201
|
Yang Y, Leopold DA, Duyn JH, Sipe GO, Liu X. Intrinsic forebrain arousal dynamics governs sensory stimulus encoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560900. [PMID: 37986990 PMCID: PMC10659438 DOI: 10.1101/2023.10.04.560900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The neural encoding of sensory stimuli is subject to the brain's internal circuit dynamics. Recent work has demonstrated that the resting brain exhibits widespread, coordinated activity that plays out over multisecond timescales in the form of quasi-periodic spiking cascades. Here we demonstrate that these intrinsic dynamics persist during the presentation of visual stimuli and markedly influence the efficacy of feature encoding in the visual cortex. During periods of passive viewing, the sensory encoding of visual stimuli was determined by quasi-periodic cascade cycle evolving over several seconds. During this cycle, high efficiency encoding occurred during peak arousal states, alternating in time with hippocampal ripples, which were most frequent in low arousal states. However, during bouts of active locomotion, these arousal dynamics were abolished: the brain remained in a state in which visual coding efficiency remained high and ripples were absent. We hypothesize that the brain's observed dynamics during awake, passive viewing reflect an adaptive cycle of alternating exteroceptive sensory sampling and internal mnemonic function.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David A. Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological. Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grayson O. Sipe
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
202
|
Berndt M, Trusel M, Roberts TF, Pfeiffer BE, Volk LJ. Bidirectional synaptic changes in deep and superficial hippocampal neurons following in vivo activity. Neuron 2023; 111:2984-2994.e4. [PMID: 37689058 PMCID: PMC10958998 DOI: 10.1016/j.neuron.2023.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Neuronal activity during experience is thought to induce plastic changes within the hippocampal network that underlie memory formation, although the extent and details of such changes in vivo remain unclear. Here, we employed a temporally precise marker of neuronal activity, CaMPARI2, to label active CA1 hippocampal neurons in vivo, followed by immediate acute slice preparation and electrophysiological quantification of synaptic properties. Recently active neurons in the superficial sublayer of stratum pyramidale displayed larger post-synaptic responses at excitatory synapses from area CA3, with no change in pre-synaptic release probability. In contrast, in vivo activity correlated with weaker pre- and post-synaptic excitatory weights onto pyramidal cells in the deep sublayer. In vivo activity of deep and superficial neurons within sharp-wave/ripples was bidirectionally changed across experience, consistent with the observed changes in synaptic weights. These findings reveal novel, fundamental mechanisms through which the hippocampal network is modified by experience to store information.
Collapse
Affiliation(s)
- Marcus Berndt
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA
| | - Massimo Trusel
- UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA
| | - Todd F Roberts
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA
| | - Brad E Pfeiffer
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA.
| | - Lenora J Volk
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Psychiatry, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA.
| |
Collapse
|
203
|
Shih YT, Alipio JB, Sahay A. An inhibitory circuit-based enhancer of DYRK1A function reverses Dyrk1a-associated impairment in social recognition. Neuron 2023; 111:3084-3101.e5. [PMID: 37797581 PMCID: PMC10575685 DOI: 10.1016/j.neuron.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as "enhancers of DYRK1A function" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.
Collapse
Affiliation(s)
- Yu-Tzu Shih
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
204
|
Terstege DJ, Epp JR. Parvalbumin as a sex-specific target in Alzheimer's disease research - A mini-review. Neurosci Biobehav Rev 2023; 153:105370. [PMID: 37619647 DOI: 10.1016/j.neubiorev.2023.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and both the incidence of this disease and its associated cognitive decline disproportionally effect women. While the etiology of AD is unknown, recent work has demonstrated that the balance of excitatory and inhibitory activity across the brain may serve as a strong predictor of cognitive impairments in AD. Across the cortex, the most prominent source of inhibitory signalling is from a class of parvalbumin-expressing interneurons (PV+). In this mini-review, the impacts of sex- and age-related factors on the function of PV+ neurons are examined within the context of vulnerability to AD pathology. These primary factors of influence include changes in brain metabolism, circulating sex hormone levels, and inflammatory response. In addition to positing the increased vulnerability of PV+ neurons to dysfunction in AD, this mini-review highlights the critical importance of presenting sex stratified data in the study of AD.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
205
|
Griffiths BJ, Jensen O. Gamma oscillations and episodic memory. Trends Neurosci 2023; 46:832-846. [PMID: 37550159 DOI: 10.1016/j.tins.2023.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
Enhanced gamma oscillatory activity (30-80 Hz) accompanies the successful formation and retrieval of episodic memories. While this co-occurrence is well documented, the mechanistic contributions of gamma oscillatory activity to episodic memory remain unclear. Here, we review how gamma oscillatory activity may facilitate spike timing-dependent plasticity, neural communication, and sequence encoding/retrieval, thereby ensuring the successful formation and/or retrieval of an episodic memory. Based on the evidence reviewed, we propose that multiple, distinct forms of gamma oscillation can be found within the canonical gamma band, each of which has a complementary role in the neural processes listed above. Further exploration of these theories using causal manipulations may be key to elucidating the relevance of gamma oscillatory activity to episodic memory.
Collapse
Affiliation(s)
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
206
|
Hernández-Frausto M, Bilash OM, Masurkar AV, Basu J. Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease. Front Neural Circuits 2023; 17:1223891. [PMID: 37841892 PMCID: PMC10570439 DOI: 10.3389/fncir.2023.1223891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Olesia M. Bilash
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Arjun V. Masurkar
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
207
|
Shin JD, Tang W, Jadhav SP. Protocol for geometric transformation of cognitive maps for generalization across hippocampal-prefrontal circuits. STAR Protoc 2023; 4:102513. [PMID: 37572325 PMCID: PMC10448425 DOI: 10.1016/j.xpro.2023.102513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023] Open
Abstract
Memory generalization is the ability to abstract knowledge from prior experiences and is critical for flexible behavior in novel situations. Here, we describe a protocol for simultaneous recording of hippocampal (area CA1)-prefrontal cortical neural ensembles in Long-Evans rats during task generalization across two distinct environments. We describe steps for building and assembling experimental apparatuses, animal preparation and surgery, and performing experiments. We then detail procedures for histology, data processing, and assessing population geometry using Uniform Manifold Approximation and Projection. For complete details on the use and execution of this protocol, please refer to Tang et al. (2023).1.
Collapse
Affiliation(s)
- Justin D Shin
- Neuroscience Program, Department of Psychology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| | - Wenbo Tang
- Neuroscience Program, Department of Psychology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
208
|
Zutshi I, Buzsáki G. Hippocampal sharp-wave ripples and their spike assembly content are regulated by the medial entorhinal cortex. Curr Biol 2023; 33:3648-3659.e4. [PMID: 37572665 PMCID: PMC10530523 DOI: 10.1016/j.cub.2023.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
Hippocampal sharp-wave ripples (SPW-Rs) are critical for memory consolidation and retrieval. The neuronal content of spiking during SPW-Rs is believed to be under the influence of neocortical inputs via the entorhinal cortex (EC). Optogenetic silencing of the medial EC (mEC) reduced the incidence of SPW-Rs with minor impacts on their magnitude or duration, similar to local CA1 silencing. The effect of mEC silencing on CA1 firing and field potentials was comparable to the effect of transient cortex-wide DOWN states of non-REM (NREM) sleep, implying that decreased SPW-R incidence in both cases is due to tonic disfacilitation of hippocampal circuits. The neuronal composition of CA1 pyramidal neurons during SPW-Rs was altered by mEC silencing but was restored immediately after silencing. We suggest that the mEC provides both tonic and transient influences on hippocampal network states by timing the occurrence of SPW-Rs and altering their neuronal content.
Collapse
Affiliation(s)
- Ipshita Zutshi
- New York University Neuroscience Institute, New York, NY, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York, NY, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
209
|
Weiss SA, Fried I, Engel J, Sperling MR, Wong RKS, Nir Y, Staba RJ. Fast ripples reflect increased excitability that primes epileptiform spikes. Brain Commun 2023; 5:fcad242. [PMID: 37869578 PMCID: PMC10587774 DOI: 10.1093/braincomms/fcad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
The neuronal circuit disturbances that drive inter-ictal and ictal epileptiform discharges remain elusive. Using a combination of extra-operative macro-electrode and micro-electrode inter-ictal recordings in six pre-surgical patients during non-rapid eye movement sleep, we found that, exclusively in the seizure onset zone, fast ripples (200-600 Hz), but not ripples (80-200 Hz), frequently occur <300 ms before an inter-ictal intra-cranial EEG spike with a probability exceeding chance (bootstrapping, P < 1e-5). Such fast ripple events are associated with higher spectral power (P < 1e-10) and correlated with more vigorous neuronal firing than solitary fast ripple (generalized linear mixed-effects model, P < 1e-9). During the intra-cranial EEG spike that follows a fast ripple, action potential firing is lower than during an intra-cranial EEG spike alone (generalized linear mixed-effects model, P < 0.05), reflecting an inhibitory restraint of intra-cranial EEG spike initiation. In contrast, ripples do not appear to prime epileptiform spikes. We next investigated the clinical significance of pre-spike fast ripple in a separate cohort of 23 patients implanted with stereo EEG electrodes, who underwent resections. In non-rapid eye movement sleep recordings, sites containing a high proportion of fast ripple preceding intra-cranial EEG spikes correlate with brain areas where seizures begin more than solitary fast ripple (P < 1e-5). Despite this correlation, removal of these sites does not guarantee seizure freedom. These results are consistent with the hypothesis that fast ripple preceding EEG spikes reflect an increase in local excitability that primes EEG spike discharges preferentially in the seizure onset zone and that epileptogenic brain regions are necessary, but not sufficient, for initiating inter-ictal epileptiform discharges.
