201
|
Schneider C, Pasqualucci L, Dalla-Favera R. Molecular pathogenesis of diffuse large B-cell lymphoma. Semin Diagn Pathol 2011; 28:167-77. [PMID: 21842702 DOI: 10.1053/j.semdp.2011.04.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In past years, substantial insight regarding the pathogenesis of diffuse large B-cell lymphoma has been obtained. Particularly, based on gene expression profile analysis, this disease can be classified into distinct phenotypic subgroups and specific transcriptional programs have been identified. New technologies like next-generation whole genome/exome sequencing and genome-wide single nucleotide polymorphism array analysis have revealed novel lesions involved in the pathogenesis of this disease. This review focuses on the diversity of genetic lesions identified in the different subtypes of diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Christof Schneider
- Institute for Cancer Genetics and the Herbert Irving Comprehensive Cancer Center, and Department of Clinical Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
202
|
Nojima T, Haniuda K, Moutai T, Matsudaira M, Mizokawa S, Shiratori I, Azuma T, Kitamura D. In-vitro derived germinal centre B cells differentially generate memory B or plasma cells in vivo. Nat Commun 2011; 2:465. [PMID: 21897376 DOI: 10.1038/ncomms1475] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 08/10/2011] [Indexed: 01/24/2023] Open
Abstract
In response to T cell-dependent antigens, B cells proliferate extensively to form germinal centres (GC), and then differentiate into memory B (B(mem)) cells or long-lived plasma cells (LLPCs) by largely unknown mechanisms. Here we show a new culture system in which mouse naïve B cells undergo massive expansion and isotype switching, and generate GC-phenotype B (iGB) cells. The iGB cells expressing IgG1 or IgM/D, but not IgE, differentiate into B(mem) cells in vivo after adoptive transfer and can elicit rapid immune responses with the help of cognate T cells. Secondary culture with IL-21 maintains the proliferation of the iGB cells, while shifting their in vivo developmental fate from B(mem) cells to LLPCs, an outcome that can be reversed by withdrawal of IL-21 in tertiary cultures. Thus, this system enables in vitro manipulation of B-cell fate, into either B(mem) cells or LLPCs, and will facilitate dissection of GC-B cell differentiation programs.
Collapse
Affiliation(s)
- Takuya Nojima
- Division of Molecular Biology, Research Institute for Biological Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Chopin M, Chacón-Martínez CA, Jessberger R. Fine tuning of IRF-4 expression by SWAP-70 controls the initiation of plasma cell development. Eur J Immunol 2011; 41:3063-74. [PMID: 21728176 DOI: 10.1002/eji.201141742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/14/2011] [Accepted: 06/27/2011] [Indexed: 11/09/2022]
Abstract
The generation of plasma cells (PCs) is key for proper humoral immune responses. The transcription factors IRF-4 and BLIMP-1 (B-lymphocyte induce maturation protein-1) control PC commitment, but the underlying regulatory mechanisms are incompletely understood. Here we have identified SWAP-70 as being critically involved in Toll-like receptor (TLR)-triggered PC differentiation. Upon activation through various TLRs, Swap-70(-/-) B cells were activated and proliferated normally. However, expression of BLIMP-1 was markedly reduced and PC differentiation was impaired. Four hours of LPS stimulation were sufficient to drive PC differentiation, and SWAP-70 was required during this initial period. Swap-70(-/-) B cells pre-activated in vitro failed to efficiently differentiate into PCs upon adoptive transfer into recipient mice. Re-introduction of SWAP-70 into Swap-70(-/-) B cells rescued their development into PCs, and SWAP-70 over-expression in wild-type (WT) B cells increased PC generation. In the absence of SWAP-70, IRF-4 protein levels were reduced and the IRF-4(high) B220(+) CD138(-) compartment, including PC precursors, was strongly diminished. Ectopic expression of SWAP-70 increases IRF-4 protein levels and PC differentiation in WT and Swap-70(-/-) B cells, and IRF-4 over-expression in Swap-70(-/-) B cells elevates PC differentiation to WT levels. Thus, in a dose-dependent manner, SWAP-70 controls IRF-4 protein expression and thereby regulates the initiation of PC differentiation.
Collapse
Affiliation(s)
- Michaël Chopin
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
204
|
Aldinucci D, Gloghini A, Pinto A, Colombatti A, Carbone A. The role of CD40/CD40L and interferon regulatory factor 4 in Hodgkin lymphoma microenvironment. Leuk Lymphoma 2011; 53:195-201. [PMID: 21756027 DOI: 10.3109/10428194.2011.605190] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inflammation and cancer are two independent biological events that can play an interdependent role. The model of such interaction is represented by Hodgkin lymphoma (HL), where the microenvironment is dominated by an extensive mixed, potentially cellular inflammatory infiltrate that plays a decisive role in the pathobiology of HL. In this review we summarize updated information on the complex interactions between Hodgkin Reed-Sternberg (HRS) cells and their tissue microenvironment, highlighting the functional role of CD40/CD40L and interferon regulatory factor 4 (IRF4).
Collapse
Affiliation(s)
- Donatella Aldinucci
- Experimental Oncology, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN, Italy
| | | | | | | | | |
Collapse
|
205
|
Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, Wells VA, Grunn A, Messina M, Elliot O, Chan J, Bhagat G, Chadburn A, Gaidano G, Mullighan CG, Rabadan R, Dalla-Favera R. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 2011; 43:830-7. [PMID: 21804550 PMCID: PMC3297422 DOI: 10.1038/ng.892] [Citation(s) in RCA: 759] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/30/2011] [Indexed: 12/13/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common form of human lymphoma. Although a number of structural alterations have been associated with the pathogenesis of this malignancy, the full spectrum of genetic lesions that are present in the DLBCL genome, and therefore the identity of dysregulated cellular pathways, remains unknown. By combining next-generation sequencing and copy number analysis, we show that the DLBCL coding genome contains, on average, more than 30 clonally represented gene alterations per case. This analysis also revealed mutations in genes not previously implicated in DLBCL pathogenesis, including those regulating chromatin methylation (MLL2; 24% of samples) and immune recognition by T cells. These results provide initial data on the complexity of the DLBCL coding genome and identify novel dysregulated pathways underlying its pathogenesis.
Collapse
MESH Headings
- Chromatin/metabolism
- DNA Mutational Analysis
- Diploidy
- Gene Dosage
- Gene Expression Regulation, Leukemic
- Genome, Human
- Germinal Center/immunology
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Methylation
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Point Mutation
- Polymorphism, Single Nucleotide
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Pathak S, Ma S, Trinh L, Eudy J, Wagner KU, Joshi SS, Lu R. IRF4 is a suppressor of c-Myc induced B cell leukemia. PLoS One 2011; 6:e22628. [PMID: 21818355 PMCID: PMC3144921 DOI: 10.1371/journal.pone.0022628] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 06/27/2011] [Indexed: 12/02/2022] Open
Abstract
Interferon regulatory factor 4 (IRF4) is a critical transcriptional regulator in B cell development and function. We have previously shown that IRF4, together with IRF8, orchestrates pre-B cell development by limiting pre-B cell expansion and by promoting pre-B cell differentiation. Here, we report that IRF4 suppresses c-Myc induced leukemia in EμMyc mice. Our results show that c-Myc induced leukemia was greatly accelerated in the IRF4 heterozygous mice (IRF4+/−Myc); the average age of mortality in the IRF4+/−Myc mice was only 7 to 8 weeks but was 20 weeks in the control mice. Our results show that IRF4+/−Myc leukemic cells were derived from large pre-B cells and were hyperproliferative and resistant to apoptosis. Further analysis revealed that the majority of IRF4+/−Myc leukemic cells inactivated the wild-type IRF4 allele and contained defects in Arf-p53 tumor suppressor pathway. p27kip is part of the molecular circuitry that controls pre-B cell expansion. Our results show that expression of p27kip was lost in the IRF4+/−Myc leukemic cells and reconstitution of IRF4 expression in those cells induced p27kip and inhibited their expansion. Thus, IRF4 functions as a classical tumor suppressor to inhibit c-Myc induced B cell leukemia in EμMyc mice.
