201
|
Characterization of lung cancer by amide proton transfer (APT) imaging: an in-vivo study in an orthotopic mouse model. PLoS One 2013; 8:e77019. [PMID: 24143199 PMCID: PMC3797134 DOI: 10.1371/journal.pone.0077019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022] Open
Abstract
Amide proton transfer (APT) imaging is one of the chemical exchange saturation transfer (CEST) imaging methods which images the exchange between protons of free tissue water and the amide groups (−NH) of endogenous mobile proteins and peptides. Previous work suggested the ability of APT imaging for characterization of the tumoral grade in the brain tumor. In this study, we tested the feasibility of in-vivo APT imaging of lung tumor and investigated whether the method could differentiate the tumoral types on orthotopic tumor xenografts from two malignant lung cancer cell lines. The results revealed that APT imaging is feasible to quantify lung tumors in the moving lung. The measured APT effect was higher in the tumor which exhibited more active proliferation than the other. The present study demonstrates that APT imaging has the potential to provide a characterization test to differentiate types or grade of lung cancer noninvasively, which may eventually reduce the need invasive needle biopsy or resection for lung cancer.
Collapse
|
202
|
Liu G, Bettegowda C, Qiao Y, Staedtke V, Chan KWY, Bai R, Li Y, Riggins GJ, Kinzler KW, Bulte JWM, McMahon MT, Gilad AA, Vogelstein B, Zhou S, van Zijl PCM. Noninvasive imaging of infection after treatment with tumor-homing bacteria using Chemical Exchange Saturation Transfer (CEST) MRI. Magn Reson Med 2013; 70:1690-8. [PMID: 24123389 DOI: 10.1002/mrm.24955] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/12/2013] [Accepted: 08/22/2013] [Indexed: 12/27/2022]
Abstract
PURPOSE To develop a noninvasive MRI method for determining the germination and infection of tumor-homing bacteria in bacteriolytic cancer therapy using endogenous CEST contrast. METHODS The CEST parameters of the anaerobic gram-positive bacterium Clostridium novyi-NT (C. novyi-NT) were first characterized in vitro, then used to detect C. novyi-NT germination and infection in subcutaneous CT26 colorectal tumor-bearing mice (n = 6) after injection of 300 million bacterial spores. Lipopolysacharide (LPS) injected mice were used to exclude that the changes of CEST MRI were due to inflammation. RESULTS CEST contrast was observed over a broad frequency range for bacterial suspensions in vitro, with the maximum contrast around 2.6 ppm from the water resonance. No signal could be detected for bacterial spores, demonstrating the specificity for germination. In vivo, a significant elevation of CEST contrast was identified in C. novyi-NT infected tumors as compared to those before bacterial germination and infection (P < 0.05; n = 6). No significant change was observed in tumors with LPS-induced sterile inflammation (P > 0.05; n = 4). CONCLUSION Endogenous bacterial CEST contrast (bacCEST) can be used to monitor the germination and proliferation of the therapeutic bacterium C. novyi-NT without a need for exogenous cell labeling probes.
Collapse
Affiliation(s)
- Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA; Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Dula AN, Smith SA, Gore JC. Application of chemical exchange saturation transfer (CEST) MRI for endogenous contrast at 7 Tesla. J Neuroimaging 2013; 23:526-32. [PMID: 23402307 PMCID: PMC3659199 DOI: 10.1111/j.1552-6569.2012.00751.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/05/2012] [Accepted: 07/23/2012] [Indexed: 01/31/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) indirectly images exchangeable solute protons resonating at frequencies different than bulk water. These solute protons are selectively saturated using low bandwidth RF irradiation and saturation is transferred to bulk water protons via chemical exchange, resulting in an attenuation of the measured water proton signal. CEST MRI is an advanced MRI technique with wide application potential due to the ability to examine complex molecular contributions. CEST MRI at high field (7 Tesla [7 T]) will improve the overall results due to increase in signal, T1 relaxation time, and chemical shift dispersion. Increased field strength translates to enhanced quantification of the metabolite of interest, allowing more fundamental studies on underlying pathophysiology. CEST contrast is affected by several tissue properties, such as the concentrations of exchange partners and their rate of proton exchange, whose effects have been examined and explored in this review. We have highlighted the background of CEST MRI, typical implementation strategy, and complications at 7 T.
Collapse
Affiliation(s)
- Adrienne N. Dula
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
204
|
Sun PZ, Lu J, Wu Y, Xiao G, Wu R. Evaluation of the dependence of CEST-EPI measurement on repetition time, RF irradiation duty cycle and imaging flip angle for enhanced pH sensitivity. Phys Med Biol 2013; 58:N229-40. [PMID: 23939228 DOI: 10.1088/0031-9155/58/17/n229] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chemical exchange saturation transfer (CEST) is a magnetic resonance imaging (MRI) contrast mechanism that can detect dilute CEST agents and microenvironmental properties, with a host of promising applications. Experimental measurement of the CEST effect is complex, and depends on not only CEST agent concentration and exchange rate, but also experimental parameters such as RF irradiation amplitude and scheme. Although echo planar imaging (EPI) has been increasingly used for CEST MRI, the relationship between CEST effect and repetition time (TR), RF irradiation duty cycle (DC) and EPI flip angle (α) has not been fully evaluated and optimized to enhance CEST MRI sensitivity. In addition, our study evaluated gradient echo CEST-EPI by quantifying the CEST effect and its signal-to-noise ratio per unit time (SNRput) as functions of TR, DC and α. We found that CEST effect increased with TR and DC but decreased with α. Importantly, we found that SNRput peaked at intermediate TRs of about twice the T1 and α, at approximately 75°, and increased with RF DC. The simulation results were validated using a dual-pH creatine-gel CEST phantom. In summary, our study provides a useful framework for optimizing CEST MRI experiments.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | | | | | | | | |
Collapse
|
205
|
Chappell MA, Donahue MJ, Tee YK, Khrapitchev AA, Sibson NR, Jezzard P, Payne SJ. Quantitative Bayesian model-based analysis of amide proton transfer MRI. Magn Reson Med 2013; 70:556-67. [PMID: 23008121 PMCID: PMC7334045 DOI: 10.1002/mrm.24474] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/19/2012] [Accepted: 08/07/2012] [Indexed: 01/08/2023]
Abstract
Amide Proton Transfer (APT) reports on contrast derived from the exchange of protons between amide groups and water. Commonly, APT contrast is quantified by asymmetry analysis, providing an ensemble contrast of both amide proton concentration and exchange rate. An alternative is to sample the off-resonant spectrum and fit an exchange model, permitting the APT effect to be quantified, correcting automatically for confounding effects of spillover, field inhomogeneity, and magnetization transfer. Additionally, it should permit amide concentration and exchange rate to be independently quantified. Here, a Bayesian method is applied to this problem allowing pertinent prior information to be specified. A three-pool model was used incorporating water protons, amide protons, and magnetization transfer effect. The method is demonstrated in simulations, creatine phantoms with varying pH and in vivo (n = 7). The Bayesian model-based approach was able to quantify the APT effect accurately (root-mean-square error < 2%) even when subject to confounding field variation and magnetization transfer effect, unlike traditional asymmetry analysis. The in vivo results gave approximate APT concentration (relative to water) and exchange rate values of 3 × 10(-3) and 15 s(-1) . A degree of correlation was observed between these parameter making the latter difficult to quantify with absolute accuracy, suggesting that more optimal sampling strategies might be required.
Collapse
Affiliation(s)
- Michael A Chappell
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
206
|
Dula AN, Arlinghaus LR, Dortch RD, Dewey BE, Whisenant JG, Ayers GD, Yankeelov TE, Smith SA. Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med 2013; 70:216-24. [PMID: 22907893 PMCID: PMC3505231 DOI: 10.1002/mrm.24450] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/06/2012] [Accepted: 07/11/2012] [Indexed: 12/20/2022]
Abstract
Chemical exchange saturation transfer imaging can generate contrast that is sensitive to amide protons associated with proteins and peptides (termed amide proton transfer, APT). In breast cancer, APT contrast may report on underlying changes in microstructural tissue composition. However, to date, there have been no developments or applications of APT chemical exchange saturation transfer to breast cancer. As a result, the aims of this study were to (i) experimentally explore optimal scan parameters for breast chemical exchange saturation transfer near the amide resonance at 3 T, (ii) establish the reliability of APT imaging of healthy fibroglandular tissue, and (iii) demonstrate preliminary results on APT changes in locally advanced breast cancer observed during the course of neoadjuvant chemotherapy. Chemical exchange saturation transfer measurements were experimentally optimized on cross-linked bovine serum albumin phantoms, and the reliability of APT imaging was assessed in 10 women with no history of breast disease. The mean difference between test-retest APT values was not significantly different from zero, and the individual difference values were not dependent on the average APT value. The 95% confidence interval limits were ±0.70% (α = 0.05), and the repeatability was 1.91. APT measurements were also performed in three women before and after one cycle of chemotherapy. Following therapy, APT increased in the one patient with progressive disease and decreased in the two patients with a partial or complete response. Together, these results suggest that APT imaging may report on treatment response in these patients.
