201
|
Motloch P, Bols PS, Anderson HL, Hunter CA. Cooperative assembly of H-bonded rosettes inside a porphyrin nanoring. Chem Sci 2020; 12:1427-1432. [PMID: 34163905 PMCID: PMC8179033 DOI: 10.1039/d0sc06097f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The melamine·barbiturate H-bonded rosette motif is of comparable dimensions and symmetry to the cavity of a butadiyne-linked 6-porphyrin nanoring. Functionalisation of each of the barbiturate components and the pyrimidine components of a H-bonded rosette with a pyridine ligand leads to a self-assembled hexapyridine ligand, which binds cooperatively to the zinc porphyrin nanoring. UV-vis-NIR and 1H NMR experiments show that the 7-component assembly forms at concentrations at which neither the H-bonding interactions nor the zinc porphyrin–pyridine interactions are formed in the absence of one of the three components. The mean effective molarities of these rosette complexes are around 200 mM in chloroform at 298 K. Mixing barbiturates and pyrimidines equipped with pyridine ligands to leads to self-assembly of a hexadentate rosette ligand, which is complementary to a hexameric zinc porphyrin macrocycle.![]()
Collapse
Affiliation(s)
- Petr Motloch
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Pernille S Bols
- Department of Chemistry, Chemistry Research Laboratory, Oxford University Oxford OX1 3TA UK
| | - Harry L Anderson
- Department of Chemistry, Chemistry Research Laboratory, Oxford University Oxford OX1 3TA UK
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
202
|
Biswas R, Ghosh S, Bhaumik SK, Banerjee S. Selective recognition of ATP by multivalent nano-assemblies of bisimidazolium amphiphiles through "turn-on" fluorescence response. Beilstein J Org Chem 2020; 16:2728-2738. [PMID: 33224299 PMCID: PMC7670119 DOI: 10.3762/bjoc.16.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
Bisimidazolium receptors, tagged with chromophoric pyrene at one end and linked to an n-alkyl chain at the other, underwent self-assembly in aqueous media depending on the length of the alkyl segment. The amphiphilic derivatives having n-decyl or longer chains, formed nano-assemblies with cyanic-green emission resulting from the stacked pyrene chromophores in the aggregates. The presence of positive surface charges on the multivalent aggregates led to ATP binding which was accompanied by a significant increase in the excimeric emission intensity. This provided a convenient way of monitoring ATP binding in a "turn-on" mode and an efficient detection of ATP was achieved in aqueous buffer and also in buffer containing 150 mM NaCl at physiological pH value. Furthermore, the multivalent aggregates demonstrated a significant selectivity in ATP detection over ADP, AMP and pyrophosphate.
Collapse
Affiliation(s)
- Rakesh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, India
| | - Surya Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, India
| | - Shubhra Kanti Bhaumik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, India
| | - Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, India
| |
Collapse
|
203
|
Kim EH, Ning B, Kawamoto M, Miyatake H, Kobatake E, Ito Y, Akimoto J. Conjugation of biphenyl groups with poly(ethylene glycol) to enhance inhibitory effects on the PD-1/PD-L1 immune checkpoint interaction. J Mater Chem B 2020; 8:10162-10171. [PMID: 33095222 DOI: 10.1039/d0tb01729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monoclonal antibodies have been developed as anticancer agents to block immune checkpoint pathways associated with programmed cell death 1 (PD-1) and its ligand PD-L1. However, the high cost of antibodies has encouraged researchers to develop other inhibitor types. Here, biphenyl compounds were conjugated with poly(ethylene glycol) (PEG) to enhance the activity of small molecular inhibitors. Immunoassay results revealed the decrease in the inhibition activity following conjugation with linear PEG, suggesting that the PEG moiety reduced the interaction between the biphenyl structure and PD-L1. However, the inhibitory effect on PD-1/PD-L1 interaction was further enhanced by using branched PEG conjugates. The increase in the number of conjugated biphenyl compounds resulted in increased inhibitory activity. The highest IC50 value was 0.33 μM, which was about 5 times higher than that observed for a non-conjugated monovalent compound. The inhibitory activity was more than 20 times the activity reported for the starting compound. Considering the increase in the inhibition activity, this multivalent strategy can be useful in the design of new immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Eun-Hye Kim
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
204
|
Bachem G, Wamhoff E, Silberreis K, Kim D, Baukmann H, Fuchsberger F, Dernedde J, Rademacher C, Seitz O. Rational Design of a DNA‐Scaffolded High‐Affinity Binder for Langerin. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gunnar Bachem
- Department of Chemistry Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Eike‐Christian Wamhoff
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Kim Silberreis
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health 13353 Berlin Germany
| | - Dongyoon Kim
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Hannes Baukmann
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Felix Fuchsberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health 13353 Berlin Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Oliver Seitz
- Department of Chemistry Humboldt-Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
205
|
Bachem G, Wamhoff E, Silberreis K, Kim D, Baukmann H, Fuchsberger F, Dernedde J, Rademacher C, Seitz O. Rational Design of a DNA-Scaffolded High-Affinity Binder for Langerin. Angew Chem Int Ed Engl 2020; 59:21016-21022. [PMID: 32749019 PMCID: PMC7693190 DOI: 10.1002/anie.202006880] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/24/2020] [Indexed: 11/17/2022]
Abstract
Binders of langerin could target vaccines to Langerhans cells for improved therapeutic effect. Since langerin has low affinity for monovalent glycan ligands, highly multivalent presentation has previously been key for targeting. Aiming to reduce the amount of ligand required, we rationally designed molecularly defined high-affinity binders based on the precise display of glycomimetic ligands (Glc2NTs) on DNA-PNA scaffolds. Rather than mimicking langerin's homotrimeric structure with a C3-symmetric scaffold, we developed readily accessible, easy-to-design bivalent binders. The method considers the requirements for bridging sugar binding sites and statistical rebinding as a means to both strengthen the interactions at single binding sites and amplify the avidity enhancement provided by chelation. This gave a 1150-fold net improvement over the affinity of the free ligand and provided a nanomolar binder (IC50 =300 nM) for specific internalization by langerin-expressing cells.
Collapse
Affiliation(s)
- Gunnar Bachem
- Department of ChemistryHumboldt-Universität zu Berlin12489BerlinGermany
| | - Eike‐Christian Wamhoff
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Kim Silberreis
- Institute of Laboratory Medicine, Clinical Chemistry and PathobiochemistryCharité-Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health13353BerlinGermany
| | - Dongyoon Kim
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Hannes Baukmann
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Felix Fuchsberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and PathobiochemistryCharité-Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health13353BerlinGermany
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Oliver Seitz
- Department of ChemistryHumboldt-Universität zu Berlin12489BerlinGermany
| |
Collapse
|
206
|
Rütter M, Milošević N, David A. Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. J Control Release 2020; 330:1191-1207. [PMID: 33207257 DOI: 10.1016/j.jconrel.2020.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The vast majority of nanomedicines (NM) investigated today consists of a macromolecular carrier and a drug payload (conjugated or encapsulated), with a purpose of preferential delivery of the drug to the desired site of action, either through passive accumulation, or by active targeting via ligand-receptor interaction. Several drug delivery systems (DDS) have already been approved for clinical use. However, recent reports are corroborating the notion that NM do not necessarily need to include a drug payload, but can exert biological effects through specific binding/blocking of important target proteins at the site of action. The seminal work of Kopeček et al. on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing biorecognition motifs (peptides or oligonucleotides) for crosslinking cell surface non-internalizing receptors of malignant cells and inducing their apoptosis, without containing any low molecular weight drug, led to the definition of a special group of NM, termed Drug-Free Macromolecular Therapeutics (DFMT). Systems utilizing this approach are typically designed to employ pendant targeting-ligands on the same macromolecule to facilitate multivalent interactions with receptors. The lack of conventional small molecule drugs reduces toxicity and adverse effects at off-target sites. In this review, we describe different types of DFMT that possess biological activity without attached low molecular weight drugs. We classified the relevant research into several groups by their mechanisms of action, and compare the advantages and disadvantages of these different approaches. We show that identification of target sites, specificity of attached targeting ligands, binding affinity and the synthesis of carriers of defined size and ligand spacing are crucial aspects of DFMT development. We further discuss how knowledge in the field of NM accumulated in the past few decades can help in the design of a successful DFMT to speed up the translation into clinical practice.