Collapse
Affiliation(s)
- Simanta Pathak
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shibin Ma
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Long Trinh
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - James Eudy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shantaram S. Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Runqing Lu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
207
|
Abstract
Interferon regulatory factor 4 (IRF4) is a member of the interferon regulatory factor family of transcription factors and has been shown to have critical functions at several stages of B-cell development. Genome-wide association study identified a polymorphism in the 3' untranslated region of IRF4 as a chronic lymphocytic leukemia risk locus. In this study, we report a recurrent heterozygous somatic mutation in the DNA-binding domain of IRF4 detected in 7 of 457 chronic lymphocytic leukemia patients (1.5%). Patients with IRF4 mutation have a good prognosis, and 4 of 6 have a trisomy 12. We also found that IRF4 mRNA expression is higher in the patients with the mutation.
Collapse
|
208
|
Abstract
Effective humoral immunity depends on B cells, plasma cells and follicular helper T cells (TFH) and secreted high-affinity antibodies. The differentiation of mature B cell into plasma cells is ultimately hardwired in a regulatory network of transcription factors. This circuitry is responding to extracellular stimuli, which leads to production of higher-affinity antibodies after germinal centre (GC) reaction. The understanding of the transcriptional regulation of GCs and the initiation of plasma cell differentiation is becoming increasingly clear. It is evident that transcriptional repressor Blimp-1 can drive the plasma cell differentiation, but the initiation of plasma cell differentiation in GCs is likely coupled to the loss of B cell characteristics maintained by transcription factors Pax5 and Bcl6.
Collapse
Affiliation(s)
- J Alinikula
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.
| | | |
Collapse
|
209
|
Alinikula J, Nera KP, Junttila S, Lassila O. Alternate pathways for Bcl6-mediated regulation of B cell to plasma cell differentiation. Eur J Immunol 2011; 41:2404-13. [PMID: 21674482 DOI: 10.1002/eji.201141553] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/29/2011] [Accepted: 05/20/2011] [Indexed: 11/08/2022]
Abstract
The transcription factor Bcl6 regulates germinal center formation and differentiation of B cells into high-affinity antibody-producing plasma cells. The direct double-negative regulatory circuit between Bcl6 and Blimp-1 is well established. We now reveal alternative mechanisms for Bcl6-mediated regulation of B-cell differentiation to plasma cells and show with DT40 cells that Bcl6 directly promotes the expression of Bach2, a known suppressor of Blimp-1. Moreover, Bcl6 suppresses Blimp-1 expression through direct binding to the IRF4 gene, as well as by promoting the expression of MITF, a known suppressor of IRF4. We also provide evidence that Bcl6 is needed for the expression of AID and UNG, the indispensable proteins for somatic hypermutation and class-switch recombination, and UNG appears to be a direct Bcl6 target. Our findings reveal a complex regulatory network in which Bcl6 acts as a key element dictating the transition of DT40 B cells to plasma cells.
Collapse
Affiliation(s)
- Jukka Alinikula
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.
| | | | | | | |
Collapse
|
210
|
BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature 2011; 473:384-8. [PMID: 21593872 PMCID: PMC3597744 DOI: 10.1038/nature09883] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 01/31/2011] [Indexed: 01/08/2023]
Abstract
Tyrosine kinase inhibitors (TKI) are widely used to treat patients with leukemia driven by BCR-ABL11 and other oncogenic tyrosine kinases2,3. Recent efforts focused on the development of more potent TKI that also inhibit mutant tyrosine kinases4,5. However, even effective TKI typically fail to eradicate leukemia-initiating cells6–8, which often cause recurrence of leukemia after initially successful treatment. Here we report on the discovery of a novel mechanism of drug-resistance, which is based on protective feedback signaling of leukemia cells in response to TKI-treatment. We identified BCL6 as a central component of this drug-resistance pathway and demonstrate that targeted inhibition of BCL6 leads to eradication of drug-resistant and leukemia-initiating subclones. BCL6 is a known proto-oncogene that is often translocated in diffuse large B cell lymphoma (DLBCL)9. In response to TKI-treatment, BCR-ABL1 acute lymphoblastic leukemia (ALL) cells upregulate BCL6 protein levels by ~90-fold, i.e. to similar levels as in DLBCL (Fig. 1a). Upregulation of BCL6 in response to TKI-treatment represents a novel defense mechanism, which enables leukemia cells to survive TKI-treatment: Previous work suggested that TKI-mediated cell death is largely p53-independent. Here we demonstrate that BCL6 upregulation upon TKI-treatment leads to transcriptional inactivation of the p53 pathway. BCL6-deficient leukemia cells fail to inactivate p53 and are particularly sensitive to TKI-treatment. BCL6−/− leukemia cells are poised to undergo cellular senescence and fail to initiate leukemia in serial transplant recipients. A combination of TKI-treatment and a novel BCL6 peptide inhibitor markedly increased survival of NOD/SCID mice xenografted with patient-derived BCR-ABL1 ALL cells. We propose that dual targeting of oncogenic tyrosine kinases and BCL6-dependent feedback (Supplementary Fig. 1) represents a novel strategy to eradicate drug-resistant and leukemia-initiating subclones in tyrosine kinase-driven leukemia.
Collapse
|
211
|
Schotte D, Pieters R, Den Boer ML. MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia 2011; 26:1-12. [DOI: 10.1038/leu.2011.151] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
212
|
Burington B, Yue P, Shi X, Advani R, Lau JT, Tan J, Stinson S, Stinson J, Januario T, de Vos S, Ansell S, Forero-Torres A, Fedorowicz G, Yang TTC, Elkins K, Du C, Mohan S, Yu N, Modrusan Z, Seshagiri S, Yu SF, Pandita A, Koeppen H, French D, Polson AG, Offringa R, Whiting N, Ebens A, Dornan D. CD40 pathway activation status predicts response to CD40 therapy in diffuse large B cell lymphoma. Sci Transl Med 2011; 3:74ra22. [PMID: 21411738 DOI: 10.1126/scitranslmed.3001620] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The primary function of B cells, critical components of the adaptive immune response, is to produce antibodies against foreign antigens, as well as to perform isotype class switching, which changes the heavy chain of an antibody so that it can interact with different repertoires of effector cells. CD40 is a member of the tumor necrosis factor superfamily of cell surface receptors that transmits survival signals to B cells. In contrast, in B cell cancers, stimulation of CD40 signaling results in a heterogeneous response in which cells can sometimes undergo cell death in response to treatment, depending on the system studied. We found an association between sensitivity to CD40 stimulation and mutation of the tumor suppressor p53 in a panel of non-Hodgkin's lymphoma cell lines. Consistent with p53's tumor suppressor role, we found that higher levels of intrinsic DNA damage and increased proliferation rates, as well as higher levels of BCL6, a transcriptional repressor proto-oncogene, were associated with sensitivity to CD40 stimulation. In addition, CD40 treatment-resistant cell lines were sensitized to CD40 stimulation after the introduction of DNA-damaging agents. Using gene expression analysis, we also showed that resistant cell lines exhibited a preexisting activated CD40 pathway and that an mRNA expression signature comprising CD40 target genes predicted sensitivity and resistance to CD40-activating agents in cell lines and mouse xenograft models. Finally, the gene signature predicted tumor shrinkage and progression-free survival in patients with diffuse large B cell lymphoma treated with dacetuzumab, a monoclonal antibody with partial CD40 agonist activity. These data show that CD40 pathway activation status may be useful in predicting the antitumor activity of CD40-stimulating therapeutic drugs.
Collapse
Affiliation(s)
- Bart Burington
- Department of Biostatistics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Koguchi Y, Gardell JL, Thauland TJ, Parker DC. Cyclosporine-resistant, Rab27a-independent mobilization of intracellular preformed CD40 ligand mediates antigen-specific T cell help in vitro. THE JOURNAL OF IMMUNOLOGY 2011; 187:626-34. [PMID: 21677130 DOI: 10.4049/jimmunol.1004083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CD40L is critically important for the initiation and maintenance of adaptive immune responses. It is generally thought that CD40L expression in CD4(+) T cells is regulated transcriptionally and made from new mRNA following Ag recognition. However, recent studies with two-photon microscopy revealed that most cognate interactions between effector CD4(+) T cells and APCs are too short for de novo synthesis of CD40L. Given that effector and memory CD4(+) T cells store preformed CD40L (pCD40L) in lysosomal compartments and that pCD40L comes to the cell surface within minutes of antigenic stimulation, we and others have proposed that pCD40L might mediate T cell-dependent activation of cognate APCs during brief encounters in vivo. However, it has not been shown that this relatively small amount of pCD40L is sufficient to activate APCs, owing to the difficulty of separating the effects of pCD40L from those of de novo CD40L and other cytokines in vitro. In this study, we show that pCD40L surface mobilization is resistant to cyclosporine or FK506 treatment, while de novo CD40L and cytokine expression are completely inhibited. These drugs thus provide a tool to dissect the role of pCD40L in APC activation. We find that pCD40L mediates selective activation of cognate but not bystander APCs in vitro and that mobilization of pCD40L does not depend on Rab27a, which is required for mobilization of lytic granules. Therefore, effector CD4(+) T cells deliver pCD40L specifically to APCs on the same time scale as the lethal hit of CTLs but with distinct molecular machinery.