Collapse
Affiliation(s)
- Shennan A Weiss
- Department of Neurology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY 11203, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jerome Engel
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michael R Sperling
- Departments of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert K S Wong
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY 11203, USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Richard J Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
210
|
Tsunematsu T, Matsumoto S, Merkler M, Sakata S. Pontine Waves Accompanied by Short Hippocampal Sharp Wave-Ripples During Non-rapid Eye Movement Sleep. Sleep 2023; 46:zsad193. [PMID: 37478470 PMCID: PMC10485565 DOI: 10.1093/sleep/zsad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
Ponto-geniculo-occipital or pontine (P) waves have long been recognized as an electrophysiological signature of rapid eye movement (REM) sleep. However, P-waves can be observed not just during REM sleep, but also during non-REM (NREM) sleep. Recent studies have uncovered that P-waves are functionally coupled with hippocampal sharp wave ripples (SWRs) during NREM sleep. However, it remains unclear to what extent P-waves during NREM sleep share their characteristics with P-waves during REM sleep and how the functional coupling to P-waves modulates SWRs. Here, we address these issues by performing multiple types of electrophysiological recordings and fiber photometry in both sexes of mice. P-waves during NREM sleep share their waveform shapes and local neural ensemble dynamics at a short (~100 milliseconds) timescale with their REM sleep counterparts. However, the dynamics of mesopontine cholinergic neurons are distinct at a longer (~10 seconds) timescale: although P-waves are accompanied by cholinergic transients, the cholinergic tone gradually reduces before P-wave genesis during NREM sleep. While P-waves are coupled to hippocampal theta rhythms during REM sleep, P-waves during NREM sleep are accompanied by a rapid reduction in hippocampal ripple power. SWRs coupled with P-waves are short-lived and hippocampal neural firing is also reduced after P-waves. These results demonstrate that P-waves are part of coordinated sleep-related activity by functionally coupling with hippocampal ensembles in a state-dependent manner.
Collapse
Affiliation(s)
- Tomomi Tsunematsu
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-, Japan
| | - Sumire Matsumoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-, Japan
| | - Mirna Merkler
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
211
|
Liu J, Hall AF, Wang DV. Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556568. [PMID: 37732176 PMCID: PMC10508749 DOI: 10.1101/2023.09.06.556568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Memories are crucial for our daily lives, yet the network-level organizing principle that governs neural representations of our experiences remains to be determined. Employing dual-site electrophysiology recording in freely behaving mice, we discovered that hippocampal dorsal CA1 (dCA1) and basolateral amygdala (BLA) utilize distinct coding strategies to represent novel experiences. A small assembly of BLA neurons rapidly emerged during memory acquisition and remained active during subsequent consolidation, whereas the majority of dCA1 neurons engaged in the same processes. Machine learning decoding revealed that dCA1 population spikes predicted the BLA assembly firing rate. This suggests that most dCA1 neurons concurrently index an episodic event by rapidly establishing weighted communications with a specific BLA assembly, a process we call "many-to-one weighted mapping." Furthermore, we demonstrated that closed-loop optoinhibition of BLA activity triggered by dCA1 ripples after new learning resulted in impaired memory. These findings highlight a new principle of hippocampus-amygdala communication underlying memory formation and provide new insights into how the brain creates and stores memories.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
212
|
Li Z, Athwal D, Lee HL, Sah P, Opazo P, Chuang KH. Locating causal hubs of memory consolidation in spontaneous brain network in male mice. Nat Commun 2023; 14:5399. [PMID: 37669938 PMCID: PMC10480429 DOI: 10.1038/s41467-023-41024-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/17/2023] [Indexed: 09/07/2023] Open
Abstract
Memory consolidation after learning involves spontaneous, brain-wide network reorganization during rest and sleep, but how this is achieved is still poorly understood. Current theory suggests that the hippocampus is pivotal for this reshaping of connectivity. Using fMRI in male mice, we identify that a different set of spontaneous networks and their hubs are instrumental in consolidating memory during post-learning rest. We found that two types of spatial memory training invoke distinct functional connections, but that a network of the sensory cortex and subcortical areas is common for both tasks. Furthermore, learning increased brain-wide network integration, with the prefrontal, striatal and thalamic areas being influential for this network-level reconfiguration. Chemogenetic suppression of each hub identified after learning resulted in retrograde amnesia, confirming the behavioral significance. These results demonstrate the causal and functional roles of resting-state network hubs in memory consolidation and suggest that a distributed network beyond the hippocampus subserves this process.
Collapse
Affiliation(s)
- Zengmin Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dilsher Athwal
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hsu-Lei Lee
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Patricio Opazo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD, Australia
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Kai-Hsiang Chuang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Centre of Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia.
| |
Collapse
|
213
|
Miao X, Müller C, Lutz ND, Yang Q, Waszak F, Born J, Rauss K. Sleep consolidates stimulus-response learning. Learn Mem 2023; 30:175-184. [PMID: 37726140 PMCID: PMC10547380 DOI: 10.1101/lm.053753.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 09/21/2023]
Abstract
Performing a motor response to a sensory stimulus creates a memory trace whose behavioral correlates are classically investigated in terms of repetition priming effects. Such stimulus-response learning entails two types of associations that are partly independent: (1) an association between the stimulus and the motor response and (2) an association between the stimulus and the classification task in which it is encountered. Here, we tested whether sleep supports long-lasting stimulus-response learning on a task requiring participants (1) for establishing stimulus-classification associations to classify presented objects along two different dimensions ("size" and "mechanical") and (2) as motor response (action) to respond with either the left or right index finger. Moreover, we examined whether strengthening of stimulus-classification associations is preferentially linked to nonrapid eye movement (non-REM) sleep and strengthening of stimulus-action associations to REM sleep. We tested 48 healthy volunteers in a between-subjects design comparing postlearning retention periods of nighttime sleep versus daytime wakefulness. At postretention testing, we found that sleep supports consolidation of both stimulus-action and stimulus-classification associations, as indicated by increased reaction times in "switch conditions"; that is, when, at test, the acutely instructed classification task and/or correct motor response for a given stimulus differed from that during original learning. Polysomnographic recordings revealed that both kinds of associations were correlated with non-REM spindle activity. Our results do not support the view of differential roles for non-REM and REM sleep in the consolidation of stimulus-classification and stimulus-action associations, respectively.
Collapse
Affiliation(s)
- Xiu Miao
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-Universität, Tübingen 72076, Germany
| | - Carolin Müller
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-Universität, Tübingen 72076, Germany
| | - Nicolas D Lutz
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-Universität, Tübingen 72076, Germany
- Institute of Medical Psychology, Ludwig-Maximilians-Universität, Munich 80336, Germany
| | - Qing Yang
- Université Paris Cité, Integrative Neuroscience and Cognition Center, UMR 8002, Centre National de la Recherche Scientifique, Paris 75006, France
| | - Florian Waszak
- Université Paris Cité, Integrative Neuroscience and Cognition Center, UMR 8002, Centre National de la Recherche Scientifique, Paris 75006, France
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-Universität, Tübingen 72076, Germany
- Center for Integrative Neuroscience, Eberhard-Karls-Universität, Tübingen 72076, Germany
| | - Karsten Rauss
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-Universität, Tübingen 72076, Germany
| |
Collapse
|
214
|
Feliciano-Ramos PA, Galazo M, Penagos H, Wilson M. Hippocampal memory reactivation during sleep is correlated with specific cortical states of the retrosplenial and prefrontal cortices. Learn Mem 2023; 30:221-236. [PMID: 37758288 PMCID: PMC10547389 DOI: 10.1101/lm.053834.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023]
Abstract
Episodic memories are thought to be stabilized through the coordination of cortico-hippocampal activity during sleep. However, the timing and mechanism of this coordination remain unknown. To investigate this, we studied the relationship between hippocampal reactivation and slow-wave sleep up and down states of the retrosplenial cortex (RTC) and prefrontal cortex (PFC). We found that hippocampal reactivations are strongly correlated with specific cortical states. Reactivation occurred during sustained cortical Up states or during the transition from up to down state. Interestingly, the most prevalent interaction with memory reactivation in the hippocampus occurred during sustained up states of the PFC and RTC, while hippocampal reactivation and cortical up-to-down state transition in the RTC showed the strongest coordination. Reactivation usually occurred within 150-200 msec of a cortical Up state onset, indicating that a buildup of excitation during cortical Up state activity influences the probability of memory reactivation in CA1. Conversely, CA1 reactivation occurred 30-50 msec before the onset of a cortical down state, suggesting that memory reactivation affects down state initiation in the RTC and PFC, but the effect in the RTC was more robust. Our findings provide evidence that supports and highlights the complexity of bidirectional communication between cortical regions and the hippocampus during sleep.
Collapse
Affiliation(s)
- Pedro A Feliciano-Ramos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria Galazo
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
| | - Hector Penagos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthew Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
215
|
Etter G, Carmichael JE, Williams S. Linking temporal coordination of hippocampal activity to memory function. Front Cell Neurosci 2023; 17:1233849. [PMID: 37720546 PMCID: PMC10501408 DOI: 10.3389/fncel.2023.1233849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Oscillations in neural activity are widespread throughout the brain and can be observed at the population level through the local field potential. These rhythmic patterns are associated with cycles of excitability and are thought to coordinate networks of neurons, in turn facilitating effective communication both within local circuits and across brain regions. In the hippocampus, theta rhythms (4-12 Hz) could contribute to several key physiological mechanisms including long-range synchrony, plasticity, and at the behavioral scale, support memory encoding and retrieval. While neurons in the hippocampus appear to be temporally coordinated by theta oscillations, they also tend to fire in sequences that are developmentally preconfigured. Although loss of theta rhythmicity impairs memory, these sequences of spatiotemporal representations persist in conditions of altered hippocampal oscillations. The focus of this review is to disentangle the relative contribution of hippocampal oscillations from single-neuron activity in learning and memory. We first review cellular, anatomical, and physiological mechanisms underlying the generation and maintenance of hippocampal rhythms and how they contribute to memory function. We propose candidate hypotheses for how septohippocampal oscillations could support memory function while not contributing directly to hippocampal sequences. In particular, we explore how theta rhythms could coordinate the integration of upstream signals in the hippocampus to form future decisions, the relevance of such integration to downstream regions, as well as setting the stage for behavioral timescale synaptic plasticity. Finally, we leverage stimulation-based treatment in Alzheimer's disease conditions as an opportunity to assess the sufficiency of hippocampal oscillations for memory function.
