role of these proteins in lung pathophysiology. The potential roles of CHIT1 in lung diseases are reviewed in this article. This is the first review of chitotriosidase in lung diseasehttp://bit.ly/2LpZUQI
Collapse
Affiliation(s)
- De Chang
- The 3rd Medical Center of Chinese PLA General Hospital, Beijing, China.,Section of Pulmonary and Critical Care and Sleep Medicine, Dept of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Both authors contributed equally
| | - Lokesh Sharma
- Section of Pulmonary and Critical Care and Sleep Medicine, Dept of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Both authors contributed equally
| | - Charles S Dela Cruz
- Section of Pulmonary and Critical Care and Sleep Medicine, Dept of Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
244
|
Falk-Mahapatra R, Gollnick SO. Photodynamic Therapy and Immunity: An Update. Photochem Photobiol 2020; 96:550-559. [PMID: 32128821 DOI: 10.1111/php.13253] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
Dr. Thomas Dougherty and his Oncology Foundation of Buffalo were the first to support my (S.O.G.) research into the effects of photodynamic therapy (PDT) on the host immune system. The small grant I was awarded in 2002 launched my career as an independent researcher; at the time, there were few studies on the importance of the immune response on the efficacy of PDT and no studies demonstrating the ability of PDT to enhance antitumor immunity. Over the last decades, the interest in PDT as an enhancer of antitumor immunity and our understanding of the mechanisms by which PDT enhances antitumor immunity have dramatically increased. In this review article, we look back on the studies that laid the foundation for our understanding and provide an update on current advances and therapies that take advantage of PDT enhancement of immunity.
Collapse
Affiliation(s)
| | - Sandra O Gollnick
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY.,Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
245
|
Abu-Sbeih H, Tang T, Ali FS, Johnson DH, Qiao W, Diab A, Wang Y. The Impact of Immune Checkpoint Inhibitor-Related Adverse Events and Their Immunosuppressive Treatment on Patients’ Outcomes. ACTA ACUST UNITED AC 2020. [DOI: 10.4103/jipo.jipo_12_18] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Background: Immune checkpoint inhibitors (ICPIs) are gaining more popularity as a treatment for advanced cancers. However, immune-related adverse events (irAEs) limit their use. We aimed to assess the impact of irAEs and their treatment on clinical and survival outcomes. Materials and Methods: We retrospectively reviewed records of the patients who received ICPIs between 2011 and 2017. Descriptive analyses were employed to compare different groups. Kaplan–Meier curves and log-rank tests were used to estimate and compare overall survival durations. Results: Of 427 identified patients, 202 (47.3%) had one or more irAEs. Overall, the patients who developed irAEs had better overall survival than did patients with no-irAEs, regardless of immunosuppressant treatment (P < 0.01). Patients with mild irAEs who did not require immunosuppressive treatment had longer overall survival duration than did patients without irAEs (P < 0.01). Patients with three or more irAEs had longer median overall survival compared to patients with two or less irAEs (P = 0.01). Infliximab was associated with shorter duration of steroid use as compared to steroid treatment only (2 months [standard deviation (SD), 8] vs. 4 months [SD, 4]). Steroid treatment for >30 days was associated with higher rate of infections compared to shorter duration (P = 0.03). Conclusion: IrAEs are associated with favorable overall survival, regardless of immunosuppression treatment requirement. IrAEs involving multiple organs appeared to be beneficial for overall survival. Early infliximab use shortens the duration of steroid treatment and therefore balances better cancer outcomes with decreased risk of infection.