Collapse
Affiliation(s)
- Yoshinobu Koguchi
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
214
|
Abstract
T cell help to B cells is a fundamental aspect of adaptive immunity and the generation of immunological memory. Follicular helper CD4 T (T(FH)) cells are the specialized providers of B cell help. T(FH) cells depend on expression of the master regulator transcription factor Bcl6. Distinguishing features of T(FH) cells are the expression of CXCR5, PD-1, SAP (SH2D1A), IL-21, and ICOS, among other molecules, and the absence of Blimp-1 (prdm1). T(FH) cells are important for the formation of germinal centers. Once germinal centers are formed, T(FH) cells are needed to maintain them and to regulate germinal center B cell differentiation into plasma cells and memory B cells. This review covers T(FH) differentiation, T(FH) functions, and human T(FH) cells, discussing recent progress and areas of uncertainty or disagreement in the literature, and it debates the developmental relationship between T(FH) cells and other CD4 T cell subsets (Th1, Th2, Th17, iTreg).
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, California 92037, USA.
| |
Collapse
|
215
|
Germinal center B and follicular helper T cells: siblings, cousins or just good friends? Nat Immunol 2011; 12:472-7. [DOI: 10.1038/ni.2019] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
216
|
Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood 2011; 118:139-47. [PMID: 21487109 DOI: 10.1182/blood-2011-01-330795] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The prognosis of germinal center-derived B-cell (GCB) lymphomas, including follicular lymphoma and diffuse large-B-cell lymphoma (DLBCL), strongly depends on age. Children have a more favorable outcome than adults. It is not known whether this is because of differences in host characteristics, treatment protocols, or tumor biology, including the presence of chromosomal alterations. By screening for novel IGH translocation partners in pediatric and adult lymphomas, we identified chromosomal translocations juxtaposing the IRF4 oncogene next to one of the immunoglobulin (IG) loci as a novel recurrent aberration in mature B-cell lymphoma. FISH revealed 20 of 427 lymphomas to carry an IG/IRF4-fusion. Those were predominantly GCB-type DLBCL or follicular lymphoma grade 3, shared strong expression of IRF4/MUM1 and BCL6, and lacked PRDM1/BLIMP1 expression and t(14;18)/BCL2 breaks. BCL6 aberrations were common. The gene expression profile of IG/IRF4-positive lymphomas differed from other subtypes of DLBCL. A classifier for IG/IRF4 positivity containing 27 genes allowed accurate prediction. IG/IRF4 positivity was associated with young age and a favorable outcome. Our results suggest IRF4 translocations to be primary alterations in a molecularly defined subset of GCB-derived lymphomas. The probability for this subtype of lymphoma significantly decreases with age, suggesting that diversity in tumor biology might contribute to the age-dependent differences in prognosis of lymphoma.
Collapse
|
217
|
Nieters A, Bracci PM, de Sanjosé S, Becker N, Maynadié M, Benavente Y, Foretova L, Cocco P, Staines A, Holly EA, Boffetta P, Brennan P, Skibola CF. A functional TNFRSF5 polymorphism and risk of non-Hodgkin lymphoma, a pooled analysis. Int J Cancer 2011; 128:1481-5. [PMID: 20473910 DOI: 10.1002/ijc.25420] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Interaction between CD40 and its ligand, CD154, has a key function in immune regulation. Recent experimental data support a role of deregulated CD40 signalling in lymphomagenesis. Data from earlier studies that are part of this pooling study implicate a functional polymorphism (-1C>T, rs1883832) in the TNFRSF5 gene encoding CD40 in the etiology of follicular lymphoma. Here, the association of this variant with non-Hodgkin lymphoma (NHL) risk was replicated in a European multicenter study of 855 NHL cases and 1,206 controls. In the combined analysis of 2,617 cases and 3,605 controls, carrying the TT genotype was associated with an increased risk for all NHL (OR = 1.4; p for linear trend = 0.00009), diffuse large B-cell lymphoma (OR = 1.6; p for linear trend = 0.002) and follicular lymphoma (OR = 1.6; p for linear trend = 0.001). These data suggest a possible role of this functional polymorphism in lymphomas originating within the germinal center.
Collapse
Affiliation(s)
- Alexandra Nieters
- Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Lewis TS, McCormick RS, Stone IJ, Emmerton K, Mbow B, Miyamoto J, Drachman JG, Grewal IS, Law CL. Proapoptotic signaling activity of the anti-CD40 monoclonal antibody dacetuzumab circumvents multiple oncogenic transformation events and chemosensitizes NHL cells. Leukemia 2011; 25:1007-16. [PMID: 21394099 DOI: 10.1038/leu.2011.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Non-Hodgkin lymphoma (NHL) is a genetically heterogeneous disease with several oncogenic events implicated in the transformation of normal developing B lymphocytes. The objective of this study was to elucidate the signal transduction-based antitumor mechanism(s) of action for the anti-CD40 monoclonal antibody dacetuzumab (SGN-40) in NHL. We report that dacetuzumab activates two distinct proapoptotic signaling pathways, overcoming transformation events key to the pathogenesis of NHL. Dacetuzumab-mediated CD40 signaling constitutively activated the nuclear factor-κB and mitogen-activated protein kinase signaling pathways producing the sustained downregulation of B-cell lymphoma 6 (BCL-6), an oncoprotein implicated in lymphomagenesis. Loss of BCL-6 resulted in c-Myc downregulation and activation of a transcriptional program characteristic of early B-cell maturation, concomitant with reduced proliferation and cell death. In a second mechanism, dacetuzumab signaling induced the expression of the proapoptotic p53 family member TAp63α and downstream proteins associated with the intrinsic and extrinsic apoptotic machinery. Dacetuzumab was synergistic in combination with DNA-damaging chemotherapeutic drugs, correlating with TAp63α upregulation. Furthermore, dacetuzumab augmented the activity of rituximab in combination with multiple chemotherapies in the xenograft models of NHL. The ability of dacetuzumab signaling to circumvent oncogenic events and potentiate the activity of chemotherapy regimens provides a unique therapeutic approach to NHL.
Collapse
Affiliation(s)
- T S Lewis
- Department of Pre-Clinical Research, Seattle Genetics, Inc., Bothell, WA 98021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Ballon G, Chen K, Perez R, Tam W, Cesarman E. Kaposi sarcoma herpesvirus (KSHV) vFLIP oncoprotein induces B cell transdifferentiation and tumorigenesis in mice. J Clin Invest 2011; 121:1141-53. [PMID: 21339646 DOI: 10.1172/jci44417] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 12/22/2010] [Indexed: 12/31/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV) is specifically associated with Kaposi sarcoma (KS) and 2 B cell lymphoproliferative diseases, namely primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). KS, PEL, and MCD are largely incurable and poorly understood diseases most common in HIV-infected individuals. Here, we have revealed the role of viral FLICE-inhibitory protein (vFLIP) in the initiation of PEL and MCD by specifically expressing vFLIP at different stages of B cell differentiation in vivo. Mice showed MCD-like abnormalities and immunological defects including lack of germinal centers (GCs), impaired Ig class switching, and affinity maturation. In addition, they showed increased numbers of cells expressing cytoplasmic IgM-λ, a thus far enigmatic feature of the KSHV-infected cells in MCD. B cell-derived tumors arose at high incidence and displayed Ig gene rearrangement with downregulated expression of B cell-associated antigens, which are features of PEL. Interestingly, these tumors exhibited characteristics of transdifferentiation and acquired expression of histiocytic/dendritic cell markers. These results define immunological functions for vFLIP in vivo and reveal what we believe to be a novel viral-mediated tumorigenic mechanism involving B cell reprogramming. Additionally, the robust recapitulation of KSHV-associated diseases in mice provides a model to test inhibitors of vFLIP as potential anticancer agents.
