201
|
Panetto OS, Gomes HF, Fraga Gomes DS, Campos E, Romeiro NC, Costa EP, do Carmo PRL, Feitosa NM, Moraes J. The effects of Roundup® in embryo development and energy metabolism of the zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:74-81. [PMID: 30981909 DOI: 10.1016/j.cbpc.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022]
Abstract
Roundup® is currently the most widely used and sold agricultural pesticide in the world. The objective of this work was to investigate the effects of Roundup® on energy metabolism during zebrafish (Danio rerio) embryogenesis. The embryo toxicity test was performed for 96 h post-fertilisation and the sublethal concentration of Roundup® was defined as 58.3 mg/L, which resulted in failure to inflate the swim bladder. Biochemical assays were performed with viable embryos following glyphosate exposure, and no significant effects on protein, glucose, glycogen, triglyceride levels or the enzymatic activities of alanine aminotransferase and aspartate aminotransferase were observed. However, the activity of hexokinase was significantly altered following exposure to 11.7 mg/L Roundup®. Through molecular docking we have shown for the first time that the interactions of glucokinase and hexokinases 1 and 2 with glyphosate showed significant interactions in the active sites, corroborating the biochemical results of hexokinase activity in zebrafish exposed to the chemical. From the results of molecular docking interactions carried out on the Zfishglucok, ZfishHK1 and ZfishHK2 models with the glyphosate linker, it can be concluded that there are significant interactions between glyphosate and active sites of glucokinase and hexokinase 1 and 2 proteins. The present work suggests that Roundup® can induce problems in fish embryogenesis relating to the incapacity of swim bladder to inflate. This represents the first study demonstrating the interaction of glyphosate with hexokinase and its isoforms.
Collapse
Affiliation(s)
- Ottassano S Panetto
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Helga F Gomes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Danielle S Fraga Gomes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Nelilma C Romeiro
- Laboratório Integrado de Computação Científica-LICC-NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Evenilton P Costa
- Laboratório Integrado de Computação Científica-LICC-NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Paulo R L do Carmo
- Laboratório Integrado de Computação Científica-LICC-NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Natália M Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil.
| |
Collapse
|
202
|
Córdova López AM, Sarmento RA, de Souza Saraiva A, Pereira RR, Soares AMVM, Pestana JLT. Exposure to Roundup® affects behaviour, head regeneration and reproduction of the freshwater planarian Girardia tigrina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:453-461. [PMID: 31030151 DOI: 10.1016/j.scitotenv.2019.04.234] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The demand of glyphosate-based herbicides including Roundup® is rising in the tropics due to increase occurence of glyphosate-resistant weeds that require higher herbicide application rates but also because of their use associated with genetically engineered, glyphosate-tolerant crops. Consequently, there is now an excessive use of glyphosate in agricultural areas with potential adverse effects also for the surrounding aquatic environments. This study aimed to determine the sensitivity of the freshwater planarian Girardia tigrina to acute and chronic exposures of Roundup®. Planarians were exposed to a range of lethal and sub-lethal concentrations of Roundup® to determine the median lethal concentration (LC50) concerning its active ingredient glyphosate and also effects on locomotor velocity (pLMV), feeding rate, regeneration, reproductive parameters and morphological abnormalities. Regeneration endpoints included length of blastema and time for photoreceptors and auricles regeneration after decapitation, while effects on reproduction were assessed measuring fecundity (number of deposited cocoons) and fertility (number of hatchlings) over five weeks of exposure to glyphosate. The estimated 48 h LC50 of was 35.94 mg glyphosate/L. Dose dependent effects were observed for feeding, locomotion and regeneration endpoints with Lowest observed effect concentration (LOEC) values as low as 3.75 mg glyphosate/L. Chronic exposures to environmentally relevant concentrations of glyphosate significantly impaired fecundity and fertility rates of exposed planarians (median effective concentration, EC50 = 1.6 mg glyphosate/L for fecundity and fertility rates). Our results show deleterious effects of Roundup® on regeneration, behavior and reproduction of freshwater planarians and add important ecotoxicological data towards the environmental risk assessment of glyphosate-based herbicide in freshwater ecosystems.
Collapse
Affiliation(s)
- Ana M Córdova López
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, TO, Brazil; ICEMR Amazonia Laboratory and Emerging Diseases - Iquitos Headquarters, Universidad Peruana Cayetano Heredia, Iquitos, Perú
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, TO, Brazil
| | - Althiéris de Souza Saraiva
- Departamento de Agropecuária (Conservação de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educação, Ciência e Tecnologia Goiano, campus Campos Belos, 73840-000 Campos Belos, GO, Brazil
| | - Renata Ramos Pereira
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
203
|
Suzuki M, Iwasaki A, Suenaga K, Kato-Noguchi H. Phytotoxic activity of crop residues from Burdock and an active substance. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:877-882. [PMID: 31271331 DOI: 10.1080/03601234.2019.1636600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Problems related to weed management such as outbreaks of herbicide-resistant weeds have recently increased. An interesting approach to such problems is to use plant materials with phytotoxic activity. Burdock (Arctium lappa L.) is a biennial herb belonging to Asteraceae and is cultivated in several countries. The present study investigated the phytotoxic activity of burdock and its active substances. Extracts of both burdock leaves and roots inhibited the shoot and root growth of cress and barnyard grass, where the level of inhibition increased with increasing extract concentration. The leaf extracts had 2.0-2.5 times higher activity than the root extracts. Bioassay-guided separations of the leaf extracts led to isolation of a phytotoxic substance, onopordopicrin. Onopordopicrin significantly inhibited the shoot and root growth of cress and barnyard grass. The concentrations of the substance required for 50% growth inhibition were 0.27 and 0.26 mM for cress shoots and roots, respectively, and 1.86 and 0.35 mM for barnyard grass shoots and roots, respectively. The present results suggest that burdock leaves have high phytotoxic activity and onopordopicrin may play a major role in the activity. Burdock leaves may be a good resource for weed management.
Collapse
Affiliation(s)
- Masahiko Suzuki
- Graduate School of Agriculture, Department of Applied Bioresource Science, Kagawa University, Miki, Japan
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
| | - Arihiro Iwasaki
- Faculty of Science and Technology, Department of Chemistry, Keio University, Yokohama, Japan
| | - Kiyotake Suenaga
- Faculty of Science and Technology, Department of Chemistry, Keio University, Yokohama, Japan
| | - Hisashi Kato-Noguchi
- Graduate School of Agriculture, Department of Applied Bioresource Science, Kagawa University, Miki, Japan
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
| |
Collapse
|
204
|
de Melo MS, Nazari EM, Joaquim-Justo C, Muller YMR, Gismondi E. Effects of low glyphosate-based herbicide concentrations on endocrine-related gene expression in the decapoda Macrobrachium potiuna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21535-21545. [PMID: 31127518 DOI: 10.1007/s11356-019-05496-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Glyphosate-based herbicides (GBH) are the most used herbicides worldwide and are considered as endocrine-disrupting compounds (EDC) for non-target organisms. However, effects of GBH on their endocrine systems remain poorly understood. Thus, the aim of this study was to assess the effects of low concentrations of Roundup WG® on growth and reproduction process molecules in both males and females of the decapod crustacean Macrobrachium potiuna, by the relative transcript expression levels of the ecdysteroid receptor (EcR), the molt-inhibiting hormone (MIH), and the vitellogenin (Vg) genes. Prawns were exposed to three concentrations of GBH (0.0065, 0.065, and 0.28 mg L-1) for 7 and 14 days. The results revealed that only in males the three genes transcript levels were influenced by the GBH concentration, time of exposure, and the interaction between the concentrations and time of exposure, suggesting that males were more sensitive to GBH than females. For males, after 7 days of exposure at 0.065 mg L-1, EcR and MIH were over-expressed, while the Vg expression was only over-expressed after 14 days. The present study highlighted that GBH impacted endocrine systems of M. potiuna. Moreover, EcR and MIH gene expressions could be promising EDC biomarkers of exposure in crustaceans. These results also indicate that GBH concentrations, considered secure by regulatory agencies, should be reviewed to minimize the effects on non-target organisms. Potential effects of glyphosate-based herbicides on the endocrine system of decapods Macrobrachium sp.
Collapse
Affiliation(s)
- Madson Silveira de Melo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Célia Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, Sart-Tilman, 4000, Liege, Belgium
| | - Yara Maria Rauh Muller
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, Sart-Tilman, 4000, Liege, Belgium.
| |
Collapse
|
205
|
de Brito Rodrigues L, Gonçalves Costa G, Lundgren Thá E, da Silva LR, de Oliveira R, Morais Leme D, Cestari MM, Koppe Grisolia C, Campos Valadares M, de Oliveira GAR. Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:94-101. [PMID: 31255230 DOI: 10.1016/j.mrgentox.2019.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 11/16/2022]
Abstract
Glyphosate (GLY) is the active ingredient of several herbicide formulations widely used to control weeds in agricultural and non-agricultural areas. Due to the intensive use of GLY-based herbicides and their direct application on soils, some of their components, including the active ingredient, may reach the aquatic environment through direct run-off and leaching. The present study assessed the acute toxicity and genotoxicity of the GLY-based formulation Atanor 48 (ATN) and its major constituents GLY, surfactant polyethoxylated tallow amine (POEA), as well as the main metabolite of GLY aminomethylphosphonic acid (AMPA) on non-target aquatic organisms. The toxic effects of these chemicals were evaluated in the fish embryo acute toxicity test with zebrafish (Danio rerio), while genotoxic effects were investigated in the comet assays with cells from zebrafish larvae and rainbow trout gonad-2 (RTG-2). GLY and AMPA caused no acute toxic effect, while ATN and POEA induced significant lethal effects in zebrafish (LC50-96 h 76.50 mg/L and 5.49 mg/L, respectively). All compounds were genotoxic in comet experiments with zebrafish larvae (LOEC 1.7 mg/L for GLY, ATN, AMPA and 0.4 mg/L for POEA). Unlike in vivo, only POEA induced DNA damage in RTG-2 cells (LOEC 1.6 mg/L), suggesting that it is a direct acting genotoxic agent. In summary, these data indicate that the lethal effects on zebrafish early-life stages can be ranked in the following order from most to least toxic: surfactant POEA > formulation ATN > active ingredient GLY ≈ metabolite AMPA. Genotoxic effects were observed in both RTG-2 cells (only POEA) and zebrafish (all test compounds) with the lowest tested concentrations. Therefore, it is important to evaluate different toxicological endpoints as well as use different non-target organisms to predict the hazards of GLY-based formulations and their components and breakdown product to aquatic biota.
Collapse
Affiliation(s)
| | | | | | | | - Rhaul de Oliveira
- Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil; School of Technology, State University of Campinas, UNICAMP, Limeira, SP, Brazil
| | - Daniela Morais Leme
- Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, P.O. Box 355, 14800-900 Araraquara, SP, Brazil
| | | | - Cesar Koppe Grisolia
- Biological Sciences Institute - University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | | | - Gisele Augusto Rodrigues de Oliveira
- Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), UNESP, Institute of Chemistry, P.O. Box 355, 14800-900 Araraquara, SP, Brazil.
| |
Collapse
|
206
|
Lanzarin GAB, Félix LM, Santos D, Venâncio CAS, Monteiro SM. Dose-dependent effects of a glyphosate commercial formulation - Roundup ® UltraMax - on the early zebrafish embryogenesis. CHEMOSPHERE 2019; 223:514-522. [PMID: 30784758 DOI: 10.1016/j.chemosphere.2019.02.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
The use of herbicides with glyphosate as an active ingredient, the so-called glyphosate-based herbicides (GBH), has increased dramatically in recent years currently being the most widely used in the world. Therefore, glyphosate residues have been detected in water and soils near the application sites. Recent studies indicate that GBH may cause adverse effects on vertebrates although these have been attributed to the presence of adjuvants in the commercial formulations rather than to the sole compound. Accordingly, the objective of this work was to investigate the lethal and sub-lethal developmental effects, neurotoxic potential and oxidative stress responses of zebrafish embryos to Roundup® Ultramax (RU) exposure. Embryos were exposed during 72 h to 0, 2, 5, 8.5 μg a.i. mL-1 of RU. Increased mortality was observed in embryos exposed to concentrations above 8.5 μg a.i. mL-1 as well as increased number of malformations. Decreased heart rate and hatchability were also observed. By contrast, exposure to concentrations that do not evoke teratogenic outcomes induced a dose-dependent decrease of heart rate although not inducing significant developmental changes. However, histological changes were not observed in the larvae exposed to these concentrations. Moreover, the generation of reactive oxygen species, the antioxidant enzymes activities (SOD and CAT), the GST biotransformation activity, the glutathione levels (GSH and GSSG), the oxidative damage (MDA) and the acetylcholinesterase and lactate dehydrogenase were similar among groups following exposure. Overall, available evidence suggests a dose-dependent toxicological effect of this formulation at concentrations that are not routinely detected in the environment. However, additional studies should be performed to better understand the underlying molecular mechanisms in favor of this formulation.