Collapse
Affiliation(s)
- Adrienne N Dula
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310, USA
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Desmond KL, Moosvi F, Stanisz GJ. Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T. Magn Reson Med 2013; 71:1841-53. [PMID: 23801344 DOI: 10.1002/mrm.24822] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/18/2013] [Accepted: 05/03/2013] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate the performance of endogenous chemical exchange saturation transfer (CEST) spectra and derived maps in a longitudinal study of tumor xenografts to ascertain the role of CEST parameters in describing tumor progression and in distinguishing between tumor, muscle, and necrosis. METHODS CEST spectra of 24 mice with tumor xenografts (20 LLC and 4 MDA) were acquired at three time-points. We employed a novel method of decomposing the CEST spectrum into a sum of four Lorentzian shapes, each with a corresponding measured amplitude, width and frequency offset. This semi-quantitative method is an improvement over techniques which simply assess the asymmetry in the spectrum for the presence of CEST, due to the fact that it is not confounded by CEST peaks on opposing sides of the direct effect. The CEST images were compared to several other commonly employed contrast mechanisms: T1 relaxation, T2 relaxation, diffusion (ADC), and magnetization transfer (MT). RESULTS Tumor spectra had distinct CEST peaks corresponding to the presence of hydrogen exchange between free water and amide, amine, and aliphatic groups. All three CEST peaks (amide, amine, and aliphatic) were larger in the tumor tissue as compared with the adjacent healthy muscle. CONCLUSIONS CEST contrast (particularly the amine peak amplitude) performed especially well in distinguishing areas of apoptosis and/or necrosis from actively progressing tumor, as validated by histology.
Collapse
Affiliation(s)
- Kimberly L Desmond
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
208
|
Kogan F, Hariharan H, Reddy R. Chemical Exchange Saturation Transfer (CEST) Imaging: Description of Technique and Potential Clinical Applications. CURRENT RADIOLOGY REPORTS 2013; 1:102-114. [PMID: 23730540 PMCID: PMC3665411 DOI: 10.1007/s40134-013-0010-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a magnetic resonance imaging (MRI) contrast enhancement technique that enables indirect detection of metabolites with exchangeable protons. Endogenous metabolites with exchangeable protons including many endogenous proteins with amide protons, glycosaminoglycans (GAG), glycogen, myo-inositol (MI), glutamate (Glu), creatine (Cr) and several others have been identified as potential in vivo endogenous CEST agents. These endogenous CEST agents can be exploited as non-invasive and non-ionizing biomarkers of disease diagnosis and treatment monitoring. This review focuses on the recent technical developments in endogenous in vivo CEST MRI from various metabolites as well as their potential clinical applications. The basic underlying principles of CEST, its potential limitations and new techniques to mitigate them are discussed.
Collapse
Affiliation(s)
- Feliks Kogan
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104
| | - Hari Hariharan
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104
| |
Collapse
|
209
|
Polders DL, Hoogduin JM. Chemical Exchange Saturation Transfer MR Imaging: Potential Clinical Applications. PET Clin 2013; 8:245-57. [PMID: 27158068 DOI: 10.1016/j.cpet.2013.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemical exchange saturation transfer (CEST) measurements hold great promise as the next step in magnetization transfer imaging and possibly allow for in vivo quantification of many clinically relevant parameters, including pH, temperature, and amide concentration. Therefore, it is a valuable method to add to the MR imaging toolbox. The aim of this article was to review the methods for the acquisition of CEST data and necessary postprocessing. CEST research is very much a field still in development, and initial explorations in clinical applications are shown to illustrate the potential of CEST as a new contrast mechanism.
Collapse
Affiliation(s)
- Daniel Louis Polders
- Imaging Division, Department of Radiology, UMCU, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Johannes Marinus Hoogduin
- Imaging Division, Department of Radiology, UMCU, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands; Brain Division, UMCU, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
210
|
Proceedings for OctoberCEST, the third international workshop on CEST imaging, 15-17 October 2012. CONTRAST MEDIA & MOLECULAR IMAGING 2013. [DOI: 10.1002/cmmi.1522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
211
|
Imaging of glutamate in the spinal cord using GluCEST. Neuroimage 2013; 77:262-7. [PMID: 23583425 DOI: 10.1016/j.neuroimage.2013.03.072] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 11/21/2022] Open
Abstract
Glutamate (Glu) is the most abundant excitatory neurotransmitter in the brain and spinal cord. The concentration of Glu is altered in a range of neurologic disorders that affect the spinal cord including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and spinal cord injury. Currently available magnetic resonance spectroscopy (MRS) methods for measuring Glu are limited to low spatial resolution, which makes it difficult to measure differences in gray and white matter glutamate. Recently, it has been shown that Glu exhibits a concentration dependent chemical exchange saturation transfer (CEST) effect between its amine (-NH2) group protons and bulk water protons (GluCEST). Here, we demonstrate the feasibility of imaging glutamate in the spinal cord at 7T using the GluCEST technique. Results from healthy human volunteers (N=7) showed a significantly higher (p<0.001) GluCESTasym from gray matter (6.6±0.3%) compared to white matter (4.8±0.4%). Potential overlap of CEST signals from other spinal cord metabolites with the observed GluCESTasym is discussed. This noninvasive approach potentially opens the way to image Glu in vivo in the spinal cord and to monitor its alteration in many disease conditions.
Collapse
|
212
|
Jones CK, Huang A, Xu J, Edden RAE, Schär M, Hua J, Oskolkov N, Zacà D, Zhou J, McMahon MT, Pillai JJ, van Zijl PCM. Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 2013; 77:114-24. [PMID: 23567889 DOI: 10.1016/j.neuroimage.2013.03.047] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/31/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) is a magnetization transfer (MT) technique to indirectly detect pools of exchangeable protons through the water signal. CEST MRI has focused predominantly on signals from exchangeable protons downfield (higher frequency) from water in the CEST spectrum. Low power radiofrequency (RF) pulses can slowly saturate protons with minimal interference of conventional semi-solid based MT contrast (MTC). When doing so, saturation-transfer signals are revealed upfield from water, which is the frequency range of non-exchangeable aliphatic and olefinic protons. The visibility of such signals indicates the presence of a relayed transfer mechanism to the water signal, while their finite width reflects that these signals are likely due to mobile solutes. It is shown here in protein phantoms and the human brain that these signals build up slower than conventional CEST, at a rate typical for intramolecular nuclear Overhauser enhancement (NOE) effects in mobile macromolecules such as proteins/peptides and lipids. These NOE-based saturation transfer signals show a pH dependence, suggesting that this process is the inverse of the well-known exchange-relayed NOEs in high resolution NMR protein studies, thus a relayed-NOE CEST process. When studying 6 normal volunteers with a low-power pulsed CEST approach, the relayed-NOE CEST effect was about twice as large as the CEST effects downfield and larger in white matter than gray matter. This NOE contrast upfield from water provides a way to study mobile macromolecules in tissue. First data on a tumor patient show reduction in both relayed NOE and CEST amide proton signals leading to an increase in magnetization transfer ratio asymmetry, providing insight into previously reported amide proton transfer (APT) effects in tumors.
Collapse
Affiliation(s)
- Craig K Jones
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Vinogradov E, Sherry AD, Lenkinski RE. CEST: from basic principles to applications, challenges and opportunities. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:155-72. [PMID: 23273841 PMCID: PMC3602140 DOI: 10.1016/j.jmr.2012.11.024] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 05/03/2023]
Abstract
Chemical Exchange Saturation Transfer (CEST) offers a new type of contrast for MRI that is molecule specific. In this approach, a slowly exchanging NMR active nucleus, typically a proton, possessing a chemical shift distinct from water is selectively saturated and the saturated spin is transferred to the bulk water via chemical exchange. Many molecules can act as CEST agents, both naturally occurring endogenous molecules and new types of exogenous agents. A large variety of molecules have been demonstrated as potential agents, including small diamagnetic molecules, complexes of paramagnetic ions, endogenous macromolecules, dendrimers and liposomes. In this review we described the basic principles of the CEST experiment, with emphasis on the similarity to earlier saturation transfer experiments described in the literature. Interest in quantitative CEST has also resulted in the development of new exchange-sensitive detection schemes. Some emerging clinical applications of CEST are described and the challenges and opportunities associated with translation of these methods to the clinical environment are discussed.