Collapse
Affiliation(s)
- Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nenad Milošević
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
207
|
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020; 25:E5227. [PMID: 33182593 PMCID: PMC7698228 DOI: 10.3390/molecules25225227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| |
Collapse
|
208
|
Reinke L, Bartl J, Koch M, Kubik S. Optical detection of di- and triphosphate anions with mixed monolayer-protected gold nanoparticles containing zinc(II)-dipicolylamine complexes. Beilstein J Org Chem 2020; 16:2687-2700. [PMID: 33178359 PMCID: PMC7607427 DOI: 10.3762/bjoc.16.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/22/2020] [Indexed: 01/02/2023] Open
Abstract
Gold nanoparticles covered with a mixture of ligands of which one type contains solubilizing triethylene glycol residues and the other peripheral zinc(II)–dipicolylamine (DPA) complexes allowed the optical detection of hydrogenphosphate, diphosphate, and triphosphate anions in water/methanol 1:2 (v/v). These anions caused the bright red solutions of the nanoparticles to change their color because of nanoparticle aggregation followed by precipitation, whereas halides or oxoanions such as sulfate, nitrate, or carbonate produced no effect. The sensitivity of phosphate sensing depended on the nature of the anion, with diphosphate and triphosphate inducing visual changes at significantly lower concentrations than hydrogenphosphate. In addition, the sensing sensitivity was also affected by the ratio of the ligands on the nanoparticle surface, decreasing as the number of immobilized zinc(II)–dipicolylamine groups increased. A nanoparticle containing a 9:1 ratio of the solubilizing and the anion-binding ligand showed a color change at diphosphate and triphosphate concentrations as low as 10 μmol/L, for example, and precipitated at slightly higher concentrations. Hydrogenphosphate induced a nanoparticle precipitation only at a concentration of ca. 400 μmol/L, at which the precipitates formed in the presence of diphosphates and triphosphates redissolved. A nanoparticle containing fewer binding sites was more sensitive, while increasing the relative number of zinc(II)–dipicolylamine complexes beyond 25% had a negative impact on the limit of detection and the optical response. Transmission electron microscopy provided evidence that the changes of the nanoparticle properties observed in the presence of the phosphates were due to a nanoparticle crosslinking, consistent with the preferred binding mode of zinc(II)–dipicolylamine complexes with phosphate anions which involves binding of the anion between two metal centers. This work thus provided information on how the behavior of mixed monolayer-protected gold nanoparticles is affected by multivalent interactions, at the same time introducing a method to assess whether certain biologically relevant anions are present in an aqueous solution within a specific concentration range.
Collapse
Affiliation(s)
- Lena Reinke
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Julia Bartl
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Stefan Kubik
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| |
Collapse
|
209
|
de la Cruz N, Sousa-Herves A, Rojo J. Glyconanogels as a versatile platform for the multivalent presentation of carbohydrates: From monosaccharides to dendritic glycostructures. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
210
|
Wallert M, Nie C, Anilkumar P, Abbina S, Bhatia S, Ludwig K, Kizhakkedathu JN, Haag R, Block S. Mucin-Inspired, High Molecular Weight Virus Binding Inhibitors Show Biphasic Binding Behavior to Influenza A Viruses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004635. [PMID: 33135314 DOI: 10.1002/smll.202004635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Multivalent binding inhibitors are a promising new class of antivirals that prevent virus infections by inhibiting virus binding to cell membranes. The design of these inhibitors is challenging as many properties, for example, inhibitor size and functionalization with virus attachment factors, strongly influence the inhibition efficiency. Here, virus binding inhibitors are synthesized, the size and functionalization of which are inspired by mucins, which are naturally occurring glycosylated proteins with high molecular weight (MDa range) and interact efficiently with various viruses. Hyperbranched polyglycerols (hPGs) with molecular weights ranging between 10 and 2600 kDa are synthesized, thereby hitting the size of mucins and allowing for determining the impact of inhibitor size on the inhibition efficiency. The hPGs are functionalized with sialic acids and sulfates, as suggested from the structure of mucins, and their inhibition efficiency is determined by probing the inhibition of influenza A virus (IAV) binding to membranes using various methods. The largest, mucin-sized inhibitor shows potent inhibition at pm concentrations, while the inhibition efficiency decreases with decreasing the molecular weight. Interestingly, the concentration-dependent IAV inhibition shows a biphasic behavior, which is attributed to differences in the binding affinity of the inhibitors to the two IAV envelope proteins, neuraminidase, and hemagglutinin.
Collapse
Affiliation(s)
- Matthias Wallert
- Institute of Chemistry and Biochemistry, Emmy-Noether Group "Bionanointerfaces", Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Macromolecular Chemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Parambath Anilkumar
- Centre for Blood Research, Life Sciences Institute, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sumati Bhatia
- Institute of Chemistry and Biochemistry, Macromolecular Chemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Kai Ludwig
- Research Center for Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, Berlin, 14195, Germany
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Macromolecular Chemistry, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Emmy-Noether Group "Bionanointerfaces", Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| |
Collapse
|
211
|
Yu Y, Zhou JP, Jin YH, Wang X, Shi XX, Yu P, Zhong M, Yang Y. Guanidinothiosialoside-Human Serum Albumin Conjugate Mimics mucin Barrier to Restrict Influenza Infection. Int J Biol Macromol 2020; 162:84-91. [PMID: 32522538 DOI: 10.1016/j.ijbiomac.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
A guanidinothiosialoside-human serum albumin conjugate as mucin mimic was prepared via a copper-free click reaction. Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) indicated that three sialoside groups were grafted onto the protein backbone. The synthetic glycoconjugate exhibited strong influenza virion capture and trapping capability. Further mechanistic studies showed that this neomucin bound tightly to neuraminidase on the surface of influenza virus with a dissociation constant (KD) in the nanomolar range and had potent antiviral activity against a broad spectrum of virus strains. Most notably, the glycoconjugate acted as a biobarrier was able to protect Madin-Darby canine kidney (MDCK) cells from influenza viral infection with 50% effective concentrations (EC50) in the nanomolar range and showed no cytotoxicity towards Human Umbilical Vein Endothelial Cells (HUVEC) at high concentrations. This research establishes an attractive strategy for the development of new multivalent antiviral agents based on mucin structure. Moreover, the method for the functionalization of the natural biological macromolecular scaffold with bioactive small molecules also lays the experimental foundation for potential biomedical and biomaterial applications.
Collapse
Affiliation(s)
- Yao Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Jia-Ping Zhou
- Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Yin-Hua Jin
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Xue Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Xiao-Xiao Shi
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Peng Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China.
| | - Ming Zhong
- Medical College, Shaoguan University, Shaoguan 512026, Guangdong Province, China.
| | - Yang Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China.
| |
Collapse
|
212
|
Dobitz S, Wilhelm P, Romantini N, De Foresta M, Walther C, Ritler A, Schibli R, Berger P, Deupi X, Béhé M, Wennemers H. Distance-Dependent Cellular Uptake of Oligoproline-Based Homobivalent Ligands Targeting GPCRs-An Experimental and Computational Analysis. Bioconjug Chem 2020; 31:2431-2438. [PMID: 33047605 DOI: 10.1021/acs.bioconjchem.0c00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor targeting with bivalent radiolabeled ligands for GPCRs is an attractive means for cancer imaging and therapy. Here, we studied and compared the distance dependence of homobivalent ligands for the human gastrin-releasing peptide receptor (hGRP-R) and the somatostatin receptor subtype II (hSstR2a). Oligoprolines were utilized as molecular scaffolds to enable distances of 10, 20, or 30 Å between two identical, agonistic recognition motifs. In vitro internalization assays revealed that ligands with a distance of 20 Å between the recognition motifs exhibit the highest cellular uptake in both ligand series. Structural modeling and molecular dynamics simulations support an optimal distance of 20 Å for accommodating ligand binding to both binding sites of a GPCR dimer. Translation of these findings to the significantly higher complexity in vivo proved difficult and showed only for the hGRP-R increased tumor uptake of the bivalent ligand.
Collapse
Affiliation(s)
- Stefanie Dobitz
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Patrick Wilhelm
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Nina Romantini
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martina De Foresta
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Cornelia Walther
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Andreas Ritler
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland.,Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland.,Institute of Radiopharmaceutical Sciences, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Philipp Berger
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
213
|
Heida R, Bhide YC, Gasbarri M, Kocabiyik Ö, Stellacci F, Huckriede ALW, Hinrichs WLJ, Frijlink HW. Advances in the development of entry inhibitors for sialic-acid-targeting viruses. Drug Discov Today 2020; 26:122-137. [PMID: 33099021 PMCID: PMC7577316 DOI: 10.1016/j.drudis.2020.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Over the past decades, several antiviral drugs have been developed to treat a range of infections. Yet the number of treatable viral infections is still limited, and resistance to current drug regimens is an ever-growing problem. Therefore, additional strategies are needed to provide a rapid cure for infected individuals. An interesting target for antiviral drugs is the process of viral attachment and entry into the cell. Although most viruses use distinct host receptors for attachment to the target cell, some viruses share receptors, of which sialic acids are a common example. This review aims to give an update on entry inhibitors for a range of sialic-acid-targeting viruses and provides insight into the prospects for those with broad-spectrum potential.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| | - Yoshita C Bhide
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Matteo Gasbarri
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Özgün Kocabiyik
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anke L W Huckriede
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands.
