201
|
Han JH, Park J, Seo YW, Kim TH. Designing a cancer therapeutic peptide by combining the mitochondrial targeting domain of Noxa and ErbB2-targeting moieties. FEBS Lett 2017; 592:103-111. [PMID: 29193033 DOI: 10.1002/1873-3468.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 11/06/2022]
Abstract
Many anticancer drugs target epidermal growth factor receptors to inhibit receptor tyrosine kinases and tumor growth. Here, we show that an ErbB2-targeting pronecrotic peptide (KWSY:MTD) selectively kills tumor cells expressing ErbB2 in vitro. An antibody against ErbB2 inhibits KWSY:MTD-induced cell death. KWSY:MTD causes membrane permeability which allows propidium iodide entry into the cytosol and the release of HMGB1 into the media, indicative of necrosis. Mitochondrial swelling occurs in response to KWSY:MTD. Moreover, in vivo analysis using a mouse model shows that KWSY:MTD partially suppressed growth in tumor tissue bearing ErbB2-expressing cells, but did not have obvious toxicity in mouse liver or kidney tissue. Taken together, KWSY:MTD has potential as an ErbB2-targeting anticancer drug.
Collapse
Affiliation(s)
- Ji-Hye Han
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwang-Ju, Korea
| | - Junghee Park
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwang-Ju, Korea
| | - Young-Woo Seo
- Korea Basic Science Institute Gwang-Ju Center, Chonnam National University, Gwang-Ju, Korea
| | - Tae-Hyoung Kim
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwang-Ju, Korea
| |
Collapse
|
202
|
Huang C, Li N, Yuan S, Ji X, Ma M, Rao K, Wang Z. Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:775-786. [PMID: 28732339 DOI: 10.1016/j.envpol.2017.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/15/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus-containing flame retardants (PFRs) are increasingly in demand worldwide as replacements for brominated flame retardants (BFRs), but insufficient available toxicological information on PFRs makes assessing their health risks challenging. Mitochondria are important targets of various environmental pollutants, and mitochondrial dysfunction may lead to many common diseases. In the present study, mitochondria impairment-related endpoints were measured by a high content screening (HCS) assay for 11 selected non-halogen PFRs in Chinese hamster ovary (CHO-k1) cells. A cluster analysis was used to categorize these PFRs into three groups according to their structural characteristics and results from the HCS assay. Two groups, containing long-chain alkyl-PFRs and all aryl-PFRs, were found to cause mitochondrial impairment but showed different mechanisms of toxicity. Due to the high correlation between cell death and mitochondrial impairment, two PFRs with different structures, trihexyl phosphate (THP) and cresyl diphenyl phosphate (CDP), were selected and compared with chlorpyrifos (CPF) to elucidate their mechanism of inducing cell death. THP (an alkyl-PFR) was found to utilize a similar pathway as CPF to induce apoptosis. However, cell death induced by CDP (an aryl-PFR) was different from classical necrosis based on experiments to discriminate among the different modes of cell death. These results confirm that mitochondria might be important targets for some PFRs and that differently structured PFRs could function via distinct mechanisms of toxicity.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Na Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Shengwu Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Kaifeng Rao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
203
|
Liu JC, Parks RJ, Liu J, Stares J, Rovira II, Murphy E, Finkel T. The In Vivo Biology of the Mitochondrial Calcium Uniporter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:49-63. [PMID: 28551781 DOI: 10.1007/978-3-319-55330-6_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of the molecular composition of the mitochondrial calcium uniporter has allowed for the genetic manipulation of its components and the creation of various in vivo genetic models. Here, we review the initial attempts to modulate the expression of components of the calcium uniporter in a range of organisms from plants to mammals. This analysis has confirmed the strict requirement for the uniporter for in vivo mitochondrial calcium uptake and for maintaining mitochondrial calcium homeostasis. We further discuss the physiological effects following genetic manipulation of the uniporter on tissue bioenergetics and the threshold for cell death. Finally, we analyze the limited information regarding the role of various uniporter components in human disease.