Collapse
Affiliation(s)
- Gianna Ballon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | | | | | |
Collapse
|
220
|
Ross AC, Chen Q, Ma Y. Vitamin A and retinoic acid in the regulation of B-cell development and antibody production. VITAMINS AND HORMONES 2011; 86:103-26. [PMID: 21419269 PMCID: PMC3789244 DOI: 10.1016/b978-0-12-386960-9.00005-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signaling by vitamin A through its active metabolite retinoic acid (RA) is critical for the normal development and functions of the hematopoietic and immune systems. B cells, as both factories for antibody production and part of the immune regulatory system, are critical to a successful vaccination response. RA is a factor in the development and competence of mature B cells, in B cell proliferation, and in the regulation of transcription factors associated with B cell differentiation, class switch recombination, and the generation of antibody-secreting plasma cells. Emerging evidence suggests that RA can function alone and in combination with other immune system stimuli to augment the formation of germinal centers, leading to increased primary and secondary antibody responses. Taken together, RA could be a useful component in vaccine strategies and/or for immunotherapy.
Collapse
Affiliation(s)
- A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | |
Collapse
|
221
|
Jaffe ES, Pittaluga S. Aggressive B-cell lymphomas: a review of new and old entities in the WHO classification. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2011; 2011:506-514. [PMID: 22160082 PMCID: PMC6329301 DOI: 10.1182/asheducation-2011.1.506] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aggressive B-cell lymphomas are clinically and pathologically diverse and reflect multiple pathways of transformation. The 2008 World Health Organization (WHO) classification reflects this complexity with the addition of several new entities and variants. Whereas MYC translocations have long been associated with Burkitt lymphoma (BL), deregulation of MYC has been shown to occur in other aggressive B-cell lymphomas, most often as a secondary event. Lymphomas with translocations of both MYC and BCL2 are highly aggressive tumors, with a high failure rate with most treatment protocols. These "double-hit" lymphomas are now separately delineated in the WHO classification as B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma (DLBCL) and BL. A MYC translocation is also found uncommonly in DLBCL, but the clinical consequences of this in the absence of a double hit are not yet fully delineated. Most recently, MYC translocations have been identified as a common secondary event in plasma cell neoplasms, seen in approximately 50% of plasmablastic lymphoma. Another area that has received recent attention is the spectrum of EBV-driven B-cell proliferations in patients without iatrogenic or congenital immunosuppression; most of these occur in patients of advanced age and include the EBV-positive large B-cell lymphomas of the elderly.
Collapse
Affiliation(s)
- Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | |
Collapse
|
222
|
Klein B, Seckinger A, Moehler T, Hose D. Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment. Recent Results Cancer Res 2011; 183:39-86. [PMID: 21509680 DOI: 10.1007/978-3-540-85772-3_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This chapter focuses on two aspects of myeloma pathogenesis: (1) chromosomal aberrations and resulting changes in gene and protein expression with a special focus on growth and survival factors of malignant (and normal) plasma cells and (2) the remodeling of the bone marrow microenvironment induced by accumulating myeloma cells. We begin this chapter with a discussion of normal plasma cell generation, their survival, and a novel class of inhibitory factors. This is crucial for the understanding of multiple myeloma, as several abilities attributed to malignant plasma cells are already present in their normal counterpart, especially the production of survival factors and interaction with the bone marrow microenvironment (niche). The chapter closes with a new model of pathogenesis of myeloma.
Collapse
|
223
|
Vinuesa CG, Linterman MA, Goodnow CC, Randall KL. T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunol Rev 2010; 237:72-89. [PMID: 20727030 DOI: 10.1111/j.1600-065x.2010.00937.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Germinal centers (GCs) are specialized microenvironments formed after infection where activated B cells can mutate their B-cell receptors to undergo affinity maturation. A stringent process of selection allows high affinity, non-self-reactive B cells to become long-lived memory B cells and plasma cells. While the precise mechanism of selection is still poorly understood, the last decade has advanced our understanding of the role of T cells and follicular dendritic cells (FDCs) in GC B-cell formation and selection. T cells and non-T-cell-derived CD40 ligands on FDCs are essential for T-dependent (TD) and T-independent GC formation, respectively. TD-GC formation requires Bcl-6-expressing T cells capable of signaling through SAP, which promotes formation of stable T:B conjugates. By contrast, differentiation of B blasts along the extrafollicular pathway is less dependent on SAP. T-follicular helper (Tfh) cell-derived CD40L, interleukin-21, and interleukin-4 play important roles in GC B-cell proliferation, survival, and affinity maturation. A role for FDC-derived integrin signals has also emerged: GC B cells capable of forming an immune synapse with FDCs have a survival advantage. This emerges as a powerful mechanism to ensure death of B cells that bind self-reactive antigen, which would not normally be presented on FDCs.
Collapse
Affiliation(s)
- Carola G Vinuesa
- John Curtin School of Medical Research and Australian Phenomics Facility, Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
224
|
Rydström K, Linderoth J, Nyman H, Ehinger M, Joost P, Bendahl PO, Leppä S, Jerkeman M. CD40 is a potential marker of favorable prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Leuk Lymphoma 2010; 51:1643-8. [PMID: 20593977 DOI: 10.3109/10428194.2010.492537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have previously shown that expression of CD40 has a favorable prognostic impact in diffuse large B-cell lymphoma (DLBCL) after anthracycline-based chemotherapy. Here we examined the prognostic value of immunohistochemically defined CD40 expression in 95 patients with DLBCL treated with both anthracycline-based chemotherapy and rituximab. Using a 10% cut-off level, 77% of the patients had CD40-positive tumors and showed a superior overall survival (p = 0.02 log-rank, hazard ratio 0.35, 95% CI 0.14-0.88, p = 0.03 Cox regression). When adjusted for International Prognostic Index in multivariate analysis, CD40 was not an independent prognostic factor (hazard ratio 0.39, 95% CI 0.15-1.04, p = 0.06 Cox regression). However, even after the introduction of immunochemotherapy, CD40 has a potential prognostic impact in DLBCL. Additional and larger studies are necessary, regarding the immunohistochemical robustness of CD40 and the biological mechanisms that contribute to the superior prognosis in CD40-expressing DLBCL.
Collapse
Affiliation(s)
- Karin Rydström
- Department of Oncology, Institution of Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Mandelbaum J, Bhagat G, Tang H, Mo T, Brahmachary M, Shen Q, Chadburn A, Rajewsky K, Tarakhovsky A, Pasqualucci L, Dalla-Favera R. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 2010; 18:568-79. [PMID: 21156281 PMCID: PMC3030476 DOI: 10.1016/j.ccr.2010.10.030] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/28/2010] [Accepted: 10/08/2010] [Indexed: 01/14/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a heterogeneous disease composed of at least two distinct subtypes: germinal center B cell-like (GCB) and activated B cell-like (ABC) DLBCL. These phenotypic subtypes segregate with largely unique genetic lesions, suggesting the involvement of different pathogenetic mechanisms. In this report we show that the BLIMP1/PRDM1 gene is inactivated by multiple mechanisms, including homozygous deletions, truncating or missense mutations, and transcriptional repression by constitutively active BCL6, in ∼53% of ABC-DLBCL. In vivo, conditional deletion of Blimp1 in mouse B cells promotes the development of lymphoproliferative disorders recapitulating critical features of the human ABC-DLBCL. These results demonstrate that BLIMP1 is a bona fide tumor-suppressor gene whose loss contributes to lymphomagenesis by blocking plasma cell differentiation.
Collapse
Affiliation(s)
- Jonathan Mandelbaum
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - Govind Bhagat
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Hongyan Tang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Tongwei Mo
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Manisha Brahmachary
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Qiong Shen
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Klaus Rajewsky
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Tarakhovsky
- Laboratory of Lymphocyte Signaling, The Rockefeller University, New York. NY 10065, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
- Correspondence: ;
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University, New York, NY, 10032, USA
- Correspondence: ;
| |
Collapse
|
226
|
Calado DP, Zhang B, Srinivasan L, Sasaki Y, Seagal J, Unitt C, Rodig S, Kutok J, Tarakhovsky A, Schmidt-Supprian M, Rajewsky K. Constitutive canonical NF-κB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 2010; 18:580-9. [PMID: 21156282 PMCID: PMC3018685 DOI: 10.1016/j.ccr.2010.11.024] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/26/2010] [Accepted: 11/15/2010] [Indexed: 01/20/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) comprises disease entities with distinct genetic profiles, including germinal center B cell (GCB)-like and activated B cell (ABC)-like DLBCLs. Major differences between these two subtypes include genetic aberrations leading to constitutive NF-κB activation and interference with terminal B cell differentiation through BLIMP1 inactivation, observed in ABC- but not GCB-DLBCL. Using conditional gain-of-function and/or loss-of-function mutagenesis in the mouse, we show that constitutive activation of the canonical NF-κB pathway cooperates with disruption of BLIMP1 in the development of a lymphoma that resembles human ABC-DLBCL. Our work suggests that both NF-κB signaling, as an oncogenic event, and BLIMP1, as a tumor suppressor, play causal roles in the pathogenesis of ABC-DLBCL.