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| |
Collapse
|
214
|
Jacobi F, Wilms D, Seiler T, Queckbörner T, Tabatabai M, Hartmann L, Schmidt S. Effect of PEGylation on Receptor Anchoring and Steric Shielding at Interfaces: An Adhesion and Surface Plasmon Resonance Study with Precision Polymers. Biomacromolecules 2020; 21:4850-4856. [PMID: 32986404 DOI: 10.1021/acs.biomac.0c01060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study aims at quantifying the steric shielding effect of multivalent glycoconjugates targeting pathogens by blocking their carbohydrate binding sites. Specifically, PEGylated and non-PEGylated glycoconjugates are studied as inhibitors of lectins and bacterial adhesins evaluating the steric repulsion effect of the nonbinding PEG chains. We use the soft colloidal probe (SCP) adhesion assay to monitor the change in the adhesion energy of mannose (Man)-decorated hydrogel particles on a layer of concanavalin A (ConA) in the presence of sequence-defined multivalent glycoconjugate inhibitors over time. The results show that PEGylated glycoconjugates achieve a stronger adhesion inhibition when compared to non-PEGylated glycoconjugates although the dissociation constants (KD) of the PEGgylated compounds to ConA were larger. These results appear in line with Escherichia coli adhesion inhibition assays showing a small increase of bacteria detachment by PEGgylated glycoconjugates compared to non-PEGylated compounds. This suggests that an increase of sterical shielding via PEGylation may help reduce the invasiveness of pathogens even after they have adhered. Adhesion studies based on electrostatic interactions using amine-linked PEG of varying molecular weight confirm that such sterical shielding effect is not limited to carbohydrate-mediated adhesion.
Collapse
Affiliation(s)
- Fawad Jacobi
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Dimitri Wilms
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Theresa Seiler
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Torben Queckbörner
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Monir Tabatabai
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Dusseldorf, Germany
| |
Collapse
|
215
|
Jones GW, Monopoli MP, Campagnolo L, Pietroiusti A, Tran L, Fadeel B. No small matter: a perspective on nanotechnology-enabled solutions to fight COVID-19. Nanomedicine (Lond) 2020; 15:2411-2427. [PMID: 32873192 PMCID: PMC7488724 DOI: 10.2217/nnm-2020-0286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
There is an urgent need for safe and effective approaches to combat COVID-19. Here, we asked whether lessons learned from nanotoxicology and nanomedicine could shed light on the current pandemic. SARS-CoV-2, the causative agent, may trigger a mild, self-limiting disease with respiratory symptoms, but patients may also succumb to a life-threatening systemic disease. The host response to the virus is equally complex and studies are now beginning to unravel the immunological correlates of COVID-19. Nanotechnology can be applied for the delivery of antiviral drugs or other repurposed drugs. Moreover, recent work has shown that synthetic nanoparticles wrapped with host-derived cellular membranes may prevent virus infection. We posit that nanoparticles decorated with ACE2, the receptor for SARS-CoV-2, could be exploited as decoys to intercept the virus before it infects cells in the respiratory tract. However, close attention should be paid to biocompatibility before such nano-decoys are deployed in the clinic.
Collapse
Affiliation(s)
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Luisa Campagnolo
- Department of Biomedicine & Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonio Pietroiusti
- Department of Biomedicine & Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, EH14 4AP, UK
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
216
|
Biswas R, Naskar S, Ghosh S, Das M, Banerjee S. A Remarkable Fluorescence Quenching Based Amplification in ATP Detection through Signal Transduction in Self-Assembled Multivalent Aggregates. Chemistry 2020; 26:13595-13600. [PMID: 32776606 DOI: 10.1002/chem.202002648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/22/2020] [Indexed: 01/20/2023]
Abstract
Signal transduction is essential for the survival of living organisms, because it allows them to respond to the changes in external environments. In artificial systems, signal transduction has been exploited for the highly sensitive detection of analytes. Herein, a remarkable signal transduction, upon ATP binding, in the multivalent fibrillar nanoaggregates of anthracene conjugated imidazolium receptors is reported. The aggregates of one particular amphiphilic receptor sensed ATP in high pm concentrations with one ATP molecule essentially quenching the emission of thousands of receptors. A cooperative merging of the multivalent binding and signal transduction led to this superquenching and translated to an outstanding enhancement of more than a millionfold in the sensitivity of ATP detection by the nanoaggregates; in comparison to the "molecular" imidazolium receptors. Furthermore, an exceptional selectivity to ATP over other nucleotides was demonstrated.
Collapse
Affiliation(s)
- Rakesh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Sumit Naskar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Surya Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Mousumi Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
217
|
Liu M, Apriceno A, Sipin M, Scarpa E, Rodriguez-Arco L, Poma A, Marchello G, Battaglia G, Angioletti-Uberti S. Combinatorial entropy behaviour leads to range selective binding in ligand-receptor interactions. Nat Commun 2020; 11:4836. [PMID: 32973157 PMCID: PMC7515919 DOI: 10.1038/s41467-020-18603-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
From viruses to nanoparticles, constructs functionalized with multiple ligands display peculiar binding properties that only arise from multivalent effects. Using statistical mechanical modelling, we describe here how multivalency can be exploited to achieve what we dub range selectivity, that is, binding only to targets bearing a number of receptors within a specified range. We use our model to characterise the region in parameter space where one can expect range selective targeting to occur, and provide experimental support for this phenomenon. Overall, range selectivity represents a potential path to increase the targeting selectivity of multivalent constructs.
Collapse
Affiliation(s)
- Meng Liu
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
- Institute of Physics, Chinese Academy of Science, Beijing, People's Republic of China
| | - Azzurra Apriceno
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Miguel Sipin
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Laura Rodriguez-Arco
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Gabriele Marchello
- Institute for the Physics of Living Systems, University College London, London, UK
- Physical Chemistry Chemical Physics Division, Department of Chemistry, University College London, London, UK
- The UCL EPSRC/JEOL Centre for Liquid Phase Electron Microscopy, London, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
- The UCL EPSRC/JEOL Centre for Liquid Phase Electron Microscopy, London, UK.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Stefano Angioletti-Uberti
- Institute of Physics, Chinese Academy of Science, Beijing, People's Republic of China.
- Department of Materials, Imperial College London, London, UK.
| |
Collapse
|
218
|
Thermally Stable Nitrothiacalixarene Chromophores: Conformational Study and Aggregation Behavior. Int J Mol Sci 2020; 21:ijms21186916. [PMID: 32967166 PMCID: PMC7554919 DOI: 10.3390/ijms21186916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/02/2022] Open
Abstract
Achieving high thermal stability and control of supramolecular organization of functional dyes in sensors and nonlinear optics remains a demanding task. This study was aimed at the evaluation of thermal behavior and Langmuir monolayer characteristics of topologically varied nitrothiacalixarene multichromophores and phenol monomers. A nitration/azo coupling alkylation synthetic route towards partially O-substituted nitrothiacalixarenes and 4-nitrophenylazo-thiacalixarenes was proposed and realized. Nuclear magnetic resonance (NMR) spectroscopy and X-ray diffractometry of disubstituted nitrothiacalix[4]arene revealed a rare 1,2-alternate conformation. A synchronous thermal analysis indicated higher decomposition temperatures of nitrothiacalixarene macrocycles as compared with monomers. Through surface pressure/potential-molecular area measurements, nitrothiacalixarenes were shown to form Langmuir monolayers at the air–water interface and, through atomic force microscopy (AFM) technique, Langmuir–Blodgett (LB) films on solid substrates. Reflection-absorption spectroscopy of monolayers and electronic absorption spectroscopy of LB films of nitrothiacalixarenes recorded a red-shifted band (290 nm) with a transition from chloroform, indicative of solvatochromism. Additionally, shoulder band at 360 nm was attributed to aggregation and supported by gas-phase density functional theory (DFT) calculations and dynamic light scattering (DLS) analysis in chloroform–methanol solvent in the case of monoalkylated calixarene 3. Excellent thermal stability and monolayer formation of nitrothiacalixarenes suggest their potential as functional dyes.
Collapse
|
219
|
Mei L, Ren P, Wu QY, Ke YB, Geng JS, Liu K, Xing XQ, Huang ZW, Hu KQ, Liu YL, Yuan LY, Mo G, Wu ZH, Gibson JK, Chai ZF, Shi WQ. Actinide Separation Inspired by Self-Assembled Metal–Polyphenolic Nanocages. J Am Chem Soc 2020; 142:16538-16545. [DOI: 10.1021/jacs.0c08048] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Ren
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
| | - Qun-yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-bin Ke
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Jun-shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-qing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-lan Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Li-yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Mo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-hua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, United States
| | - Zhi-fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei-qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
220
|
Engineering anti-cancer nanovaccine based on antigen cross-presentation. Biosci Rep 2020; 39:220729. [PMID: 31652460 PMCID: PMC6822533 DOI: 10.1042/bsr20193220] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023] Open
Abstract
Dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules, thereby activating CD8+ T cells, contributing to tumor elimination through a mechanism known as antigen cross-presentation. A variety of factors such as maturation state of DCs, co-stimulatory signals, T-cell microenvironment, antigen internalization routes and adjuvants regulate the process of DC-mediated antigen cross-presentation. Recently, the development of successful cancer immunotherapies may be attributed to the ability of DCs to cross-present tumor antigens. In this review article, we focus on the underlying mechanism of antigen cross-presentation and ways to improve antigen cross-presentation in different DC subsets. We have critically summarized the recent developments in the generation of novel nanovaccines for robust CD8+ T-cell response in cancer. In this context, we have reviewed nanocarriers that have been used for cancer immunotherapeutics based on antigen cross-presentation mechanism. Additionally, we have also expressed our views on the future applications of this mechanism in curing cancer.