Collapse
Affiliation(s)
- Julia C Liu
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Randi J Parks
- Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Jie Liu
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Justin Stares
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Ilsa I Rovira
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA. .,NIH, Bldg 10/CRC 5-3330, Bethesda, MD, 20892, USA.
| |
Collapse
|
204
|
Protective effect of surface layer proteins isolated from four Lactobacillus strains on hydrogen-peroxide-induced HT-29 cells oxidative stress. Int J Biol Macromol 2017; 102:76-83. [DOI: 10.1016/j.ijbiomac.2017.03.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
|
205
|
Javadov S, Chapa-Dubocq X, Makarov V. Different approaches to modeling analysis of mitochondrial swelling. Mitochondrion 2017; 38:58-70. [PMID: 28802667 DOI: 10.1016/j.mito.2017.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are critical players involved in both cell life and death through multiple pathways. Structural integrity, metabolism and function of mitochondria are regulated by matrix volume due to physiological changes of ion homeostasis in cellular cytoplasm and mitochondria. Ca2+ and K+ presumably play a critical role in physiological and pathological swelling of mitochondria when increased uptake (influx)/decreased release (efflux) of these ions enhances osmotic pressure accompanied by high water accumulation in the matrix. Changes in the matrix volume in the physiological range have a stimulatory effect on electron transfer chain and oxidative phosphorylation to satisfy metabolic requirements of the cell. However, excessive matrix swelling associated with the sustained opening of mitochondrial permeability transition pores (PTP) and other PTP-independent mechanisms compromises mitochondrial function and integrity leading to cell death. The mechanisms of transition from reversible (physiological) to irreversible (pathological) swelling of mitochondria remain unknown. Mitochondrial swelling is involved in the pathogenesis of many human diseases such as neurodegenerative and cardiovascular diseases. Therefore, modeling analysis of the swelling process is important for understanding the mechanisms of cell dysfunction. This review attempts to describe the role of mitochondrial swelling in cell life and death and the main mechanisms involved in the maintenance of ion homeostasis and swelling. The review also summarizes and discusses different kinetic models and approaches that can be useful for the development of new models for better simulation and prediction of in vivo mitochondrial swelling.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Xavier Chapa-Dubocq
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Vladimir Makarov
- Department of Physics, Rio Piedras Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
206
|
|
207
|
Axonal transport deficits in multiple sclerosis: spiraling into the abyss. Acta Neuropathol 2017; 134:1-14. [PMID: 28315956 PMCID: PMC5486629 DOI: 10.1007/s00401-017-1697-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022]
Abstract
The transport of mitochondria and other cellular components along the axonal microtubule cytoskeleton plays an essential role in neuronal survival. Defects in this system have been linked to a large number of neurological disorders. In multiple sclerosis (MS) and associated models such as experimental autoimmune encephalomyelitis (EAE), alterations in axonal transport have been shown to exist before neurodegeneration occurs. Genome-wide association (GWA) studies have linked several motor proteins to MS susceptibility, while neuropathological studies have shown accumulations of proteins and organelles suggestive for transport deficits. A reduced effectiveness of axonal transport can lead to neurodegeneration through inhibition of mitochondrial motility, disruption of axoglial interaction or prevention of remyelination. In MS, demyelination leads to dysregulation of axonal transport, aggravated by the effects of TNF-alpha, nitric oxide and glutamate on the cytoskeleton. The combined effect of all these pathways is a vicious cycle in which a defective axonal transport system leads to an increase in ATP consumption through loss of membrane organization and a reduction in available ATP through inhibition of mitochondrial transport, resulting in even further inhibition of transport. The persistent activity of this positive feedback loop contributes to neurodegeneration in MS.