Collapse
Affiliation(s)
| | | | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
216
|
Biabani N, Birdseye A, Higgins S, Delogu A, Rosenzweig J, Cvetkovic Z, Nesbitt A, Drakatos P, Steier J, Kumari V, O’Regan D, Rosenzweig I. The neurophysiologic landscape of the sleep onset: a systematic review. J Thorac Dis 2023; 15:4530-4543. [PMID: 37691675 PMCID: PMC10482638 DOI: 10.21037/jtd-23-325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023]
Abstract
Background The sleep onset process is an ill-defined complex process of transition from wakefulness to sleep, characterized by progressive modifications at the subjective, behavioural, cognitive, and physiological levels. To this date, there is no international consensus which could aid a principled characterisation of this process for clinical research purposes. The current review aims to systemise the current knowledge about the underlying mechanisms of the natural heterogeneity of this process. Methods In this systematic review, studies investigating the process of the sleep onset from 1970 to 2022 were identified using electronic database searches of PsychINFO, MEDLINE, and Embase. Results A total of 139 studies were included; 110 studies in healthy participants and 29 studies in participants with sleep disorders. Overall, there is a limited consensus across a body of research about what distinct biomarkers of the sleep onset constitute. Only sparse data exists on the physiology, neurophysiology and behavioural mechanisms of the sleep onset, with majority of studies concentrating on the non-rapid eye movement stage 2 (NREM 2) as a potentially better defined and a more reliable time point that separates sleep from the wake, on the sleep wake continuum. Conclusions The neurophysiologic landscape of sleep onset bears a complex pattern associated with a multitude of behavioural and physiological markers and remains poorly understood. The methodological variation and a heterogenous definition of the wake-sleep transition in various studies to date is understandable, given that sleep onset is a process that has fluctuating and ill-defined boundaries. Nonetheless, the principled characterisation of the sleep onset process is needed which will allow for a greater conceptualisation of the mechanisms underlying this process, further influencing the efficacy of current treatments for sleep disorders.
Collapse
Affiliation(s)
- Nazanin Biabani
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Adam Birdseye
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sean Higgins
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Alessio Delogu
- James Black Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Jan Rosenzweig
- Department of Engineering, King’s College London, London, UK
| | - Zoran Cvetkovic
- Department of Engineering, King’s College London, London, UK
| | - Alexander Nesbitt
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Department of Neurology, Guy’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Panagis Drakatos
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Joerg Steier
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Veena Kumari
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Centre for Cognitive Neuroscience (CCN), College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - David O’Regan
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
217
|
Noguchi A, Matsumoto N, Ikegaya Y. Postnatal Maturation of Membrane Potential Dynamics during in Vivo Hippocampal Ripples. J Neurosci 2023; 43:6126-6140. [PMID: 37400254 PMCID: PMC10476637 DOI: 10.1523/jneurosci.0125-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Sharp-wave ripples (SWRs) are transient high-frequency oscillations of local field potentials (LFPs) in the hippocampus and play a critical role in memory consolidation. During SWRs, CA1 pyramidal cells exhibit rapid spike sequences that often replay the sequential activity that occurred during behavior. This temporally organized firing activity gradually emerges during 2 weeks after the eye opening; however, it remains unclear how the organized spikes during SWRs mature at the intracellular membrane potential (Vm) level. Here, we recorded Vm of CA1 pyramidal cells simultaneously with hippocampal LFPs from anesthetized immature mice of either sex after the developmental emergence of SWRs. On postnatal days 16 and 17, Vm dynamics around SWRs were premature, characterized by prolonged depolarizations without either pre- or post-SWR hyperpolarizations. The biphasic hyperpolarizations, features typical of adult SWR-relevant Vm, formed by approximately postnatal day 30. This Vm maturation was associated with an increase in SWR-associated inhibitory inputs to pyramidal cells. Thus, the development of SWR-relevant inhibition restricts the temporal windows for spikes of pyramidal cells and allows CA1 pyramidal cells to organize their spike sequences during SWRs.SIGNIFICANCE STATEMENT Sharp-wave ripples (SWRs) are prominent hippocampal oscillations and play a critical role in memory consolidation. During SWRs, hippocampal neurons synchronously emit spikes with organized temporal patterns. This temporal structure of spikes during SWRs develops during the third and fourth postnatal weeks, but the underlying mechanisms are not well understood. Here, we recorded in vivo membrane potentials from hippocampal neurons in premature mice and suggest that the maturation of SWR-associated inhibition enables hippocampal neurons to produce precisely controlled spike times during SWRs.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, University of Tokyo, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
218
|
Yagi S, Igata H, Ikegaya Y, Sasaki T. Awake hippocampal synchronous events are incorporated into offline neuronal reactivation. Cell Rep 2023; 42:112871. [PMID: 37494183 DOI: 10.1016/j.celrep.2023.112871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Learning novel experiences reorganizes hippocampal neuronal circuits, represented as coordinated reactivation patterns in post-experience offline states for memory consolidation. This study examines how awake synchronous events during a novel run are related to post-run reactivation patterns. The disruption of awake sharp-wave ripples inhibited experience-induced increases in the contributions of neurons to post-experience synchronous events. Hippocampal place cells that participate more in awake synchronous events are more strongly reactivated during post-experience synchronous events. Awake synchronous neuronal patterns, in cooperation with place-selective firing patterns, determine cell ensembles that undergo pronounced increases and decreases in their correlated spikes. Taken together, awake synchronous events are fundamental for identifying hippocampal neuronal ensembles to be incorporated into synchronous reactivation during subsequent offline states, thereby facilitating memory consolidation.
Collapse
Affiliation(s)
- Saichiro Yagi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideyoshi Igata
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
| |
Collapse
|
219
|
den Bakker H, Van Dijck M, Sun JJ, Kloosterman F. Sharp-wave-ripple-associated activity in the medial prefrontal cortex supports spatial rule switching. Cell Rep 2023; 42:112959. [PMID: 37590137 DOI: 10.1016/j.celrep.2023.112959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Previous studies have highlighted an important role for hippocampal sharp-wave ripples in spatial alternation learning, as well as in modulating activity in the medial prefrontal cortex (mPFC). However, the direct influence of hippocampal sharp-wave ripples on mPFC activity during spatial alternation learning has not been investigated. Here, we train Long Evans rats on a three-arm radial maze to perform a sequence of alternations. Three alternation sequences needed to be learned, and while learning a sequence, the activity in the mPFC was inhibited either directly following sharp-wave ripples in the hippocampus (on-time condition) or with a randomized delay (delayed condition). In the on-time condition, the behavioral performance is significantly worse compared to the same animals in the delayed inhibition condition, as measured by a lower correct alternation performance and more perseverative behavior. This indicates that the activity in the mPFC directly following hippocampal sharp-wave ripples is necessary for spatial rule switching.
Collapse
Affiliation(s)
- Hanna den Bakker
- Neuro-Electronics Research Flanders, Leuven, Belgium; Brain & Cognition, KU Leuven, Leuven, Belgium
| | - Marie Van Dijck
- Neuro-Electronics Research Flanders, Leuven, Belgium; Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jyh-Jang Sun
- Neuro-Electronics Research Flanders, Leuven, Belgium
| | - Fabian Kloosterman
- Neuro-Electronics Research Flanders, Leuven, Belgium; Brain & Cognition, KU Leuven, Leuven, Belgium.
| |
Collapse
|
220
|
Lendner JD, Niethard N, Mander BA, van Schalkwijk FJ, Schuh-Hofer S, Schmidt H, Knight RT, Born J, Walker MP, Lin JJ, Helfrich RF. Human REM sleep recalibrates neural activity in support of memory formation. SCIENCE ADVANCES 2023; 9:eadj1895. [PMID: 37624898 PMCID: PMC10456851 DOI: 10.1126/sciadv.adj1895] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
The proposed mechanisms of sleep-dependent memory consolidation involve the overnight regulation of neural activity at both synaptic and whole-network levels. Now, there is a lack of in vivo data in humans elucidating if, and how, sleep and its varied stages balance neural activity, and if such recalibration benefits memory. We combined electrophysiology with in vivo two-photon calcium imaging in rodents as well as intracranial and scalp electroencephalography (EEG) in humans to reveal a key role for non-oscillatory brain activity during rapid eye movement (REM) sleep to mediate sleep-dependent recalibration of neural population dynamics. The extent of this REM sleep recalibration predicted the success of overnight memory consolidation, expressly the modulation of hippocampal-neocortical activity, favoring remembering rather than forgetting. The findings describe a non-oscillatory mechanism how human REM sleep modulates neural population activity to enhance long-term memory.
Collapse
Affiliation(s)
- Janna D. Lendner
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Bryce A. Mander
- Department of Psychiatry and Human Behavior, UC Irvine, 101 The City Dr, Orange, CA 92868, USA
| | - Frank J. van Schalkwijk
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| | - Sigrid Schuh-Hofer
- Department of Neurophysiology, University Medical Center Mannheim, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
- Department of Neurology and Epileptology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| | - Hannah Schmidt
- Department of Neurophysiology, University Medical Center Mannheim, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, CA 94720, USA
- Department of Psychology, UC Berkeley, 2121 Berkeley Way, CA 94720, USA
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen 72076, Germany
| | - Matthew P. Walker
- Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, CA 94720, USA
- Department of Psychology, UC Berkeley, 2121 Berkeley Way, CA 94720, USA
| | - Jack J. Lin
- Department of Neurology, UC Davis, 3160 Folsom Blvd., Sacramento, CA 95816, USA
- Center for Mind and Brain, UC Davis, 267 Cousteau Pl, Davis, CA 95618, USA
| | - Randolph F. Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
- Department of Neurology and Epileptology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| |
Collapse
|
221
|
Soula M, Maslarova A, Harvey RE, Valero M, Brandner S, Hamer H, Fernández‐Ruiz A, Buzsáki G. Interictal epileptiform discharges affect memory in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2023; 120:e2302676120. [PMID: 37590406 PMCID: PMC10450667 DOI: 10.1073/pnas.2302676120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023] Open
Abstract
Interictal epileptiform discharges (IEDs) are transient abnormal electrophysiological events commonly observed in epilepsy patients but are also present in other neurological diseases, such as Alzheimer's disease (AD). Understanding the role IEDs have on the hippocampal circuit is important for our understanding of the cognitive deficits seen in epilepsy and AD. We characterize and compare the IEDs of human epilepsy patients from microwire hippocampal recording with those of AD transgenic mice with implanted multilayer hippocampal silicon probes. Both the local field potential features and firing patterns of pyramidal cells and interneurons were similar in the mouse and human. We found that as IEDs emerged from the CA3-1 circuits, they recruited pyramidal cells and silenced interneurons, followed by post-IED suppression. IEDs suppressed the incidence and altered the properties of physiological sharp-wave ripples, altered their physiological properties, and interfered with the replay of place field sequences in a maze. In addition, IEDs in AD mice inversely correlated with daily memory performance. Together, our work implies that IEDs may present a common and epilepsy-independent phenomenon in neurodegenerative diseases that perturbs hippocampal-cortical communication and interferes with memory.