Collapse
|
221
|
Multivalency Beats Complexity: A Study on the Cell Uptake of Carbohydrate Functionalized Nanocarriers to Dendritic Cells. Cells 2020; 9:cells9092087. [PMID: 32932639 PMCID: PMC7564404 DOI: 10.3390/cells9092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022] Open
Abstract
Herein, we report the synthesis of carbohydrate and glycodendron structures for dendritic cell targeting, which were subsequently bound to hydroxyethyl starch (HES) nanocapsules prepared by the inverse miniemulsion technique. The uptake of the carbohydrate-functionalized HES nanocapsules into immature human dendritic cells (hDCs) revealed a strong dependence on the used carbohydrate. A multivalent mannose-terminated dendron was found to be far superior in uptake compared to the structurally more complex oligosaccharides used.
Collapse
|
222
|
Dobbe CB, Gutiérrez‐Blanco A, Tan TTY, Hepp A, Poyatos M, Peris E, Hahn FE. Template-Controlled Synthesis of Polyimidazolium Salts by Multiple [2+2] Cycloaddition Reactions. Chemistry 2020; 26:11565-11570. [PMID: 32237240 PMCID: PMC7540564 DOI: 10.1002/chem.202001515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/16/2022]
Abstract
The tetrakisimidazolium salt H4 -2(Br)4 , featuring a central benzene linker and 1,2,4,5-(nBu-imidazolium-Ph-CH=CH-) substituents reacts with Ag2 O in the presence of AgBF4 to yield the tetranuclear, oktakis-NHC assembly [3](BF4 )4 . Cation [3]4+ features four pairs of olefins from the two tetrakis-NHC ligands perfectly arranged for a subsequent [2+2] cycloaddition. Irradiation of [3](BF4 )4 with a high pressure Hg lamp connects the two tetra-NHC ligands through four cyclobutane linkers to give compound [4](BF4 )4 . Removal of the template metals yields the novel oktakisimidazolium salt H8 -5(BF4 )8 . The tetrakisimidazolium salt H4 -2(BF4 )4 and the oktakisimidazolium salt H8 -5(BF4 )8 have been used as multivalent anion receptors and their anion binding properties towards six different anions have been compared.
Collapse
Affiliation(s)
- Christian B. Dobbe
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| | - Ana Gutiérrez‐Blanco
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
- Institute of Advanced Materials (INAM)Universitat Jaume IAvda. Vicente Sos Baynat s/nCastellon12071Spain
| | - Tristan T. Y. Tan
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| | - Alexander Hepp
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM)Universitat Jaume IAvda. Vicente Sos Baynat s/nCastellon12071Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)Universitat Jaume IAvda. Vicente Sos Baynat s/nCastellon12071Spain
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| |
Collapse
|
223
|
Kumar S, Mandal D, El-Mowafi SA, Mozaffari S, Tiwari RK, Parang K. Click-Free Synthesis of a Multivalent Tricyclic Peptide as a Molecular Transporter. Pharmaceutics 2020; 12:pharmaceutics12090842. [PMID: 32899170 PMCID: PMC7558522 DOI: 10.3390/pharmaceutics12090842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] Open
Abstract
The cellular delivery of cell-impermeable and water-insoluble molecules remains an ongoing challenge to overcome. Previously, we reported amphipathic cyclic peptides c[WR]4 and c[WR]5 consisting of alternate arginine and tryptophan residues as nuclear-targeting molecular transporters. These peptides contain an optimal balance of positive charge and hydrophobicity, which is required for interactions with the phospholipid bilayer to facilitate their application as a drug delivery system. To further optimize them, we synthesized and evaluated a multivalent tricyclic peptide as an efficient molecular transporter. The monomeric cyclic peptide building blocks were synthesized using Fmoc/tBu solid-phase chemistry and cyclization in the solution and conjugated with each other through an amide bond to afford the tricyclic peptide, which demonstrated modest antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli (E. coli) with a minimum inhibitory concentration (MIC) of 64–128 µg/mL. The tricyclic peptide was found to be nontoxic up to 30 µM in the breast cancer cell lines (MDA-MB-231). The presence of tricyclic peptide enhanced cellular uptakes of fluorescently-labeled phosphopeptide (F’-GpYEEI, 18-fold), anti-HIV drugs (lamivudine (F’-3TC), emtricitabine (F’-FTC), and stavudine (F’-d4T), 1.7–12-fold), and siRNA (3.3-fold) in the MDA-MB-231 cell lines.
Collapse
Affiliation(s)
- Sumit Kumar
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana 131039, India
| | - Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Shaima Ahmed El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- Peptide Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- Correspondence: (R.K.T.); (K.P.); Tel.: +1-714-516-5483 (R.K.T.); +1-714-516-5489 (K.P.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.K.); (D.M.); (S.A.E.-M.); (S.M.)
- Correspondence: (R.K.T.); (K.P.); Tel.: +1-714-516-5483 (R.K.T.); +1-714-516-5489 (K.P.)
| |
Collapse
|
224
|
Zhou C, Xia Y, Wei Y, Cheng L, Wei J, Guo B, Meng F, Cao S, van Hest JCM, Zhong Z. GE11 peptide-installed chimaeric polymersomes tailor-made for high-efficiency EGFR-targeted protein therapy of orthotopic hepatocellular carcinoma. Acta Biomater 2020; 113:512-521. [PMID: 32562803 DOI: 10.1016/j.actbio.2020.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a leading malignancy with a high mortality and little improvement in treatments. Protein drugs though known for their extraordinary potency and specificity have rarely been investigated for HCC therapy owing to lack of appropriate delivery systems. Here, we designed GE11 peptide-installed chimaeric polymersomes (GE11-CPs) for high-efficiency EGFR-targeted protein therapy of orthotopic SMMC-7721 HCC-bearing nude mice. GE11-CPs were assembled from poly(ethylene glycol)-b-poly(trimethylene carbonate-co-dithiolane trimethylene carbonate)-b-poly(aspartic acid) (PEG-P(TMC-DTC)-PAsp) and GE11-functionalized PEG-P(TMC-DTC), which allowed efficient loading and protection of proteins in the watery interior and fine-tuning of GE11 densities at the surface. CPs with short PAsp segments (degree of polymerization (DP) = 5, 10 and 15) exhibited a protein loading efficiency of 60%-72% and glutathione-responsive protein release. Saporin-loaded GE11-CPs had a size of 36 - 62 nm depending on GE11 densities and DP of PAsp. Notably, GE11-CPs with 10% GE11 revealed greatly enhanced uptake in SMMC-7721 cells, boosting the anticancer potency of saporin for over 3-folds compared with non-targeted control (half-maximal inhibitory concentration (IC50) = 11.0 versus 36.3 nM). The biodistribution studies using Cy5-labeled cytochrome C as a model protein demonstrated about 3-fold higher accumulation of GE11-CPs formulation than CPs counterpart in both subcutaneous and orthotopic SMMC-7721 tumor models. Notably, saporin-loaded GE11-CPs revealed low toxicity, effective tumor inhibition and significant improvement of survival rate compared with PBS and non-targeted groups (median survival time: 99 versus 37 and 42 days). EGFR-targeted chimaeric polymersomes carrying proteins appear an interesting HCC treatment modality.
Collapse
Affiliation(s)
- Cheng Zhou
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Yifeng Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Yaohua Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Liang Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China.
| | - Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China.
| | - Shoupeng Cao
- Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600MB Eindhoven, the Netherlands
| | - Jan C M van Hest
- Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600MB Eindhoven, the Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
225
|
Abstract
The selectivity of binding of colloidal particles is an important research topic for the field of targeted drug delivery. Extensive theoretical work has shown that high selectivity can be obtained by using multivalent weak interactions. Here we provide comprehensive experimental proof using DNA-coated particles. The ligand–receptor affinity is varied by changing the number of complementary bases, showing that fewer complementary bases yield a higher binding selectivity. The experimental data and corresponding numerical model simulations demonstrate the scaling behavior between molecular density, molecular affinity, and resulting density selectivity of interparticle binding. These results are important for the design of novel systems for targeted nanoparticle drug delivery. Targeted drug delivery critically depends on the binding selectivity of cargo-transporting colloidal particles. Extensive theoretical work has shown that two factors are necessary to achieve high selectivity for a threshold receptor density: multivalency and weak interactions. Here, we study a model system of DNA-coated particles with multivalent and weak interactions that mimics ligand–receptor interactions between particles and cells. Using an optomagnetic cluster experiment, particle aggregation rates are measured as a function of ligand and receptor densities. The measured aggregation rates show that the binding becomes more selective for shorter DNA ligand–receptor pairs, proving that multivalent weak interactions lead to enhanced selectivity in interparticle binding. Simulations confirm the experimental findings and show the role of ligand–receptor dissociation in the selectivity of the weak multivalent binding.