Collapse
Affiliation(s)
- Dinis Pedro Calado
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Baochun Zhang
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lakshmi Srinivasan
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yoshiteru Sasaki
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
- Riken Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Jane Seagal
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christine Unitt
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jeffery Kutok
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Alexander Tarakhovsky
- Laboratory of Lymphocyte Signaling, The Rockefeller University, New York, NY 10065, USA
| | - Marc Schmidt-Supprian
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
- Max Planck Institute of Biochemistry, Am Klopferspitz 18 D-82152, Martinsried, Germany
| | - Klaus Rajewsky
- Program of Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
227
|
Abstract
In many B-cell lymphomas, chromosomal translocations are biologic and diagnostic hallmarks of disease. An intriguing subset is formed by the so-called double- hit (DH) lymphomas that are defined by a chromosomal breakpoint affecting the MYC/8q24 locus in combination with another recurrent breakpoint, mainly a t(14;18)(q32;q21) involving BCL2. Recently, these lymphomas have received increased attention, which contributed to the introduction of a novel category of lymphomas in the 2008 WHO classification, "B cell lymphoma unclassifiable with features intermediate between DLBCL and BL." In this review we explore the existing literature for the most recurrent types of DH B-cell lymphomas and the involved genes with their functions, as well as their pathology and clinical aspects including therapy and prognosis. The incidence of aggressive B-cell lymphomas other than Burkitt lymphoma with a MYC breakpoint and in particular a double hit is difficult to assess, because screening by methods like FISH has not been applied on large, unselected series, and the published cytogenetic data may be biased to specific categories of lymphomas. DH lymphomas have been classified heterogeneously but mostly as DLBCL, the majority having a germinal center phenotype and expression of BCL2. Patients with DH lymphomas often present with poor prognostic parameters, including elevated LDH, bone marrow and CNS involvement, and a high IPI score. All studies on larger series of patients suggest a poor prognosis, also if treated with RCHOP or high-intensity treatment modalities. Importantly, this poor outcome cannot be accounted for by the mere presence of a MYC/8q24 breakpoint. Likely, the combination of MYC and BCL2 expression and/or a related high genomic complexity are more important. Compared to these DH lymphomas, BCL6(+)/MYC(+) DH lymphomas are far less common, and in fact most of these cases represent BCL2(+)/BCL6(+)/MYC(+) triple-hit lymphomas with involvement of BCL2 as well. CCND1(+)/MYC(+) DH lymphomas with involvement of 11q13 may also be relatively frequent, the great majority being classified as aggressive variants of mantle cell lymphoma. This suggests that activation of MYC might be an important progression pathway in mantle cell lymphoma as well. Based on clinical significance and the fact that no other solid diagnostic tools are available to identify DH lymphomas, it seems advisable to test all diffuse large B-cell and related lymphomas for MYC and other breakpoints.
Collapse
|
228
|
Aldinucci D, Celegato M, Borghese C, Colombatti A, Carbone A. IRF4 silencing inhibits Hodgkin lymphoma cell proliferation, survival and CCL5 secretion. Br J Haematol 2010; 152:182-90. [PMID: 21114485 DOI: 10.1111/j.1365-2141.2010.08497.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interferon regulatory factor 4 (IRF4) expression is detected in many lymphoid and myeloid malignancies, and may be a promising therapeutic target. IRF4 is strongly expressed in classical Hodgkin lymphoma (cHL) and its expression is up-regulated by CD40L and down-regulated by both anti-proliferative and pro-apoptotic stimuli. This study analysed the effects of IRF4 silencing in a panel of HL-derived cell lines. We demonstrated that IRF4 down-modulation determined a remarkable decrease of both cell number and clonogenic growth in L-1236, L-428, KM-H2 and HDLM-2 cells, but not in IRF4-negative L-540 cells. IRF4 silencing induced apoptosis, as evaluated by caspase-3 activation and Annexin-V staining and up-regulation of the pro-apoptotic molecule Bax. CD40 engagement by both soluble and membrane bound-CD40L almost totally reduced IRF4 down-modulation and growth inhibition by IRF4 silencing in both L-1236 and L-428 cells. Finally, IRF4 silencing decreased CCL5 secretion in all HL cell lines tested and CCL17 in KM-H2 cells. Taken together, our results demonstrated that IRF4 down-modulation by IRF4 silencing was reversed by CD40 engagement, inhibited HL cells proliferation, induced apoptosis and decreased CCL5 secretion, thus suggesting that IRF4 may be involved in HL pathobiology.
Collapse
Affiliation(s)
- Donatella Aldinucci
- Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, Italy.
| | | | | | | | | |
Collapse
|
229
|
Abstract
BCL6 is a transcription factor that has essential B-cell and T-cell roles in normal antibody responses. It is involved in chromosomal translocations in diffuse large B-cell lymphoma (DBCL; including primary mediastinal B-cell lymphoma) and nodular lymphocyte predominant Hodgkin lymphoma, and is expressed in follicular lymphoma and Burkitt's lymphoma. The neoplastic T-cells of angioimmunoblastic T-cell lymphoma also express BCL6. BCL6 prevents terminal B-cell differentiation largely through repression of PRDM1. In the "cell of origin" classification of DLBCL BCL6 is associated with the germinal centre subtype, which carries a good response to modern treatments. More recently, specific BCL6 antagonists, including small molecule inhibitors, have been developed. These antagonists have demonstrated that DLBCL cells, in which BCL6 is transcriptionally active, are dependent on this gene for survival. BCL6 antagonists are active against primary DLBCL and may find future application in the treatment of lymphomas.
Collapse
Affiliation(s)
- Simon D Wagner
- Department of Cancer Studies and Molecular Medicine and MRC Toxicology Unit, University of Leicester, Lancaster Road, Leicester, UK.
| | | | | |
Collapse
|
230
|
Cerchietti LC, Hatzi K, Caldas-Lopes E, Yang SN, Figueroa ME, Morin RD, Hirst M, Mendez L, Shaknovich R, Cole PA, Bhalla K, Gascoyne RD, Marra M, Chiosis G, Melnick A. BCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy. J Clin Invest 2010; 120:4569-82. [PMID: 21041953 DOI: 10.1172/jci42869] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 09/21/2010] [Indexed: 11/17/2022] Open
Abstract
B cell lymphoma 6 (BCL6), which encodes a transcriptional repressor, is a critical oncogene in diffuse large B cell lymphomas (DLBCLs). Although a retro-inverted BCL6 peptide inhibitor (RI-BPI) was recently shown to potently kill DLBCL cells, the underlying mechanisms remain unclear. Here, we show that RI-BPI induces a particular gene expression signature in human DLBCL cell lines that included genes associated with the actions of histone deacetylase (HDAC) and Hsp90 inhibitors. BCL6 directly repressed the expression of p300 lysine acetyltransferase (EP300) and its cofactor HLA-B-associated transcript 3 (BAT3). RI-BPI induced expression of p300 and BAT3, resulting in acetylation of p300 targets including p53 and Hsp90. Induction of p300 and BAT3 was required for the antilymphoma effects of RI-BPI, since specific blockade of either protein rescued human DLBCL cell lines from the BCL6 inhibitor. Consistent with this, combination of RI-BPI with either an HDAC inhibitor (HDI) or an Hsp90 inhibitor potently suppressed or even eradicated established human DLBCL xenografts in mice. Furthermore, HDAC and Hsp90 inhibitors independently enhanced RI-BPI killing of primary human DLBCL cells in vitro. We also show that p300-inactivating mutations occur naturally in human DLBCL patients and may confer resistance to BCL6 inhibitors. Thus, BCL6 repression of EP300 provides a basis for rational targeted combinatorial therapy for patients with DLBCL.