Collapse
Affiliation(s)
- Germano A B Lanzarin
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Dércia Santos
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra M Monteiro
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
207
|
de Melo MS, Dos Santos TPG, Jaramillo M, Nezzi L, Rauh Muller YM, Nazari EM. Histopathological and ultrastructural indices for the assessment of glyphosate-based herbicide cytotoxicity in decapod crustacean hepatopancreas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:207-214. [PMID: 30870667 DOI: 10.1016/j.aquatox.2019.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Glyphosate-based herbicides (GBH), including Roundup, are the most widely used pesticides in the world. Glyphosate residues have been detected in surface and groundwater, in food, and in human blood and urine. The effects of this herbicide on different levels of biological organization are an important concern that needs to be investigated. In general, the toxicity of GBH in invertebrates is poorly understood, and it is the motivation of this study. Thus, the aim of this study was to evaluate cellular responses of the hepatopancreas, an organ involved in the detoxification process in invertebrates, after exposure to environmentally relevant concentrations of GBH, using prawn Macrobrachium potiuna as a model. Prawns were exposed to three concentrations of GBH (0.0065, 0.065 and 0.28 mg L-1) for 7 or 14 days. Alterations in the morphology of the hepatopancreas and in subcellular components of R cells, which are responsible for the detoxification process, were analyzed, and an index for subcellular alterations was standardized. GBH exposure induced tissue commitments on the hepatopancreas, as well as important impairments of R cells that could compromise the normal functioning of the cells, especially in the detoxification processes. The major cellular impairments were intense vacuolization, dilatation of the cisterns of the rough endoplasmic reticulum and Golgi bodies, increase of perinuclear space, necrosis, concentric membrane formation and mitochondria crest loss. Our data contribute to the knowledge of the cytotoxic effects of low GBH concentrations on aquatic invertebrates, specifically their effects on the hepatopancreas, an important organ for the metabolism of crustaceans. These results also indicate that concentrations considered safe by regulatory agencies should be reviewed to minimize the effects on non-target organisms. This study also contributes to the standardization of an ultrastructure index for the assessment of GBH in palaemonids, which could be used for the assessment of contaminants in crustaceans and other species with hepatopancreas.
Collapse
Affiliation(s)
- Madson Silveira de Melo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Michael Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luciane Nezzi
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yara Maria Rauh Muller
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
208
|
Smith CM, Vera MKM, Bhandari RK. Developmental and epigenetic effects of Roundup and glyphosate exposure on Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:215-226. [PMID: 30875550 DOI: 10.1016/j.aquatox.2019.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 05/18/2023]
Abstract
Roundup and other glyphosate-based herbicides are the most commonly used herbicides in the world, yet their effects on developing fish embryos are not clearly understood. The present study, therefore, examined developmental teratogenic effects and adult-onset reproductive effects of exposure to environmentally relevant concentrations of glyphosate and Roundup in Japanese medaka fish (Oryzias latipes). Hd-rR strain medaka embryos were exposed to 0.5 mg/L glyphosate, 0.5 mg/L and 5 mg/L Roundup (glyphosate acid equivalent) for the first 15 days of their embryonic life and then allowed to sexually mature without further exposure. Whole body tissue samples were collected at 15 days post fertilization (dpf) and brain and gonad samples were collected in mature adults. Hatching success and phenotypic abnormalities were recorded up until 15 dpf. Roundup (0.5 mg/L) and glyphosate decreased cumulative hatching success, while glyphosate exposure increased developmental abnormalities in medaka fry. Expression of the maintenance DNA methyltransferase gene Dnmt1 decreased, whereas expression of methylcytosine dioxygenase genes (Tet1, Tet2 and Tet3) increased in fry at 15 dpf suggesting that epigenetic alterations increased global DNA demethylation in the developing fry. Fecundity and fertilization efficiency were not altered due to exposure. Among the reproduction-related genes in the brain, kisspeptin receptor (Gpr54-1) expression was significantly reduced in females exposed to 0.5 mg/L and 5 mg/L Roundup, and Gpr54-2 was reduced in the 0.5 mg/L Roundup treatment group. No change in expression of these genes was observed in the male brain. In the testes, expression of Fshr and Arα was significantly reduced in medaka exposed to 0.5 mg/L Roundup and glyphosate, while the expression of Dmrt1 and Dnmt1 was reduced in medaka exposed to 0.5 mg/L glyphosate. No change in expression of these genes was observed in the ovaries. The present study demonstrates that Roundup and its active ingredient glyphosate can induce developmental, reproductive, and epigenetic effects in fish; suggesting that ecological species, mainly fish, could be at risk for endocrine disruption in glyphosate and Roundup-contaminated water bodies.
Collapse
Affiliation(s)
- Chelsea M Smith
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, United States
| | - Madeline K M Vera
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, United States
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, United States.
| |
Collapse
|
209
|
Gabor CR, Perkins HR, Heitmann AT, Forsburg ZR, Aspbury AS. Roundup™ With Corticosterone Functions as an Infodisruptor to Antipredator Response in Tadpoles. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
210
|
Chiesa LM, Nobile M, Panseri S, Arioli F. Detection of glyphosate and its metabolites in food of animal origin based on ion-chromatography-high resolution mass spectrometry (IC-HRMS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:592-600. [PMID: 30870107 DOI: 10.1080/19440049.2019.1583380] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/11/2019] [Indexed: 02/04/2023]
Abstract
Glyphosate and glufosinate are broad spectrum herbicides, widely used in agriculture and in inhabited or industrialised areas, and aminomethylphosphonic acid is a degradation product of glyphosate. In 2015, the International Agency for Research on Cancer reported that glyphosate is a probable carcinogenic. In 2017, however, a scientific opinion of the European Chemicals Agency concluded that glyphosate is not proven to be carcinogenic, mutagenic or to have negative effects on reproduction. Nevertheless, aminomethylphosphonic acid was not considered. Due to their chemical-physical characteristics, these molecules present difficulties that have not yet allowed routine monitoring to be carried out. For these reasons, we developed and validated a simple and versatile liquid extraction, before IC-HRMS analysis, of three different complex matrices: honey, bass fish and bovine muscle. Among the satisfactory validation parameters, the LOQs in the range of 4.30-9.26 ng g-1 demonstrated high method sensitivity, compared to the few works present in literature. Finally, the method was applied to real commercial samples, which showed no traces of the selected pesticides.
Collapse
Affiliation(s)
- Luca Maria Chiesa
- a Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - Maria Nobile
- a Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - Sara Panseri
- a Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - Francesco Arioli
- a Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| |
Collapse
|
211
|
Karthikraj R, Kannan K. Widespread occurrence of glyphosate in urine from pet dogs and cats in New York State, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:790-795. [PMID: 31096409 DOI: 10.1016/j.scitotenv.2018.12.454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
Glyphosate is one of the most widely used herbicides in the United States, which has led to its ubiquitous occurrence in food and water and regular detection in human urine at concentrations of 1-10 μg/L. Data pertaining to health risks arising from the ingestion of glyphosate are limited and are the subject of much debate, which demands the need for more exposure information for this herbicide. Very little is known about glyphosate exposure in pets. In this study, we determined concentrations of glyphosate (Glyp) and its derivatives, methyl glyphosate (Me-Glyp) and aminomethylphosphonic acid (AMPA), in urine collected from 30 dogs and 30 cats from New York State, USA. Glyp was the most predominant compound found in pet urine followed by AMPA and Me-Glyp. The mean urinary concentration of ∑Glyp (sum of Glyp + Me-Glyp + AMPA) in cats (mean: 33.8 ± 46.7 ng/mL) was 2-fold higher than that in dogs (mean: 16.8 ± 24.4 ng/mL). Cumulative daily intakes (CDI) of Glyp in dogs and cats estimated from the urinary concentrations were, on average, 0.57 and 1.37 μg/kg bw/d, respectively. The exposure doses were two to four orders of magnitude below the current acceptable daily intake (ADI) suggested by several international health organizations for humans.
Collapse
Affiliation(s)
- Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
212
|
Sikorski Ł, Baciak M, Bęś A, Adomas B. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:70-80. [PMID: 30739875 DOI: 10.1016/j.aquatox.2019.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 05/25/2023]
Abstract
Research into plants plays an important role in evaluations of water pollution with pesticides. Lemna minor (common duckweed) is widely used as an indicator organism in environmental risk assessments. The aim of this study was to determine by biological Lemna test and chemical methods the effect of glyphosate (GlyPh) concentrations of 0-40 μM on duckweed, an important link in the food chain. There are no published data on glyphosate's effects on the activity of enzymes of the amine biosynthesis pathway: ornithine decarboxylase, S-adenosylmethionine decarboxylase, tyrosine decarboxylase, lysine decarboxylase and arginine decarboxylase, and the content of shikimic acid and glyphosate residues in the tissues of common duckweed. It was found that glyphosate was taken up by duckweed. In plants exposed to 3 μM of glyphosate for 7 days, glyphosate content exceeded the acceptable Maximum Residue Level (MRL) 10-fold. Glyphosate accumulation in plant tissues exerted toxic effects on duckweed by decreasing its growth and yield, inhibiting the synthesis of chlorophyll a and b and carotenoids, and decreasing the photochemical activity of photosystem II (PSII). However, glyphosate increased the concentration of shikimic acid in the tested plants. The activity of ornithine decarboxylase increased 4-fold in plants exposed to 20 μM of the herbicide. As a water pollutant, glyphosate increased the content of biogenic amines tyramine, putrescine, cadaverine, spermidine and spermine. The activity of peroxidase and catalase was highest in duckweed exposed to 20 μM and 7 μM of the herbicide, respectively. The predicted toxic units were calculated based on glyphosate content and the computed EC values. The mean effective concentration calculated for all morphological and biochemical parameters of duckweed was determined at EC10 = 1.55, EC25 = 3.36, EC50 = 6.62 and EC90 = 14.08 μM of glyphosate. The study demonstrated that glyphosate, the active ingredient of Roundup Ultra 360 SL herbicide, induces morphological and biochemical changes in non-target plants and exerts toxic effects on aquatic ecosystems even during short-term exposure.