Collapse
Affiliation(s)
- Marisol Soula
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY10016
| | - Anna Maslarova
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY10016
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, 91054Erlangen, Germany
| | - Ryan E. Harvey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853
| | - Manuel Valero
- Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, Barcelona08003, Spain
| | - Sebastian Brandner
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, 91054Erlangen, Germany
| | - Hajo Hamer
- Department of Neurology, Epilepsy Center, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, 91054Erlangen, Germany
| | | | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY10016
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY10016
- Department of Neurology, Langone Medical Center, New York University, New York, NY10016
| |
Collapse
|
222
|
Zaki Y, Pennington ZT, Morales-Rodriguez D, Francisco TR, LaBanca AR, Dong Z, Lamsifer S, Segura SC, Chen HT, Wick ZC, Silva AJ, van der Meer M, Shuman T, Fenton A, Rajan K, Cai DJ. Aversive experience drives offline ensemble reactivation to link memories across days. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532469. [PMID: 36993254 PMCID: PMC10054942 DOI: 10.1101/2023.03.13.532469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Memories are encoded in neural ensembles during learning and stabilized by post-learning reactivation. Integrating recent experiences into existing memories ensures that memories contain the most recently available information, but how the brain accomplishes this critical process remains unknown. Here we show that in mice, a strong aversive experience drives the offline ensemble reactivation of not only the recent aversive memory but also a neutral memory formed two days prior, linking the fear from the recent aversive memory to the previous neutral memory. We find that fear specifically links retrospectively, but not prospectively, to neutral memories across days. Consistent with prior studies, we find reactivation of the recent aversive memory ensemble during the offline period following learning. However, a strong aversive experience also increases co-reactivation of the aversive and neutral memory ensembles during the offline period. Finally, the expression of fear in the neutral context is associated with reactivation of the shared ensemble between the aversive and neutral memories. Taken together, these results demonstrate that strong aversive experience can drive retrospective memory-linking through the offline co-reactivation of recent memory ensembles with memory ensembles formed days prior, providing a neural mechanism by which memories can be integrated across days.
Collapse
Affiliation(s)
- Yosif Zaki
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Zachary T. Pennington
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | | | - Taylor R. Francisco
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Alexa R. LaBanca
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Zhe Dong
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Sophia Lamsifer
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Simón Carrillo Segura
- Graduate Program in Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201
| | - Hung-Tu Chen
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH, 03755
| | - Zoé Christenson Wick
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Alcino J. Silva
- Department of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, UCLA, Los Angeles, CA 90095
| | | | - Tristan Shuman
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - André Fenton
- Center for Neural Science, New York University, New York, NY, 10003
- Neuroscience Institute at the NYU Langone Medical Center, New York, NY, 10016
| | - Kanaka Rajan
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Denise J. Cai
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| |
Collapse
|
223
|
González J, Cavelli M, Tort ABL, Torterolo P, Rubido N. Sleep disrupts complex spiking dynamics in the neocortex and hippocampus. PLoS One 2023; 18:e0290146. [PMID: 37590234 PMCID: PMC10434889 DOI: 10.1371/journal.pone.0290146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Neuronal interactions give rise to complex dynamics in cortical networks, often described in terms of the diversity of activity patterns observed in a neural signal. Interestingly, the complexity of spontaneous electroencephalographic signals decreases during slow-wave sleep (SWS); however, the underlying neural mechanisms remain elusive. Here, we analyse in-vivo recordings from neocortical and hippocampal neuronal populations in rats and show that the complexity decrease is due to the emergence of synchronous neuronal DOWN states. Namely, we find that DOWN states during SWS force the population activity to be more recurrent, deterministic, and less random than during REM sleep or wakefulness, which, in turn, leads to less complex field recordings. Importantly, when we exclude DOWN states from the analysis, the recordings during wakefulness and sleep become indistinguishable: the spiking activity in all the states collapses to a common scaling. We complement these results by implementing a critical branching model of the cortex, which shows that inducing DOWN states to only a percentage of neurons is enough to generate a decrease in complexity that replicates SWS.
Collapse
Affiliation(s)
- Joaquín González
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Matias Cavelli
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Adriano B. L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Pablo Torterolo
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Rubido
- University of Aberdeen, King’s College, Institute for Complex Systems and Mathematical Biology, Aberdeen, United Kingdom
- Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
224
|
Bod R, Tóth K, Essam N, Tóth EZ, Erõss L, Entz L, Bagó AG, Fabó D, Ulbert I, Wittner L. Synaptic alterations and neuronal firing in human epileptic neocortical excitatory networks. Front Synaptic Neurosci 2023; 15:1233569. [PMID: 37635750 PMCID: PMC10450510 DOI: 10.3389/fnsyn.2023.1233569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Epilepsy is a prevalent neurological condition, with underlying neuronal mechanisms involving hyperexcitability and hypersynchrony. Imbalance between excitatory and inhibitory circuits, as well as histological reorganization are relatively well-documented in animal models or even in the human hippocampus, but less is known about human neocortical epileptic activity. Our knowledge about changes in the excitatory signaling is especially scarce, compared to that about the inhibitory cell population. This study investigated the firing properties of single neurons in the human neocortex in vitro, during pharmacological blockade of glutamate receptors, and additionally evaluated anatomical changes in the excitatory circuit in tissue samples from epileptic and non-epileptic patients. Both epileptic and non-epileptic tissues exhibited spontaneous population activity (SPA), NMDA receptor antagonization reduced SPA recurrence only in epileptic tissue, whereas further blockade of AMPA/kainate receptors reversibly abolished SPA emergence regardless of epilepsy. Firing rates did not significantly change in excitatory principal cells and inhibitory interneurons during pharmacological experiments. Granular layer (L4) neurons showed an increased firing rate in epileptic compared to non-epileptic tissue. The burstiness of neurons remained unchanged, except for that of inhibitory cells in epileptic recordings, which decreased during blockade of glutamate receptors. Crosscorrelograms computed from single neuron discharge revealed both mono- and polysynaptic connections, particularly involving intrinsically bursting principal cells. Histological investigations found similar densities of SMI-32-immunopositive long-range projecting pyramidal cells in both groups, and shorter excitatory synaptic active zones with a higher proportion of perforated synapses in the epileptic group. These findings provide insights into epileptic modifications from the perspective of the excitatory system and highlight discrete alterations in firing patterns and synaptic structure. Our data suggest that NMDA-dependent glutamatergic signaling, as well as the excitatory synaptic machinery are perturbed in epilepsy, which might contribute to epileptic activity in the human neocortex.
Collapse
Affiliation(s)
- Réka Bod
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Nour Essam
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Estilla Zsófia Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Loránd Erõss
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - László Entz
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Attila G. Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| |
Collapse
|
225
|
Weiss SA, Fried I, Engel J, Bragin A, Wang S, Sperling MR, Wong RK, Nir Y, Staba RJ. Pathological neurons generate ripples at the UP-DOWN transition disrupting information transfer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.01.23293365. [PMID: 37609251 PMCID: PMC10441494 DOI: 10.1101/2023.08.01.23293365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Objective To confirm and investigate why pathological HFOs (pHFOs), including Ripples [80-200 Hz] and fast ripples [200-600 Hz], are generated during the UP-DOWN transition of the slow wave and if pHFOs interfere with information transmission. Methods We isolated 217 total units from 175.95 iEEG contact-hours of synchronized macro- and microelectrode recordings from 6 patients. Sleep slow oscillation (0.1-2 Hz) epochs were identified in the iEEG recording. iEEG HFOs that occurred superimposed on the slow wave were transformed to phasors and adjusted by the phase of maximum firing in nearby units (i.e., maximum UP). We tested whether, in the seizure onset zone (SOZ), HFOs and associated action potentials (AP) occur more often at the UP-DOWN transition. We also examined ripple temporal correlations using cross correlograms. Results At the group level in the SOZ, HFO and HFO-associated AP probability was highest during the UP-DOWN transition of slow wave excitability (p<<0.001). In the non-SOZ, HFO and HFO-associated AP was highest during the DOWN-UP transition (p<<0.001). At the unit level in the SOZ, 15.6% and 20% of units exhibited more robust firing during ripples (Cohen's d=0.11-0.83) and fast ripples (d=0.36-0.90) at the UP-DOWN transition (p<0.05 f.d.r corrected), respectively. By comparison, also in the SOZ, 6.6% (d=0.14-0.30) and 8.5% (d=0.33-0.41) of units had significantly less firing during ripples and fast ripples at the UP-DOWN transition, respectively. Additional data shows ripple temporal correlations, involving global slow waves, between the hippocampus, entorhinal cortex, and parahippocampal gyrus were reduced by ~50-80% in the SOZ compared to the non-SOZ (N=3). Significance The UP-DOWN transition of slow wave excitability facilitates the activation of pathological neurons to generate pHFOs. The pathological neurons and pHFOs disrupt ripple temporal correlations across brain regions that transfer information and may be important in memory consolidation.