Collapse
Affiliation(s)
- Elena Vinogradov
- Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | |
Collapse
|
214
|
Haris M, Nath K, Cai K, Singh A, Crescenzi R, Kogan F, Verma G, Reddy S, Hariharan H, Melhem ER, Reddy R. Imaging of glutamate neurotransmitter alterations in Alzheimer's disease. NMR IN BIOMEDICINE 2013; 26:386-91. [PMID: 23045158 PMCID: PMC3556355 DOI: 10.1002/nbm.2875] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 05/03/2023]
Abstract
Glutamate (Glu) is a major excitatory neurotransmitter in the brain and has been shown to decrease in the early stages of Alzheimer's disease (AD). Using a glutamate chemical (amine) exchange saturation transfer (GluCEST) method, we imaged the change in [Glu] in the APP-PS1 transgenic mouse model of AD at high spatial resolution. Compared with wild-type controls, AD mice exhibited a notable reduction in GluCEST contrast (~30%) in all areas of the brain. The change in [Glu] was further validated through (1) H MRS. A positive correlation was observed between GluCEST contrast and (1) H MRS-measured Glu/total creatine ratio. This method potentially provides a novel noninvasive biomarker for the diagnosis of the disease in preclinical stages and enables the development of disease-modifying therapies for AD.
Collapse
Affiliation(s)
- Mohammad Haris
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kavindra Nath
- Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Kejia Cai
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Anup Singh
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachelle Crescenzi
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Feliks Kogan
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gaurav Verma
- Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Sanjana Reddy
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hari Hariharan
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R. Melhem
- Neuroradiology, Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Ravinder Reddy
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
215
|
Zhou J, Zhu H, Lim M, Blair L, Quinones-Hinojosa A, Messina SA, Eberhart CG, Pomper MG, Laterra J, Barker PB, van Zijl PCM, Blakeley JO. Three-dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 2013; 38:1119-28. [PMID: 23440878 DOI: 10.1002/jmri.24067] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/10/2013] [Indexed: 01/31/2023] Open
Abstract
PURPOSE To investigate the feasibility of a three-dimensional amide-proton-transfer (APT) imaging sequence with gradient- and spin-echo readouts at 3 Tesla in patients with high- or low-grade gliomas. MATERIALS AND METHODS Fourteen patients with newly diagnosed gliomas were recruited. After B0 inhomogeneity correction on a voxel-by-voxel basis, APT-weighted images were reconstructed using a magnetization-transfer-ratio asymmetry at offsets of ±3.5 ppm with respect to the water resonance. Analysis of variance post hoc tests were used for statistical evaluations, and results were validated with pathology. RESULTS In six patients with gadolinium-enhancing high-grade gliomas, enhancing tumors on the postcontrast T1 -weighted images were consistently hyperintense on the APT-weighted images. Increased APT-weighted signal intensity was also clearly visible in two pathologically proven, high-grade gliomas without gadolinium enhancement. The average APT-weighted signal was significantly higher in the lesions than in the contralateral normal-appearing brain tissue (P < 0.001). In six low-grade gliomas, including two with gadolinium enhancement, APT-weighted imaging showed iso-intensity or mild punctate hyperintensity within all the lesions, which was significantly lower than that seen in the high-grade gliomas (P < 0.001). CONCLUSION The proposed three-dimensional APT imaging sequence can be incorporated into standard brain MRI protocols for patients with malignant gliomas.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Early postsurgical visualization of composite mesh used in ventral hernia repair by amide proton transfer MRI. Magn Reson Med 2013; 71:313-7. [DOI: 10.1002/mrm.24666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 12/20/2022]
|
217
|
Kogan F, Haris M, Singh A, Cai K, Debrosse C, Nanga RPR, Hariharan H, Reddy R. Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magn Reson Med 2013; 71:164-72. [PMID: 23412909 DOI: 10.1002/mrm.24641] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/07/2012] [Accepted: 12/26/2012] [Indexed: 01/15/2023]
Abstract
PURPOSE To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise. METHODS Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2 , magnetization transfer ratio and (31) P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers. RESULTS Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with (31) P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics. CONCLUSION Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle.
Collapse
Affiliation(s)
- Feliks Kogan
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, B1 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, Pennsylvania, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Yadav NN, Jones CK, Hua J, Xu J, van Zijl PCM. Imaging of endogenous exchangeable proton signals in the human brain using frequency labeled exchange transfer imaging. Magn Reson Med 2013; 69:966-73. [PMID: 23400954 DOI: 10.1002/mrm.24655] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 01/01/2023]
Abstract
PURPOSE To image endogenous exchangeable proton signals in the human brain using a recently reported method called frequency labeled exchange transfer (FLEX) MRI. METHODS As opposed to labeling exchangeable protons using saturation (i.e., chemical exchange saturation transfer, or CEST), FLEX labels exchangeable protons with their chemical shift evolution. The use of short high-power frequency pulses allows more efficient labeling of rapidly exchanging protons, while time domain acquisition allows removal of contamination from semi-solid magnetization transfer effects. RESULTS FLEX-based exchangeable proton signals were detected in human brain over the 1-5 ppm frequency range from water. Conventional magnetization transfer contrast and the bulk water signal did not interfere in the FLEX spectrum. The information content of these signals differed from in vivo CEST data in that the average exchange rate of these signals was 350-400 s(-1) , much faster than the amide signal usually detected using direct saturation (∼30 s(-1) ). Similarly, fast exchanging protons could be detected in egg white in the same frequency range where amide and amine protons of mobile proteins and peptides are known to resonate. CONCLUSIONS FLEX MRI in the human brain preferentially detects more rapidly exchanging amide/amine protons compared to traditional CEST experiments, thereby changing the information content of the exchangeable proton spectrum. This has the potential to open up different types of endogenous applications as well as more easy detection of rapidly exchanging protons in diaCEST agents or fast exchanging units such as water molecules in paracest agents without interference of conventional magnetization transfer contrast.
Collapse
Affiliation(s)
- Nirbhay N Yadav
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
219
|
Haris M, Singh A, Cai K, Nath K, Crescenzi R, Kogan F, Hariharan H, Reddy R. MICEST: a potential tool for non-invasive detection of molecular changes in Alzheimer's disease. J Neurosci Methods 2012; 212:87-93. [PMID: 23041110 DOI: 10.1016/j.jneumeth.2012.09.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/08/2012] [Accepted: 09/22/2012] [Indexed: 11/26/2022]
Abstract
Myo-inositol (mIns) is a marker of glial cells proliferation and has been shown to increase in early Alzheimer's disease (AD) pathology. mIns exhibits a concentration dependent chemical-exchange-saturation-transfer (CEST) effect (MICEST) between its hydroxyl groups and bulk water protons. Using the endogenous MICEST technique brain mIns concentration and glial cells proliferation can be mapped at high spatial resolution. The high resolution mapping of mIns was performed using MICEST technique on ∼20 months old APP-PS1 transgenic mouse model of AD as well as on age matched wild type (WT) control (n=5). The APP-PS1 mice show ∼50% higher MICEST contrast than WT control with concomitant increase in mIns concentration as measured through proton spectroscopy. Immunostaining against glial-fibric-acidic protein also depicts proliferative glial cells in larger extent in APP-PS1 than WT mice, which correspond to the higher mIns concentration. Potential significance of MICEST in early detection of AD pathology is discussed in detail.
Collapse
Affiliation(s)
- Mohammad Haris
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Varma G, Lenkinski RE, Vinogradov E. Keyhole chemical exchange saturation transfer. Magn Reson Med 2012; 68:1228-33. [PMID: 22246655 PMCID: PMC3354034 DOI: 10.1002/mrm.23310] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/11/2011] [Accepted: 11/06/2011] [Indexed: 12/30/2022]
Abstract
The keyhole technique, which involves the acquisition of dynamic data at low resolution in combination with a high-resolution reference, is developed for the purposes of chemical exchange saturation transfer (CEST) imaging, i.e., Keyhole CEST. Low-resolution data are acquired with saturation applied at different frequencies for Z-spectra, along with a high-resolution reference image taken without saturation. Three methods for high-resolution reconstruction of Keyhole CEST are evaluated using the values from quantitative high-resolution CEST maps. In addition, Keyhole CEST is applied for collection of data used for B(0) correction. The keyhole approach is evaluated for CEST contrast generation using exchanging protons in hydroxyl groups. First, the techniques are evaluated in vitro using samples of dextrose and chondroitin sulfate. Next, the work is extended in vivo to explore its applicability for gagCEST. Comparable quantitative gagCEST values are found using Keyhole CEST, provided the structure or region of interest is not limited by the low-resolution dataset.