Collapse
Affiliation(s)
- Łukasz Sikorski
- Department of Chemistry, Research Group of Environmental Toxicology, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland.
| | - Michał Baciak
- Department of Chemistry, Research Group of Environmental Toxicology, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Agnieszka Bęś
- Department of Chemistry, Research Group of Environmental Toxicology, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Barbara Adomas
- Department of Chemistry, Research Group of Environmental Toxicology, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| |
Collapse
|
213
|
Zhang W, Feng Y, Ma L, An J, Zhang H, Cao M, Zhu H, Kang W, Lian K. A method for determining glyphosate and its metabolite aminomethyl phosphonic acid by gas chromatography-flame photometric detection. J Chromatogr A 2019; 1589:116-121. [PMID: 30587348 DOI: 10.1016/j.chroma.2018.12.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
As a globally popular herbicide, glyphosate (GLY) and its metabolite aminomethylphosphonic acid (AMPA) pose potential hazards to the ecological environment. In this study, a sensitive and reliable method for detecting GLY and AMPA was utilized to facilitate exposure risk assessment of the analytes in environmental systems such as water and soil. GLY and AMPA were extracted from the sample using a solid-phase extraction (SPE) procedure, derivatized by heptafluorobutyric anhydride and heptafluorobutanol, and detected by gas chromatography-flame photometric detection (GC-FPD). The linearities of GLY and AMPA in the range of 10-1000 ng/mL were good (r=0.9998, r=0.9991), and the limits of quantitation (LOQ) for GLY and AMPA were 0.37 and 0.81 ng/mL, respectively. The method has been successfully applied for detecting GLY and AMPA in water, soil and monitoring the degradation of GLY under different environmental conditions. Simulated migration characteristics of GLY and AMPA in soil were investigated for evaluating the potential hazards of GLY and AMPA to the ecological environment.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Sanitary Inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanru Feng
- Department of Sanitary Inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Li Ma
- Department of Sanitary Inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing An
- Department of Sanitary Inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huayin Zhang
- Department of Sanitary Inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengsi Cao
- Department of Sanitary Inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huaijiao Zhu
- Department of Sanitary Inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Weijun Kang
- Department of Sanitary Inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Kaoqi Lian
- Department of Sanitary Inspection, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| |
Collapse
|
214
|
Guo H, Gao Y, Guo D, Liu W, Wang J, Zheng J, Zhong J, Zhao Q. Sensitive, rapid and non-derivatized determination of glyphosate, glufosinate, bialaphos and metabolites in surface water by LC–MS/MS. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0306-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
215
|
Hong Y, Huang Y, Yan G, Pan C, Zhang J. Antioxidative status, immunological responses, and heat shock protein expression in hepatopancreas of Chinese mitten crab, Eriocheir sinensis under the exposure of glyphosate. FISH & SHELLFISH IMMUNOLOGY 2019; 86:840-845. [PMID: 30572127 DOI: 10.1016/j.fsi.2018.12.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
As a broad-spectrum herbicide, glyphosate was extensively utilised in China for several decades. The contradiction between glyphosate spraying and crab breeding in the rice-crab co-culture system has become more obvious. In this study, the antioxidative status and immunological responses of Chinese mitten crab, Eriocheir sinensis, under sublethal exposure of glyphosate were investigated by detecting the antioxidative and immune-related enzyme activity, acetylcholinesterase (AChE) activity and relative mRNA expression of heat shock proteins (HSPs) in hepatopancreas. The results showed that high concentrations of glyphosate (44 and 98 mg/L) could induce significant alteration of superoxide dismutase (SOD), peroxidase (POD), acid phosphatase (ACP), alkaline phosphatase (AKP), and phenoloxidase (PO) activities by first rising then falling during the exposure. However, AChE activity in all treatments including 4.4 mg/L was inhibited markedly after 6 h of exposure. In addition, the relative mRNA expression of HSP 60, HSP 70, and HSP 90 was significantly upregulated at both 48 h and 96 h. These results revealed that glyphosate has a prominent toxic effect on E. sinensis based on antioxidative and immunological response inhibition and AChE activity reduction even at the lowest concentration of 4.4 mg/L, and a protective response by upregulation of HSPs was carried out by the species to ease the environmental stress.
Collapse
Affiliation(s)
- Yuhang Hong
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, 415000, China.
| | - Yi Huang
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, 415000, China
| | - Guangwen Yan
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, 415000, China
| | - Chao Pan
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, 415000, China
| | - Jilei Zhang
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, 415000, China
| |
Collapse
|
216
|
Alarcón R, Ingaramo PI, Rivera OE, Dioguardi GH, Repetti MR, Demonte LD, Milesi MM, Varayoud J, Muñoz-de-Toro M, Luque EH. Neonatal exposure to a glyphosate-based herbicide alters the histofunctional differentiation of the ovaries and uterus in lambs. Mol Cell Endocrinol 2019; 482:45-56. [PMID: 30550814 DOI: 10.1016/j.mce.2018.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to compare the effect of oral and subcutaneous exposure to a glyphosate-based herbicide (GBH) on the female reproductive system, specifically in the ovaries and uterus of prepubertal lambs. To this end, ewe lambs were exposed to a s.c. (n: 5) or an oral (n: 5) environmentally relevant dose of GBH (2 mg/kg/day) or to vehicle (controls, n: 12), from postnatal day (PND) 1 to PND14. Serum glyphosate and aminomethylphosphonic acid (AMPA) concentrations were measured on PND15 and PND45. The ovaries and uterus were obtained and weighed on PND45. Ovarian follicular dynamics and uterine morphological features were determined by picrosirius-hematoxylin staining. The proliferation marker Ki67 was evaluated by immunohistochemistry in ovarian and uterine samples. Glyphosate but not AMPA was detected in serum of exposed lambs on PND15, whereas neither glyphosate nor AMPA were detected on PND45. Controls were negative for glyphosate and AMPA on PND15 and PND45. GBH exposure did not affect ovarian or uterine weight. However, on PND45, the ovary of GBH-exposed lambs showed altered follicular dynamics, increased proliferation of granulosa and theca cells, and decreased mRNA expression of FSHR and GDF9, whereas their uterus showed decreased cell proliferation but no alterations in the histomorphology or gene expression. In conclusion, GBH exposure altered the ovarian follicular dynamics and gene expression, and the proliferative activity of the ovaries and uterus of lambs. It is noteworthy that all the adverse effects found in the ovaries and uterus of both GBH-exposed groups were similar, independently of the administration route.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar E Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Gisela H Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mercedes M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
217
|
Rainio MJ, Margus A, Lehmann P, Helander M, Lindström L. Effects of a glyphosate-based herbicide on survival and oxidative status of a non-target herbivore, the Colorado potato beetle (Leptinotarsa decemlineata). Comp Biochem Physiol C Toxicol Pharmacol 2019; 215:47-55. [PMID: 30316832 DOI: 10.1016/j.cbpc.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/20/2023]
Abstract
Glyphosate is the globally most used herbicide against a wide range of weeds. Glyphosate has been considered safe to animals as it mainly targets physiological pathways in plants. However, recent toxicological studies have revealed that glyphosate can cause various toxic effects also on animals. In this study, we investigated the direct toxic effects of a glyphosate-based herbicide (GBH, Roundup® Bio) on 1) survival and 2) oxidative status of a non-target herbivore by using Colorado potato beetles (Leptinotarsa decemlineata), originating from Poland and USA, as model species. Larvae were randomly divided into three groups: 1) high concentration (100% Roundup Bio, 360 g/l), 2) low concentration (1.5% Roundup Bio) and 3) control group (water). Larvae were exposed to Roundup for different time periods: 2 h, 24 h, 48 h, 72 h and 96 h. Larval survival decreased in the group treated with high concentration of GBH compared to controls, whereas the low concentration group did not differ from the control group. GBH treatment had no association with oxidative status biomarkers (i.e. catalase, superoxide dismutase, glutathione-S-transferase, glutathione and glutathione related enzymes), but increased lipid hydroperoxide levels after 2 h exposure, suggesting increased oxidative damage soon after the exposure. Larvae of different origin also differed in their oxidative status, indicating population-dependent differences in antioxidant defence system. Environmentally relevant concentrations of GBH are not likely to affect larval survival, but high concentrations can reduce survival and increase oxidative damage of non-target herbivores. Also, populations of different origin and pesticide usage history can differ in their tolerance to GBH.
Collapse
Affiliation(s)
- Miia J Rainio
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Aigi Margus
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Philipp Lehmann
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland; Department of Zoology, University of Stockholm, 106 91 Stockholm, Sweden.
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| |
Collapse
|
218
|
Ren X, Li R, Liu J, Huang K, Wu S, Li Y, Li C. Effects of glyphosate on the ovarian function of pregnant mice, the secretion of hormones and the sex ratio of their fetuses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:833-841. [PMID: 30245445 DOI: 10.1016/j.envpol.2018.09.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Glyphosate is the active ingredient of the commercial formulation Roundup®, which is used worldwide. This study aimed to investigate the toxic effects of pure glyphosate or Roundup® on pregnant mice and their fetuses during pregnancy. From gestation days (GDs) 1-19, ICR mice were orally administered distilled water, 0.5% glyphosate solution or 0.5%-glyphosate Roundup® solution. The ovaries and serum were collected at GD19. The results showed decreases in body weight gain and, ovary and liver weight in glyphosate-treated mice. Additionally, histopathological alterations in the ovary including increased atretic follicles, interstitial fibrosis and decreased mature follicles were observed in the groups treated with glyphosate. The serum concentrations of both progesterone and estrogen were markedly altered after glyphosate exposure, and there were also changes in the expression of GnRH, LHR, FSHR, 3β-HSD and Cyp19a1 genes at the hypothalamic-pituitary-ovarian axis. Furthermore, oxidative stress was observed in the treated mice, increasing the activity of T-AOC, CAT and GSH-Px, as well as the MDA content in both the serum and ovary. With regard to litters, the sex ratio was significantly altered by pure glyphosate. These results show that glyphosate is able to cause several effects on pregnant mice, such as ovarian failure, interference with hormone secretion by affecting the steroidogenesis-related gene expression, and oxidative stress. The sex ratio of litters was also influenced by prenatal exposure to pure glyphosate.
Collapse
Affiliation(s)
- Xin Ren
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junze Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
219
|
Falace A, Tamburello L, Guarnieri G, Kaleb S, Papa L, Fraschetti S. Effects of a glyphosate-based herbicide on Fucus virsoides (Fucales, Ochrophyta) photosynthetic efficiency. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:912-918. [PMID: 30245453 DOI: 10.1016/j.envpol.2018.08.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Herbicides are increasingly recognised as sources of water pollution. Glyphosate-based herbicides (GBHs) are widely used because of their low cost and high effectiveness. By measuring the photosynthetic efficiency of Fucus virsoides fronds exposed to a GBH (Roundup® Power 2.0), we investigated the effect of a continuous exposure (6 days) and the potential of recovery after a short exposure (24 h). Both experiments were carried out combining GBH with and without nutrient enrichment, simulating a runoff event. A factorial experimental design allowed us to assess the potential of interactions between GBH and nutrients, which are likely to co-occur in coastal areas. Our results show deleterious effects of GBH at low concentration on F. virsoides, independently from the duration of exposure and the presence of nutrients.