Collapse
|
208
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A. VDAC1 functions in Ca 2+ homeostasis and cell life and death in health and disease. Cell Calcium 2017; 69:81-100. [PMID: 28712506 DOI: 10.1016/j.ceca.2017.06.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023]
Abstract
In the outer mitochondrial membrane (OMM), the voltage-dependent anion channel 1 (VDAC1) serves as a mitochondrial gatekeeper, controlling the metabolic and energy cross-talk between mitochondria and the rest of the cell. VDAC1 also functions in cellular Ca2+ homeostasis by transporting Ca2+ in and out of mitochondria. VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, contributing to the release of apoptotic proteins located in the inter-membranal space (IMS) and regulating apoptosis via association with pro- and anti-apoptotic members of the Bcl-2 family of proteins and hexokinase. VDAC1 is highly Ca2+-permeable, transporting Ca2+ to the IMS and thus modulating Ca2+ access to Ca2+ transporters in the inner mitochondrial membrane. Intra-mitochondrial Ca2+ controls energy metabolism via modulating critical enzymes in the tricarboxylic acid cycle and in fatty acid oxidation. Ca2+ also determines cell sensitivity to apoptotic stimuli and promotes the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ mediates apoptosis is not known. Here, the roles of VDAC1 in mitochondrial Ca2+ homeostasis are presented while emphasizing a new proposed mechanism for the mode of action of pro-apoptotic drugs. This view, proposing that Ca2+-dependent enhancement of VDAC1 expression levels is a major mechanism by which apoptotic stimuli induce apoptosis, position VDAC1 oligomerization at a molecular focal point in apoptosis regulation. The interactions of VDAC1 with many proteins involved in Ca2+ homeostasis or regulated by Ca2+, as well as VDAC-mediated control of cell life and death and the association of VDAC with disease, are also presented.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
209
|
Kon N, Satoh A, Miyoshi N. A small-molecule DS44170716 inhibits Ca 2+-induced mitochondrial permeability transition. Sci Rep 2017. [PMID: 28634393 PMCID: PMC5478606 DOI: 10.1038/s41598-017-03651-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are involved in a variety of physiological and pathological processes. Ca2+ uptake is one of the important functions of the organelle for maintenance of cellular Ca2+ homeostasis. In pathological conditions such as ischemia reperfusion injury, Ca2+ overload into mitochondria induces mitochondrial permeability transition (MPT), a critical step for cell death. Because inhibition of MPT is a promising approach to protecting cells and organs, it is important for drug discovery to identify novel chemicals or mechanisms to inhibit MPT. Here we report upon a small-molecule compound DS44170716 that inhibits Ca2+-induced MPT in rat liver isolated mitochondria. DS44170716 protects human liver HepG2 cells from Ca2+-induced death with a level of protection similar to cyclosporin A (CsA). The inhibitory mechanism of DS44170716 against MPT is independent on PPIF, a target of CsA. DS44170716 blocks Ca2+ flux into the mitochondria by decreasing mitochondrial membrane potential, while potently inhibiting mitochondrial complex III activities and weakly inhibiting complex IV and V activities. Similarly, complex III inhibitor antimycin A, complex IV inhibitor KCN or complex V inhibitor oligomycin inhibits Ca2+ uptake of isolated mitochondria. These results show that DS44170716 is a novel class inhibitor of MPT by blocking of mitochondrial complexes and Ca2+-overload into mitochondria.