Collapse
Affiliation(s)
- G Varma
- Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
221
|
Abramson RG, Arlinghaus LR, Weis JA, Li X, Dula AN, Chekmenev EY, Smith SA, Miga MI, Abramson VG, Yankeelov TE. Current and emerging quantitative magnetic resonance imaging methods for assessing and predicting the response of breast cancer to neoadjuvant therapy. BREAST CANCER-TARGETS AND THERAPY 2012; 2012:139-154. [PMID: 23154619 DOI: 10.2147/bctt.s35882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reliable early assessment of breast cancer response to neoadjuvant therapy (NAT) would provide considerable benefit to patient care and ongoing research efforts, and demand for accurate and noninvasive early-response biomarkers is likely to increase. Response assessment techniques derived from quantitative magnetic resonance imaging (MRI) hold great potential for integration into treatment algorithms and clinical trials. Quantitative MRI techniques already available for assessing breast cancer response to neoadjuvant therapy include lesion size measurement, dynamic contrast-enhanced MRI, diffusion-weighted MRI, and proton magnetic resonance spectroscopy. Emerging yet promising techniques include magnetization transfer MRI, chemical exchange saturation transfer MRI, magnetic resonance elastography, and hyperpolarized MR. Translating and incorporating these techniques into the clinical setting will require close attention to statistical validation methods, standardization and reproducibility of technique, and scanning protocol design.
Collapse
Affiliation(s)
- Richard G Abramson
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA ; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA ; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Wu R, Liu CM, Liu PK, Sun PZ. Improved measurement of labile proton concentration-weighted chemical exchange rate (k(ws)) with experimental factor-compensated and T(1) -normalized quantitative chemical exchange saturation transfer (CEST) MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:384-9. [PMID: 22649044 PMCID: PMC3415239 DOI: 10.1002/cmmi.505] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI enables measurement of dilute CEST agents and microenvironment properties such as pH and temperature, holding great promise for in vivo applications. However, because of confounding concomitant radio frequency (RF) irradiation and relaxation effects, the CEST-weighted MRI contrast may not fully characterize the underlying CEST phenomenon. We postulated that the accuracy of quantitative CEST MRI could be improved if the experimental factors (labeling efficiency and RF spillover effect) were estimated and taken into account. Specifically, the experimental factor was evaluated as a function of exchange rate and CEST agent concentration ratio, which remained relatively constant for intermediate RF irradiation power levels. Hence, the experimental factors can be calculated based on the reasonably estimated exchange rate and labile proton concentration ratio, which significantly improved quantification. The simulation was confirmed with creatine phantoms of serially varied concentration titrated to the same pH, whose reverse exchange rate (k(ws)) was found to be linearly correlated with the concentration. In summary, the proposed solution provides simplified yet reasonably accurate quantification of the underlying CEST system, which may help guide the ongoing development of quantitative CEST MRI.
Collapse
Affiliation(s)
- Renhua Wu
- Department of Radiology, 2 Affiliated Hospital of Shantou University Medical College, Guangdong, China
- Provincial Key Laboratory of Medical Molecular Imaging, Shantou, Guangdong, China
| | - Charng-Ming Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| | - Philip K Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| |
Collapse
|
223
|
Walker-Samuel S, Johnson SP, Pedley B, Lythgoe MF, Golay X. Extracranial measurements of amide proton transfer using exchange-modulated point-resolved spectroscopy (EXPRESS). NMR IN BIOMEDICINE 2012; 25:829-834. [PMID: 22135248 DOI: 10.1002/nbm.1798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/03/2011] [Accepted: 09/12/2011] [Indexed: 05/31/2023]
Abstract
Chemical exchange saturation transfer (CEST) imaging has been used experimentally in a large range of applications. However, full quantification of CEST effects in vivo using standard imaging sequences is time consuming as a large number of saturation frequency offsets, each followed by an imaging readout, are required to define a z spectrum. Furthermore, outside the brain, the presence of fat can confound the interpretation of z spectra. A novel acquisition and post-processing technique is presented in this study, named exchange-modulated point-resolved spectroscopy (EXPRESS), which aims to address these limitations and to enable spatially localised, high signal-to-noise measurements of CEST effects in vivo. Using amide proton exchange (APT) measurements in tumours, it is demonstrated that the acquisition of two-dimensional EXPRESS spectra composed of chemical shift and saturation frequency offset dimensions allows the correction of CEST data containing both fat and water signals, which is a common confounding property of tissues found outside the brain.
Collapse
Affiliation(s)
- Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, Department of Medicine and Institute of Child Health, University College London, London, UK.
| | | | | | | | | |
Collapse
|
224
|
Abstract
Localized pH changes have been suggested to occur in the brain during normal function. However, the existence of such pH changes has also been questioned. Lack of methods for noninvasively measuring pH with high spatial and temporal resolution has limited insight into this issue. Here we report that a magnetic resonance imaging (MRI) strategy, T(1) relaxation in the rotating frame (T(1)ρ), is sufficiently sensitive to detect widespread pH changes in the mouse and human brain evoked by systemically manipulating carbon dioxide or bicarbonate. Moreover, T(1)ρ detected a localized acidosis in the human visual cortex induced by a flashing checkerboard. Lactate measurements and pH-sensitive (31)P spectroscopy at the same site also identified a localized acidosis. Consistent with the established role for pH in blood flow recruitment, T(1)ρ correlated with blood oxygenation level-dependent contrast commonly used in functional MRI. However, T(1)ρ was not directly sensitive to blood oxygen content. These observations indicate that localized pH fluctuations occur in the human brain during normal function. Furthermore, they suggest a unique functional imaging strategy based on pH that is independent of traditional functional MRI contrast mechanisms.
Collapse
|
225
|
Zu Z, Janve VA, Xu J, Does MD, Gore JC, Gochberg DF. A new method for detecting exchanging amide protons using chemical exchange rotation transfer. Magn Reson Med 2012; 69:637-47. [PMID: 22505325 DOI: 10.1002/mrm.24284] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 11/08/2022]
Abstract
In this study, we introduce a new method for amide proton transfer imaging based on chemical exchange rotation transfer. It avoids several artifacts that plague conventional chemical exchange saturation transfer approaches by creating label and reference scans based on varying the irradiation pulse rotation angle (π and 2π radians) instead of the frequency offset (3.5 and -3.5 ppm). Specifically, conventional analysis is sensitive to confounding contributions from magnetic field (B(0)) inhomogeneities and, more problematically, inherently asymmetric macromolecular resonances. In addition, the lipid resonance at -3.5 ppm complicates the interpretation of the reference scan and decreases the resulting contrast. Finally, partial overlap of the amide signal by nearby amines and hydroxyls obscure the results. By avoiding these issues, our new method is a promising approach for imaging endogenous protein and peptide content and mapping pH.
Collapse
Affiliation(s)
- Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310, USA
| | | | | | | | | | | |
Collapse
|
226
|
Vinogradov E, Soesbe TC, Balschi JA, Sherry AD, Lenkinski RE. pCEST: Positive contrast using Chemical Exchange Saturation Transfer. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 215:64-73. [PMID: 22237630 PMCID: PMC3288637 DOI: 10.1016/j.jmr.2011.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 05/11/2023]
Abstract
Chemical Exchange Saturation Transfer (CEST) contrast utilizes selective pre-saturation of a small pool of exchanging protons and subsequent detection of the decrease in bulk water signal. The CEST contrast is negative and requires detection of small signal change in the presence of a strong background signal. Here we develop a Positive CEST (pCEST) detection scheme utilizing the analogous nature of the CEST and off-resonance T(1)(ρ) experiments and exploring increased apparent relaxation rates in the presence of the selective pre-saturation. pCEST leads to the positive contrast, i.e., increased signal intensity as the result of the presence of the agent and RF pre-saturation. Simultaneously substantial background suppression is achieved. The contrast can be switched "ON" and "OFF", similar to the original CEST.