Collapse
|
226
|
Trachsel L, Romio M, Grob B, Zenobi-Wong M, Spencer ND, Ramakrishna SN, Benetti EM. Functional Nanoassemblies of Cyclic Polymers Show Amplified Responsiveness and Enhanced Protein-Binding Ability. ACS NANO 2020; 14:10054-10067. [PMID: 32628438 DOI: 10.1021/acsnano.0c03239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The physicochemical properties of cyclic polymer adsorbates are significantly influenced by the steric and conformational constraints introduced during their cyclization. These translate into a marked difference in interfacial properties between cyclic polymers and their linear counterparts when they are grafted onto surfaces yielding nanoassemblies or polymer brushes. This difference is particularly clear in the case of cyclic polymer brushes that are designed to chemically interact with the surrounding environment, for instance, by associating with biological components present in the medium, or, alternatively, through a response to a chemical stimulus by a significant change in their properties. The intrinsic architecture characterizing cyclic poly(2-oxazoline)-based polyacid brushes leads to a broad variation in swelling and nanomechanical properties in response to pH change, in comparison with their linear analogues of identical composition and molecular weight. In addition, cyclic glycopolymer brushes derived from polyacids reveal an enhanced exposure of galactose units at the surface, due to their expanded topology, and thus display an increased lectin-binding ability with respect to their linear counterparts. This combination of amplified responsiveness and augmented protein-binding capacity renders cyclic brushes invaluable building blocks for the design of "smart" materials and functional biointerfaces.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Matteo Romio
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Benjamin Grob
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M Benetti
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
227
|
Young TD, Liau WT, Lee CK, Mellody M, Wong GCL, Kasko AM, Weiss PS. Selective Promotion of Adhesion of Shewanella oneidensis on Mannose-Decorated Glycopolymer Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35767-35781. [PMID: 32672931 DOI: 10.1021/acsami.0c04329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using glycopolymer surfaces, we have stimulated Shewanella oneidensis bacterial colonization and induced where the bacteria attach on a molecular pattern. When adherent bacteria were rinsed with methyl α-d-mannopyranoside, the glycopolymer-functionalized surfaces retained more cells than self-assembled monolayers terminated by a single mannose unit. These results suggest that the three-dimensional multivalency of the glycopolymers both promotes and retains bacterial attachment. When the methyl α-d-mannopyranoside competitor was codeposited with the cell culture, however, the mannose-based polymer was not significantly different from bare gold surfaces. The necessity for equilibration between methyl α-d-mannopyranoside and the cell culture to remove the enhancement suggests that the retention of cells on glycopolymer surfaces is kinetically controlled and is not a thermodynamic result of the cluster glycoside effect. The MshA lectin appears to facilitate the improved adhesion observed. Our findings that the surfaces studied here can induce stable initial attachment and influence the ratio of bacterial strains on the surface may be applied to harness useful microbial communities.
Collapse
Affiliation(s)
- Thomas D Young
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Walter T Liau
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Calvin K Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michael Mellody
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Gerard C L Wong
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Andrea M Kasko
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Paul S Weiss
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
228
|
Lee K, Huang ZN, Mirkin CA, Odom TW. Endosomal Organization of CpG Constructs Correlates with Enhanced Immune Activation. NANO LETTERS 2020; 20:6170-6175. [PMID: 32787186 PMCID: PMC7609249 DOI: 10.1021/acs.nanolett.0c02536] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This Letter describes how the endosomal organization of immunostimulatory nanoconstructs can tune the in vitro activation of macrophages. Nanoconstructs composed of gold nanoparticles conjugated with unmethylated cytosine-phosphate-guanine (CpG) oligonucleotides have distinct endosomal distributions depending on the surface curvature. Mixed-curvature constructs produce a relatively high percentage of hollow endosomes, where constructs accumulated primarily along the interior edges. These constructs achieved a higher level of toll-like receptor (TLR) 9 activation along with the enhanced secretion of proinflammatory cytokines and chemokines compared to constant-curvature constructs that aggregated mostly in the center of the endosomes. Our results underscore the importance of intraendosomal interactions in regulating immune responses and targeted delivery.
Collapse
Affiliation(s)
- Kwahun Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziyin N. Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Corresponding Author:
| |
Collapse
|
229
|
Mende M, Tsouka A, Heidepriem J, Paris G, Mattes DS, Eickelmann S, Bordoni V, Wawrzinek R, Fuchsberger FF, Seeberger PH, Rademacher C, Delbianco M, Mallagaray A, Loeffler FF. On-Chip Neo-Glycopeptide Synthesis for Multivalent Glycan Presentation. Chemistry 2020; 26:9954-9963. [PMID: 32315099 PMCID: PMC7496964 DOI: 10.1002/chem.202001291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/17/2020] [Indexed: 11/11/2022]
Abstract
Single glycan-protein interactions are often weak, such that glycan binding partners commonly utilize multiple, spatially defined binding sites to enhance binding avidity and specificity. Current array technologies usually neglect defined multivalent display. Laser-based array synthesis technology allows for flexible and rapid on-surface synthesis of different peptides. By combining this technique with click chemistry, neo-glycopeptides were produced directly on a functionalized glass slide in the microarray format. Density and spatial distribution of carbohydrates can be tuned, resulting in well-defined glycan structures for multivalent display. The two lectins concanavalin A and langerin were probed with different glycans on multivalent scaffolds, revealing strong spacing-, density-, and ligand-dependent binding. In addition, we could also measure the surface dissociation constant. This approach allows for a rapid generation, screening, and optimization of a multitude of multivalent scaffolds for glycan binding.
Collapse
Affiliation(s)
- Marco Mende
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Alexandra Tsouka
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimalle 2214195BerlinGermany
| | - Jasmin Heidepriem
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimalle 2214195BerlinGermany
| | - Grigori Paris
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Daniela S. Mattes
- Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stephan Eickelmann
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Vittorio Bordoni
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Robert Wawrzinek
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Felix F. Fuchsberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimalle 2214195BerlinGermany
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Alvaro Mallagaray
- Institut für Chemie und MetabolomicsUniversität zu LübeckRatzeburger Allee 16023562LübeckGermany
| | - Felix F. Loeffler
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| |
Collapse
|
230
|
Smolin D, Tötsch N, Grad JN, Linders J, Kaschani F, Kaiser M, Kirsch M, Hoffmann D, Schrader T. Accelerated trypsin autolysis by affinity polymer templates. RSC Adv 2020; 10:28711-28719. [PMID: 35520047 PMCID: PMC9055874 DOI: 10.1039/d0ra05827k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
Self-cleavage of proteins is an important natural process that is difficult to control externally. Recently a new mechanism for the accelerated autolysis of trypsin was discovered involving polyanionic template polymers; however it relies on unspecific interactions and is inactive at elevated salt loads. We have now developed affinity copolymers that bind to the surface of proteases by specific recognition of selected amino acid residues. These are highly efficient trypsin inhibitors with low nanomolar IC50 levels and operate at physiological conditions. In this manuscript we show how these affinity copolymers employ the new mechanism of polymer-assisted self-digest (PAS) and act as a template for multiple protease molecules. Their elevated local concentration leads to accelerated autolysis on the accessible surface area and shields complexed areas. The resulting extremely efficient trypsin inhibition was studied by SDS-PAGE, gel filtration, CD, CZE and ESI-MS. We also present a simple theoretical model that simulates most experimental findings and confirms them as a result of multivalency and efficient reversible templating. For the first time, mass spectrometric kinetic analysis of the released peptide fragments gives deeper insight into the underlying mechanism and reveals that polymer-bound trypsin cleaves much more rapidly with low specificity at predominantly uncomplexed surface areas.
Collapse
Affiliation(s)
- Daniel Smolin
- Faculty of Chemistry, University of Duisburg-Essen 45117 Essen Germany
| | - Niklas Tötsch
- Faculty of Biology, University of Duisburg-Essen 45117 Essen Germany
| | - Jean-Noël Grad
- Faculty of Biology, University of Duisburg-Essen 45117 Essen Germany
| | - Jürgen Linders
- Faculty of Chemistry, University of Duisburg-Essen 45117 Essen Germany
| | - Farnusch Kaschani
- Faculty of Biology, University of Duisburg-Essen 45117 Essen Germany
| | - Markus Kaiser
- Faculty of Biology, University of Duisburg-Essen 45117 Essen Germany
| | | | - Daniel Hoffmann
- Faculty of Biology, University of Duisburg-Essen 45117 Essen Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen 45117 Essen Germany
| |
Collapse
|
231
|
Yu Y, Qin HJ, Shi XX, Song JQ, Zhou JP, Yu P, Fan ZC, Zhong M, Yang Y. Thiosialoside-decorated polymers use a two-step mechanism to inhibit both early and late stages of influenza virus infection. Eur J Med Chem 2020; 199:112357. [DOI: 10.1016/j.ejmech.2020.112357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022]
|
232
|
Bebelman MP, Crudden C, Pegtel DM, Smit MJ. The Convergence of Extracellular Vesicle and GPCR Biology. Trends Pharmacol Sci 2020; 41:627-640. [PMID: 32711926 DOI: 10.1016/j.tips.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Transmembrane receptors, of which G protein-coupled receptors (GPCRs) constitute the largest group, typically act as cellular antennae that reside at the plasma membrane (PM) to collect and interpret information from the extracellular environment. The discovery of cell-released extracellular vesicles (EVs) has added a new dimension to intercellular communication. These unique nanocarriers reflect cellular topology and can systemically transport functionally competent transmembrane receptors, ligands, and a cargo of signal proteins. Recent developments hint at roles for GPCRs in the EV life cycle and, conversely, at roles for EVs in GPCR signal transduction. We highlight key points of convergence, discuss their relevance to current GPCR and EV paradigms, and speculate on how this intersection could lend itself to future therapeutic avenues.