Collapse
Affiliation(s)
- Annalisa Falace
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Roma, Italy
| | - Laura Tamburello
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Roma, Italy.
| | - Giuseppe Guarnieri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Roma, Italy
| | - Sara Kaleb
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Loredana Papa
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Roma, Italy
| | - Simonetta Fraschetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Roma, Italy; Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| |
Collapse
|
220
|
Madison JD, Austin S, Davis DR, Kerby JL. Bacterial Microbiota Response inGraptemys pseudogeographicato Captivity and Roundup®Exposure. COPEIA 2018. [DOI: 10.1643/ch-18-082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
221
|
Zheng Q, Yin J, Zhu L, Jiao L, Xu Z. Reply for the comment on "Reversible Parkinsonism induced by acute exposure glyphosate". Parkinsonism Relat Disord 2018; 56:108. [PMID: 29903581 DOI: 10.1016/j.parkreldis.2018.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022]
Affiliation(s)
- Qian Zheng
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Jianhong Yin
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Lina Zhu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Ling Jiao
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.
| | - Zhu Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
222
|
Hong Y, Yang X, Huang Y, Yan G, Cheng Y. Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide roundup on the freshwater shrimp, Macrobrachium nipponensis. CHEMOSPHERE 2018; 210:896-906. [PMID: 30208549 DOI: 10.1016/j.chemosphere.2018.07.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 05/02/2023]
Abstract
In the present study, an acute toxic test was performed to assess the oxidative stress and genotoxic effects of the herbicide on the freshwater shrimp Macrobrachium nipponensis. The results showed that the 48-h and 96-h LC50 values of Roundup to M. nipponensis were 57.684 mg/L and 11.237 mg/L, respectively. For further investigation, the shrimps were exposed to sublethal concentrations of 0.35, 0.70, 1.40, 2.80 and 5.60 mg/L for 96 h. A significant decrease in total haemocytes count (THC) was observed at concentration of 5.60 mg/L throughout the experiment. The level of superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) in all the treatments decreased in a dose- and time-dependent manner except for the concentration group of 0.35 mg/L. The malondialdehyde (MDA), hydrogen peroxide (H2O2) and protein carbonyl in serum increased significantly at concentrations of 2.80 mg/L and 5.60 mg/L. A significant decrease in acetylcholinesterase (AChE) activity was observed at each concentration (P<0.05). In addition, the micronucleus (MN) frequency of haemocytes significantly increased (P<0.05) at concentrations of 1.40, 2.80 and 5.60 mg/L, whereas the comet ratio and %DNA in the tails exhibited a clear time- and dose-dependent response during the exposure. The analysis of the integrated biomarker response (IBR) showed the induction of oxidative stress biomarkers and the inhibition of antioxidants, and this dose-dependent relation suggests the sensitivity and availability of all the biomarkers. These results revealed that Roundup had a prominent toxic effect on M. nipponensis based on the antioxidative response inhibition and genotoxicity.
Collapse
Affiliation(s)
- Yuhang Hong
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Xiaozhen Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Yi Huang
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Guangwen Yan
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China.
| |
Collapse
|
223
|
Bach NC, Marino DJG, Natale GS, Somoza GM. Effects of glyphosate and its commercial formulation, Roundup ® Ultramax, on liver histology of tadpoles of the neotropical frog, Leptodactylus latrans (amphibia: Anura). CHEMOSPHERE 2018; 202:289-297. [PMID: 29573614 DOI: 10.1016/j.chemosphere.2018.03.110] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
In the last years, the agricultural expansion has led to an increased use of pesticides, with glyphosate as the most widely used worldwide. This is also the situation in Argentina, where glyphosate formulations are the most commercialized herbicides. It is known that glyphosate formulations are much more toxic than the active ingredient, and this difference in toxicity can be attributed to the adjuvants present in the formula. In this context, the aim of the present study was to evaluate and compare sub-lethal histological effects of the glyphosate formulation Roundup Ultramax and glyphosate active ingredient on Leptodactylus latrans tadpoles at Gosner-stage 36. Semi-static bioassays were performed using 96 h of exposure with Roundup Ultramax formulation (RU; 0.37-5.25 mg a.e./L), glyphosate (GLY; 3-300 mg/L), and a control group. RU exposure showed an increment in the melanomacrophagic cells (MMc) and melanomacrophagic centers (MMCs) from 0.37 mg a.e./L. GLY exposure showed a significant increment in the number of MMc from 15 mg/L, and of MMCs from 3 mg/L. Also, histopathological lesions were observed in the liver of tadpoles exposed to both, GLY and RU. These lesions included: lipidosis and hepatic congestion, but only RU showed significant differences respect to control, with a LOEC value of 2.22 mg a.e./L for both effects. In sum, this study represents the first evidence of adverse effects of glyphosate and RU formulation on the liver of anuran larvae at concentrations frequently found in the environment.
Collapse
Affiliation(s)
- Nadia C Bach
- Centro de Investigaciones del Medio Ambiente (CIM), UNLP-CONICET, Calle 47 y 115, La Plata, 1900 Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km. 8.2, (B7130IWA), Chascomús, Buenos Aires, Argentina.
| | - Damián J G Marino
- Centro de Investigaciones del Medio Ambiente (CIM), UNLP-CONICET, Calle 47 y 115, La Plata, 1900 Buenos Aires, Argentina.
| | - Guillermo S Natale
- Centro de Investigaciones del Medio Ambiente (CIM), UNLP-CONICET, Calle 47 y 115, La Plata, 1900 Buenos Aires, Argentina.
| | - Gustavo M Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km. 8.2, (B7130IWA), Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
224
|
Lebecque S, Crowet JM, Lins L, Delory BM, du Jardin P, Fauconnier ML, Deleu M. Interaction between the barley allelochemical compounds gramine and hordenine and artificial lipid bilayers mimicking the plant plasma membrane. Sci Rep 2018; 8:9784. [PMID: 29955111 PMCID: PMC6023908 DOI: 10.1038/s41598-018-28040-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Some plants affect the development of neighbouring plants by releasing secondary metabolites into their environment. This phenomenon is known as allelopathy and is a potential tool for weed management within the framework of sustainable agriculture. While many studies have investigated the mode of action of various allelochemicals (molecules emitted by allelopathic plants), little attention has been paid to their initial contact with the plant plasma membrane (PPM). In this paper, this key step is explored for two alkaloids, gramine and hordenine, that are allelochemicals from barley. Using in vitro bioassays, we first showed that gramine has a greater toxicity than hordenine towards a weed commonly found in northern countries (Matricaria recutita L.). Then, isothermal titration calorimetry was used to show that these alkaloids spontaneously interact with lipid bilayers that mimic the PPM. The greater impact of gramine on the thermotropic behaviour of lipids compared to hordenine was established by means of infrared spectroscopy. Finally, the molecular mechanisms of these interactions were explored with molecular dynamics simulations. The good correlation between phytotoxicity and the ability to disturb lipid bilayers is discussed. In this study, biophysical tools were used for the first time to investigate the interactions of allelochemicals with artificial PPM.
Collapse
Affiliation(s)
- Simon Lebecque
- TERRA-AgricultureIsLife, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Jean-Marc Crowet
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Laurence Lins
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Benjamin M Delory
- Ecosystem Functioning and Services, Institute of Ecology, Leuphana University, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Patrick du Jardin
- Laboratory of Plant Biology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Marie-Laure Fauconnier
- General and Organic Chemistry Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
225
|
Gunarathna S, Gunawardana B, Jayaweera M, Manatunge J, Zoysa K. Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:729-737. [PMID: 29883246 DOI: 10.1080/03601234.2018.1480157] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/28/2018] [Indexed: 05/21/2023]
Abstract
Glyphosate, which is commercially available as Roundup®, was the widely used herbicide in Sri Lanka until 2015 and is suspected to be one of the causal factors for Chronic Kidney Disease of unknown etiology (CKDu). This research, therefore, aims at studying the presence of glyphosate and Aminomethylphosphonic acid (AMPA) in different environmental matrices in CKDu prevalent areas. Topsoil samples from agricultural fields, water samples from nearby shallow wells and lakes, and sediment samples from lakes were collected and analyzed for glyphosate and AMPA using the LC/MS. Glyphosate (270-690 µg/kg) and AMPA (2-8 µg/kg) were detected in all soil samples. Amorphous iron oxides and organic matter content of topsoil showed a strong and a moderate positive linear relationship with glyphosate. The glyphosate and inorganic phosphate levels in topsoil had a strong negative significant linear relationship. Presence of high valence cations such as Fe3+ and Al3+ in topsoil resulted in the formation of glyphosate-metal complexes, thus strong retention of glyphosate in soil. Lower levels of AMPA than the corresponding glyphosate levels in topsoil could be attributed to factors such as the strong adsorption capacity of glyphosate to soil and higher LOQ in the quantification of AMPA. The glyphosate levels of lakes were between 28 to 45 µg/L; no AMPA was detected. While trace levels of glyphosate (1-4 µg/L) were detected in all groundwater samples, AMPA (2-11µg/L) was detected only in four out of nine samples. Glyphosate was detected in all sediment samples (85-1000 µg/kg), and a strong linear relationship with the organic matter content was observed. AMPA was detected (1-15 µg/kg) in seven out of nine sediment samples. It could be inferred that the impact on CKDu by the levels of glyphosate and AMPA detected in the study area is marginal when compared with the MCL of the USEPA (700 µg/L).
Collapse
Affiliation(s)
- Shankani Gunarathna
- a Department of Civil Engineering , University of Moratuwa , Moratuwa , Sri Lanka
| | - Buddhika Gunawardana
- a Department of Civil Engineering , University of Moratuwa , Moratuwa , Sri Lanka
| | - Mahesh Jayaweera
- a Department of Civil Engineering , University of Moratuwa , Moratuwa , Sri Lanka
| | - Jagath Manatunge
- a Department of Civil Engineering , University of Moratuwa , Moratuwa , Sri Lanka
| | - Kasun Zoysa
- a Department of Civil Engineering , University of Moratuwa , Moratuwa , Sri Lanka
| |
Collapse
|
226
|
Castro Berman M, Marino DJG, Quiroga MV, Zagarese H. Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina. CHEMOSPHERE 2018; 200:513-522. [PMID: 29501888 DOI: 10.1016/j.chemosphere.2018.02.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/28/2018] [Accepted: 02/17/2018] [Indexed: 05/08/2023]
Abstract
Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide used to kill weeds that compete with commercial crops. In Argentina, the use of glyphosate-based herbicides increased dramatically (up to ∼200,000 tons on 2012) since the introduction of glyphosate-resistant crops, such as transgenic soy and resistant corn, and the adoption of non-till practices in the 1990's. Sallow lakes within the Pampa region may be potentially impacted by continuous herbicide usage. We surveyed 52 shallow lakes from the Pampa region (Buenos Aires Province, Argentina) to assess the occurrence and concentrations of glyphosate and its main degradation product (AMPA). For comparison, we also sampled 24 shallow lakes from an area with no agricultural use of glyphosate (Northern Patagonia). Glyphosate and AMPA were analyzed by UPLC-MS/MS ESI (±) in lake water, suspended particulate matter (SPM), and sediment samples. Within the Pampa region, glyphosate residues were detected in >40% of samples. Glyphosate residues were detected more frequently in sediment and surface water than in SPM samples. The mean (maximum) concentrations of glyphosate were 2.11 (4.52) μg l-1 for surface water; 0.10 (0.13) μg l-1 for SPM and 10.47 (20.34) μg kg-1 for sediment samples, respectively. Whereas, mean (maximum) concentrations of AMPA were 0.84 and (0.90) μg l-1 for surface water; 0.07 (0.07) μg l-1 for SPM; and 22.53 (32.89) μg kg-1 for sediment samples. The herbicide was not detected in samples from the Patagonian region. To our knowledge, this is the first study reporting the occurrence and concentrations of the herbicide in freshwater lakes of Argentina.
Collapse
Affiliation(s)
- M Castro Berman
- Instituto de Investigaciones Biotectonógicas de Chascomús (IIB-INTECH), Av. Intendente Marino Km 8,200 CC 164, 7130, Chascomús, Prov. de Buenos Aires, Argentina.
| | - D J G Marino
- Centro de Investigaciones del Medio Ambiente (CIMA - CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115 s/n, 1900, La Plata, Buenos Aires, Argentina
| | - María Victoria Quiroga
- Instituto de Investigaciones Biotectonógicas de Chascomús (IIB-INTECH), Av. Intendente Marino Km 8,200 CC 164, 7130, Chascomús, Prov. de Buenos Aires, Argentina
| | - Horacio Zagarese
- Instituto de Investigaciones Biotectonógicas de Chascomús (IIB-INTECH), Av. Intendente Marino Km 8,200 CC 164, 7130, Chascomús, Prov. de Buenos Aires, Argentina
| |
Collapse
|
227
|
Zhan H, Feng Y, Fan X, Chen S. Recent advances in glyphosate biodegradation. Appl Microbiol Biotechnol 2018; 102:5033-5043. [PMID: 29705962 DOI: 10.1007/s00253-018-9035-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 02/01/2023]
Abstract
Glyphosate has emerged as the most widespread herbicide to control annual and perennial weeds. Massive use of glyphosate for decades has resulted in its ubiquitous presence in the environment, and poses a threat to humans and ecosystem. Different approaches such as adsorption, photocatalytic degradation, and microbial degradation have been studied to break down glyphosate in the environment. Among these, microbial degradation is the most effective and eco-friendly method. During its degradation, various microorganisms can use glyphosate as a sole source of phosphorus, carbon, and nitrogen. Major glyphosate degradation pathways and its metabolites have been frequently investigated, but the related enzymes and genes have been rarely studied. There are many reviews about the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid. However, there is lack of reviews on biodegradation and bioremediation of glyphosate. The aims of this review are to summarize the microbial degradation of glyphosate and discuss the potential of glyphosate-degrading microorganisms to bioremediate glyphosate-contaminated environments. This review will provide an instructive direction to apply glyphosate-degrading microorganisms in the environment for bioremediation.