Collapse
Affiliation(s)
- Elena Vinogradov
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
227
|
Abstract
Glutamate (Glu) exhibits a pH and concentration dependent chemical exchange saturation transfer effect (CEST) between its -amine group and bulk water, here termed GluCEST. GluCEST asymmetry is observed at ~3 parts per million downfield from bulk water. Following middle cerebral artery occlusion in the rat brain, an approximately 100% elevation of GluCEST in the ipsilateral side compared to the contralateral side was observed, and is predominantly due to pH changes. In a rat brain tumor model with blood brain barrier disruption, intravenous Glu injection resulted in a clear elevation of GluCEST and a comparable increase in the proton magnetic resonance spectroscopy signal of Glu. GluCEST maps from healthy human brain at 7T were also obtained. These results demonstrate the feasibility and potential of GluCEST for mapping relative changes in Glu concentration as well as pH in vivo. Potential contributions from other brain metabolites to the GluCEST effect are also discussed.
Collapse
|
228
|
Jones CK, Polders D, Hua J, Zhu H, Hoogduin HJ, Zhou J, Luijten P, van Zijl PCM. In vivo three-dimensional whole-brain pulsed steady-state chemical exchange saturation transfer at 7 T. Magn Reson Med 2011; 67:1579-89. [PMID: 22083645 DOI: 10.1002/mrm.23141] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/29/2011] [Accepted: 07/18/2011] [Indexed: 12/27/2022]
Abstract
Chemical exchange saturation transfer (CEST) is a technique to indirectly detect pools of exchangeable protons through the water signal. To increase its applicability to human studies, it is needed to develop sensitive pulse sequences for rapidly acquiring whole-organ images while adhering to stringent amplifier duty cycle limitations and specific absorption rate restrictions. In addition, the interfering effects of direct water saturation and conventional magnetization transfer contrast complicate CEST quantification and need to be reduced as much as possible. It is shown that for protons exchanging with rates of less than 50-100 Hz, such as imaged in amide proton transfer experiments, these problems can be addressed by using a three-dimensional steady state pulsed acquisition of limited B(1) strength (≈ 1 μT). Such an approach exploits the fact that the direct water saturation width, magnetization transfer contrast magnitude, and specific absorption rate increase strongly with B(1) , while the size of the CEST effect for such protons depends minimally on B(1) . A short repetition time (65 ms) steady-state sequence consisting of a brief saturation pulse (25 ms) and a segmented echo-planar imaging train allowed acquisition of a three-dimensional whole-brain volume in approximately 11 s per saturation frequency, while remaining well within specific absorption rate and duty cycle limits. Magnetization transfer contrast was strongly reduced, but substantial saturation effects were found at frequencies upfield from water, which still confound the use of magnetization transfer asymmetry analysis. Fortunately, the limited width of the direct water saturation signal could be exploited to fit it with a Lorentzian function allowing CEST quantification. Amide proton transfer effects ranged between 1.5% and 2.5% in selected white and grey matter regions. This power and time-efficient 3D pulsed CEST acquisition scheme should aid endogenous CEST quantification at both high and low fields.
Collapse
Affiliation(s)
- Craig K Jones
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Kim M, Chan Q, Anthony MP, Cheung KMC, Samartzis D, Khong PL. Assessment of glycosaminoglycan distribution in human lumbar intervertebral discs using chemical exchange saturation transfer at 3 T: feasibility and initial experience. NMR IN BIOMEDICINE 2011; 24:1137-1144. [PMID: 21387446 DOI: 10.1002/nbm.1671] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 05/30/2023]
Abstract
Recent studies have proposed that glycosaminoglycan chemical exchange saturation transfer (gagCEST) is associated with a loss of glycosaminoglycans (GAGs), which may be an initiating factor in intervertebral disc (IVD) degeneration. Despite its promising potential, this application has not been reported in human in vivo IVD studies because of the challenges of B(0) magnetic field inhomogeneity in gagCEST. This study aimed to evaluate the feasibility of quantifying CEST values in IVDs of healthy volunteers using a clinical 3 T scanner. A single-slice turbo spin echo sequence was used to quantify the CEST effect in various GAG phantoms and in IVDs of 12 volunteers. The phantom results indicated high correlation between gagCEST and GAG concentrations (R(2) = 0.95). With optimal B(0) inhomogeneity correction, in vivo CEST maps of IVDs showed robust contrast between the nucleus pulposus (NP) and the annulus fibrosus (AF) (p < 0.01), as well as higher signal in the central relative to the peripheral NP. In addition, a trend of decreasing CEST values from upper to lower disc levels was evident in NP. Our results demonstrate that in vivo gagCEST quantification in human lumbar IVDs is feasible at 3 T in combination with successful B(0) inhomogeneity correction, but without significant hardware modifications. Our initial findings suggest that it would be worthwhile to perform direct correlation studies between CEST and GAGs using cadaver samples, and to extend this novel technique to studies on patients with degenerative discs to better understand its distinct imaging features relative to conventional techniques.
Collapse
Affiliation(s)
- Mina Kim
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.
| | | | | | | | | | | |
Collapse
|
230
|
Desmond KL, Stanisz GJ. Understanding quantitative pulsed CEST in the presence of MT. Magn Reson Med 2011; 67:979-90. [DOI: 10.1002/mrm.23074] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 05/31/2011] [Accepted: 06/08/2011] [Indexed: 11/08/2022]
|
231
|
Sun PZ. Simplified quantification of labile proton concentration-weighted chemical exchange rate (k(ws) ) with RF saturation time dependent ratiometric analysis (QUESTRA): normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI. Magn Reson Med 2011; 67:936-42. [PMID: 21842497 DOI: 10.1002/mrm.23068] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/03/2011] [Accepted: 05/29/2011] [Indexed: 12/20/2022]
Abstract
Chemical exchange saturation transfer MRI is an emerging imaging technique capable of detecting dilute proteins/peptides and microenvironmental properties, with promising in vivo applications. However, chemical exchange saturation transfer MRI contrast is complex, varying not only with the labile proton concentration and exchange rate, but also with experimental conditions such as field strength and radiofrequency (RF) irradiation scheme. Furthermore, the optimal RF irradiation power depends on the exchange rate, which must be estimated in order to optimize the chemical exchange saturation transfer MRI experiments. Although methods including numerical fitting with modified Bloch-McConnell equations, quantification of exchange rate with RF saturation time and power (QUEST and QUESP), have been proposed to address this relationship, they require multiple-parameter non-linear fitting and accurate relaxation measurement. Our work extended the QUEST algorithm with ratiometric analysis (QUESTRA) that normalizes the magnetization transfer ratio at labile and reference frequencies, which effectively eliminates the confounding relaxation and RF spillover effects. Specifically, the QUESTRA contrast approaches its steady state mono-exponentially at a rate determined by the reverse exchange rate (k(ws) ), with little dependence on bulk water T(1) , T(2) , RF power and chemical shift. The proposed algorithm was confirmed numerically, and validated experimentally using a tissue-like phantom of serially titrated pH compartments.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
232
|
Tozer DJ, Rees JH, Benton CE, Waldman AD, Jäger HR, Tofts PS. Quantitative magnetisation transfer imaging in glioma: preliminary results. NMR IN BIOMEDICINE 2011; 24:492-498. [PMID: 20960580 DOI: 10.1002/nbm.1614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 07/30/2010] [Accepted: 08/02/2010] [Indexed: 05/30/2023]
Abstract
Quantitative magnetisation transfer imaging (qMTI) is an extension of conventional MT techniques and allows the measurement of parameters that reflect tissue ultrastructure through the properties of macromolecule-bound protons; these include the bound proton fraction and the relaxation times of free and bound proton pools. It has been used in multiple sclerosis and Alzheimer's disease, and has shown changes in some of the parameters, particularly the bound proton fraction. The purpose of this pilot study was to assess whether qMTI could distinguish between gliomas and normal brain tissue, and provide proof of principle for its use in tumour characterisation. Eight subjects [three men, five women; mean age, 44 years; range, 27-66 years; seven World Health Organization (WHO) Grade II, one Grade III] with biopsy-proven glioma were imaged with a structural MRI protocol that included three-dimensional qMTI. qMTI parameters were extracted from regions of interest selected from different tumour components visible on conventional MR sequences, normal-appearing peritumoral tissue and distant normal-appearing white matter. All patients gave informed consent and the study was approved by the Local Research Ethics Committee. Almost all of the qMTI parameters detected abnormalities in both glioma and the peritumoral region relative to the distant white matter. In particular, the bound proton fraction was reduced significantly from 6.0 percentage units (pu) [standard deviation (SD), 0.5 pu] in normal-appearing white matter to 1.7 pu (SD = 0.5 pu) in solid tumour and 2.2 pu (SD = 0.5 pu) in peritumoral areas. This work shows that qMTI reveals abnormalities, not only in glioma, but also in the apparently normal tissue surrounding the conventionally defined tumour. Thus, qMTI shows promise for tumour characterisation and for studying tumour boundaries. These preliminary data justify larger studies in a range of different tumour types and grades.