Collapse
Affiliation(s)
- Hamzah Abu-Sbeih
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tenglong Tang
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Faisal Shaukat Ali
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel Hartman Johnson
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Qiao
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Adi Diab
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yinghong Wang
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
246
|
Pawlik K, Piotrowska A, Kwiatkowski K, Ciapała K, Popiolek‐Barczyk K, Makuch W, Mika J. The blockade of CC chemokine receptor type 1 influences the level of nociceptive factors and enhances opioid analgesic potency in a rat model of neuropathic pain. Immunology 2020; 159:413-428. [PMID: 31919846 PMCID: PMC7078003 DOI: 10.1111/imm.13172] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
A growing body of evidence has indicated that the release of nociceptive factors, such as interleukins and chemokines, by activated immune and glial cells has crucial significance for neuropathic pain generation and maintenance. Moreover, changes in the production of nociceptive immune factors are associated with low opioid efficacy in the treatment of neuropathy. Recently, it has been suggested that CC chemokine receptor type 1 (CCR1) signaling is important for nociception. Our study provides evidence that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with significant up-regulation of endogenous CCR1 ligands, namely, CCL2, CCL3, CCL4, CCL6, CCL7 and CCL9 in the spinal cord and CCL2, CCL6, CCL7 and CCL9 in dorsal root ganglia (DRG). We showed that single and repeated intrathecal administration of J113863 (an antagonist of CCR1) attenuated mechanical and thermal hypersensitivity. Moreover, repeated administration of a CCR1 antagonist enhanced the analgesic properties of morphine and buprenorphine after CCI. Simultaneously, repeated administration of J113863 reduced the protein levels of IBA-1 in the spinal cord and MPO and CD4 in the DRG and, as a consequence, the level of pronociceptive factors, such as interleukin-1β (IL-1β), IL-6 and IL-18. The data obtained provide evidence that CCR1 blockade reduces hypersensitivity and increases opioid-induced analgesia through the modulation of neuroimmune interactions.
Collapse
Affiliation(s)
- Katarzyna Pawlik
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Anna Piotrowska
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Klaudia Kwiatkowski
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Katarzyna Ciapała
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | | | - Wioletta Makuch
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Joanna Mika
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| |
Collapse
|
247
|
Önal HT, Yuzer A, Ince M, Ayaz F. Photo induced anti-inflammatory activities of a Thiophene substituted subphthalocyanine derivative. Photodiagnosis Photodyn Ther 2020; 30:101701. [PMID: 32184175 DOI: 10.1016/j.pdpdt.2020.101701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/29/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Materials that possess photo induced biological activities present opportunities for more localized, targeted and efficient treatment options that may also reduce side effects. There have been studies supporting photo induced effects of photosensitizers as anti-cancer, anti-inflammatory and anti-microbial agents. In this study, we tested photo activated anti-inflammatory effects of a Thiophene substituted subphthalocyanine (SubPc) derivative. Thiophene and its derivatives are well known for their anti-inflammatory and anti-microbial effects. There are unwanted side effects associated with Thiophene derivatives. By substituting this biologically active molecule to SubPc structure we acquired control over its activation. Upon light treatment this derivative exerted anti-inflammatory activity on the mammalian macrophages in vitro based on the substantial decrease in extracellular inflammatory cytokine levels. Our results suggest that Thiophene substituted SubPc derivative has photo induced anti-inflammatory activities. This material can be used for the treatment of patients suffering from chronic inflammation that are not associated with a bacterial burden such as autoimmune diseases and inflammatory or allergic reactions.
Collapse
Affiliation(s)
- Harika Topal Önal
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, Mersin, 33110, Turkey
| | - Abdulcelil Yuzer
- Advanced Technology Research & Application Center, Mersin University, Mersin, 33110, Turkey
| | - Mine Ince
- Advanced Technology Research & Application Center, Mersin University, Mersin, 33110, Turkey; Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, 33400 Tarsus, Turkey.
| | - Furkan Ayaz
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, Mersin, 33110, Turkey.