Collapse
Affiliation(s)
- Hui Zhan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yanmei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
228
|
Milan M, Dalla Rovere G, Smits M, Ferraresso S, Pastore P, Marin MG, Bogialli S, Patarnello T, Bargelloni L, Matozzo V. Ecotoxicological effects of the herbicide glyphosate in non-target aquatic species: Transcriptional responses in the mussel Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:442-451. [PMID: 29505984 DOI: 10.1016/j.envpol.2018.02.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Glyphosate has been the most widely used herbicide worldwide over the last three decades, raising increasing concerns for its potential impacts on environmental and human health. Recent studies revealed that glyphosate occurs in soil, surface water, and groundwater, and residues are found at all levels of the food chain, such as drinking water, plants, animals, and even in humans. While research has demonstrated that glyphosate can induce a broad range of biological effects in exposed organisms, the global molecular mechanisms of action still need to be elucidated, in particular for marine species. In this study, we characterized for the first time the molecular mechanisms of action of glyphosate in a marine bivalve species after exposure to environmentally realistic concentrations. To reach such a goal, Mediterranean mussels Mytilus galloprovincialis, an ecologically and economically relevant species, were exposed for 21 days to 10, 100, and 1000 μg/L and digestive gland transcriptional profiles were investigated through RNA-seq. Differential expression analysis identified a total of 111, 124, and 211 differentially regulated transcripts at glyphosate concentrations of 10, 100, and 1000 μg/L, respectively. Five genes were found consistently differentially expressed at all investigated concentrations, including SERP2, which plays a role in the protection of unfolded target proteins against degradation, the antiapoptotic protein GIMAP5, and MTMR14, which is involved in macroautophagy. Functional analysis of differentially expressed genes reveals the disruption of several key biological processes, such as energy metabolism and Ca2+ homeostasis, cell signalling, and endoplasmic reticulum stress response. Together, the results obtained suggest that the presence of glyphosate in the marine ecosystem should raise particular concern because of its significant effects even at the lowest concentration.
Collapse
Affiliation(s)
- M Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - G Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - M Smits
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy; Marine Environmental Science Laboratory (LEMAR), Université de Bretagne Occidentale -Rue Dumont d'Urville, 29280 Plouzané - IUEM Technopole Brest-Iroise, France
| | - S Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - P Pastore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - M G Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - S Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - T Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy; CONISMA - Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - V Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
229
|
Milić M, Žunec S, Micek V, Kašuba V, Mikolić A, Lovaković BT, Semren TŽ, Pavičić I, Čermak AMM, Pizent A, Vrdoljak AL, Valencia-Quintana R, Sánchez-Alarcón J, Želježić D. Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate. Arh Hig Rada Toksikol 2018; 69:154-168. [PMID: 29990293 DOI: 10.2478/aiht-2018-69-3114] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/01/2018] [Indexed: 11/21/2022] Open
Abstract
In this 28 day-study, we evaluated the effects of herbicide glyphosate administered by gavage to Wistar rats at daily doses equivalent to 0.1 of the acceptable operator exposure level (AOEL), 0.5 of the consumer acceptable daily intake (ADI), 1.75 (corresponding to the chronic population-adjusted dose, cPAD), and 10 mg kg-1 body weight (bw) (corresponding to 100 times the AOEL). At the end of each treatment, the body and liver weights were measured and compared with their baseline values. DNA damage in leukocytes and liver tissue was estimated with the alkaline comet assay. Oxidative stress was evaluated using a battery of endpoints to establish lipid peroxidation via thiobarbituric reactive substances (TBARS) level, level of reactive oxygen species (ROS), glutathione (GSH) level, and the activity of glutathione peroxidase (GSH-Px). Total cholinesterase activity and the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were also measured. The exposed animals gained less weight than control. Treatment resulted in significantly higher primary DNA damage in the liver cells and leukocytes. Glyphosate exposure significantly lowered TBARS in the liver of the AOEL, ADI, and cPAD groups, and in plasma in the AOEL and cPAD group. AChE was inhibited with all treatments, but the AOEL and ADI groups significantly differed from control. Total ChE and plasma/liver ROS/GSH levels did not significantly differ from control, except for the 35 % decrease in ChE in the AOEL and ADI groups and a significant drop in liver GSH in the cPAD and 100xAOEL groups. AOEL and ADI blood GSH-Px activity dropped significantly, but in the liver it significantly increased in the ADI, cPAD, and 100xAOEL groups vs. control. All these findings show that even exposure to low glyphosate levels can have serious adverse effects and points to a need to change the approach to risk assessment of low-level chronic/sub-chronic glyphosate exposure, where oxidative stress is not necessarily related to the genetic damage and AChE inhibition.
Collapse
Affiliation(s)
- Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vilena Kašuba
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Anja Mikolić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Alica Pizent
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Rafael Valencia-Quintana
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Juana Sánchez-Alarcón
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Davor Želježić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
230
|
Hatt S, Boeraeve F, Artru S, Dufrêne M, Francis F. Spatial diversification of agroecosystems to enhance biological control and other regulating services: An agroecological perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:600-611. [PMID: 29195207 DOI: 10.1016/j.scitotenv.2017.11.296] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Spatial diversification of crop and non-crop habitats in farming systems is promising for enhancing natural regulation of insect pests. Nevertheless, results from recent syntheses show variable effects. One explanation is that the abundance and diversity of pests and natural enemies are affected by the composition, design and management of crop and non-crop habitats. Moreover, interactions between both local and landscape elements and practices carried out at different spatial scales may affect the regulation of insect pests. Hence, research is being conducted to understand these interdependencies. However, insects are not the only pests and pests are not the only elements to regulate in agroecosystems. Broadening the scope could allow addressing multiple issues simultaneously, but also solving them together by enhancing synergies. Indeed, spatial diversification of crop and non-crop habitats can allow addressing the issues of weeds and pathogens, along with being beneficial to several other regulating services like pollination, soil conservation and nutrient cycling. Although calls rise to develop multifunctional landscapes that optimize the delivery of multiple ecosystem services, it still represents a scientific challenge today. Enhancing interdisciplinarity in research institutions and building interrelations between scientists and stakeholders may help reach this goal. Despite obstacles, positive results from research based on such innovative approaches are encouraging for engaging science in this path. Hence, the aim of the present paper is to offer an update on these issues by exploring the most recent findings and discussing these results to highlight needs for future research.
Collapse
Affiliation(s)
- Séverin Hatt
- TERRA-AgricultureIsLife, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium; Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Fanny Boeraeve
- Biodiversity and Landscapes, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Sidonie Artru
- TERRA-AgricultureIsLife, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Marc Dufrêne
- Biodiversity and Landscapes, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
231
|
Silva V, Montanarella L, Jones A, Fernández-Ugalde O, Mol HGJ, Ritsema CJ, Geissen V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1352-1359. [PMID: 29042088 DOI: 10.1016/j.scitotenv.2017.10.093] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Approval for glyphosate-based herbicides in the European Union (EU) is under intense debate due to concern about their effects on the environment and human health. The occurrence of glyphosate residues in European water bodies is rather well documented whereas only few, fragmented and outdated information is available for European soils. We provide the first large-scale assessment of distribution (occurrence and concentrations) of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) in EU agricultural topsoils, and estimate their potential spreading by wind and water erosion. Glyphosate and/or AMPA were present in 45% of the topsoils collected, originating from eleven countries and six crop systems, with a maximum concentration of 2mgkg-1. Several glyphosate and AMPA hotspots were identified across the EU. Soil loss rates (obtained from recently derived European maps) were used to estimate the potential export of glyphosate and AMPA by wind and water erosion. The estimated exports, result of a conceptually simple model, clearly indicate that particulate transport can contribute to human and environmental exposure to herbicide residues. Residue threshold values in soils are urgently needed to define potential risks for soil health and off site effects related to export by wind and water erosion.
Collapse
Affiliation(s)
- Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands.
| | - Luca Montanarella
- European Commission, Joint Research Centre (JRC), Directorate for Sustainable Resources, Land Resources Unit, Via E. Fermi 2749, I-21027 Ispra, VA, Italy
| | - Arwyn Jones
- European Commission, Joint Research Centre (JRC), Directorate for Sustainable Resources, Land Resources Unit, Via E. Fermi 2749, I-21027 Ispra, VA, Italy
| | - Oihane Fernández-Ugalde
- European Commission, Joint Research Centre (JRC), Directorate for Sustainable Resources, Land Resources Unit, Via E. Fermi 2749, I-21027 Ispra, VA, Italy
| | - Hans G J Mol
- RIKILT - Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
232
|
Zebral YD, Lansini LR, Costa PG, Roza M, Bianchini A, Robaldo RB. A glyphosate-based herbicide reduces fertility, embryonic upper thermal tolerance and alters embryonic diapause of the threatened annual fish Austrolebias nigrofasciatus. CHEMOSPHERE 2018; 196:260-269. [PMID: 29306198 DOI: 10.1016/j.chemosphere.2017.12.196] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Roundup is the most popular glyphosate-based herbicide (GBH) worldwide. These formulations kill a wide range of plants. Despite that, non-target species can be jeopardized by GBH, such as the annual fish Austrolebias nigrofasciatus. This species occurs in wetlands that dries annually. Key-adaptations permit them to live in such harsh habitats, e. i. Elevated fertility, drought-tolerant diapausing embryos and elevated thermal tolerance. We aimed to evaluate acute (96 h) effects of Roundup exposure (0.36 or 3.62 mg a. e./L) in reproduction, diapause pattern and embryonic upper thermal tolerance (EUTT) of A. nigrofasciatus. For such, we evaluated the number and diameter of embryos produced by exposed fish. Also, recently fertilized embryos were exposed and its diapause pattern was evaluated. Following 15 post exposure days (PED), we evaluated the number of somite pairs and following 30, 35 and 40 PED we evaluated the proportion of pigmented embryos (PPE). Finally, the critical thermal maximum (CTMax) of exposed embryos was assessed. Results demonstrated that couples exposed to 0.36 mg a. e./L Roundup produced less but larger embryos. Similarly, embryos exposed to 3.62 mg a. e./L Roundup had a reduced PPE following 30 PED. Finally, embryos exposed to 0.32 mg a. e./L Roundup had a CTMax reduction of 2.6 °C and were more sensitive to minor increases in heating rates. These results indicate that Roundup have negative outcomes in fish reproduction, embryonic development and EUTT. This information is of particular interest to the conservation of annual fish, considering that those are key-adaptations that permit these animals to survive the harsh impositions of ephemeral wetlands.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil.
| | - Luize Real Lansini
- Instituto de Biologia, Universidade Federal de Pelotas, 96010-970, Capão do Leão, RS, Brazil
| | - Patrícia Gomes Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Mauricio Roza
- Instituto de Biologia, Universidade Federal de Pelotas, 96010-970, Capão do Leão, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Ricardo Berteaux Robaldo
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade Federal de Pelotas, 96010-970, Capão do Leão, RS, Brazil
| |
Collapse
|
233
|
Gonçalves BB, Nascimento NF, Santos MP, Bertolini RM, Yasui GS, Giaquinto PC. Low concentrations of glyphosate-based herbicide cause complete loss of sperm motility of yellowtail tetra fish Astyanax lacustris. JOURNAL OF FISH BIOLOGY 2018; 92:1218-1224. [PMID: 29488225 DOI: 10.1111/jfb.13571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
Environmental relevant concentrations of glyphosate-based herbicide as 50 µg l-1 , 300 µg l-1 and 1800 µg l-1 can affect sperm quality of yellowtail tetra fish Astyanax lacustris. Viability of sperm cells was impaired at 300 µg l-1 , a concentration that is within legal limits in U.S.A. waterbodies, while motility was impaired at 50 µg l-1 , which is the more stringent limit set in Brazilian law. Therefore, environment protection agencies must review regulations of glyphosate-based herbicides on water bodies.