Collapse
Affiliation(s)
- Shennan A Weiss
- Dept. of Neurology
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, USA
| | | | - Jerome Engel
- Dept. of Neurology
- Dept. of Neurosurgery
- Dept. of Neurobiology
- Dept. of Psychiatry and Biobehavioral Sciences
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | | | - Shuang Wang
- Depts of Neurology, Epilepsy Center, Second Affiliated Hospital of Medical College, Zhejiang University, Zhejiang, China
| | - Michael R. Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Robert K.S. Wong
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | | |
Collapse
|
226
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
227
|
Staresina BP, Niediek J, Borger V, Surges R, Mormann F. How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nat Neurosci 2023; 26:1429-1437. [PMID: 37429914 PMCID: PMC10400429 DOI: 10.1038/s41593-023-01381-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
Learning and plasticity rely on fine-tuned regulation of neuronal circuits during offline periods. An unresolved puzzle is how the sleeping brain, in the absence of external stimulation or conscious effort, coordinates neuronal firing rates (FRs) and communication within and across circuits to support synaptic and systems consolidation. Using intracranial electroencephalography combined with multiunit activity recordings from the human hippocampus and surrounding medial temporal lobe (MTL) areas, we show that, governed by slow oscillation (SO) up-states, sleep spindles set a timeframe for ripples to occur. This sequential coupling leads to a stepwise increase in (1) neuronal FRs, (2) short-latency cross-correlations among local neuronal assemblies and (3) cross-regional MTL interactions. Triggered by SOs and spindles, ripples thus establish optimal conditions for spike-timing-dependent plasticity and systems consolidation. These results unveil how the sequential coupling of specific sleep rhythms orchestrates neuronal processing and communication during human sleep.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Johannes Niediek
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Valeri Borger
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
228
|
Honey CJ, Mahabal A, Bellana B. Psychological Momentum. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2023; 32:284-292. [PMID: 37786409 PMCID: PMC10545321 DOI: 10.1177/09637214221143053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Our mental experience is largely continuous on the scale of seconds and minutes. However, this continuity does not always arise from a volitional carrying forward of ideas. Instead, recent actions, thoughts, dispositions, and emotions can persist in mind, continually shaping our later experience. Aspects of this fundamental property of human cognition - psychological momentum - have been studied under the rubrics of memory, task set, mood, mind-wandering, and mindset. Reviewing these largely independent threads of research, we argue that psychological momentum is best understood from an integrated perspective, as an adaptation that helps us meet the current demands of our environment and to form lasting memories.
Collapse
|
229
|
Kurki SN, Ala-Kurikka T, Lipponen A, Pospelov AS, Rolova T, Koistinaho J, Voipio J, Kaila K. A brain cytokine-independent switch in cortical activity marks the onset of sickness behavior triggered by acute peripheral inflammation. J Neuroinflammation 2023; 20:176. [PMID: 37507711 PMCID: PMC10375675 DOI: 10.1186/s12974-023-02851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic inflammation triggers protective as well as pro-inflammatory responses in the brain based on neuronal and/or cytokine signaling, and it associates with acutely and protractedly disrupted cognition. However, the multiple mechanisms underlying the peripheral-central inflammatory signaling are still not fully characterized. We used intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) in freely moving mice with chronically implanted electrodes for recording of local field potentials (LFP) and electrocorticography (ECoG) in the hippocampus and neocortex, respectively. We show here that a sudden switch in the mode of network activity occurred in both areas starting at 10-15 min after the LPS injection, simultaneously with a robust change from exploration to sickness behavior. This switch in cortical mode commenced before any elevations in pro-inflammatory cytokines IL-1β, TNFα, CCL2 or IL-6 were detected in brain tissue. Thereafter, this mode dominated cortical activity for the recording period of 3 h, except for a partial and transient recovery around 40 min post-LPS. These effects were closely paralleled by changes in ECoG spectral entropy. Continuous recordings for up to 72 h showed a protracted attenuation in hippocampal activity, while neocortical activity recovered after 48 h. The acute sickness behavior recovered by 72 h post-LPS. Notably, urethane (1.3 mg/kg) administered prior to LPS blocked the early effect of LPS on cortical activity. However, experiments under urethane anesthesia which were started 24 h post-LPS (with neuroinflammation fully developed before application of urethane) showed that both theta-supratheta and fast gamma CA1 activity were reduced, DG delta activity was increased, and sharp-wave ripples were abolished. Finally, we observed that experimental compensation of inflammation-induced hypothermia 24-48 h post-LPS promoted seizures and status epilepticus; and that LPS decreased the threshold of kainate-provoked seizures beyond the duration of acute sickness behavior indicating post-acute inflammatory hyperexcitability. Taken together, the strikingly fast development and initial independence of brain cytokines of the LPS-induced cortical mode, its spectral characteristics and simultaneity in hippocampus and neocortex, as well as inhibition by pre-applied urethane, strongly suggest that the underlying mechanisms are based on activation of the afferent vagus nerve and its mainly cholinergic ascending projections to higher brain areas.
Collapse
Affiliation(s)
- Samu N Kurki
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland.
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Tommi Ala-Kurikka
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arto Lipponen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Alexey S Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
230
|
Arndt KC, Gilbert ET, Klaver LMF, Kim J, Buhler CM, Basso JC, McKenzie S, English DF. Granular retrosplenial cortex layer 2/3 generates high-frequency oscillations coupled with hippocampal theta and gamma in online states or sharp-wave ripples in offline states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.547981. [PMID: 37502984 PMCID: PMC10369913 DOI: 10.1101/2023.07.10.547981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Neuronal oscillations support information transfer by temporally aligning the activity of anatomically distributed 'writer' and 'reader' cell assemblies. High-frequency oscillations (HFOs) such as hippocampal CA1 sharp-wave ripples (SWRs; 100-250 Hz) are sufficiently fast to initiate synaptic plasticity between assemblies and are required for memory consolidation. HFOs are observed in parietal and midline cortices including granular retrosplenial cortex (gRSC). In 'offline' brain states (e.g. quiet wakefulness) gRSC HFOs co-occur with CA1 SWRs, while in 'online' states (e.g. ambulation) HFOs persist with the emergence of theta oscillations. The mechanisms of gRSC HFO oscillations, specifically whether the gRSC can intrinsically generate HFOs, and which layers support HFOs across states, remain unclear. We addressed these issues in behaving mice using optogenetic excitation in individual layers of the gRSC and high density silicon-probe recordings across gRSC layers and hippocampus CA1. Optogenetically induced HFOs (iHFOs) could be elicited by depolarizing excitatory neurons with 100 ms half-sine wave pulses in layer 2/3 (L2/3) or layer 5 (L5) though L5 iHFOs were of lower power than in L2/3. Critically, spontaneous HFOs were only observed in L2/3 and never in L5. Intra-laminar monosynaptic connectivity between excitatory and inhibitory neurons was similar across layers, suggesting other factors restrict HFOs to L2/3. To compare HFOs in online versus offline states we analyzed, separately, HFOs that did or did not co-occur with CA1 SWRs. Using current-source density analysis we found uniform synaptic inputs to L2/3 during all gRSC HFOs, suggesting layer-specific inputs may dictate the localization of HFOs to L2/3. HFOs occurring without SWRs were aligned with the descending phase of both gRSC and CA1 theta oscillations and were coherent with CA1 high frequency gamma oscillations (50-80 Hz). These results demonstrate that gRSC can internally generate HFOs without rhythmic inputs and that HFOs occur exclusively in L2/3, coupled to distinct hippocampal oscillations in online versus offline states.
Collapse
|
231
|
Abstract
Examination of cognition has historically been approached from language and introspection. However, human language-dependent definitions ignore the evolutionary roots of brain mechanisms and constrain their study in experimental animals. We promote an alternative view, namely that cognition, including memory, can be explained by exaptation and expansion of the circuits and algorithms serving bodily functions. Regulation and protection of metabolic and energetic processes require time-evolving brain computations enabling the organism to prepare for altered future states. Exaptation of such circuits was likely exploited for exploration of the organism's niche. We illustrate that exploration gives rise to a cognitive map, and in turn, environment-disengaged computation allows for mental travel into the past (memory) and the future (planning). Such brain-body interactions not only occur during waking but also persist during sleep. These exaptation steps are illustrated by the dual, endocrine-homeostatic and memory, contributions of the hippocampal system, particularly during hippocampal sharp-wave ripples.
Collapse
Affiliation(s)
- György Buzsáki
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA;
- Center for Neural Science, New York University, New York, NY, USA
| | - David Tingley
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA;
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
232
|
Harvey RE, Robinson HL, Liu C, Oliva A, Fernandez-Ruiz A. Hippocampo-cortical circuits for selective memory encoding, routing, and replay. Neuron 2023; 111:2076-2090.e9. [PMID: 37196658 PMCID: PMC11146684 DOI: 10.1016/j.neuron.2023.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Traditionally considered a homogeneous cell type, hippocampal pyramidal cells have been recently shown to be highly diverse. However, how this cellular diversity relates to the different hippocampal network computations that support memory-guided behavior is not yet known. We show that the anatomical identity of pyramidal cells is a major organizing principle of CA1 assembly dynamics, the emergence of memory replay, and cortical projection patterns in rats. Segregated pyramidal cell subpopulations encoded trajectory and choice-specific information or tracked changes in reward configuration respectively, and their activity was selectively read out by different cortical targets. Furthermore, distinct hippocampo-cortical assemblies coordinated the reactivation of complementary memory representations. These findings reveal the existence of specialized hippocampo-cortical subcircuits and provide a cellular mechanism that supports the computational flexibility and memory capacities of these structures.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Heath L Robinson
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Can Liu
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Azahara Oliva
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
233
|
Sierra RO, Pedraza LK, Barcsai L, Pejin A, Li Q, Kozák G, Takeuchi Y, Nagy AJ, Lőrincz ML, Devinsky O, Buzsáki G, Berényi A. Closed-loop brain stimulation augments fear extinction in male rats. Nat Commun 2023; 14:3972. [PMID: 37407557 DOI: 10.1038/s41467-023-39546-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
Dysregulated fear reactions can result from maladaptive processing of trauma-related memories. In post-traumatic stress disorder (PTSD) and other psychiatric disorders, dysfunctional extinction learning prevents discretization of trauma-related memory engrams and generalizes fear responses. Although PTSD may be viewed as a memory-based disorder, no approved treatments target pathological fear memory processing. Hippocampal sharp wave-ripples (SWRs) and concurrent neocortical oscillations are scaffolds to consolidate contextual memory, but their role during fear processing remains poorly understood. Here, we show that closed-loop, SWR triggered neuromodulation of the medial forebrain bundle (MFB) can enhance fear extinction consolidation in male rats. The modified fear memories became resistant to induced recall (i.e., 'renewal' and 'reinstatement') and did not reemerge spontaneously. These effects were mediated by D2 receptor signaling-induced synaptic remodeling in the basolateral amygdala. Our results demonstrate that SWR-triggered closed-loop stimulation of the MFB reward system enhances extinction of fearful memories and reducing fear expression across different contexts and preventing excessive and persistent fear responses. These findings highlight the potential of neuromodulation to augment extinction learning and provide a new avenue to develop treatments for anxiety disorders.