Collapse
|
233
|
Scheidegger R, Vinogradov E, Alsop DC. Amide proton transfer imaging with improved robustness to magnetic field inhomogeneity and magnetization transfer asymmetry using saturation with frequency alternating RF irradiation. Magn Reson Med 2011; 66:1275-85. [PMID: 21608029 DOI: 10.1002/mrm.22912] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 02/01/2011] [Accepted: 02/15/2011] [Indexed: 01/21/2023]
Abstract
Amide proton transfer (APT) imaging has shown promise as an indicator of tissue pH and as a marker for brain tumors. Sources of error in APT measurements include direct water saturation, and magnetization transfer (MT) from membranes and macromolecules. These are typically suppressed by postprocessing asymmetry analysis. However, this approach is strongly dependent on B(0) homogeneity and can introduce additional errors due to intrinsic MT asymmetry, aliphatic proton features opposite the amide peak and radiation damping-induced asymmetry. Although several methods exist to correct for B(0) inhomogeneity, they tremendously increase scan times and do not address errors induced by asymmetry of the z-spectrum. In this article, a novel saturation scheme-saturation with frequency alternating RF irradiation (SAFARI)-is proposed in combination with a new magnetization transfer ratio (MTR) parameter designed to generate APT images insensitive to direct water saturation and MT, even in the presence of B(0) inhomogeneity. The feasibility of the SAFARI technique is demonstrated in phantoms and in the human brain. Experimental results show that SAFARI successfully removes direct water saturation and MT contamination from APT images. It is insensitive to B(0) offsets up to 180 Hz without using additional B(0) correction, thereby dramatically reducing scanning time.
Collapse
Affiliation(s)
- Rachel Scheidegger
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA.
| | | | | |
Collapse
|
234
|
van Zijl PCM, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn't? Magn Reson Med 2011; 65:927-48. [PMID: 21337419 PMCID: PMC3148076 DOI: 10.1002/mrm.22761] [Citation(s) in RCA: 810] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/01/2010] [Accepted: 11/24/2010] [Indexed: 12/24/2022]
Abstract
Chemical exchange saturation transfer (CEST) imaging is a relatively new magnetic resonance imaging contrast approach in which exogenous or endogenous compounds containing either exchangeable protons or exchangeable molecules are selectively saturated and after transfer of this saturation, detected indirectly through the water signal with enhanced sensitivity. The focus of this review is on basic magnetic resonance principles underlying CEST and similarities to and differences with conventional magnetization transfer contrast. In CEST magnetic resonance imaging, transfer of magnetization is studied in mobile compounds instead of semisolids. Similar to magnetization transfer contrast, CEST has contributions of both chemical exchange and dipolar cross-relaxation, but the latter can often be neglected if exchange is fast. Contrary to magnetization transfer contrast, CEST imaging requires sufficiently slow exchange on the magnetic resonance time scale to allow selective irradiation of the protons of interest. As a consequence, magnetic labeling is not limited to radio-frequency saturation but can be expanded with slower frequency-selective approaches such as inversion, gradient dephasing and frequency labeling. The basic theory, design criteria, and experimental issues for exchange transfer imaging are discussed. A new classification for CEST agents based on exchange type is proposed. The potential of this young field is discussed, especially with respect to in vivo application and translation to humans.
Collapse
Affiliation(s)
- Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
235
|
Dula AN, Asche EM, Landman BA, Welch EB, Pawate S, Sriram S, Gore JC, Smith SA. Development of chemical exchange saturation transfer at 7 T. Magn Reson Med 2011; 66:831-8. [PMID: 21432902 DOI: 10.1002/mrm.22862] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 02/04/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI is a molecular imaging method that has previously been successful at reporting variations in tissue protein and glycogen contents and pH. We have implemented amide proton transfer (APT), a specific form of chemical exchange saturation transfer imaging, at high field (7 T) and used it to study healthy human subjects and patients with multiple sclerosis. The effects of static field inhomogeneities were mitigated using a water saturation shift referencing method to center each z-spectrum on a voxel-by-voxel basis. Contrary to results obtained at lower fields, APT imaging at 7 T revealed significant contrast between white and gray matters, with a higher APT signal apparent within the white matter. Preliminary studies of multiple sclerosis showed that the APT asymmetry varied with the type of lesion examined. An increase in APT asymmetry relative to healthy tissue was found in some lesions. These results indicate the potential utility of APT at high field as a noninvasive biomarker of white matter pathology, providing complementary information to other MRI methods in current clinical use.
Collapse
Affiliation(s)
- Adrienne N Dula
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37232-2310, USA.
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Zu Z, Li K, Janve VA, Does MD, Gochberg DF. Optimizing pulsed-chemical exchange saturation transfer imaging sequences. Magn Reson Med 2011; 66:1100-8. [PMID: 21432903 DOI: 10.1002/mrm.22884] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 01/03/2011] [Accepted: 01/30/2011] [Indexed: 11/07/2022]
Abstract
Chemical exchange saturation transfer (CEST) provides a new imaging contrast mechanism sensitive to labile proton exchange. Pulsed-CEST imaging is better suited to the hardware constraints on clinical imaging systems when compared with traditional continuous wave-CEST imaging methods. However, designing optimum pulsed-CEST imaging sequences entails complicated and time-consuming numerical integrations. In this work, a simplified and computationally efficient technique is provided to optimize the pulsed-CEST imaging sequence. An analysis was performed of the optimal average irradiation power and the optimal irradiation flip angle as a function of the acquisition parameters and sample properties in both a two-pool model and a three-pool model of endogenous amine exchange. Key simulated and experimental results based on a creatine/agar tissue phantom show that (1) the average irradiation power is a more meaningful sequence metric than is the average irradiation field amplitude, (2) the optimal average powers for continuous wave and pulsed-CEST imaging are approximately equal to each other for a relevant range of solute frequency offsets, exchange rates, and concentrations, (3) an irradiation flip angle of 180° is optimal or near optimal, independent of the other acquisition parameters and the sample properties, and (4) higher duty cycles yield higher CEST contrast.
Collapse
Affiliation(s)
- Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee 37232-2310, USA
| | | | | | | | | |
Collapse
|
237
|
Zhao X, Wen Z, Huang F, Lu S, Wang X, Hu S, Zu D, Zhou J. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 2011; 66:1033-41. [PMID: 21394783 DOI: 10.1002/mrm.22891] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/29/2011] [Accepted: 01/31/2011] [Indexed: 11/10/2022]
Abstract
Amide proton transfer (APT) imaging is capable of detecting mobile cellular proteins and peptides in tumor and monitoring pH effects in stroke, through the saturation transfer between irradiated amide protons and water protons. In this work, four healthy subjects, eight brain tumor patients (four with high-grade glioma, one with lung cancer metastasis, and three with meningioma), and four stroke patients (average 4.3 ± 2.5 days after the onset of the stroke) were scanned at 3 T, using different radiofrequency saturation powers. The APT effect was quantified using the magnetization transfer ratio (MTR) asymmetry at 3.5 ppm with respect to the water resonance. At a saturation power of 2 μT, the measured APT-MRI signal of the normal brain tissue was almost zero, due to the contamination of the negative conventional magnetization transfer ratio asymmetry. This irradiation power caused an optimal hyperintense APT-MRI signal in the tumor and an optimal hypointense signal in the stroke, compared to the normal brain tissue. The results suggest that the saturation power of 2 μT is ideal for APT imaging of these two pathologies at 3 T with the existing clinical hardware.