Collapse
Affiliation(s)
- Leandro C Cerchietti
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Katerina Hatzi
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Eloisi Caldas-Lopes
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Shao Ning Yang
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Maria E Figueroa
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ryan D Morin
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Lourdes Mendez
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Rita Shaknovich
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Philip A Cole
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Kapil Bhalla
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Randy D Gascoyne
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Marco Marra
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Gabriela Chiosis
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ari Melnick
- Hematology and Oncology Division, and Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York, USA. Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Pathology, Weill Cornell Medical College, New York, New York, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. The University of Kansas Cancer Center, Kansas University Medical Center, Kansas City, Kansas, USA. Centre for Lymphoid Cancers and the Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
231
|
Holodick NE, Tumang JR, Rothstein TL. Immunoglobulin secretion by B1 cells: differential intensity and IRF4-dependence of spontaneous IgM secretion by peritoneal and splenic B1 cells. Eur J Immunol 2010; 40:3007-16. [PMID: 21061433 PMCID: PMC3139744 DOI: 10.1002/eji.201040545] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/09/2010] [Accepted: 08/16/2010] [Indexed: 12/25/2022]
Abstract
Peritoneal B1 cells are typified by spontaneous, constitutive secretion of IgM natural antibody, detected by ELISPOT assay, among other means. Recently, this key characteristic has been called into question, a reason for which we evaluated the integrity of IgM(+) ELISPOT spots. We found that fixed B1 cells fail to produce ELISPOT spots, that interference with Golgi function inhibits ELISPOT spot formation, and that B1 cell-derived immunoglobulin in supernatant samples is EndoH-resistant. These findings indicate that spots produced by B1 cells on ELISPOT assay reflect secretory IgM actively exported by viable B1 cells. Current paradigms propose that interferon response factor 4 (IRF4) is required for plasma cell differentiation and immunoglobulin secretion. However, we found that IgM secretion by peritoneal B1 cells is not altered in IRF4-null mice. In contrast, spontaneous IgM secretion by splenic B1 cells, which amounts to much more IgM secreted per cell, is dramatically reduced in the absence of IRF4. These results indicate that peritoneal B1 cells spontaneously secrete low levels of IgM via an IRF4-independent non-classical pathway, and, considering the low level of serum IgM in IRF-null mice, further suggest that accumulation of serum immunoglobulin depends on IRF4-dependent secretion by splenic B1 cells.
Collapse
Affiliation(s)
- Nichol E Holodick
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | | |
Collapse
|
232
|
|
233
|
Choi JH, Li Y, Guo J, Pei L, Rauch TA, Kramer RS, Macmil SL, Wiley GB, Bennett LB, Schnabel JL, Taylor KH, Kim S, Xu D, Sreekumar A, Pfeifer GP, Roe BA, Caldwell CW, Bhalla KN, Shi H. Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing. PLoS One 2010; 5. [PMID: 20927367 PMCID: PMC2947499 DOI: 10.1371/journal.pone.0013020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 08/21/2010] [Indexed: 12/16/2022] Open
Abstract
Background Follicular lymphoma (FL) is a form of non-Hodgkin's lymphoma (NHL) that arises from germinal center (GC) B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL. Methodology/Principal Findings We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19+ B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19+ B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs) were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19+ B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells. Conclusions/Significance This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.
Collapse
Affiliation(s)
- Jeong-Hyeon Choi
- Center of Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, United States of America
| | - Yajun Li
- Medical College of Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Juyuan Guo
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Lirong Pei
- Medical College of Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Tibor A. Rauch
- Division of Biology, City of Hope Beckman Research Institute, Duarte, California, United States of America
| | - Robin S. Kramer
- Department of Computer Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Simone L. Macmil
- Advanced Center for Genome Technology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Graham B. Wiley
- Advanced Center for Genome Technology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Lynda B. Bennett
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jennifer L. Schnabel
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Kristen H. Taylor
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Sun Kim
- Center of Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, United States of America
| | - Dong Xu
- Division of Biology, City of Hope Beckman Research Institute, Duarte, California, United States of America
| | - Arun Sreekumar
- Medical College of Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Gerd P. Pfeifer
- Department of Computer Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Bruce A. Roe
- Advanced Center for Genome Technology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Charles W. Caldwell
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Kapil N. Bhalla
- Medical College of Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Huidong Shi
- Medical College of Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
234
|
Boyd RS, Dyer MJ, Cain K. Proteomic analysis of B-cell malignancies. J Proteomics 2010; 73:1804-22. [DOI: 10.1016/j.jprot.2010.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 12/25/2022]
|
235
|
Lai AY, Fatemi M, Dhasarathy A, Malone C, Sobol SE, Geigerman C, Jaye DL, Mav D, Shah R, Li L, Wade PA. DNA methylation prevents CTCF-mediated silencing of the oncogene BCL6 in B cell lymphomas. J Exp Med 2010; 207:1939-50. [PMID: 20733034 PMCID: PMC2931164 DOI: 10.1084/jem.20100204] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/27/2010] [Indexed: 12/15/2022] Open
Abstract
Aberrant DNA methylation commonly occurs in cancer cells where it has been implicated in the epigenetic silencing of tumor suppressor genes. Additional roles for DNA methylation, such as transcriptional activation, have been predicted but have yet to be clearly demonstrated. The BCL6 oncogene is implicated in the pathogenesis of germinal center-derived B cell lymphomas. We demonstrate that the intragenic CpG islands within the first intron of the human BCL6 locus were hypermethylated in lymphoma cells that expressed high amounts of BCL6 messenger RNA (mRNA). Inhibition of DNA methyltransferases decreased BCL6 mRNA abundance, suggesting a role for these methylated CpGs in positively regulating BCL6 transcription. The enhancer-blocking transcription factor CTCF bound to this intronic region in a methylation-sensitive manner. Depletion of CTCF by short hairpin RNA in neoplastic plasma cells that do not express BCL6 resulted in up-regulation of BCL6 transcription. These data indicate that BCL6 expression is maintained during lymphomagenesis in part through DNA methylation that prevents CTCF-mediated silencing.
Collapse
Affiliation(s)
- Anne Y. Lai
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Mehrnaz Fatemi
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Archana Dhasarathy
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Christine Malone
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Steve E. Sobol
- Department of Otolaryngology—Head and Neck Surgery and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Cissy Geigerman
- Department of Otolaryngology—Head and Neck Surgery and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - David L. Jaye
- Department of Otolaryngology—Head and Neck Surgery and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Deepak Mav
- SRA International, Inc., Research Triangle Park, NC 27709
| | - Ruchir Shah
- SRA International, Inc., Research Triangle Park, NC 27709
| | - Leping Li
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Paul A. Wade
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
236
|
Oracki SA, Walker JA, Hibbs ML, Corcoran LM, Tarlinton DM. Plasma cell development and survival. Immunol Rev 2010; 237:140-59. [DOI: 10.1111/j.1600-065x.2010.00940.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
237
|
Goodnow CC, Vinuesa CG, Randall KL, Mackay F, Brink R. Control systems and decision making for antibody production. Nat Immunol 2010; 11:681-8. [PMID: 20644574 DOI: 10.1038/ni.1900] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper synthesizes recent progress toward understanding the integrated control systems and fail-safes that guide the quality and quantity of antibody produced by B cells. We focus on four key decisions: (1) the choice between proliferation or death in perifollicular B cells in the first 3 days after antigen encounter; (2) differentiation of proliferating perifollicular B cells into extrafollicular plasma cells or germinal center B cells; (3) positive selection of B cell antigen receptor (BCR) affinity for foreign antigen versus negative selection of BCR affinity for self antigen in germinal center B cells; and (4) survival versus death of antibody-secreting plasma cells. Understanding the engineering of these control systems represents a challenging future step for treating disorders of antibody production in autoimmunity, allergy and immunodeficiency.
Collapse
Affiliation(s)
- Christopher C Goodnow
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | | | | | |
Collapse
|
238
|
Chan WJC. Pathogenesis of diffuse large B cell lymphoma. Int J Hematol 2010; 92:219-30. [PMID: 20582737 DOI: 10.1007/s12185-010-0602-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/17/2010] [Indexed: 12/19/2022]
Abstract
Substantial additional insight has been obtained in the past decade regarding the pathogenesis of diffuse large B cell lymphoma (DLBCL). Distinct subtypes of DLBCL have been defined by gene expression profiling (GEP) and they differ not only in GE profiles but also in the pattern of genetic abnormalities. The ability to correlate corresponding genetic and GEP data markedly facilitates the identification of target genes in regions with copy number abnormalities. Oncogenic pathways are often differentially activated in these different subtypes of DLBCL, suggesting that therapy should be targeted according to these differences. The tumor microenvironment plays a significant role in determining outcome and may be a novel target for therapy. The role of microRNA in lymphomagenesis is increasingly being recognized and mutation of key genes has been demonstrated to drive the activation of the NF-kappaB pathway and B cell receptor signaling. The pace of discovery will be even more rapid in the near future with the convergence of data from multiple complementary genome-wide studies and technological innovations including the rapid advance in the technology of high-throughput sequencing.