| |
Collapse
|
248
|
Hydrogen sulfide dysregulates the immune response by suppressing central carbon metabolism to promote tuberculosis. Proc Natl Acad Sci U S A 2020; 117:6663-6674. [PMID: 32139610 PMCID: PMC7104411 DOI: 10.1073/pnas.1919211117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ubiquitous gasotransmitter hydrogen sulfide (H2S) has been recognized to play a crucial role in human health. Using cystathionine γ-lyase (CSE)-deficient mice, we demonstrate an unexpected role of H2S in Mycobacterium tuberculosis (Mtb) pathogenesis. We showed that Mtb-infected CSE-/- mice survive longer than WT mice, and support reduced pathology and lower bacterial burdens in the lung, spleen, and liver. Similarly, in vitro Mtb infection of macrophages resulted in reduced colony forming units in CSE-/- cells. Chemical complementation of infected WT and CSE-/- macrophages using the slow H2S releaser GYY3147 and the CSE inhibitor DL-propargylglycine demonstrated that H2S is the effector molecule regulating Mtb survival in macrophages. Furthermore, we demonstrate that CSE promotes an excessive innate immune response, suppresses the adaptive immune response, and reduces circulating IL-1β, IL-6, TNF-α, and IFN-γ levels in response to Mtb infection. Notably, Mtb infected CSE-/- macrophages show increased flux through glycolysis and the pentose phosphate pathway, thereby establishing a critical link between H2S and central metabolism. Our data suggest that excessive H2S produced by the infected WT mice reduce HIF-1α levels, thereby suppressing glycolysis and production of IL-1β, IL-6, and IL-12, and increasing bacterial burden. Clinical relevance was demonstrated by the spatial distribution of H2S-producing enzymes in human necrotic, nonnecrotic, and cavitary pulmonary tuberculosis (TB) lesions. In summary, CSE exacerbates TB pathogenesis by altering immunometabolism in mice and inhibiting CSE or modulating glycolysis are potential targets for host-directed TB control.
Collapse
|
249
|
Barrueto L, Caminero F, Cash L, Makris C, Lamichhane P, Deshmukh RR. Resistance to Checkpoint Inhibition in Cancer Immunotherapy. Transl Oncol 2020; 13:100738. [PMID: 32114384 PMCID: PMC7047187 DOI: 10.1016/j.tranon.2019.12.010] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The interaction of the host immune system with tumor cells in the tissue microenvironment is essential in understanding tumor immunity and development of successful cancer immunotherapy. The presence of lymphocytes in tumors is highly correlated with an improved outcome. T cells have a set of cell surface receptors termed immune checkpoints that when activated suppress T cell function. Upregulation of immune checkpoint receptors such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) occurs during T cell activation in an effort to prevent damage from an excessive immune response. Immune checkpoint inhibitors allow the adaptive immune system to respond to tumors more effectively. There has been clinical success in different types of cancer blocking immune checkpoint receptors such as PD-1 and CTLA. However, relapse has occurred. The innate and acquired/therapy induced resistance to treatment has been encountered. Aberrant cellular signal transduction is a major contributing factor to resistance to immunotherapy. Combination therapies with other co-inhibitory immune checkpoints such as TIM-3, LAG3 and VISTA are currently being tested to overcome resistance to cancer immunotherapy. Expression of TIM-3 has been associated with resistance to PD-1 blockade and combined blockade of TIM-3 and PD-1 has demonstrated improved responses in preclinical models. LAG3 blockade has the potential to increase the responsiveness of cytotoxic T-cells to tumors. Furthermore, tumors that were found to express VISTA had an increased rate of growth due to the T cell suppression. The growing understanding of the inhibitory immune checkpoints’ ligand biology, signaling mechanisms, and T-cell suppression in the tumor microenvironment continues to fuel preclinical and clinical advancements in design, testing, and approval of agents that block checkpoint molecules. Our review seeks to bridge fundamental regulatory mechanisms across inhibitory immune checkpoint receptors that are of great importance in resistance to cancer immunotherapy. We will summarize the biology of different checkpoint molecules, highlight the effect of individual checkpoint inhibition as anti-tumor therapies, and outline the literatures that explore mechanisms of resistance to individual checkpoint inhibition pathways.
Collapse
Affiliation(s)
- Luisa Barrueto
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Francheska Caminero
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Lindsay Cash
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Courtney Makris
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Purushottam Lamichhane
- Lake Erie College of Osteopathic Medicine, Florida School of Dental Medicine, Bradenton, FL.
| | - Rahul R Deshmukh
- Lake Erie College of Osteopathic Medicine, School of Pharmacy, Bradenton, FL.
| |
Collapse
|
250
|
Yegani AA, Istifli ES, Tekeli IO, Sakin F, Kaplan HM. Proapoptotic Effect of Hypericum perforatum (St. John's Wort) Extract in Human Colorectal Adenocarcinoma Cell Line HT29. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.120.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|