Collapse
Affiliation(s)
- Rodrigo Ordoñez Sierra
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Lizeth Katherine Pedraza
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Lívia Barcsai
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Andrea Pejin
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Qun Li
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Gábor Kozák
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Yuichi Takeuchi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- Department of Biopharmaceutical Sciences and Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Anett J Nagy
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Magor L Lőrincz
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, 6726, Hungary
- Neuroscience Division, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY, 10016, USA
- Center for Neural Science, New York University, New York, NY, 10016, USA
| | - Antal Berényi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary.
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary.
- Neunos Inc, Boston, MA, 02108, USA.
- Neuroscience Institute, New York University, New York, NY, 10016, USA.
| |
Collapse
|
234
|
Kostansek JA, Latona GJ, Heruye SH, Matthews S, Bockman CS, Simeone KA, Simeone TA. Orexin receptors regulate hippocampal sharp wave-ripple complexes in ex vivo slices. Eur J Pharmacol 2023; 950:175763. [PMID: 37146705 PMCID: PMC10311575 DOI: 10.1016/j.ejphar.2023.175763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Orexin is a neuromodulatory peptide produced by lateral hypothalamic orexin neurons and binds to G-protein-coupled orexin-1 receptor and orexin-2 receptors. Whether orexin modulates learning and memory is not fully understood. Orexin has biphasic effects on learning and memory: promoting learning and memory at homeostatic levels and inhibiting at supra- and sub-homeostatic levels. Hippocampal sharp wave-ripples encode memory information and are essential for memory consolidation and retrieval. The role of orexin on sharp wave-ripples in hippocampal CA1 remains unknown. Here, we used multi-electrode array recordings in acute ex vivo hippocampal slices to determine the effects of orexin receptor antagonists on sharp wave-ripples. Bath-application of either the orexin-1 receptor antagonist N-(2-Methyl-6-benzoxazolyl)-N'-1,5-naphthyridin-4-yl urea (SB-334867) or the orexin-2 receptor antagonist N-Ethyl-2-[(6-methoxy-3-pyridinyl)[(2-methylphenyl)sulfonyl]amino]-N-(3-pyridinylmethyl)-acetamide (EMPA) reduced sharp wave and ripple incidence, sharp wave amplitude, and sharp wave duration. SB-334867 and EMPA effects on sharp wave amplitude and duration were equivalent, whereas EMPA exhibited a greater reduction of sharp wave and ripple incidence. EMPA also increased ripple duration, whereas SB-334867 had no effect. Inhibition of both orexin receptors with a dual orexin receptor antagonist N-[1,1'-Biphenyl]-2-yl-1-[2-[(1-methyl-1H-benzimidazol-2-yl)thio]acetyl-2-pyrrolidinedicarboxamide (TCS-1102) had effects similar to EMPA, however, sharp wave amplitude and duration were unaffected. Region-specific expression of orexin receptors suggests orexin may regulate sharp wave generation in CA3, dentate gyrus-mediated sharp wave modification, sharp wave propagation to CA1, and local ripple emergence in CA1. Our study indicates an orexin contribution to hippocampal sharp wave-ripple complexes and suggests a mechanism by which sub-homeostatic concentrations of orexin may inhibit learning and memory function.
Collapse
Affiliation(s)
- Joseph A Kostansek
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA.
| | - Gavin J Latona
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA
| | - Segewkal H Heruye
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA
| | - Stephanie Matthews
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA
| | - Charles S Bockman
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA
| | - Kristina A Simeone
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA
| | - Timothy A Simeone
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA.
| |
Collapse
|
235
|
Navas-Olive A, Rubio A, Abbaspoor S, Hoffman KL, de la Prida LM. A machine learning toolbox for the analysis of sharp-wave ripples reveal common features across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547382. [PMID: 37461661 PMCID: PMC10349962 DOI: 10.1101/2023.07.02.547382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The study of sharp-wave ripples (SWRs) has advanced our understanding of memory function, and their alteration in neurological conditions such as epilepsy and Alzheimer's disease is considered a biomarker of dysfunction. SWRs exhibit diverse waveforms and properties that cannot be fully characterized by spectral methods alone. Here, we describe a toolbox of machine learning (ML) models for automatic detection and analysis of SWRs. The ML architectures, which resulted from a crowdsourced hackathon, are able to capture a wealth of SWR features recorded in the dorsal hippocampus of mice. When applied to data from the macaque hippocampus, these models were able to generalize detection and revealed shared SWR properties across species. We hereby provide a user-friendly open-source toolbox for model use and extension, which can help to accelerate and standardize SWR research, lowering the threshold for its adoption in biomedical applications.
Collapse
Affiliation(s)
| | | | - Saman Abbaspoor
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, USA
| | - Kari L. Hoffman
- Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, USA
- Biomedical Engineering, Vanderbilt University, USA
| | | |
Collapse
|
236
|
Osanai H, Nair IR, Kitamura T. Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory. J Neurochem 2023; 166:172-188. [PMID: 37248771 PMCID: PMC10538947 DOI: 10.1111/jnc.15850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Episodic memory, which refers to our ability to encode and recall past events, is essential to our daily lives. Previous research has established that both the entorhinal cortex (EC) and hippocampus (HPC) play a crucial role in the formation and retrieval of episodic memories. However, to understand neural circuit mechanisms behind these processes, it has become necessary to monitor and manipulate the neural activity in a cell-type-specific manner with high temporal precision during memory formation, consolidation, and retrieval in the EC-HPC networks. Recent studies using cell-type-specific labeling, monitoring, and manipulation have demonstrated that medial EC (MEC) contains multiple excitatory neurons that have differential molecular markers, physiological properties, and anatomical features. In this review, we will comprehensively examine the complementary roles of superficial layers of neurons (II and III) and the roles of deeper layers (V and VI) in episodic memory formation and recall based on these recent findings.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Indrajith R Nair
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
237
|
Kopsick JD, Tecuatl C, Moradi K, Attili SM, Kashyap HJ, Xing J, Chen K, Krichmar JL, Ascoli GA. Robust Resting-State Dynamics in a Large-Scale Spiking Neural Network Model of Area CA3 in the Mouse Hippocampus. Cognit Comput 2023; 15:1190-1210. [PMID: 37663748 PMCID: PMC10473858 DOI: 10.1007/s12559-021-09954-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022]
Abstract
Hippocampal area CA3 performs the critical auto-associative function underlying pattern completion in episodic memory. Without external inputs, the electrical activity of this neural circuit reflects the spontaneous spiking interplay among glutamatergic pyramidal neurons and GABAergic interneurons. However, the network mechanisms underlying these resting-state firing patterns are poorly understood. Leveraging the Hippocampome.org knowledge base, we developed a data-driven, large-scale spiking neural network (SNN) model of mouse CA3 with 8 neuron types, 90,000 neurons, 51 neuron-type specific connections, and 250,000,000 synapses. We instantiated the SNN in the CARLsim4 multi-GPU simulation environment using the Izhikevich and Tsodyks-Markram formalisms for neuronal and synaptic dynamics, respectively. We analyzed the resultant population activity upon transient activation. The SNN settled into stable oscillations with a biologically plausible grand-average firing frequency, which was robust relative to a wide range of transient activation. The diverse firing patterns of individual neuron types were consistent with existing knowledge of cell type-specific activity in vivo. Altered network structures that lacked neuron- or connection-type specificity were neither stable nor robust, highlighting the importance of neuron type circuitry. Additionally, external inputs reflecting dentate mossy fibers shifted the observed rhythms to the gamma band. We freely released the CARLsim4-Hippocampome framework on GitHub to test hippocampal hypotheses. Our SNN may be useful to investigate the circuit mechanisms underlying the computational functions of CA3. Moreover, our approach can be scaled to the whole hippocampal formation, which may contribute to elucidating how the unique neuronal architecture of this system subserves its crucial cognitive roles.
Collapse
Affiliation(s)
- Jeffrey D. Kopsick
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Carolina Tecuatl
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| | - Keivan Moradi
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Sarojini M. Attili
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Hirak J. Kashyap
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Jinwei Xing
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kexin Chen
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jeffrey L. Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Giorgio A. Ascoli
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| |
Collapse
|
238
|
Quigley LD, Pendry R, Mendoza ML, Pfeiffer BE, Volk LJ. Experience alters hippocampal and cortical network communication via a KIBRA-dependent mechanism. Cell Rep 2023; 42:112662. [PMID: 37347662 PMCID: PMC10592482 DOI: 10.1016/j.celrep.2023.112662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/11/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
Synaptic plasticity is hypothesized to underlie "replay" of salient experience during hippocampal sharp-wave/ripple (SWR)-based ensemble activity and to facilitate systems-level memory consolidation coordinated by SWRs and cortical sleep spindles. It remains unclear how molecular changes at synapses contribute to experience-induced modification of network function. The synaptic protein KIBRA regulates plasticity and memory. To determine the impact of KIBRA-regulated plasticity on circuit dynamics, we recorded in vivo neural activity from wild-type (WT) mice and littermates lacking KIBRA and examined circuit function before, during, and after novel experience. In WT mice, experience altered population activity and oscillatory dynamics in a manner consistent with incorporation of new information content in replay and enhanced hippocampal-cortical communication. While baseline SWR features were normal in KIBRA conditional knockout (cKO) mice, experience-dependent alterations in SWRs were absent. Furthermore, intra-hippocampal and hippocampal-cortical communication during SWRs was disrupted following KIBRA deletion. These results indicate molecular mechanisms that underlie network-level adaptations to experience.