Collapse
Affiliation(s)
- Wing John C Chan
- Pathology and Microbiology and Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
239
|
Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression. Mol Cell Biol 2010; 30:4149-58. [PMID: 20566697 DOI: 10.1128/mcb.00224-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pre-B-cell expansion is driven by signals from the interleukin-7 receptor and the pre-B-cell receptor and is dependent on cyclin D3 and c-Myc. We have shown previously that interferon regulatory factors 4 and 8 induce the expression of Ikaros and Aiolos to suppress pre-B-cell proliferation. However, the molecular mechanisms through which Ikaros and Aiolos exert their growth inhibitory effect remain to be determined. Here, we provide evidence that Aiolos and Ikaros bind to the c-Myc promoter in vivo and directly suppress c-Myc expression in pre-B cells. We further show that downregulation of c-Myc is critical for the growth-inhibitory effect of Ikaros and Aiolos. Ikaros and Aiolos also induce expression of p27 and downregulate cyclin D3 in pre-B cells, and the growth-inhibitory effect of Ikaros and Aiolos is compromised in the absence of p27. A time course analysis further reveals that downregulation of c-Myc by Ikaros and Aiolos precedes p27 induction and cyclin D3 downregulation. Moreover, downregulation of c-Myc by Ikaros and Aiolos is necessary for the induction of p27 and downregulation of cyclin D3. Collectively, our studies identify a pre-B-cell receptor signaling induced inhibitory network, orchestrated by Ikaros and Aiolos, which functions to terminate pre-B-cell expansion.
Collapse
|
240
|
Bolduc A, Long E, Stapler D, Cascalho M, Tsubata T, Koni PA, Shimoda M. Constitutive CD40L expression on B cells prematurely terminates germinal center response and leads to augmented plasma cell production in T cell areas. THE JOURNAL OF IMMUNOLOGY 2010; 185:220-30. [PMID: 20505142 DOI: 10.4049/jimmunol.0901689] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CD40/CD40L engagement is essential to T cell-dependent B cell proliferation and differentiation. However, the precise role of CD40 signaling through cognate T-B interaction in the generation of germinal center and memory B cells is still incompletely understood. To address this issue, a B cell-specific CD40L transgene (CD40LBTg) was introduced into mice with B cell-restricted MHC class II deficiency. Using this mouse model, we show that constitutive CD40L expression on B cells alone could not induce germinal center differentiation of MHC class II-deficient B cells after immunization with T cell-dependent Ag. Thus, some other MHC class II-dependent T cell-derived signals are essential for the generation of germinal center B cells in response to T cell-dependent Ag. In fact, CD40LBTg mice generated a complex Ag-specific IgG1 response, which was greatly enhanced in early, but reduced in late, primary response compared with control mice. We also found that the frequency of Ag-specific germinal center B cells in CD40LBTg mice was abruptly reduced 1 wk after immunization. As a result, the numbers of Ag-specific IgG1 long-lived plasma cells and memory B cells were reduced. By histology, large numbers of Ag-specific plasma cells were found in T cell areas adjacent to Ag-specific germinal centers of CD40LBTg mice, temporarily during the second week of primary response. These results indicate that CD40L expression on B cells prematurely terminated their ongoing germinal center response and produced plasma cells. Our results support the notion that CD40 signaling is an active termination signal for germinal center reaction.
Collapse
Affiliation(s)
- Anna Bolduc
- Immunotherapy Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
241
|
Abstract
Genomewide molecular profiling has revealed new subtypes of lymphoma that originate from lymphocytes that differ in developmental stage and that use distinct oncogenic programs, yet are indistinguishable under the microscope. In this review, we discuss recent progress in the molecular genetics of aggressive lymphomas and focus on the most common form of this disease, diffuse large-B-cell lymphoma, which accounts for 30 to 40% of newly diagnosed lymphomas.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- B-Lymphocytes/cytology
- B-Lymphocytes/metabolism
- B-Lymphocytes/physiology
- Cell Differentiation
- Gene Expression
- Humans
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Metabolic Networks and Pathways/drug effects
- NF-kappa B/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Georg Lenz
- Metabolism Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
242
|
ZEB1 and CtBP form a repressive complex at a distal promoter element of the BCL6 locus. Biochem J 2010; 427:541-50. [DOI: 10.1042/bj20091578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BCL6 is essential for normal antibody responses and is highly expressed in germinal centre B-cells. Constitutive expression due to chromosomal translocations or mutations of cis-acting regulatory elements contributes to diffuse large B-cell lymphoma. BCL6 expression is therefore tightly regulated in a lineage- and developmental-stage-specific manner, and disruption of normal controls can contribute to lymphomagenesis. In order to discover potential cis-acting control regions we carried out DNase I-hypersensitive site mapping. Gel-shift assays and chromatin immunoprecipitation of the core region of a hypersensitive site 4.4 kb upstream of BCL6 transcription initiation (HSS-4.4) showed an E-box element-binding ZEB1 (zinc finger E-boxbinding homeobox 1) and the co-repressor CtBP (C-terminal binding protein). As compared with peripheral blood B-cells, ZEB1, a two-handed zinc finger transcriptional repressor, is expressed at relatively low levels in germinal centre cells, whereas BCL6 has the opposite pattern of expression. Transfection of ZEB1 cDNA caused a reduction in BCL6 expression and a mutated ZEB1, incapable of binding CtBP, lacked this effect. siRNA (small interfering RNA)-mediated knockdown of ZEB1 or CtBP produced an increase in BCL6 mRNA. We propose that HSS-4.4 is a distal promoter element binding a repressive complex consisting of ZEB1 and CtBP. CtBP is ubiquitously expressed and the results of the present study suggest that regulation of ZEB1 is required for control of BCL6 expression.
Collapse
|
243
|
Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 2010; 59:489-510. [PMID: 20049431 PMCID: PMC11030943 DOI: 10.1007/s00262-009-0804-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 12/01/2009] [Indexed: 02/06/2023]
Abstract
Nine interferon regulatory factors (IRFs) compose a family of transcription factors in mammals. Although this family was originally identified in the context of the type I interferon system, subsequent studies have revealed much broader functions performed by IRF members in host defense. In this review, we provide an update on the current knowledge of their roles in immune responses, immune cell development, and regulation of oncogenesis.
Collapse
Affiliation(s)
- David Savitsky
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tomohiko Tamura
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hideyuki Yanai
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tadatsugu Taniguchi
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
244
|
Matsuda R, Hori T, Kitamura H, Takeuchi K, Fukagawa T, Harata M. Identification and characterization of the two isoforms of the vertebrate H2A.Z histone variant. Nucleic Acids Res 2010; 38:4263-73. [PMID: 20299344 PMCID: PMC2910051 DOI: 10.1093/nar/gkq171] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Histone variants play important roles in the epigenetic regulation of genome function. The histone variant H2A.Z is evolutionarily conserved from yeast to vertebrates, and it has been reported to have multiple effects upon gene expression and insulation, and chromosome segregation. Recently two genes encoding H2A.Z were identified in the vertebrate genome. However, it is not yet clear whether the proteins transcribed from these genes are functionally distinct. To address this issue, we knocked out each gene individually in chicken DT40 cells. We found that two distinct proteins, H2A.Z-1 and H2A.Z-2, were produced from these genes, and that these proteins could be separated on a long SDS–PAGE gel. The two isoforms were deposited to a similar extent by the SRCAP chromatin-remodeling complex, suggesting redundancy to their function. However, cells lacking either one of the two isoforms exhibited distinct alterations in cell growth and gene expression, suggesting that the two isoforms have differential effects upon nucleosome stability and chromatin structure. These findings provide insight into the molecular basis of the multiple functions of the H2A.Z gene products.