Collapse
Affiliation(s)
- Maarten P Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Caitrin Crudden
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
233
|
Bhatia S, Hilsch M, Cuellar‐Camacho JL, Ludwig K, Nie C, Parshad B, Wallert M, Block S, Lauster D, Böttcher C, Herrmann A, Haag R. Adaptive Flexible Sialylated Nanogels as Highly Potent Influenza A Virus Inhibitors. Angew Chem Int Ed Engl 2020; 59:12417-12422. [PMID: 32441859 PMCID: PMC7384064 DOI: 10.1002/anie.202006145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/13/2022]
Abstract
Flexible multivalent 3D nanosystems that can deform and adapt onto the virus surface via specific ligand-receptor multivalent interactions can efficiently block virus adhesion onto the cell. We here report on the synthesis of a 250 nm sized flexible sialylated nanogel that adapts onto the influenza A virus (IAV) surface via multivalent binding of its sialic acid (SA) residues with hemagglutinin spike proteins on the virus surface. We could demonstrate that the high flexibility of sialylated nanogel improves IAV inhibition by 400 times as compared to a rigid sialylated nanogel in the hemagglutination inhibition assay. The flexible sialylated nanogel efficiently inhibits the influenza A/X31 (H3N2) infection with IC50 values in low picomolar concentrations and also blocks the virus entry into MDCK-II cells.
Collapse
Affiliation(s)
- Sumati Bhatia
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Malte Hilsch
- Institute of Biology & IRI Life SciencesHumboldt-Universität zu BerlinInvalidenstraße 4210115BerlinGermany
| | | | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie, and Core Facility BioSupraMolInstitute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 36a14195BerlinGermany
| | - Chuanxiong Nie
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Badri Parshad
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Matthias Wallert
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Stephan Block
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Daniel Lauster
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, and Core Facility BioSupraMolInstitute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 36a14195BerlinGermany
| | - Andreas Herrmann
- Institute of Biology & IRI Life SciencesHumboldt-Universität zu BerlinInvalidenstraße 4210115BerlinGermany
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| |
Collapse
|
234
|
Aghebat Rafat A, Sagredo S, Thalhammer M, Simmel FC. Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based protein-binding cavities. Nat Chem 2020; 12:852-859. [PMID: 32661410 DOI: 10.1038/s41557-020-0504-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/05/2020] [Indexed: 01/15/2023]
Abstract
Simultaneous binding of molecules by multiple binding partners is known to strongly reduce the apparent dissociation constant of the corresponding molecular complexes, and can be used to achieve strong, non-covalent molecular interactions. Based on this principle, efficient binding of proteins to DNA nanostructures has been achieved previously by placing several aptamers in close proximity to each other onto DNA scaffolds. Here, we develop an approach for exploring design parameters, such as the geometric arrangement or the nanomechanical properties of the binding sites, that use two-dimensional DNA origami-based nanocavities that bear aptamers with known mechanical properties at defined distances and orientations. The origami structures are labelled with barcodes, which enables large numbers of binding cavities to be investigated in parallel and under identical conditions, and facilitates a direct and reliable quantitative comparison of their binding yields. We demonstrate that binding geometry and mechanical properties have a dramatic effect on origami-based multivalent binding sites, and that optimization of linker spacings and flexibilities can improve the effective binding strength of the sites substantially.
Collapse
Affiliation(s)
- Ali Aghebat Rafat
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany
| | - Sandra Sagredo
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany
| | - Melissa Thalhammer
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany
| | - Friedrich C Simmel
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany.
| |
Collapse
|
235
|
Bhatia S, Hilsch M, Cuellar‐Camacho JL, Ludwig K, Nie C, Parshad B, Wallert M, Block S, Lauster D, Böttcher C, Herrmann A, Haag R. Adaptive Flexible Sialylated Nanogels as Highly Potent Influenza A Virus Inhibitors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sumati Bhatia
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Malte Hilsch
- Institute of Biology & IRI Life Sciences Humboldt-Universität zu Berlin Invalidenstraße 42 10115 Berlin Germany
| | | | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie, and Core Facility BioSupraMol Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 36a 14195 Berlin Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Badri Parshad
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Matthias Wallert
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Stephan Block
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Daniel Lauster
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, and Core Facility BioSupraMol Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 36a 14195 Berlin Germany
| | - Andreas Herrmann
- Institute of Biology & IRI Life Sciences Humboldt-Universität zu Berlin Invalidenstraße 42 10115 Berlin Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
236
|
Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, Scott JA, Vitale F, Unal MA, Mattevi C, Bedognetti D, Merkoçi A, Tasciotti E, Yilmazer A, Gogotsi Y, Stellacci F, Delogu LG. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS NANO 2020; 14:6383-6406. [PMID: 32519842 PMCID: PMC7299399 DOI: 10.1021/acsnano.0c03697] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or via photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of "nanoimmunity by design" can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics.
Collapse
Affiliation(s)
- Carsten Weiss
- Institute of Biological and Chemical
Systems, Biological Information Processing, Karlsruhe
Institute of Technology, Campus North,
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,
Germany
| | - Marie Carriere
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, SyMMES-CIBEST, F-38000
Grenoble, France
| | - Laura Fusco
- Department of Chemical and
Pharmaceutical Sciences, University of
Trieste, 34127 Trieste,
Italy
- Cancer Research Department,
Sidra Medicine, Doha,
Qatar
| | - Ilaria Capua
- One Health Center of Excellence,
University of Florida, Gainesville,
Florida 32611, United States
| | - Jose Angel Regla-Nava
- Division of Inflammation Biology,
La Jolla Institute for Allergy and
Immunology, La Jolla, California 92037,
United States
| | - Matteo Pasquali
- Department of Chemical &
Biomolecular Engineering, Rice University,
Houston, Texas 77251, United States
- Department of Chemistry,
Rice University, Houston, Texas
77251, United States
- Department of Materials Science and
Nanoengineering, Rice University, Houston,
Texas 77251, United States
| | - James A. Scott
- Dalla Lana School of Public Health,
University of Toronto, 223 College
Street, M5T 1R4 Toronto, Ontario, Canada
| | - Flavia Vitale
- Department of Neurology,
Bioengineering, Physical Medicine & Rehabilitation, Center for
Neuroengineering and Therapeutics, University of
Pennsylvania, Philadelphia, Pennsylvania 19104,
United States
- Center for Neurotrauma,
Neurodegeneration, and Restoration, Corporal Michael J.
Crescenz Veterans Affairs Medical Center,
Philadelphia, Pennsylvania 19104, United
States
| | | | - Cecilia Mattevi
- Department of Materials,
Imperial College London, London SW7
2AZ, United Kingdom
| | | | - Arben Merkoçi
- Nanobioelectronics & Biosensors
Group, Catalan Institute of Nanoscience and
Nanotechnology (ICN2), CSIC and BIST, Campus UAB,
08193 Bellaterra, Spain
- ICREA -
Institució Catalana de Recerca i Estudis
Avançats, ES-08010 Barcelona,
Spain
| | - Ennio Tasciotti
- Orthopedics and Sports Medicine,
Houston Methodist Hospital, Houston,
Texas 77030, United States
- Department of Plastic Surgery,
MD Anderson, Houston, Texas 77230,
United States
| | - Açelya Yilmazer
- Stem Cell Institute,
Ankara University, Ankara, 06100
Turkey
- Department of Biomedical Engineering,
Faculty of Engineering, Ankara University,
Ankara, 06100 Turkey
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute,
and Materials Science and Engineering Department, Drexel
University, Philadelphia, Pennsylvania 19104,
United States
| | - Francesco Stellacci
- Institute of Materials,
Ecole Polytechnique Federale de Lausanne
(EPFL), 1015 Lausanne,
Switzerland
- Interfaculty Bioengineering Institute,
Ecole Polytechnique Fédérale de
Lausanne (EPFL), 1015 Lausanne,
Switzerland
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences,
University of Padua, 35122 Padova,
Italy
| |
Collapse
|
237
|
Affiliation(s)
- Luca Gabrielli
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Federico Rastrelli
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| | - Paolo Scrimin
- Department of Chemical Sciences University of Padova, via Marzolo, 1 35131 Padova Italy
| |
Collapse
|
238
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
239
|
Andresen E, Würth C, Prinz C, Michaelis M, Resch-Genger U. Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings. NANOSCALE 2020; 12:12589-12601. [PMID: 32500913 DOI: 10.1039/d0nr02931a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate the potential of time-resolved luminescence spectroscopy for the straightforward assessment and in situ monitoring of the stability of upconversion nanocrystals (UCNPs). Therefore, we prepared hexagonal NaYF4:Yb3+,Er3+ UCNPs with various coatings with a focus on phosphonate ligands of different valency, using different ligand exchange procedures, and studied their dissolution behaviour in phosphate-buffered saline (PBS) dispersions at 20 °C and 37 °C with various analytical methods. The amount of the released UCNPs constituting fluoride ions was quantified by potentiometry using a fluoride ion-sensitive electrode and particle disintegration was confirmed by transmission electron microscopy studies of the differently aged UCNPs. In parallel, the luminescence features of the UCNPs were measured with special emphasis on the lifetime of the sensitizer emission to demonstrate its suitability as screening parameter for UCNP stability and changes in particle composition. The excellent correlation between the changes in luminescence lifetime and fluoride concentration highlights the potential of our luminescence lifetime method for UCNP stability screening and thereby indirect monitoring of the release of potentially hazardous fluoride ions during uptake and dissolution in biological systems. Additionally, the developed in situ optical method was used to distinguish the dissolution dynamics of differently sized and differently coated UCNPs.