Collapse
|
238
|
Jia G, Takayama Y, Flanigan DC, Kaeding CC, Zhou J, Chaudhari A, Clark D, Sammet S, Liang J, Choi S, Knopp MV. Quantitative assessment of mobile protein levels in human knee synovial fluid: feasibility of chemical exchange saturation transfer (proteinCEST) MRI of osteoarthritis. Magn Reson Imaging 2011; 29:335-41. [PMID: 21292419 DOI: 10.1016/j.mri.2010.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/16/2010] [Accepted: 10/23/2010] [Indexed: 11/26/2022]
Abstract
PURPOSE To establish the feasibility of chemical exchange saturation transfer (proteinCEST) MRI in the differentiation of osteoarthritis (OA) knee joints from non-OA joints by detecting mobile protein and peptide levels in synovial fluid by determining their relative distribution. MATERIALS AND METHODS A total of 25 knees in 11 men and 12 women with knee injuries were imaged using whole knee joint proteinCEST MRI sequence at 3 T. The joint synovial fluid was segmented and the asymmetric magnetization transfer ratio at 3.5 ppm MTR(asym) (3.5 ppm) was calculated to assess protein content in the synovial fluid. The 85th percentile of synovial fluid MTR(asym) (3.5 ppm) distribution profile was compared using the independent Student's t test. The diagnostic performance of the 85th percentile of synovial fluid MTR(asym) (3.5 ppm) in differentiating OA and non-OA knee joints was evaluated. RESULTS The 85th percentile of synovial fluid MTR(asym) (3.5 ppm) in knee joints with OA was 8.6%±3.4% and significantly higher than that in the knee joints without OA (6.3%±1.4%, P<.05). A knee joint with an 85th percentile of synovial fluid MTR(asym) (3.5 ppm) greater than 7.7% was considered to be an OA knee joint. With the threshold, the sensitivity, specificity and overall accuracy for differentiating knee joints with OA from the joints without OA were 54% (7/13), 92% (11/12) and 72% (18/25), respectively. CONCLUSION proteinCEST MRI appears feasible as a quantitative methodology to determine mobile protein levels in synovial fluid and identify patterns characteristic for OA disease.
Collapse
Affiliation(s)
- Guang Jia
- Department of Radiology and Wright Center of Innovation in Biomedical Imaging, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Zhu H, Jones CK, van Zijl PCM, Barker PB, Zhou J. Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain. Magn Reson Med 2011; 64:638-44. [PMID: 20632402 DOI: 10.1002/mrm.22546] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemical exchange saturation transfer magnetic resonance imaging can detect low-concentration compounds with exchangeable protons through saturation transfer to water. This technique is generally slow, as it requires acquisition of saturation images at multiple frequencies. In addition, multislice imaging is complicated by saturation effects differing from slice to slice because of relaxation losses. In this study, a fast three-dimensional chemical exchange saturation transfer imaging sequence is presented that allows whole-brain coverage for a frequency-dependent saturation spectrum (z-spectrum, 26 frequencies) in less than 10 min. The approach employs a three-dimensional gradient- and spin-echo readout using a prototype 32-channel phased-array coil, combined with two-dimensional sensitivity encoding accelerations. Results from a homogenous protein-containing phantom at 3T show that the sequence produced a uniform contrast across all slices. To show translational feasibility, scans were also performed on five healthy human subjects. Results for chemical exchange saturation transfer images at 3.5 ppm downfield of the water resonance, so-called amide proton transfer images, show that lipid signals are sufficiently suppressed and artifacts caused by B(0) inhomogeneity can be removed in postprocessing. The scan time and image quality of these in vivo results show that three-dimensional chemical exchange saturation transfer MRI using gradient- and spin-echo acquisition is feasible for whole-brain chemical exchange saturation transfer studies at 3T in a clinical time frame.
Collapse
Affiliation(s)
- He Zhu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | |
Collapse
|
240
|
Liu G, Gilad AA, Bulte JWM, van Zijl PCM, McMahon MT. High-throughput screening of chemical exchange saturation transfer MR contrast agents. CONTRAST MEDIA & MOLECULAR IMAGING 2011; 5:162-70. [PMID: 20586030 DOI: 10.1002/cmmi.383] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A new high-throughput MRI method for screening chemical exchange saturation transfer (CEST) agents is demonstrated, allowing simultaneous testing of multiple samples with minimal attention to sample configuration and shimming of the main magnetic field (B(0)). This approach, which is applicable to diamagnetic, paramagnetic and liposome CEST agents, employs a set of inexpensive glass or plastic capillary tubes containing CEST agents put together in a cheap plastic tube holder, without the need for liquid between the tubes to reduce magnetic susceptibility effects. In this setup, a reference image of direct water saturation spectra is acquired in order to map the absolute water frequency for each volume element (voxel) in the sample image, followed by an image of saturation transfer spectra to determine the CEST properties. Even though the field over the total sample is very inhomogeneous due to air-tube interfaces, the shape of the direct saturation spectra is not affected, allowing removal of susceptibility shift effects from the CEST data by using the absolute water frequencies from the reference map. As a result, quantitative information such as the mean CEST intensity for each sample can be extracted for multiple CEST agents at once. As an initial application, we demonstrate rapid screening of a library of 16 polypeptides for their CEST properties, but in principle the number of tubes is limited only by the available signal-noise-ratio, field of view and gradient strength for imaging.
Collapse
Affiliation(s)
- Guanshu Liu
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
241
|
Abstract
Amide proton transfer (APT) imaging is a new MRI technique that detects endogenous mobile proteins and peptides in tissue via saturation of the amide protons in the peptide bonds. Initial studies have shown promise in detecting tumor and stroke, but this technique was hampered by magnetic field inhomogeneity and a low signal-to-noise ratio. Several important prerequisites for performing APT imaging experiments include designing an effective APT imaging pulse sequence based on the hardware capability, optimizing the experimental protocol for the best clinical imaging quality, and developing data-processing approaches for effective image assessment. In this chapter, technical issues, such as pulse sequence design and optimization, magnetic field inhomogeneity correction, specific absorption rate minimization, and scan duration, are addressed.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21205, USA, F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA,
| |
Collapse
|
242
|
Haris M, Cai K, Singh A, Hariharan H, Reddy R. In vivo mapping of brain myo-inositol. Neuroimage 2010; 54:2079-85. [PMID: 20951217 DOI: 10.1016/j.neuroimage.2010.10.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 09/29/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022] Open
Abstract
Myo-Inositol (MI) is one of the most abundant metabolites in the human brain located mainly in glial cells and functions as an osmolyte. The concentration of MI is altered in many brain disorders including Alzheimer's disease and brain tumors. Currently available magnetic resonance spectroscopy (MRS) methods for measuring MI are limited to low spatial resolution. Here, we demonstrate that the hydroxyl protons on MI exhibit chemical exchange with bulk water and saturation of these protons leads to reduction in bulk water signal through a mechanism known as chemical exchange saturation transfer (CEST). The hydroxyl proton exchange rate (k=600 s(-1)) is determined to be in the slow to intermediate exchange regime on the NMR time scale (chemical shift (∆ω)>k), suggesting that the CEST effect of MI (MICEST) can be imaged at high fields such as 7 T (∆ω=1.2×10(3)rad/s) and 9.4 T (∆ω=1.6×10(3) rad/s). Using optimized imaging parameters, concentration dependent broad CEST asymmetry between ~0.2 and 1.5 ppm with a peak at ~0.6 ppm from bulk water was observed. Further, it is demonstrated that MICEST detection is feasible in the human brain at ultra high fields (7 T) without exceeding the allowed limits on radiofrequency specific absorption rate. Results from healthy human volunteers (N=5) showed significantly higher (p=0.03) MICEST effect from white matter (5.2±0.5%) compared to gray matter (4.3±0.5%). The mean coefficient of variations for intra-subject MICEST contrast in WM and GM were 0.49 and 0.58 respectively. Potential overlap of CEST signals from other brain metabolites with the observed MICEST map is discussed. This noninvasive approach potentially opens the way to image MI in vivo and to monitor its alteration in many disease conditions.
Collapse
Affiliation(s)
- Mohammad Haris
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | | | | | | | | |
Collapse
|
243
|
Hancu I, Dixon WT, Woods M, Vinogradov E, Sherry AD, Lenkinski RE. CEST and PARACEST MR contrast agents. Acta Radiol 2010; 51:910-23. [PMID: 20828299 DOI: 10.3109/02841851.2010.502126] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review we describe the status of development for a new class of magnetic resonance (MR) contrast agents, based on chemical exchange saturation transfer (CEST). The mathematics and physics relevant to the description of the CEST effect in MR are presented in an appendix published in the online version only. We discuss the issues arising when translating in vitro results obtained with CEST agents to using these MR agents in in vivo model studies and in humans. Examples are given on how these agents are imaged in vivo. We summarize the status of development of these CEST agents, and speculate about the next steps that may be taken towards the demonstration of CEST MR imaging in clinical applications.