Collapse
Affiliation(s)
- B B Gonçalves
- Physiology Department, Institute of Biosciences, UNESP, Campus de Botucatu, Rua Professor Dr. Antonio Celso Wagner Zanin, S/N°. CEP 18618-689, Brazil
| | - N F Nascimento
- National Center of Research and Conservation of Continental Fishes - CEPTA/ICMBIO, Rodovia SP-201 (Pref. Euberto Nemésio Pereira de Godoy), km 65, Caixa Postal 64 CEP 13630970, Pirassununga, Brazil
| | - M P Santos
- National Center of Research and Conservation of Continental Fishes - CEPTA/ICMBIO, Rodovia SP-201 (Pref. Euberto Nemésio Pereira de Godoy), km 65, Caixa Postal 64 CEP 13630970, Pirassununga, Brazil
| | - R M Bertolini
- National Center of Research and Conservation of Continental Fishes - CEPTA/ICMBIO, Rodovia SP-201 (Pref. Euberto Nemésio Pereira de Godoy), km 65, Caixa Postal 64 CEP 13630970, Pirassununga, Brazil
| | - G S Yasui
- National Center of Research and Conservation of Continental Fishes - CEPTA/ICMBIO, Rodovia SP-201 (Pref. Euberto Nemésio Pereira de Godoy), km 65, Caixa Postal 64 CEP 13630970, Pirassununga, Brazil
| | - P C Giaquinto
- Physiology Department, Institute of Biosciences, UNESP, Campus de Botucatu, Rua Professor Dr. Antonio Celso Wagner Zanin, S/N°. CEP 18618-689, Brazil
| |
Collapse
|
234
|
Bonfanti P, Saibene M, Bacchetta R, Mantecca P, Colombo A. A glyphosate micro-emulsion formulation displays teratogenicity in Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 195:103-113. [PMID: 29306033 DOI: 10.1016/j.aquatox.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Glyphosate is the active ingredient in broad-spectrum herbicide formulations used in agriculture, domestic area and aquatic weed control worldwide. Its market is growing steadily concurrently with the cultivation of glyphosate-tolerant transgenic crops and emergence of weeds less sensitive to glyphosate. Ephemeral and lentic waters near to agricultural lands, representing favorite habitats for amphibian reproduction and early life-stage development, may thus be contaminated by glyphosate based herbicides (GBHs) residues. Previous studies on larval anuran species highlighted increased mortality and growth effects after exposure to different GBHs in comparison to glyphosate itself, mainly because of the surfactants such as polyethoxylated tallow amine present in the formulations. Nevertheless, these conclusions are not completely fulfilled when the early development, characterized by primary organogenesis events, is considered. In this study, we compare the embryotoxicity of Roundup® Power 2.0, a new GBH formulation currently authorized in Italy, with that of technical grade glyphosate using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Our results evidenced that glyphosate was not embryolethal and only at the highest concentration (50 mg a.e./L) caused edemas. Conversely, Roundup® Power 2.0 exhibited a 96 h LC50 of 24.78 mg a.e./L and a 96 h EC50 of 7.8 mg a.e./L. A Teratogenic Index of 3.4 was derived, pointing out the high teratogenic potential of the Roundup® Power 2.0. Specific concentration-dependent abnormal phenotypes, such as craniofacial alterations, microphthalmia, narrow eyes and forebrain regionalization defects were evidenced by gross malformation screening and histopathological analysis. These phenotypes are coherent with those evidenced in Xenopus laevis embryos injected with glyphosate, allowing us to hypothesize that the teratogenicity observed for Roundup® Power 2.0 may be related to the improved efficacy in delivering glyphosate to cells, guaranteed by the specific surfactant formulation. In conclusion, the differences in GBH formulations should be carefully considered by the authorities, since sub-lethal and/or long-term effects (e.g. teratogenicity) can be significantly modulated by the active ingredient salt type and concentration of the adjuvants. Finally, the mechanistic toxicity of glyphosate and GBHs are worthy of further research.
Collapse
Affiliation(s)
- Patrizia Bonfanti
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, 1, Piazza della Scienza, 20126 Milan, Italy.
| | - M Saibene
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, 1, Piazza della Scienza, 20126 Milan, Italy
| | - R Bacchetta
- Department of Environmental Science and Policy, University of Milan, 26, Via Celoria, 20133 Milan, Italy
| | - P Mantecca
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, 1, Piazza della Scienza, 20126 Milan, Italy
| | - A Colombo
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, 1, Piazza della Scienza, 20126 Milan, Italy
| |
Collapse
|
235
|
Matozzo V, Fabrello J, Masiero L, Ferraccioli F, Finos L, Pastore P, Di Gangi IM, Bogialli S. Ecotoxicological risk assessment for the herbicide glyphosate to non-target aquatic species: A case study with the mussel Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:623-632. [PMID: 29107902 DOI: 10.1016/j.envpol.2017.10.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/02/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Glyphosate (GLY) is one of the most used herbicide worldwide. Considering that information concerning the impact of GLY on bivalves is scarce, in this study we evaluated for the first time the effects of environmentally realistic concentrations of GLY (10, 100 and 1000 μg/L) to the mussel Mytilus galloprovincialis. Mussels were exposed for 7, 14 and 21 days and several biomarkers were measured in haemocytes/haemolymph (total haemocyte counts, haemocyte diameter and volume, haemolymph pH, haemolymph lactate dehydrogenase activity, haemocyte lysate lysozyme and acid phosphatase activities), as well as in gills and digestive gland (antioxidant enzyme and acetylcholinesterase activities). The concentrations of GLY and its main metabolite aminomethylphosphonic acid in the experimental tanks were also measured. The MANOVA analysis demonstrated that the experimental variables considered (exposure concentration, exposure duration, and their interaction) affected significantly biomarker responses. In addition, the two-way ANOVA analysis indicated that GLY was able to affect most of the cellular parameters measured, whereas antioxidant enzyme activities resulted to be influenced moderately. Interestingly, exposure to GLY reduced significantly acetylcholinesterase activity in gills. Although preliminary, the results of this study demonstrated that GLY can affect both cellular and biochemical parameters in mussels, highlighting a potential risk for aquatic invertebrates.
Collapse
Affiliation(s)
- Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Federico Ferraccioli
- Department of Statistical Sciences, University of Padova, Via Cesare Battisti 241, 35121 Padova, Italy
| | - Livio Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Iole Maria Di Gangi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
236
|
Stone CM, Witt AB, Walsh GC, Foster WA, Murphy ST. Would the control of invasive alien plants reduce malaria transmission? A review. Parasit Vectors 2018; 11:76. [PMID: 29391041 PMCID: PMC5793375 DOI: 10.1186/s13071-018-2644-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/12/2018] [Indexed: 12/31/2022] Open
Abstract
Vector control has been the most effective preventive measure against malaria and other vector-borne diseases. However, due to concerns such as insecticide resistance and budget shortfalls, an integrated control approach will be required to ensure sustainable, long-term effectiveness. An integrated management strategy should entail some aspects of environmental management, relying on coordination between various scientific disciplines. Here, we review one such environmental control tactic: invasive alien plant management. This covers salient plant-mosquito interactions for both terrestrial and aquatic invasive plants and how these affect a vector's ability to transmit malaria. Invasive plants tend to have longer flowering durations, more vigorous growth, and their spread can result in an increase in biomass, particularly in areas where previously little vegetation existed. Some invasive alien plants provide shelter or resting sites for adult mosquitoes and are also attractive nectar-producing hosts, enhancing their vectorial capacity. We conclude that these plants may increase malaria transmission rates in certain environments, though many questions still need to be answered, to determine how often this conclusion holds. However, in the case of aquatic invasive plants, available evidence suggests that the management of these plants would contribute to malaria control. We also examine and review the opportunities for large-scale invasive alien plant management, including options for biological control. Finally, we highlight the research priorities that must be addressed in order to ensure that integrated vector and invasive alien plant management operate in a synergistic fashion.
Collapse
Affiliation(s)
- Christopher M. Stone
- Illinois Natural History Survey, University of Illinois, Urbana, Champaign, IL 61820 USA
| | - Arne B.R. Witt
- CABI Africa, 673 Limuru Road, Muthaiga, PO Box 633-00621, Nairobi, Kenya
| | - Guillermo Cabrera Walsh
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Bolivar 1559, Hurlingham, Buenos Aires, Argentina
| | - Woodbridge A. Foster
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210 USA
| | | |
Collapse
|
237
|
Feng D, Xia Y. Comparisons of glyphosate adsorption properties of different functional Cr-based metal-organic frameworks. J Sep Sci 2017; 41:732-739. [DOI: 10.1002/jssc.201700886] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Feng
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition; College of Chemistry; Nankai University; Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin China
| | - Yan Xia
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition; College of Chemistry; Nankai University; Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin China
| |
Collapse
|
238
|
Bonansea RI, Filippi I, Wunderlin DA, Marino DJG, Amé MV. The Fate of Glyphosate and AMPA in a Freshwater Endorheic Basin: An Ecotoxicological Risk Assessment. TOXICS 2017; 6:toxics6010003. [PMID: 29267202 PMCID: PMC5874776 DOI: 10.3390/toxics6010003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 11/16/2022]
Abstract
Glyphosate is the most widely used herbicide worldwide. However, there are some uncertain aspects with respect to its environmental fate. To evaluate the existence and distribution of this pesticide and its metabolite, aminomethylphosphonic acid (AMPA), their presence in fresh water, sediment, and suspended particulate matter (SPM) was measured in samples collected in a river running across a large city and through areas with intensive and extensive agriculture. The aquatic risk associated to the occurrence of these compounds was estimated using the hazard quotient (HQ) calculation for water and sediment. From the analyzed samples, overall 35% contained glyphosate, AMPA, or both compounds. Concentrations of the analytes were spread in different percentages depending on the environmental matrices considered, with levels ranging from 12 to 20 times higher for glyphosate and AMPA in sediment and SPM, as compared with the levels found in water. The most polluted area was situated within a green belt zone of the city; while in second place were sites located in areas of extensive agriculture. Aquatic organisms inhabiting areas both inside and outside agricultural areas are threatened by water glyphosate concentrations. Benthic organisms inside the greenbelt zone and inside the lower basin are threatened by the concentrations of glyphosate in sediment. Even when the concentrations measured in water were below the levels of concern for wildlife, results showed the risk of agricultural practices to aquatic biota. An update of the limits established for freshwater biota protection is needed.