Collapse
Affiliation(s)
- Elina Andresen
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany. and Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Christian Würth
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| | - Carsten Prinz
- BAM Federal Institute of Materials Research and Testing, Division Structure Analysis, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Matthias Michaelis
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| | - Ute Resch-Genger
- BAM Federal Institute of Materials Research and Testing, Division Biophotonics, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| |
Collapse
|
240
|
Salta J, Reissig H. Divalent Triazole‐Linked Carbohydrate Mimetics: Synthesis by Click Chemistry and Evaluation as Selectin Ligands. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Joana Salta
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Hans‐Ulrich Reissig
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| |
Collapse
|
241
|
Yang B, Wang H, Zhang D, Li Z. Water‐Soluble Three‐Dimensional
Polymers:
Non‐Covalent
and Covalent Synthesis and Functions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bo Yang
- College of Chemistry, Zhengzhou University 100 Kexue Street Zhengzhou Henan 450001 China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Dan‐Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zhan‐Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| |
Collapse
|
242
|
|
243
|
Mende M, Bordoni V, Tsouka A, Loeffler FF, Delbianco M, Seeberger PH. Multivalent glycan arrays. Faraday Discuss 2020; 219:9-32. [PMID: 31298252 DOI: 10.1039/c9fd00080a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycan microarrays have become a powerful technology to study biological processes, such as cell-cell interaction, inflammation, and infections. Yet, several challenges, especially in multivalent display, remain. In this introductory lecture we discuss the state-of-the-art glycan microarray technology, with emphasis on novel approaches to access collections of pure glycans and their immobilization on surfaces. Future directions to mimic the natural glycan presentation on an array format, as well as in situ generation of combinatorial glycan collections, are discussed.
Collapse
Affiliation(s)
- Marco Mende
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
244
|
Cong H, Wang K, Zhou Z, Yang J, Piao Y, Yu B, Shen Y, Zhou Z. Tuning the Brightness and Photostability of Organic Dots for Multivalent Targeted Cancer Imaging and Surgery. ACS NANO 2020; 14:5887-5900. [PMID: 32356972 DOI: 10.1021/acsnano.0c01034] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Specific labeling of biomarkers with bright and high photostable fluorophores is vital in fluorescent imaging applications. Here, we report a general strategy to develop single-molecule dendritic nanodots with finely tunable optical properties for in vivo fluorescent imaging. The well-defined nanodots are based on the divergent growth of biodegradable polylysine dendrimers with a fluorophore as the core. By tuning the size and surface chemistry, we obtained fluorescent nanodots with excellent brightness and photostability, favorable pharmacokinetics, and multivalent tumor-targeting capability. The nanodots provided robust, stable, long-lasting, and specific fluorescence enhancement in tumor tissue with an in situ tumor-to-normal ratio (TNR) of ∼3 and lasting over 5 days and an ex vivo TNR up to ∼17, holding considerable promise for cancer imaging and image-guided surgery. This strategy significantly improves the in vivo performance of fluorophores and can be applied to other modality imaging probes.
Collapse
Affiliation(s)
- Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kaiqi Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuha Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road 3, Hangzhou 310016, Zhejiang, China
| | - Jiajia Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Piao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
245
|
Nanovesicles displaying functional linear and branched oligomannose self-assembled from sequence-defined Janus glycodendrimers. Proc Natl Acad Sci U S A 2020; 117:11931-11939. [PMID: 32424105 PMCID: PMC7275670 DOI: 10.1073/pnas.2003938117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synthetic macromolecules that mimic glycolipids, named Janus glycodendrimers (JGDs), have been shown to self-assemble into nanoscale vesicles displaying glycans on their outer surface, similar to the glycocalyx coating of eukaryotic cells, bacteria, and viruses. Specifically, both linear and branched oligosaccharides synthesized by automated glycan assembly, with hydrophobic linkers, have been used to create JGDs via an isothiocyanate–amine coupling reaction. Surprisingly, in spite of the hydrophobic linker, these JGDs self-organize into nanovesicles exhibiting lamellar surface morphologies, which mimic the recognition structures of cell-surface glycans and viral glycoproteins. Therefore, they are likely to be useful in helping elucidate mechanisms of significance for translational medicine such as the camouflage functionality employed by viruses to evade recognition. Cell surfaces are often decorated with glycoconjugates that contain linear and more complex symmetrically and asymmetrically branched carbohydrates essential for cellular recognition and communication processes. Mannose is one of the fundamental building blocks of glycans in many biological membranes. Moreover, oligomannoses are commonly found on the surface of pathogens such as bacteria and viruses as both glycolipids and glycoproteins. However, their mechanism of action is not well understood, even though this is of great potential interest for translational medicine. Sequence-defined amphiphilic Janus glycodendrimers containing simple mono- and disaccharides that mimic glycolipids are known to self-assemble into glycodendrimersomes, which in turn resemble the surface of a cell by encoding carbohydrate activity via supramolecular multivalency. The synthetic challenge of preparing Janus glycodendrimers containing more complex linear and branched glycans has so far prevented access to more realistic cell mimics. However, the present work reports the use of an isothiocyanate-amine “click”-like reaction between isothiocyanate-containing sequence-defined amphiphilic Janus dendrimers and either linear or branched oligosaccharides containing up to six monosaccharide units attached to a hydrophobic amino-pentyl linker, a construct not expected to assemble into glycodendrimersomes. Unexpectedly, these oligoMan-containing dendrimers, which have their hydrophobic linker connected via a thiourea group to the amphiphilic part of Janus glycodendrimers, self-organize into nanoscale glycodendrimersomes. Specifically, the mannose-binding lectins that best agglutinate glycodendrimersomes are those displaying hexamannose. Lamellar “raft-like” nanomorphologies on the surface of glycodendrimersomes, self-organized from these sequence-defined glycans, endow these membrane mimics with high biological activity.
Collapse
|
246
|
Pustulan Activates Chicken Bone Marrow-Derived Dendritic Cells In Vitro and Promotes Ex Vivo CD4 + T Cell Recall Response to Infectious Bronchitis Virus. Vaccines (Basel) 2020; 8:vaccines8020226. [PMID: 32429204 PMCID: PMC7349971 DOI: 10.3390/vaccines8020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Infectious bronchitis virus (IBV) is a highly contagious avian coronavirus. IBV causes substantial worldwide economic losses in the poultry industry. Vaccination with live-attenuated viral vaccines, therefore, are of critical importance. Live-attenuated viral vaccines, however, exhibit the potential for reversion to virulence and recombination with virulent field strains. Therefore, alternatives such as subunit vaccines are needed together with the identification of suitable adjuvants, as subunit vaccines are less immunogenic than live-attenuated vaccines. Several glycan-based adjuvants directly targeting mammalian C-type lectin receptors were assessed in vitro using chicken bone marrow-derived dendritic cells (BM-DCs). The β-1-6-glucan, pustulan, induced an up-regulation of MHC class II (MHCII) cell surface expression, potentiated a strong proinflammatory cytokine response, and increased endocytosis in a cation-dependent manner. Ex vivo co-culture of peripheral blood monocytes from IBV-immunised chickens, and BM-DCs pulsed with pustulan-adjuvanted recombinant IBV N protein (rN), induced a strong recall response. Pustulan-adjuvanted rN induced a significantly higher CD4+ blast percentage compared to either rN, pustulan or media. However, the CD8+ and TCRγδ+ blast percentage were significantly lower with pustulan-adjuvanted rN compared to pustulan or media. Thus, pustulan enhanced the efficacy of MHCII antigen presentation, but apparently not the cross-presentation on MHCI. In conclusion, we found an immunopotentiating effect of pustulan in vitro using chicken BM-DCs. Thus, future in vivo studies might show pustulan as a promising glycan-based adjuvant for use in the poultry industry to contain the spread of coronaviridiae as well as of other avian viral pathogens.