Collapse
Affiliation(s)
- Lilyana D Quigley
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert Pendry
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew L Mendoza
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brad E Pfeiffer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O' Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lenora J Volk
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O' Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
239
|
Osanai H, Yamamoto J, Kitamura T. Extracting electromyographic signals from multi-channel LFPs using independent component analysis without direct muscular recording. CELL REPORTS METHODS 2023; 3:100482. [PMID: 37426755 PMCID: PMC10326347 DOI: 10.1016/j.crmeth.2023.100482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 07/11/2023]
Abstract
Electromyography (EMG) has been commonly used for the precise identification of animal behavior. However, it is often not recorded together with in vivo electrophysiology due to the need for additional surgeries and setups and the high risk of mechanical wire disconnection. While independent component analysis (ICA) has been used to reduce noise from field potential data, there has been no attempt to proactively use the removed "noise," of which EMG signals are thought to be one of the major sources. Here, we demonstrate that EMG signals can be reconstructed without direct EMG recording using the "noise" ICA component from local field potentials. The extracted component is highly correlated with directly measured EMG, termed IC-EMG. IC-EMG is useful for measuring an animal's sleep/wake, freezing response, and non-rapid eye movement (NREM)/REM sleep states consistently with actual EMG. Our method has advantages in precise and long-term behavioral measurement in wide-ranging in vivo electrophysiology experiments.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
240
|
van Schalkwijk FJ, Weber J, Hahn MA, Lendner JD, Inostroza M, Lin JJ, Helfrich RF. An evolutionary conserved division-of-labor between archicortical and neocortical ripples organizes information transfer during sleep. Prog Neurobiol 2023:102485. [PMID: 37353109 DOI: 10.1016/j.pneurobio.2023.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Systems-level memory consolidation during sleep depends on the temporally precise interplay between cardinal sleep oscillations. Specifically, hippocampal ripples constitute a key substrate of the hippocampal-neocortical dialogue underlying memory formation. Recently, it became evident that ripples are not unique to archicortex, but constitute a wide-spread neocortical phenomenon. To date, little is known about the morphological similarities between archi- and neocortical ripples. Moreover, it remains undetermined if neocortical ripples fulfill distinct functional roles. Leveraging intracranial recordings from the human medial temporal lobe (MTL) and neocortex during sleep, our results reveal region-specific functional specializations, albeit a near-uniform morphology. While MTL ripples synchronize the memory network to trigger directional MTL-to-neocortical information flow, neocortical ripples reduce information flow to minimize interference. At the population level, MTL ripples confined population dynamics to a low-dimensional subspace, while neocortical ripples diversified the population response; thus, constituting an effective mechanism to functionally uncouple the MTL-neocortical network. Critically, we replicated the key findings in rodents, where the same division-of-labor between archi- and neocortical ripples was evident. In sum, these results uncover an evolutionary preserved mechanism where the precisely coordinated interplay between MTL and neocortical ripples temporally segregates MTL information transfer from subsequent neocortical processing during sleep.
Collapse
Affiliation(s)
- Frank J van Schalkwijk
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Jan Weber
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Germany.
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Janna D Lendner
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen; Hoppe-Seyler-Str 3, 72076 Tübingen, Germany.
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Jack J Lin
- Department of Neurology, University of California, Davis, 4860 Y St., Sacramento, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA.
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| |
Collapse
|
241
|
Xie B, Zhen Z, Guo O, Li H, Guo M, Zhen J. Progress on the hippocampal circuits and functions based on sharp wave ripples. Brain Res Bull 2023:110695. [PMID: 37353037 DOI: 10.1016/j.brainresbull.2023.110695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Sharp wave ripples (SWRs) are high-frequency synchronization events generated by hippocampal neuronal circuits during various forms of learning and reactivated during memory consolidation and recall. There is mounting evidence that SWRs are essential for storing spatial and social memories in rodents and short-term episodic memories in humans. Sharp wave ripples originate mainly from the hippocampal CA3 and subiculum, and can be transmitted to modulate neuronal activity in cortical and subcortical regions for long-term memory consolidation and behavioral guidance. Different hippocampal subregions have distinct functions in learning and memory. For instance, the dorsal CA1 is critical for spatial navigation, episodic memory, and learning, while the ventral CA1 and dorsal CA2 may work cooperatively to store and consolidate social memories. Here, we summarize recent studies demonstrating that SWRs are essential for the consolidation of spatial, episodic, and social memories in various hippocampal-cortical pathways, and review evidence that SWR dysregulation contributes to cognitive impairments in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Boxu Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Heming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Moran Guo
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Junli Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
242
|
Halász P, Szũcs A. Self-limited childhood epilepsies are disorders of the perisylvian communication system, carrying the risk of progress to epileptic encephalopathies-Critical review. Front Neurol 2023; 14:1092244. [PMID: 37388546 PMCID: PMC10301767 DOI: 10.3389/fneur.2023.1092244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/04/2023] [Indexed: 07/01/2023] Open
Abstract
"Sleep plasticity is a double-edged sword: a powerful machinery of neural build-up, with a risk to epileptic derailment." We aimed to review the types of self-limited focal epilepsies..."i.e. keep as two separate paragraphs" We aimed to review the types of self-limited focal epilepsies: (1) self-limited focal childhood epilepsy with centrotemporal spikes, (2) atypical Rolandic epilepsy, and (3) electrical status epilepticus in sleep with mental consequences, including Landau-Kleffner-type acquired aphasia, showing their spectral relationship and discussing the debated topics. Our endeavor is to support the system epilepsy concept in this group of epilepsies, using them as models for epileptogenesis in general. The spectral continuity of the involved conditions is evidenced by several features: language impairment, the overarching presence of centrotemporal spikes and ripples (with changing electromorphology across the spectrum), the essential timely and spatial independence of interictal epileptic discharges from seizures, NREM sleep relatedness, and the existence of the intermediate-severity "atypical" forms. These epilepsies might be the consequences of a genetically determined transitory developmental failure, reflected by widespread neuropsychological symptoms originating from the perisylvian network that have distinct time and space relations from secondary epilepsy itself. The involved epilepsies carry the risk of progression to severe, potentially irreversible encephalopathic forms.
Collapse
Affiliation(s)
- Péter Halász
- Department of Neurology, University Medical School, Pécs, Hungary
| | - Anna Szũcs
- Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
243
|
Verzhbinsky IA, Rubin DB, Kajfez S, Bu Y, Kelemen JN, Kapitonava A, Williams ZM, Hochberg LR, Cash SS, Halgren E. Co-occurring ripple oscillations facilitate neuronal interactions between cortical locations in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541588. [PMID: 37292943 PMCID: PMC10245779 DOI: 10.1101/2023.05.20.541588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synchronous bursts of high frequency oscillations ('ripples') are hypothesized to contribute to binding by facilitating integration of neuronal firing across cortical locations. We tested this hypothesis using local field-potentials and single-unit firing from four 96-channel microelectrode arrays in supragranular cortex of 3 patients. Neurons in co-rippling locations showed increased short-latency co-firing, prediction of each-other's firing, and co-participation in neural assemblies. Effects were similar for putative pyramidal and interneurons, during NREM sleep and waking, in temporal and Rolandic cortices, and at distances up to 16mm. Increased co-prediction during co-ripples was maintained when firing-rate changes were equated, and were strongly modulated by ripple phase. Co-ripple enhanced prediction is reciprocal, synergistic with local upstates, and further enhanced when multiple sites co-ripple. Together, these results support the hypothesis that trans-cortical co-ripples increase the integration of neuronal firing of neurons in different cortical locations, and do so in part through phase-modulation rather than unstructured activation.
Collapse
Affiliation(s)
- Ilya A. Verzhbinsky
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel B. Rubin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Sophie Kajfez
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Yiting Bu
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica N. Kelemen
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anastasia Kapitonava
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ziv M. Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114
- Program in Neuroscience, Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA 02115
| | - Leigh R. Hochberg
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
- Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence, RI 02908, USA
- Carney Institute for Brain Science and School of Engineering, Brown University, Providence, RI 02912, USA
| | - Sydney S. Cash
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Eric Halgren
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
244
|
Zhang Q, Jing W, Wu S, Zhu M, Jiang J, Liu X, Yu D, Cheng L, Feng B, Wen J, Xiong F, Lu Y, Du H. Development of a synchronous recording and photo-stimulating electrode in multiple brain neurons. Front Neurosci 2023; 17:1195095. [PMID: 37383109 PMCID: PMC10293621 DOI: 10.3389/fnins.2023.1195095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
The investigation of brain networks and neural circuits involves the crucial aspects of observing and modulating neurophysiological activity. Recently, opto-electrodes have emerged as an efficient tool for electrophysiological recording and optogenetic stimulation, which has greatly facilitated the analysis of neural coding. However, implantation and electrode weight control have posed significant challenges in achieving long-term and multi-regional brain recording and stimulation. To address this issue, we have developed a mold and custom-printed circuit board-based opto-electrode. We report successful opto-electrode placement and high-quality electrophysiological recordings from the default mode network (DMN) of the mouse brain. This novel opto-electrode facilitates synchronous recording and stimulation in multiple brain regions and holds promise for advancing future research on neural circuits and networks.