Collapse
Affiliation(s)
- Rocío Inés Bonansea
- Facultad de Ciencias Químicas, Dto. Bioquímica Clínica-CIBICI (Centro de Investigaciones en Bioquímica Clínica e Inmunología), Universidad Nacional de Córdoba-CONICET, Haya de la Torre esq. Medina Allende, 5000-Córdoba, Argentina.
| | - Iohanna Filippi
- Facultad de Ciencias Químicas, Dto. Bioquímica Clínica-CIBICI (Centro de Investigaciones en Bioquímica Clínica e Inmunología), Universidad Nacional de Córdoba-CONICET, Haya de la Torre esq. Medina Allende, 5000-Córdoba, Argentina.
| | - Daniel Alberto Wunderlin
- Facultad de Ciencias Químicas, Dto. Química Orgánica-ICYTAC (Instituto de Ciencia y Tecnología de Alimentos Córdoba), Universidad Nacional de Córdoba-CONICET, Av. Juan Filloy s/n, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Damián José Gabriel Marino
- Facultad de Ciencias Exactas, CIMA (Centro de Investigaciones del Medio Ambiente), Universidad Nacional de La Plata, Calle 115 esq. 47, 1900-La Plata, Argentina.
| | - María Valeria Amé
- Facultad de Ciencias Químicas, Dto. Bioquímica Clínica-CIBICI (Centro de Investigaciones en Bioquímica Clínica e Inmunología), Universidad Nacional de Córdoba-CONICET, Haya de la Torre esq. Medina Allende, 5000-Córdoba, Argentina.
| |
Collapse
|
239
|
Wang C, Lin X, Li L, Lin L, Lin S. Glyphosate Shapes a Dinoflagellate-Associated Bacterial Community While Supporting Algal Growth as Sole Phosphorus Source. Front Microbiol 2017; 8:2530. [PMID: 29312222 PMCID: PMC5742145 DOI: 10.3389/fmicb.2017.02530] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/05/2017] [Indexed: 01/21/2023] Open
Abstract
Glyphosate is a widely used herbicide that can potentially be a phosphorus (P) source for phytoplankton and microbes when discharged into the coastal ocean. In contrast to bacteria, few eukaryotic phytoplankton species appear capable of directly utilizing glyphosate. In this study, we observed, after a long delay (>60 days), Prorocentrum donghaiense, a dinoflagellate known to cause major harmful algal blooms in the East China Sea, could grow in a medium with glyphosate as the sole P source; suggesting that P. donghaiense growth was through bacterial mediation. To understand how the bacteria community might respond to glyphosate, we analyzed the 16S rRNA genes of the microbial community present in P. donghaiense cultures when grown under lower (36 μM) and higher (360 μM) glyphosate concentrations. Based on both Sanger and Illumina high throughput sequencing, we obtained more than 55,323 good-quality sequences, which were classified into six phyla. As the concentration of glyphosate rose, our results showed a significant increase in the phyla Proteobacteria and Firmicutes and a decrease in the phylum Bacteroidetes. Further qPCR (Quantitative PCR) analysis showed higher abundances of two specific phylotypes in the higher-glyphosate P. donghaiense cultures when compared to the lower-glyphosate and no-glyphosate cultures. Correspondingly, qPCR displayed the same trend for the abundance of a gammaproteobacterial type of phnJ, a gene encoding Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase, which is responsible for phosphonate degradation. In addition, Tax4Fun analysis based on our 16S rRNA gene sequences results in higher predicted abundances of phosphonate metabolizing genes in glyphosate-treated cultures. This study demonstrates that glyphosate could selectively promote the growth of particular groups of bacteria within an algal culture and in glyphosate enriched coastal waters, this interaction may potentially further facilitate the growth of alga.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - LingXiao Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| |
Collapse
|
240
|
Fauvelle V, Montero N, Mueller JF, Banks A, Mazzella N, Kaserzon SL. Glyphosate and AMPA passive sampling in freshwater using a microporous polyethylene diffusion sampler. CHEMOSPHERE 2017; 188:241-248. [PMID: 28886558 DOI: 10.1016/j.chemosphere.2017.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Glyphosate (PMG) is one of the most widely used herbicides with a reported 8.6 million tons applied globally in 2016. Due to widespread use and limited understanding of long-term environmental impacts, it is expected that future monitoring requirements for PMG and its primary metabolite aminomethyl phosphonic acid (AMPA) in aquatic environments will increase, along with the need for low cost monitoring and risk assessment strategies. The aim of this study was to investigate a microporous polyethylene tube (MPT; 2-mm thickness, 17.6 cm2 surface area, 35% porosity, 2.5 μm pore size) as a diffusive layer for the passive sampling of PMG and AMPA. Levels of PMG and AMPA sorbed to MPT were low (Kmw close to 1 mL g-1), validating MPT as a diffusive layer. Uptake experiments were conducted first under controlled laboratory conditions (pH = 6.8, 6 days), followed by an in situ freshwater lake system deployment (pH = 7.3, 11 days). PMG and AMPA accumulated linearly (slope relative standard deviation < 6%) under laboratory conditions with sampling rates (Rs) of 18 and 25 mL d-1, respectively. PMG in situ Rs was 28 mL d-1, and was not different from the one found in the laboratory. AMPA was below the limit of quantification (LOQ, 1 ng mL-1) in grab water samples, but was detected (>LOQ) in all passive samplers. Results illustrate the gain in sensitivity provided by the passive sampling technique, and the applicability of the device developed for the passive sampling of PMG and AMPA.
Collapse
Affiliation(s)
- Vincent Fauvelle
- Aix-Marseille University, Mediterranean Institute of Oceanology, 163 avenue de Luminy, 13288 Marseille, France.
| | - Natalia Montero
- The Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, QLD 4108, Australia; Ikerbasque, Basque Foundation for Science, María Díaz Haroko Kalea, 3, 48013 Bilbao, Spain
| | - Jochen F Mueller
- The Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Andrew Banks
- The Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | | | - Sarit L Kaserzon
- The Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, QLD 4108, Australia.
| |
Collapse
|
241
|
Xu Y, Li AJ, Li K, Qin J, Li H. Effects of glyphosate-based herbicides on survival, development and growth of invasive snail (Pomacea canaliculata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:136-143. [PMID: 29078071 DOI: 10.1016/j.aquatox.2017.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
This study tests the hypotheses that whether environmental relevance of glyphosate would help control spread of the invasive snail Pomacea canaliculata, or benefit its population growth worldwide. Our results showed that glyphosate induced acute toxicity to the snail only at high concentrations (96h LC50 at 175mg/L) unlikely to occur in the environment. Long-term exposures to glyphosate at sublethal levels (20 and 120mg/L) caused inhibition of food intake, limitation of growth performance and alterations in metabolic profiles of the snail. It is worth noting that glyphosate at 2mg/L benefited growth performance in P. canaliculata. Chronic exposures of glyphosate significantly enhanced overall metabolic rate and altered catabolism from protein to carbohydrate/lipid mode. Cellular responses in enzyme activities showed that the exposed snails could increase tolerance by their defense system against glyphosate-induced oxidative stress, and adjustment of metabolism to mitigate energy crisis. Our study displayed that sublethal concentrations of glyphosate might be helpful in control of the invasive species by food intake, growth performance and metabolic interruption; whether environmental relevance of glyphosate (≤2mg/L) benefits population growth of P. canaliculata is still inconclusive, which requires further field study.
Collapse
Affiliation(s)
- Yanggui Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China.
| | - Kaibin Li
- Key Laboratory of Tropical and Subtropical Fish Breeding & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China.
| |
Collapse
|
242
|
Perego MC, Caloni F, Cortinovis C, Schutz LF, Albonico M, Tsuzukibashi D, Spicer LJ. Influence of a Roundup formulation on glyphosate effects on steroidogenesis and proliferation of bovine granulosa cells in vitro. CHEMOSPHERE 2017; 188:274-279. [PMID: 28888115 DOI: 10.1016/j.chemosphere.2017.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/27/2017] [Accepted: 09/02/2017] [Indexed: 05/23/2023]
Abstract
Glyphosate (N-phosphonomethyl-glycine) is a non-selective systemic herbicide widely used worldwide. The purpose of this study is to determine if glyphosate alone (GLPH) or in formulation with Roundup (G-RU) can affect granulosa cell proliferation and steroid production. Four experiments were conducted. In Exp. 1, 10 and 300 μg/mL of GLPH had no effect (P > 0.05) on cell numbers, estradiol or progesterone production, whereas 10 and 300 μg/mL of G-RU dramatically decreased (P < 0.05) cell numbers and estradiol and progesterone production. In Exp. 2, G-RU at 0.1 μg/mL had no significant effect whereas G-RU at 10 μg/mL decreased (P < 0.05) GC numbers, progesterone and estradiol production. In the absence of IGF1 but presence of FSH, 1 μg/mL of G-RU decreased (P < 0.05) estradiol production, whereas in the presence of IGF1 and FSH, 1 μg/mL of G-RU increased (P < 0.05) cell numbers, progesterone and estradiol production. In Exp. 3, IGF1 significantly increased cell numbers (by 2.8-fold) and estradiol (by 17.8-fold) and progesterone (by 6.1-fold) production. GLPH at 10 μg/mL alone had no significant effect on FSH-induced (i.e., basal) or FSH plus IGF1-induced cell numbers, estradiol or progesterone production. However, G-RU at 10 μg/mL significantly inhibited FSH plus IGF1-induced cell numbers, estradiol and progesterone production by 65%-91%. In Exp. 4, 48 h treatment of G-RU had no significant effect on viability of attached cells. In conclusion, the present studies demonstrate that GLPH and particularly G-RU may have the potential to impair reproductive function in cattle.
Collapse
Affiliation(s)
- Maria Chiara Perego
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| | - Cristina Cortinovis
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - Luis F Schutz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - Marco Albonico
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - Denise Tsuzukibashi
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - Leon J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
243
|
Bridi D, Altenhofen S, Gonzalez JB, Reolon GK, Bonan CD. Glyphosate and Roundup ® alter morphology and behavior in zebrafish. Toxicology 2017; 392:32-39. [PMID: 29032223 DOI: 10.1016/j.tox.2017.10.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 01/28/2023]
Abstract
Glyphosate has become the most widely used herbicide in the world, due to the wide scale adoption of transgenic glyphosate resistant crops after its introduction in 1996. Glyphosate may be used alone, but it is commonly applied as an active ingredient of the herbicide Roundup®. This pesticide contains several adjuvants, which may promote an unknown toxicity. The indiscriminate application poses numerous problems, both for the health of the applicators and consumers, and for the environment, contaminating the soil, water and leading to the death of plants and animals. Zebrafish (Danio rerio) is quickly gaining popularity in behavioral research, because of physiological similarity to mammals, sensitivity to pharmacological factors, robust performance, low cost, short spawning intervals, external fertilization, transparency of embryos through larval stages, and rapid development. The aim of this study was evaluate the effects of glyphosate and Roundup® on behavioral and morphological parameters in zebrafish larvae and adults. Zebrafish larvae at 3days post-fertilization and adults were exposed to glyphosate (0.01, 0.065, and 0.5mg/L) or Roundup® (0.01, 0.065, and 0.5mg/L) for 96h. Immediately after the exposure, we performed the analysis of locomotor activity, aversive behavior, and morphology for the larvae and exploratory behavior, aggression and inhibitory avoidance memory for adult zebrafish. In zebrafish larvae, there were significant differences in the locomotor activity and aversive behavior after glyphosate or Roundup® exposure when compared to the control group. Our findings demonstrated that exposure to glyphosate at the concentration of 0.5mg/L, Roundup® at 0.065 or 0.5mg/L reduced the distance traveled, the mean speed and the line crossings in adult zebrafish. A decreased ocular distance was observed for larvae exposed at 0.5mg/L of glyphosate. We verified that at 0.5mg/L of Roundup®-treated adult zebrafish demonstrated a significant impairment in memory. Both glyphosate and Roundup® reduced aggressive behavior. Our data suggest that there are small differences between the effects induced by glyphosate and Roundup®, altering morphological and behavioral parameters in zebrafish, suggesting common mechanisms of toxicity and cellular response.