Collapse
|
247
|
Mesoscale computational protocols for the design of highly cooperative bivalent macromolecules. Sci Rep 2020; 10:7992. [PMID: 32409687 PMCID: PMC7224399 DOI: 10.1038/s41598-020-64646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/07/2020] [Indexed: 11/09/2022] Open
Abstract
The last decade has witnessed a swiftly increasing interest in the design and production of novel multivalent molecules as powerful alternatives for conventional antibodies in the fight against cancer and infectious diseases. However, while it is widely accepted that large-scale flexibility (10–100 nm) and free/constrained dynamics (100 ns -μs) control the activity of such novel molecules, computational strategies at the mesoscale still lag behind experiments in optimizing the design of crucial features, such as the binding cooperativity (a.k.a. avidity). In this study, we introduced different coarse-grained models of a polymer-linked, two-nanobody composite molecule, with the aim of laying down the physical bases of a thorough computational drug design protocol at the mesoscale. We show that the calculation of suitable potentials of mean force allows one to apprehend the nature, range and strength of the thermodynamic forces that govern the motion of free and wall-tethered molecules. Furthermore, we develop a simple computational strategy to quantify the encounter/dissociation dynamics between the free end of a wall-tethered molecule and the surface, at the roots of binding cooperativity. This procedure allows one to pinpoint the role of internal flexibility and weak non-specific interactions on the kinetic constants of the nanobody-wall encounter and dissociation. Finally, we quantify the role and weight of rare events, which are expected to play a major role in real-life situations, such as in the immune synapse, where the binding kinetics is likely dominated by fluctuations.
Collapse
|
248
|
Roig-Molina E, Sánchez-Angulo M, Seele J, García-Asencio F, Nau R, Sanz JM, Maestro B. Searching for Antipneumococcal Targets: Choline-Binding Modules as Phagocytosis Enhancers. ACS Infect Dis 2020; 6:954-974. [PMID: 32135064 DOI: 10.1021/acsinfecdis.9b00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Choline-binding proteins (CBPs) from Streptococcus pneumoniae comprise a family of modular polypeptides involved in essential events of this pathogen. They recognize the choline residues present in the teichoic and lipoteichoic acids of the cell wall using the so-called choline-binding modules (CBMs). The importance of CBPs in pneumococcal physiology points to them as novel targets to combat antimicrobial resistances shown by this organism. In this work we have tested the ability of exogenously added CBMs to act as CBP inhibitors by competing with the latter for the binding to the choline molecules in the bacterial surface. First, we carried out a thorough physicochemical characterization of three native CBMs, namely C-LytA, C-Cpl1, and C-CbpD, and assessed their affinity for choline and macromolecular, pneumococcal cell-wall mimics. The interaction with these substrates was evaluated by molecular modeling, analytical ultracentrifugation, surface plasmon resonance, and fluorescence and circular dichroism spectroscopies. Van't Hoff thermal analyses unveiled the existence of one noncanonical choline binding site in each of the C-Cpl1 and C-CbpD proteins, leading in total to 5 ligand-binding sites per dimer and 4 sites per monomer, respectively. Remarkably, the binding affinities of the CBMs do not directly correlate with their native oligomeric state or with the number of choline-binding sites, suggesting that choline recognition by these modules is a complex phenomenon. On the other hand, the exogenous addition of CBMs to pneumococcal planktonic cultures caused extensive cell-chaining probably as a consequence of the inhibition of CBP attachment to the cell wall. This was accompanied by bacterial aggregation and sedimentation, causing an enhancement of bacterial phagocytosis by peritoneal macrophages. In addition, the rational design of an oligomeric variant of a native CBM led to a substantial increase in its antibacterial activity by multivalency effects. These results suggest that CBMs might constitute promising nonlytic antimicrobial candidates based on the natural induction of the host defense system.
Collapse
Affiliation(s)
- Emma Roig-Molina
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, Avda Universidad s/n, Elche-03202, Spain
| | - Manuel Sánchez-Angulo
- Department of Vegetal Production and Microbiology, Miguel Hernández University, Avda Universidad s/n, Elche-03202, Spain
| | - Jana Seele
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, 37075 Göttingen, Germany
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Francisco García-Asencio
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, Avda Universidad s/n, Elche-03202, Spain
| | - Roland Nau
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, 37075 Göttingen, Germany
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Jesús M. Sanz
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, Avda Universidad s/n, Elche-03202, Spain
- Biological Research Centre, Spanish National Research Council (CSIC), c/Ramiro de Maeztu, 9, Madrid-28040, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid-28040, Spain
| | - Beatriz Maestro
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, Avda Universidad s/n, Elche-03202, Spain
- Biological Research Centre, Spanish National Research Council (CSIC), c/Ramiro de Maeztu, 9, Madrid-28040, Spain
| |
Collapse
|
249
|
Lauster D, Klenk S, Ludwig K, Nojoumi S, Behren S, Adam L, Stadtmüller M, Saenger S, Zimmler S, Hönzke K, Yao L, Hoffmann U, Bardua M, Hamann A, Witzenrath M, Sander LE, Wolff T, Hocke AC, Hippenstiel S, De Carlo S, Neudecker J, Osterrieder K, Budisa N, Netz RR, Böttcher C, Liese S, Herrmann A, Hackenberger CPR. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. NATURE NANOTECHNOLOGY 2020; 15:373-379. [PMID: 32231271 DOI: 10.1038/s41565-020-0660-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion1-4. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies5 and peptides6 or that address late steps of the viral replication cycle7.
Collapse
Affiliation(s)
- Daniel Lauster
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Berlin, Germany
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Klenk
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Saba Nojoumi
- Institut für Chemie, Biokatalyse, Technische Universität Berlin, Berlin, Germany
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Sandra Behren
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lutz Adam
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marlena Stadtmüller
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Sandra Saenger
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Stephanie Zimmler
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Katja Hönzke
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Ling Yao
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Ute Hoffmann
- Experimentelle Rheumatologie, Deutsches Rheuma-Forschungszentrum Berlin, ein Leibniz-Institut, Berlin, Germany
| | - Markus Bardua
- Experimentelle Rheumatologie, Deutsches Rheuma-Forschungszentrum Berlin, ein Leibniz-Institut, Berlin, Germany
| | - Alf Hamann
- Experimentelle Rheumatologie, Deutsches Rheuma-Forschungszentrum Berlin, ein Leibniz-Institut, Berlin, Germany
| | - Martin Witzenrath
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Leif E Sander
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Thorsten Wolff
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Andreas C Hocke
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Stefan Hippenstiel
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | | | - Jens Neudecker
- Chirurgische Klinik, Campus Mitte/Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Germany
| | - Klaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Nediljko Budisa
- Institut für Chemie, Biokatalyse, Technische Universität Berlin, Berlin, Germany
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Roland R Netz
- Fachbereich Physik, Theoretische Biophysik und Physik weicher Materie, Freie Universität Berlin, Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Susanne Liese
- Fachbereich Physik, Theoretische Biophysik und Physik weicher Materie, Freie Universität Berlin, Berlin, Germany.
- Department of Mathematics, University of Oslo (UiO), Oslo, Norway.
| | - Andreas Herrmann
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
250
|
Rohse P, Weickert S, Drescher M, Wittmann V. Precipitation-free high-affinity multivalent binding by inline lectin ligands. Chem Sci 2020; 11:5227-5237. [PMID: 34122979 PMCID: PMC8159369 DOI: 10.1039/d0sc01744b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 11/21/2022] Open
Abstract
Multivalent ligand-protein interactions are a key concept in biology mediating, for example, signalling and adhesion. Multivalent ligands often have tremendously increased binding affinities. However, they also can cause crosslinking of receptor molecules leading to precipitation of ligand-receptor complexes. Plaque formation due to precipitation is a known characteristic of numerous fatal diseases limiting a potential medical application of multivalent ligands with a precipitating binding mode. Here, we present a new design of high-potency multivalent ligands featuring an inline arrangement of ligand epitopes with exceptionally high binding affinities in the low nanomolar range. At the same time, we show with a multi-methodological approach that precipitation of the receptor is prevented. We distinguish distinct binding modes of the ligands, in particular we elucidate a unique chelating binding mode, where four receptor binding sites are simultaneously bridged by one multivalent ligand molecule. The new design concept of inline multivalent ligands, which we established for the well-investigated model lectin wheat germ agglutinin, has great potential for the development of high-potency multivalent inhibitors as future therapeutics.
Collapse
Affiliation(s)
- Philipp Rohse
- University of Konstanz, Department of Chemistry, Konstanz Research School Chemical Biology (KoRS-CB) Universitätsstraße 10 78457 Konstanz Germany
| | - Sabrina Weickert
- University of Konstanz, Department of Chemistry, Konstanz Research School Chemical Biology (KoRS-CB) Universitätsstraße 10 78457 Konstanz Germany
| | - Malte Drescher
- University of Konstanz, Department of Chemistry, Konstanz Research School Chemical Biology (KoRS-CB) Universitätsstraße 10 78457 Konstanz Germany
| | - Valentin Wittmann
- University of Konstanz, Department of Chemistry, Konstanz Research School Chemical Biology (KoRS-CB) Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|