Collapse
Affiliation(s)
- Qingping Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Jing
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Shiping Wu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzheng Zhu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jingrui Jiang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Dian Yu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Long Cheng
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Feng
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbin Wen
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xiong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, National Center for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyun Du
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| |
Collapse
|
245
|
Kim J, Huang H, Gilbert E, Arndt K, English DF, Jia X. Tapered Drug delivery, Optical stimulation, and Electrophysiology (T-DOpE) probes reveal the importance of cannabinoid signaling in hippocampal CA1 oscillations in behaving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544251. [PMID: 37333172 PMCID: PMC10274863 DOI: 10.1101/2023.06.08.544251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. Here we developed a thermal tapering process (TTP) which enables the fabrication of novel, low-cost, flexible probes that combine ultrafine features of dense electrodes, optical waveguides, and microfluidic channels. Furthermore, we developed a semi-automated backend connection allowing scalable assembly of the probes. We demonstrate that our T-DOpE ( T apered D rug delivery, Op tical stimulation, and E lectrophysiology) probe achieves in a single neuron-scale device (1) high-fidelity electrophysiological recording (2) focal drug delivery and (3) optical stimulation. With a tapered geometry, the device tip can be minimized (as small as 50 μm) to ensure minimal tissue damage while the backend is ~20 times larger allowing for direct integration with industrial-scale connectorization. Acute and chronic implantation of the probes in mouse hippocampus CA1 revealed canonical neuronal activity at the level of local field potentials and spiking. Taking advantage of the triple-functionality of the T-DOpE probe, we monitored local field potentials with simultaneous manipulation of endogenous type 1 cannabinoid receptors (CB1R; via microfluidic agonist delivery) and CA1 pyramidal cell membrane potential (optogenetic activation). Electro-pharmacological experiments revealed that focal infusion of CB1R agonist CP-55,940 in dorsal CA1 downregulated theta and sharp wave-ripple oscillations. Furthermore, using the full electro-pharmacological-optical feature set of the T-DOpE probe we found that CB1R activation reduces sharp wave-ripples (SPW-Rs) by impairing the innate SPW-R-generating ability of the CA1 circuit.
Collapse
|
246
|
Shiozaki H, Kuga N, Kayama T, Ikegaya Y, Sasaki T. Selective serotonin reuptake inhibitors suppress sharp wave ripples in the ventral hippocampus. J Pharmacol Sci 2023; 152:136-143. [PMID: 37169478 DOI: 10.1016/j.jphs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Biased memory processing contributes to the development and exacerbation of depression, and thus could represent a potential therapeutic target for stress-induced mental disorders. Synchronized spikes in hippocampal neurons, corresponding to sharp wave ripples (SWRs), may play a crucial role in memory reactivation. In this study, we showed that the frequency of SWRs increased in the ventral hippocampus, but not in the dorsal hippocampus, after stress exposure. Administration of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine and fluvoxamine inhibited the generation of ventral hippocampal SWRs and reduced locomotor activity and local field potential power in the gamma bands. These results suggest that the antidepressant effects of SSRIs may be mediated by the suppression of ventral hippocampal SWRs.
Collapse
Affiliation(s)
- Hiromi Shiozaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
| | - Tasuku Kayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
247
|
Firestone E, Sonoda M, Kuroda N, Sakakura K, Jeong JW, Lee MH, Wada K, Takayama Y, Iijima K, Iwasaki M, Miyazaki T, Asano E. Sevoflurane-induced high-frequency oscillations, effective connectivity and intraoperative classification of epileptic brain areas. Clin Neurophysiol 2023; 150:17-30. [PMID: 36989866 PMCID: PMC10192072 DOI: 10.1016/j.clinph.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE To determine how sevoflurane anesthesia modulates intraoperative epilepsy biomarkers on electrocorticography, including high-frequency oscillation (HFO) effective connectivity (EC), and to investigate their relation to epileptogenicity and anatomical white matter. METHODS We studied eight pediatric drug-resistant focal epilepsy patients who achieved seizure control after invasive monitoring and resective surgery. We visualized spatial distributions of the electrocorticography biomarkers at an oxygen baseline, three time-points while sevoflurane was increasing, and at a plateau of 2 minimum alveolar concentration (MAC) sevoflurane. HFO EC was combined with diffusion-weighted imaging, in dynamic tractography. RESULTS Intraoperative HFO EC diffusely increased as a function of sevoflurane concentration, although most in epileptogenic sites (defined as those included in the resection); their ability to classify epileptogenicity was optimized at sevoflurane 2 MAC. HFO EC could be visualized on major white matter tracts, as a function of sevoflurane level. CONCLUSIONS The results strengthened the hypothesis that sevoflurane-activated HFO biomarkers may help intraoperatively localize the epileptogenic zone. SIGNIFICANCE Our results help characterize how HFOs at non-epileptogenic and epileptogenic networks respond to sevoflurane. It may be warranted to establish a normative HFO atlas incorporating the modifying effects of sevoflurane and major white matter pathways, as critical reference in epilepsy presurgical evaluation.
Collapse
Affiliation(s)
- Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Min-Hee Lee
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA
| | - Keiko Wada
- Department of Anesthesiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan; Department of Anesthesiology and Critical Care, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan; Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Tomoyuki Miyazaki
- Department of Anesthesiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan; Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
248
|
Simonnet C, Sinha M, Goutierre M, Moutkine I, Daumas S, Poncer JC. Silencing KCC2 in mouse dorsal hippocampus compromises spatial and contextual memory. Neuropsychopharmacology 2023; 48:1067-1077. [PMID: 36302847 PMCID: PMC10209115 DOI: 10.1038/s41386-022-01480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Delayed upregulation of the neuronal chloride extruder KCC2 underlies the progressive shift in GABA signaling polarity during development. Conversely, KCC2 downregulation is observed in a variety of neurological and psychiatric disorders often associated with cognitive impairment. Reduced KCC2 expression and function in mature networks may disrupt GABA signaling and promote anomalous network activities underlying these disorders. However, the causal link between KCC2 downregulation, altered brain rhythmogenesis, and cognitive function remains elusive. Here, by combining behavioral exploration with in vivo electrophysiology we assessed the impact of chronic KCC2 downregulation in mouse dorsal hippocampus and showed it compromises both spatial and contextual memory. This was associated with altered hippocampal rhythmogenesis and neuronal hyperexcitability, with increased burst firing in CA1 neurons during non-REM sleep. Reducing neuronal excitability with terbinafine, a specific Task-3 leak potassium channel opener, occluded the impairment of contextual memory upon KCC2 knockdown. Our results establish a causal relationship between KCC2 expression and cognitive performance and suggest that non-epileptiform rhythmopathies and neuronal hyperexcitability are central to the deficits caused by KCC2 downregulation in the adult mouse brain.
Collapse
Affiliation(s)
- Clémence Simonnet
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
- Basic Neuroscience Department, Centre Medical Universitaire, 1211, Geneva, Switzerland
| | - Manisha Sinha
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Marie Goutierre
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Imane Moutkine
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Stéphanie Daumas
- Sorbonne Université, 75005, Paris, France
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005, Paris, France
| | - Jean Christophe Poncer
- Inserm UMR-S 1270, 75005, Paris, France.
- Sorbonne Université, 75005, Paris, France.
- Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
249
|
Kudara M, Kato-Ishikura E, Ikegaya Y, Matsumoto N. Ramelteon administration enhances novel object recognition and spatial working memory in mice. J Pharmacol Sci 2023; 152:128-135. [PMID: 37169477 DOI: 10.1016/j.jphs.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Ramelteon is used to ameliorate sleep disorders that negatively affect memory performance; however, it remains unknown whether ramelteon strengthens neutral memories, which do not involve reward or punishment. To address this, we monitored behavior of mice treated with vehicle/ramelteon while they performed a novel object recognition task and a spontaneous alternation task. Object memory performance in the novel object recognition task was improved only if ramelteon was injected before training, suggesting that ramelteon specifically enhances the acquisition of object recognition memory. Ramelteon also enhanced spatial working memory in the spontaneous alternation task. Altogether, acute ramelteon treatment enhances memory in quasi-natural contexts.
Collapse
Affiliation(s)
- Mikuru Kudara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Eriko Kato-Ishikura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
250
|
Buhler CM, Basso JC, English DF. Hippocampal sharp wave-ripple dynamics in NREM sleep encode motivation for anticipated physical activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532638. [PMID: 36993725 PMCID: PMC10055135 DOI: 10.1101/2023.03.14.532638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Physical activity is an integral part of every mammal's daily life, and as a driver of Darwinian fitness, required coordinated evolution of the body and brain. The decision to engage in physical activity is driven either by survival needs or by motivation for the rewarding qualities of physical activity itself. Rodents exhibit innate and learned motivation for voluntary wheel running, and over time run longer and farther, reflecting increased incentive salience and motivation for this consummatory behavior. Dynamic coordination of neural and somatic physiology are necessary to ensure the ability to perform behaviors that are motivationally variable. Hippocampal sharp wave-ripples (SWRs) have evolved both cognitive and metabolic functions, which in modern mammals may facilitate body-brain coordination. To determine if SWRs encode aspects of exercise motivation we monitored hippocampal CA1 SWRs and running behaviors in adult mice, while manipulating the incentive salience of the running experience. During non-REM (NREM) sleep, the duration of SWRs before (but not after) running positively correlated with future running duration, and larger pyramidal cell assemblies were activated in longer SWRs, suggesting that the CA1 network encodes exercise motivation at the level of neuronal spiking dynamics. Inter-Ripple-intervals (IRI) before but not after running were negatively correlated with running duration, reflecting more SWR bursting, which increases with learning. In contrast, SWR rates before and after running were positively correlated with running duration, potentially reflecting a tuning of metabolic demand for that day's anticipated and actual energy expenditure rather than motivation. These results suggest a novel role for CA1 in exercise behaviors and specifically that cell assembly activity during SWRs encodes motivation for anticipated physical activity. SIGNIFICANCE STATEMENT Darwinian fitness is increased by body-brain coordination through internally generated motivation, though neural substrates are poorly understood. Specific hippocampal rhythms (i.e., CA1 SWRs), which have a well-established role in reward learning, action planning and memory consolidation, have also been shown to modulate systemic [glucose]. Using a mouse model of voluntary physical activity that requires body-brain coordination, we monitored SWR dynamics when animals were highly motivated and anticipated rewarding exercise (i.e., when body-brain coordination is of heightened importance). We found that during non-REM sleep before exercise, SWR dynamics (which reflect cognitive and metabolic functions) were correlated with future time spent exercising. This suggests that SWRs support cognitive and metabolic facets that motivate behavior by coordinating the body and brain.
Collapse
|