Collapse
Affiliation(s)
| | | | - Mark Woods
- University of Texas at Dallas, Dallas, TX, USA
| | | | - A. Dean Sherry
- University of Texas at Dallas, Dallas, TX, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
244
|
Sun PZ, Cheung JS, Wang E, Benner T, Sorensen AG. Fast multislice pH-weighted chemical exchange saturation transfer (CEST) MRI with Unevenly segmented RF irradiation. Magn Reson Med 2010; 65:588-94. [PMID: 20872859 DOI: 10.1002/mrm.22628] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/20/2010] [Accepted: 08/10/2010] [Indexed: 11/06/2022]
Abstract
Chemical exchange saturation transfer (CEST) MRI is a versatile imaging technique for measuring microenvironment properties via dilute CEST labile groups. Conventionally, CEST MRI is implemented with a long radiofrequency irradiation module, followed by fast image acquisition to obtain the steady state CEST contrast. Nevertheless, the sensitivity, scan time, and spatial coverage of the conventional CEST MRI method may not be optimal. Our study proposed a segmented radiofrequency labeling scheme that includes a long primary radiofrequency irradiation module to generate the steady state CEST contrast and repetitive short secondary radiofrequency irradiation module immediately after the image acquisition so as to maintain the steady state CEST contrast for multislice acquisition and signal averaging. The proposed CEST MRI method was validated experimentally with a tissue-like pH phantom and optimized for the maximal contrast-to-noise ratio. In addition, the proposed sequence was evaluated for imaging ischemic acidosis via pH-weighted endogenous amide proton transfer MRI, which showed similar contrast as conventional amide proton transfer MRI. In sum, a fast multislice relaxation self-compensated CEST MRI sequence was developed, with significantly improved sensitivity and suitable for in vivo applications.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
245
|
Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 5:78-98. [PMID: 20419761 DOI: 10.1002/cmmi.369] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CEST agents represent a very promising class of MRI contrast media as they encode a frequency dependence that is not like the classical relaxation-based agents. This peculiar property enables novel applications such as the detection of more than one agent in the same MR image as well as the set-up of ratiometric methods for the quantitative assessment of physico-chemical and biological parameters that characterize the micro-environment in which they are distributed. This survey is aimed at providing the reader with the basic properties and the potential of these compounds. Fundamental aspects, such as the theoretical basis of the saturation transfer via chemical exchange, the generation of the CEST contrast, the classification and sensitivity of CEST agents, and some representative examples displaying their potential in the field of MR-molecular imaging, are presented and discussed in detail.
Collapse
|
246
|
Sun PZ. Simplified and scalable numerical solution for describing multi-pool chemical exchange saturation transfer (CEST) MRI contrast. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 205:235-41. [PMID: 20570196 PMCID: PMC2902598 DOI: 10.1016/j.jmr.2010.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 05/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) imaging is sensitive to dilute labile proton and microenvironment properties such as pH and temperature, and provides vital information complementary to the conventional MRI methods. Whereas the Bloch equations coupled by exchange terms (i.e., Bloch-McConnell equations) have been utilized to quantify 2-pool CEST contrast, it is tedious to extend the Bloch-McConnell equations to describe CEST contrast beyond four saturation transfer sites. Hence, it is necessary to develop a scalable yet reasonably accurate numerical solution to describe the complex multi-pool CEST contrast. It is postulated here that the multi-pool CEST contrast can be quantified by modifying the classic 2-pool model. Although the direct exchange among labile proton groups is often negligible, labile protons may be coupled indirectly through their interaction with bulk water protons, which has to be quantified. The coupling term was solved empirically, and the proposed simplified solution was shown in good agreement with the conventional simulation. Moreover, the proposed solution is scalable, and can be easily extended to describe multi-pool CEST contrast. In sum, our study established a simplified and scalable, yet reasonably accurate numerical solution, suitable for quantitatively describing multi-pool CEST contrast.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
247
|
Park SH, Duong TQ. Alternate ascending/descending directional navigation approach for imaging magnetization transfer asymmetry. Magn Reson Med 2010; 65:1702-10. [PMID: 20677233 DOI: 10.1002/mrm.22568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/24/2010] [Accepted: 06/10/2010] [Indexed: 11/12/2022]
Abstract
A new method for imaging magnetization transfer (MT) asymmetry with no separate saturation pulse is proposed in this article. MT effects were generated from sequential two-dimensional balanced steady-state free precession imaging, where interslice MT asymmetry was separated from interslice blood flow and magnetic field inhomogeneity with alternate ascending/descending directional navigation (ALADDIN). Alternate ascending/descending directional navigation provided high-resolution multislice MT asymmetry images within a reasonable imaging time of ∼ 3 min. MT asymmetry signals measured with alternate ascending/descending directional navigation were 1-2% of baseline signals (N = 6), in agreement with those from the conventional methods. About 70% of MT asymmetry signals were determined by the first prior slice. The frequency offset ranges in this study were >8 ppm from the water resonance frequency, implying that the MT effects were mostly associated with solid-like macromolecules. Potential methods to make alternate ascending/descending directional navigation feasible for imaging amide proton transfer (∼ 3.5 ppm offset from the water resonance frequency) were discussed.
Collapse
Affiliation(s)
- Sung-Hong Park
- Research Imaging Institute and Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| | | |
Collapse
|
248
|
Wen Z, Hu S, Huang F, Wang X, Guo L, Quan X, Wang S, Zhou J. MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neuroimage 2010; 51:616-22. [PMID: 20188197 DOI: 10.1016/j.neuroimage.2010.02.050] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/02/2010] [Accepted: 02/16/2010] [Indexed: 11/17/2022] Open
Abstract
Amide proton transfer (APT) imaging is a novel MRI technique, in which the amide protons of endogenous proteins and peptides are irradiated to accomplish indirect detection using the bulk water signal. In this paper, the APT approach was added to a standard brain MRI protocol at 3T, and twelve patients with high-grade gliomas confirmed by histopathology were scanned. It is shown that all tumors, including one with minor gadolinium enhancement, showed heterogeneous hyperintensity on the APT images. The average APT signal intensities of the viable tumor cores were significantly higher than those of peritumoral edema and normal-appearing white matter (P<0.001). The average APT signal intensities were significantly lower in the necrotic regions than in the viable tumor cores (P=0.004). The APT signal intensities of the cystic cavities were similar to those of the viable tumor cores (P>0.2). The initial results show that APT imaging at the protein and peptide level may enhance non-invasive identification of tissue heterogeneity in high-grade brain tumors.
Collapse
Affiliation(s)
- Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Terreno E, Stancanello J, Longo D, Castelli DD, Milone L, Sanders HMHF, Kok MB, Uggeri F, Aime S. Methods for an improved detection of the MRI-CEST effect. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 4:237-47. [PMID: 19839029 DOI: 10.1002/cmmi.290] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CEST imaging is a recently introduced MRI contrast modality based on the use of endogenous or exogenous molecules whose exchangeable proton pools transfer saturated magnetization to bulk water, thus creating negative contrast. One of the critical issues for further development of these agents is represented by their limited sensitivity in vivo. The aim of this work is to improve the detection of CEST agents by exploring new approaches through which the saturation transfer (ST) effect can be enhanced. The performance of the proposed methods has been tested in vitro and in vivo using highly sensitive and highly shifted lipoCEST agents, and the results were compared with the standard ST evaluation mode. The acquired Z-spectra were interpolated locally and voxel-by-voxel by smoothing splines. Besides expressing the ST in the standard mode, we explore two methods, enhanced and integral ST, which better exploit all the information contained in the Z-spectrum. By combining different modes for ST assessment a significant improvement in the detection of the lipoCEST agents, both in vitro and in vivo, has been found. The results obtained from the application of the proposed methods outline the importance of post-processing analysis for highlighting the CEST-MRI contrast.
Collapse
Affiliation(s)
- Enzo Terreno
- Dipartimento di Chimica IFM and Molecular Imaging Center, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Ramadan S. Diffusion-Exchange Weighted Imaging. MAGNETIC RESONANCE INSIGHTS 2009. [DOI: 10.4137/mri.s3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A method has been developed whereby diffusion and exchange in micro cellular structures in the human brain are correlated to produce a new type of image contrast leading to determination of water exchange rates in vivo. The diffusion method relies on differential apparent diffusion coefficients as detectable nuclei exchange between adjacent compartments marked with different apparent diffusion coefficient values (e.g. intra- and extra-cellular compartments). A new pulse sequence was developed, and used to calculate water intra/extra mean residence times in brain, and the signal dependence on various experimental parameters was analysed. The method was tested in vivo at 3T field strength and produced 160 ms and 550 ms for extra-cellular and intra-cellular mean residence times, respectively.
Collapse
Affiliation(s)
- Saadallah Ramadan
- Faculty of Medicine, University of Sydney, NSW 2006, Australia. Current address: Department of Radiology, Harvard Medical School, Brigham & Women's Hospital, Boston MA 02215, USA
| |
Collapse
|