Collapse
Affiliation(s)
- Ryo Matsuda
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | |
Collapse
|
245
|
Interleukin-24 inhibits the plasma cell differentiation program in human germinal center B cells. Blood 2010; 115:1718-26. [DOI: 10.1182/blood-2009-05-220251] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abstract
Complex molecular mechanisms control B-cell fate to become a memory or a plasma cell. Interleukin-24 (IL-24) is a class II family cytokine of poorly understood immune function that regulates the cell cycle. We previously observed that IL-24 is strongly expressed in leukemic memory-type B cells. Here we show that IL-24 is also expressed in human follicular B cells; it is more abundant in CD27+ memory B cells and CD5-expressing B cells, whereas it is low to undetectable in centroblasts and plasma cells. Addition of IL-24 to B cells, cultured in conditions shown to promote plasma cell differentiation, strongly inhibited plasma cell generation and immunoglobulin G (IgG) production. By contrast, IL-24 siRNA increased terminal differentiation of B cells into plasma cells. IL-24 is optimally induced by BCR triggering and CD40 engagement; IL-24 increased CD40-induced B-cell proliferation and modulated the transcription of key factors involved in plasma cell differentiation. It also inhibited activation-induced tyrosine phosphorylation of signal transducer and activator of transcription-3 (STAT-3), and inhibited the transcription of IL-10. Taken together, our results indicate that IL-24 is a novel cytokine involved in T-dependent antigen (Ag)–driven B-cell differentiation and suggest its physiologic role in favoring germinal center B-cell maturation in memory B cells at the expense of plasma cells.
Collapse
|
246
|
Leucci E, Onnis A, Cocco M, De Falco G, Imperatore F, Giuseppina A, Costanzo V, Cerino G, Mannucci S, Cantisani R, Nyagol J, Mwanda W, Iriso R, Owang M, Schurfeld K, Bellan C, Lazzi S, Leoncini L. B-cell differentiation in EBV-positive Burkitt lymphoma is impaired at posttranscriptional level by miRNA-altered expression. Int J Cancer 2010; 126:1316-26. [PMID: 19530237 DOI: 10.1002/ijc.24655] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Endemic, sporadic and HIV-associated Burkitt lymphoma (BL) all have a B-cell phenotype and a MYC translocation, but a variable association with the Epstein-Barr virus (EBV). However, there is still no satisfactory explanation of how EBV participates in the pathogenesis of BL. A recent investigation suggested that EBV-positive and EBV-negative BL have different cells of origin. In particular, according to immunoglobulin gene mutation analysis, EBV-negative BLs may originate from early centroblasts, whereas EBV-positive BLs seem to arise from postgerminal center B cells or memory B cells. The appearance of a germinal center phenotype in EBV-positive cells might thus derive from a block in B-cell differentiation. The exit from the germinal center involves a complex series of events, which require the activation of BLIMP-1, and the consequent downregulation of several target genes. Here, we investigated the expression of specific miRNAs predicted to be involved in B-cell differentiation and found that hsa-miR-127 is differentially expressed between EBV-positive and EBV-negative BLs. In particular, it was strongly upregulated only in EBV-positive BL samples, whereas EBV-negative cases showed levels of expression similar to normal controls, including microdissected germinal centers (GC) cells. In addition, we found evidence that hsa-miR-127 is involved in B-cell differentiation process through posttranscriptional regulation of BLIMP1 and XBP1. The overexpression of this miRNA may thus represent a key event in the lymphomagenesis of EBV positive BL, by blocking the B-cell differentiation process.
Collapse
Affiliation(s)
- Eleonora Leucci
- Department of Human Pathology and Oncology, University of Siena, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Abstract
IFN-regulatory factor 5 (IRF-5), a member of the IRF family, is a transcription factor that has a key role in the induction of the antiviral and inflammatory response. When compared with C57BL/6 mice, Irf5(-/-) mice show higher susceptibility to viral infection and decreased serum levels of type I IFN and the inflammatory cytokines IL-6 and TNF-alpha. Here, we demonstrate that IRF-5 is involved in B-cell maturation and the stimulation of Blimp-1 expression. The Irf5(-/-) mice develop an age-related splenomegaly, associated with a dramatic accumulation of CD19(+)B220(-) B cells and a disruption of normal splenic architecture. Splenic B cells from Irf5(-/-) mice also exhibited a decreased level of plasma cells. The CD19(+) Irf5(-/-) B cells show a defect in Toll-like receptor (TLR) 7- and TLR9-induced IL-6 production, and the aged Irf5(-/-) mice have decreased serum levels of natural antibodies; however, the antigen-specific IgG1 primary response was already dependent in IRF-5 in young mice, although the IgM response was not. Analysis of the profile of transcription factors associated with plasma cell differentiation shows down-regulation of Blimp-1 expression, a master regulator of plasma cell differentiation, which can be reconstituted with ectopic IRF-5. IRF-5 stimulates transcription of the Prdm1 gene encoding Blimp-1 and binds to the IRF site in the Prdm1 promoter. Collectively, these results reveal that the age-related splenomegaly in Irf5(-/-) mice is associated with an accumulation of CD19(+)B220(-) B cells with impaired functions and show the role of IRF-5 in the direct regulation of the plasma cell commitment factor Blimp-1 and in B-cell terminal differentiation.
Collapse
|
248
|
Zotos D, Coquet JM, Zhang Y, Light A, D'Costa K, Kallies A, Corcoran LM, Godfrey DI, Toellner KM, Smyth MJ, Nutt SL, Tarlinton DM. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. ACTA ACUST UNITED AC 2010; 207:365-78. [PMID: 20142430 PMCID: PMC2822601 DOI: 10.1084/jem.20091777] [Citation(s) in RCA: 603] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Germinal centers (GCs) are sites of B cell proliferation, somatic hypermutation, and selection of variants with improved affinity for antigen. Long-lived memory B cells and plasma cells are also generated in GCs, although how B cell differentiation in GCs is regulated is unclear. IL-21, secreted by T follicular helper cells, is important for adaptive immune responses, although there are conflicting reports on its target cells and mode of action in vivo. We show that the absence of IL-21 signaling profoundly affects the B cell response to protein antigen, reducing splenic and bone marrow plasma cell formation and GC persistence and function, influencing their proliferation, transition into memory B cells, and affinity maturation. Using bone marrow chimeras, we show that these activities are primarily a result of CD3-expressing cells producing IL-21 that acts directly on B cells. Molecularly, IL-21 maintains expression of Bcl-6 in GC B cells. The absence of IL-21 or IL-21 receptor does not abrogate the appearance of T cells in GCs or the appearance of CD4 T cells with a follicular helper phenotype. IL-21 thus controls fate choices of GC B cells directly.
Collapse
Affiliation(s)
- Dimitra Zotos
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. Blood 2010; 114:5173-81. [PMID: 19846886 DOI: 10.1182/blood-2009-07-235960] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human plasma cells (PCs) and their precursors play an essential role in humoral immune response but are rare and difficult to harvest. We report the generation of human syndecan-1(+) and immunoglobulin secreting PCs starting from memory B cells in a 3-step and 10-day (D) culture, including a 6-fold cell amplification. We report the detailed phenotypic and Affymetrix gene expression profiles of these in vitro PCs as well as of intermediate cells (activated B cells and plasmablasts) compared with memory B cells and bone marrow PCs, which is accessible through an open web ATLAS (http://amazonia.transcriptome.eu/). We show this B cell-to-PC differentiation to involve IRF4 and AICDA expressions in D4 activated B cells, decrease of PAX5 and BCL6 expressions, and increase in PRDM1 and XBP1 expressions in D7 plasmablasts and D10 PCs. It involves down-regulation of genes controlled by Pax5 and induction of genes controlled by Blimp-1 and XBP1 (unfold protein response). The detailed phenotype of D10 PCs resembles that of peripheral blood PCs detected after immunization of healthy donors. This in vitro model will facilitate further studies in PC biology. It will likewise be helpful to study PC dyscrasias, including multiple myeloma.
Collapse
|
250
|
Biswas PS, Bhagat G, Pernis AB. IRF4 and its regulators: evolving insights into the pathogenesis of inflammatory arthritis? Immunol Rev 2010; 233:79-96. [PMID: 20192994 PMCID: PMC2920730 DOI: 10.1111/j.0105-2896.2009.00864.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulating evidence from murine and human studies supports a key role for interleukin-17 (IL-17) and IL-21 in the pathogenesis of inflammatory arthritis. The pathways and molecular mechanisms that underlie the production of IL-17 and IL-21 are being rapidly elucidated. This review focuses on interferon regulatory factor 4 (IRF4), a member of the IRF family of transcription factors, which has emerged as a crucial controller of both IL-17 and IL-21 production. We first outline the complex role of IRF4 in the function of CD4(+) T cells and then discuss recent studies from our laboratory that have revealed a surprising role for components of Rho GTPase-mediated pathways in controlling the activity of IRF4. A better understanding of these novel pathways will hopefully provide new insights into mechanisms responsible for the development of inflammatory arthritis and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Govind Bhagat
- Department of Pathology, Columbia University, New York, NY, USA
| | | |
Collapse
|