Collapse
Affiliation(s)
- Daiane Bridi
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biotecnologia Farmacêutica, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jonas Brum Gonzalez
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Kellermann Reolon
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biotecnologia Farmacêutica, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
244
|
Drzyzga D, Lipok J. Analytical insight into degradation processes of aminopolyphosphonates as potential factors that induce cyanobacterial blooms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24364-24375. [PMID: 28891037 PMCID: PMC5655564 DOI: 10.1007/s11356-017-0068-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Aminopolyphosphonates (AAPs) are commonly used industrial complexones of metal ions, which upon the action of biotic and abiotic factors undergo a breakdown and release their substructures. Despite the low toxicity of AAPs towards vertebrates, products of their transformations, especially those that contain phosphorus and nitrogen, can affect algal communities. To verify whether such chemical entities are present in water ecosystems, much effort has been made in developing fast, inexpensive, and reliable methods for analyzing phosphonates. However, unfortunately, the methods described thus far require time-consuming sample pretreatment and offer relatively high values of the limit of detection (LOD). The aim of this study was to develop an analytical approach to study the environmental fate of AAPs. Four phosphonic acids, N,N-bis(phosphonomethyl)glycine (GBMP), aminotris(methylenephosphonic) acid (ATMP), hexamethylenediamine-N,N,N',N'-tetrakis(methylphosphonic) acid (HDTMP), and diethylenetriamine penta(methylenephosphonic) acid (DTPMP) were selected and examined in a water matrix. In addition, the susceptibility of these compounds to biotransformations was tested in colonies of five freshwater cyanobacteria-microorganisms responsible for the so-called blooms in the water. Our efforts to track the AAP decomposition were based on derivatization of N-alkyl moieties with p-toluenesulfonyl chloride (tosylation) followed by chromatographic (HPLC-UV) separation of derivatives. This approach allowed us to determine seven products of the breakdown of popular phosphonate chelators, in nanomolar concentrations and in one step. It should be noted that the LOD of four of those products, aminemethylphosphonic acid (AMPA), N-phosphomethyl glycine (NPMG), N-(methyl)aminemethanephosphonic acid (MAMPA), and N-(methyl) glycine (SAR), was set below the concentration of 50 nM. Among those substances, N-(methylamino)methanephosphonic acid (MAMPA) was identified for the first time as the product of decomposition of the examined aminopolyphosphonates.
Collapse
Affiliation(s)
- Damian Drzyzga
- Faculty of Chemistry, Opole University, Oleska 48, 45-052, Opole, Poland
| | - Jacek Lipok
- Faculty of Chemistry, Opole University, Oleska 48, 45-052, Opole, Poland.
| |
Collapse
|
245
|
Zebral YD, Costa PG, de Castro Knopp B, Lansini LR, Zafalon-Silva B, Bianchini A, Robaldo RB. Effects of a glyphosate-based herbicide in pejerrey Odontesthes humensis embryonic development. CHEMOSPHERE 2017; 185:860-867. [PMID: 28735239 DOI: 10.1016/j.chemosphere.2017.07.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Glyphosate-based herbicides (GBH) are the major pesticides used worldwide. Among them, the Roundup formulations are the most popular. Some aspects of GBH toxicity are well known, such as induction of oxidative stress. However, embryotoxicity is scarcely known. Therefore, the aim of the present study was to evaluate the effect of exposure to different Roundup Transorb R concentrations (0.36, 1.80, 3.62 and 5.43 mg glyphosate a.e./L) on Odontesthes humensis embryonic development. Embryos were sampled at three exposure times (48, 72 and 96 h). After 48 h, the stage of embryonic development and the number of somite pairs were analyzed; after 72 h, the percentage of pigmented embryos were evaluated and after 96 h, the eye diameter (ED) and the distance between eyes (DE) were measured. Mortality rates were daily calculated. Results show that Roundup exposure to all concentrations did not alter the endpoints evaluated at 48 and 72 h. On the other hand, exposure for 96 h to all concentrations induced a concentration-dependent reduction in ED and DE. Additionally, exposure to 5.43 mg a.e./L increased mortality. These findings indicate that Roundup has the potential to produce morphological alterations in fish embryos even at the lower and ecologically relevant concentration tested (0.36 mg a.e./L). This result corroborates the hypothesis that glyphosate alters the retinoic acid signaling pathway. Additionally, our findings indicate that exposure to high concentrations of Roundup (5.43 mg a.e./L) for 96 h causes high mortality rates of fish embryos. This is the first report of GBH embryotoxicity in an endemic fish of southern areas in South America.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil.
| | - Patrícia Gomes Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Bruna de Castro Knopp
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade Federal de Pelotas, 96010-970, Capão do Leão, RS, Brazil
| | - Luize Real Lansini
- Instituto de Biologia, Universidade Federal de Pelotas, 96010-970, Capão do Leão, RS, Brazil
| | - Bruna Zafalon-Silva
- Programa de Pós Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul, 91540-000, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Ricardo Berteaux Robaldo
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade Federal de Pelotas, 96010-970, Capão do Leão, RS, Brazil
| |
Collapse
|
246
|
Rodeo™ Herbicide Negatively Affects Blanchard's Cricket Frogs (Acris blanchardi) Survival and Alters the Skin-Associated Bacterial Community. J HERPETOL 2017. [DOI: 10.1670/16-092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
247
|
Antunes AM, Rocha TL, Pires FS, de Freitas MA, Leite VRMC, Arana S, Moreira PC, Sabóia-Morais SMT. Gender-specific histopathological response in guppies Poecilia reticulata exposed to glyphosate or its metabolite aminomethylphosphonic acid. J Appl Toxicol 2017; 37:1098-1107. [PMID: 28425566 DOI: 10.1002/jat.3461] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/11/2017] [Accepted: 02/03/2017] [Indexed: 11/11/2022]
Abstract
Ecotoxicity of glyphosate (GLY) and its metabolite aminomethylphosphonic acid (AMPA) was investigated in guppies, Poecilia reticulata. We tested the effects of these chemicals on the gills and liver of both male and female guppies using qualitative and quantitative histopathological analyses associated with histopathological condition indexes. Both genders showed similar median lethal concentration (LC50 ) at 96 h for GLY (68.78 and 70.87 mg l-1 ) and AMPA (180 and 164.32 mg l-1 ). However, the histopathological assessment of both fish organs exposed to sublethal concentrations of GLY (35 mg l-1 ) and AMPA (82 mg l-1 ) for 96 h showed a tissue- and gender-specific histopathological response. In both exposure assays, fish presented mainly progressive changes, such as proliferation of the interlamellar epithelium, partial and total fusion of secondary lamellae. The liver showed mainly regressive changes, such as steatosis, pyknotic nuclei and high distribution of collagen fibers. Unusually large hepatocytes as degenerated cells were also detected. Histopathological changes in gills were similar for the males and females, but the liver response was different between the genders. The hepatic inflammatory changes were more common in males. The increase in the area of hepatocyte vacuoles is gender dependent with higher values in the male compared to the female guppies exposed to GLY and AMPA. Multiparametric analysis indicated that the male guppies are more sensitive than females, particularly in the presence of AMPA. Our study shows that the histopathological assessment associated with gender-specific response can be successfully used in ecotoxicological assessment of GLY and the metabolite AMPA. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adriana Maria Antunes
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Fernando Santiago Pires
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Meire Alves de Freitas
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Vanessa Rafaela Milhomem Cruz Leite
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Sarah Arana
- Laboratório de Histofisiologia e Histopatologia Experimental em Animais Ectotérmicos, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil
| | - Paulo César Moreira
- Department of Morphology, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Simone Maria Teixeira Sabóia-Morais
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
248
|
Garza-León CV, Arzate-Cárdenas MA, Rico-Martínez R. Toxicity evaluation of cypermethrin, glyphosate, and malathion, on two indigenous zooplanktonic species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18123-18134. [PMID: 28631124 DOI: 10.1007/s11356-017-9454-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/01/2017] [Indexed: 12/16/2023]
Abstract
In Aguascalientes, Mexico, there is a special concern about pesticides because of their intensive use on guava production areas, which are located in the vicinity of water reservoirs; thus, non-target organisms could be exposed. Thereafter, the aim of this work was to assess the effect of cypermethrin, Faena® (glyphosate), and malathion, which are the most used pesticides in Aguascalientes' guava production, on the indigenous freshwater species Alona guttata (cladoceran) and Lecane papuana (rotifer). Acute 48-h toxicity tests were carried out, and LC50 values were calculated. Then, five sublethal concentrations (1/80, 1/40, 1/20, 1/10, and 1/5 of the respective LC50) were selected for the chronic assays: (a) intrinsic growth rate analysis in the rotifer and (b) partial life table analysis in the cladoceran. The results of the acute toxicity tests showed that A. guttata was more sensitive to malathion (LC50 = 5.26 × 10-3 mg/L) at concentrations found in natural environments with continuous application on guava fields, whereas L. papuana was more sensitive to Faena® (LC50 = 19.89 mg/L). The somatic growth of A. guttata was inhibited for the chronic exposure to cypermethrin. In addition, cypermethrin and Faena® seemed to exert endocrine disruptive effects on A. guttata. Moreover, malathion chronic exposure significantly decreased the survival of A. guttata. Moreover, L. papuana was affected chronically for the three pesticides.
Collapse
Affiliation(s)
- Carlos Vicente Garza-León
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20131, Aguascalientes, Ags, Mexico
| | - Mario Alberto Arzate-Cárdenas
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20131, Aguascalientes, Ags, Mexico
| | - Roberto Rico-Martínez
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20131, Aguascalientes, Ags, Mexico.
| |
Collapse
|
249
|
The Risks Associated with Glyphosate-Based Herbicide Use in Planted Forests. FORESTS 2017. [DOI: 10.3390/f8060208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
250
|
Persch TSP, Weimer RN, Freitas BS, Oliveira GT. Metabolic parameters and oxidative balance in juvenile Rhamdia quelen exposed to rice paddy herbicides: Roundup ®, Primoleo ®, and Facet ®. CHEMOSPHERE 2017; 174:98-109. [PMID: 28160682 DOI: 10.1016/j.chemosphere.2017.01.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
The present study sought to assess the response of Rhamdia quelen juveniles (6-8 cm total body length) to exposure to different concentrations of three herbicides: Roundup® Original (18, 36, 72, and 144 μg/L), Primoleo® (2.5, 5, 10, and 15 μg/L), and Facet® (1.75, 3.5, 7, and 14 μg/L). Total protein (TP), glycogen (GG), total lipids (TL), triacylglycerols (TAG), lipid peroxidation (TBARS), and activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in gills, liver, kidneys, and muscle were measured by spectrophotometry. Roundup® (glyphosate) reduced the TP, GG, and TL in gills and TL in liver and kidney and increased TP in liver and increased GG in muscle. In contrast to Primoleo® (atrazine), all tissues stored TAG and consumed LT, besides the gills also reduced PT. There was still an increase in GG in the kidneys and muscle. Facet® (quinclorac) induced changes mainly in the liver (increased TP, TL, and TAG content) and muscle (increased GG, TL, and TAG depletion). Gill tissue exhibited TP depletion alone, and kidney tissue metabolism was unchanged. This fish species appears capable of modulating its enzymes to the point where it sustains no oxidative damage as a result of exposure to the herbicides glyphosate (possibly due to increased CAT activity), atrazine (despite no changes in SOD or CAT activity), and quinclorac (with increased lipid peroxidation, particularly in gill, kidney, and muscle tissue, despite elevated SOD activity). Although it is not considered a target species, R. quelen suffers harmful effects from interaction with these herbicides.
Collapse
Affiliation(s)
- Tanilene Sotero Pinto Persch
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Life Sciences, Conservation Physiology Laboratory, Brazil; PPG-Zoology, Brazil.
| | - Rodrigo Nizolli Weimer
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Life Sciences, Conservation Physiology Laboratory, Brazil.
| | - Betânia Souza Freitas
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Life Sciences, Conservation Physiology Laboratory, Brazil.
| | - Guendalina Turcato Oliveira
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Life Sciences, Conservation Physiology Laboratory, Brazil; PPG-Zoology, Brazil; CNPq Productivity Fellow, Brazil.
| |
Collapse
|