Collapse
Affiliation(s)
- Naohiro Kon
- Medical Science Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| | - Atsushi Satoh
- Manufacturing Department III, Kitasato Daiichi Sankyo Vaccine Co., Ltd., Saitama, Japan
| | - Naoki Miyoshi
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
210
|
Grings M, Moura AP, Parmeggiani B, Pletsch JT, Cardoso GMF, August PM, Matté C, Wyse ATS, Wajner M, Leipnitz G. Bezafibrate prevents mitochondrial dysfunction, antioxidant system disturbance, glial reactivity and neuronal damage induced by sulfite administration in striatum of rats: Implications for a possible therapeutic strategy for sulfite oxidase deficiency. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2135-2148. [PMID: 28529047 DOI: 10.1016/j.bbadis.2017.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/30/2017] [Accepted: 05/17/2017] [Indexed: 12/13/2022]
Abstract
Sulfite accumulates in tissues of patients affected by sulfite oxidase (SO) deficiency, a neurometabolic disease characterized by seizures and progressive encephalopathy, often resulting in early death. We investigated the effects of sulfite on mitochondrial function, antioxidant system, glial reactivity and neuronal damage in rat striatum, as well as the potential protective effects of bezafibrate on sulfite-induced toxicity. Thirty-day-old rats were intrastriatally administered with sulfite (2μmol) or NaCl (2μmol; control) and euthanized 30min after injection for evaluation of biochemical parameters and western blotting, or 7days after injection for analysis of glial reactivity and neuronal damage. Treatment with bezafibrate (30 or 100mg/kg/day) was performed by gavage during 7days before (pre-treatment) or after sulfite administration. Sulfite decreased creatine kinase and citrate synthase activities, mitochondrial mass, and PGC-1α nuclear content whereas bezafibrate pre-treatment prevented these alterations. Sulfite also diminished cytochrome c oxidase (COX) IV-1 content, glutathione levels and the activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH). On the other hand, catalase activity was increased by sulfite. Bezafibrate pre-treatment prevented the reduction of GPx, GR, GST and G6PDH activities. Finally, sulfite induced glial reactivity and neuronal damage, which were prevented by bezafibrate when administered before or after sulfite administration. Our findings provide strong evidence that sulfite induces neurotoxicity that leads to glial reactivity and neuronal damage. Since bezafibrate exerts neuroprotective effects against sulfite toxicity, it may be an attractive agent for the development of novel therapeutic strategies for SO-deficient patients.
Collapse
Affiliation(s)
- Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Alana Pimentel Moura
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Julia Tauana Pletsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Gabriela Miranda Fernandez Cardoso
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Pauline Maciel August
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Cristiane Matté
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, CEP 90035-903 Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
211
|
Traba J, Sack MN. The role of caloric load and mitochondrial homeostasis in the regulation of the NLRP3 inflammasome. Cell Mol Life Sci 2017; 74:1777-1791. [PMID: 27942750 PMCID: PMC5391300 DOI: 10.1007/s00018-016-2431-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 01/21/2023]
Abstract
Sterile inflammation is a cornerstone of immune activation in obesity and type 2 Diabetes Mellitus. The molecular underpinnings of this inflammation include nutrient excess-mediated activation of the innate immune NLRP3 inflammasome. At the same time, disruption of mitochondrial integrity is emerging as an integral control node in NLRP3 inflammasome activation and is also associated with caloric overload conditions including obesity and diabetes. Conversely, caloric restriction and fasting mimetic interventions alleviate these caloric excess-linked diseases and reduce inflammation and the NLRP3 inflammasome. The objective of this review is to integrate the findings linking mitochondrial integrity to the activation of the NLRP3 inflammasome and to evaluate how caloric restriction or caloric restriction mimetic compounds may play a role in attenuating the NLRP3 inflammasome and sterile inflammation.
Collapse
Affiliation(s)
- Javier Traba
- Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, NIH, 10-CRC, Room 5-3150, 10 Center Drive, Bethesda, MD, 20892-1454, USA
| | - Michael N Sack
- Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, NIH, 10-CRC, Room 5-3150, 10 Center Drive, Bethesda, MD, 20892-1454, USA.
| |
Collapse
|
212
|
Shoshan-Barmatz V, De S, Meir A. The Mitochondrial Voltage-Dependent Anion Channel 1, Ca 2+ Transport, Apoptosis, and Their Regulation. Front Oncol 2017; 7:60. [PMID: 28443244 PMCID: PMC5385329 DOI: 10.3389/fonc.2017.00060] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/17/2017] [Indexed: 01/08/2023] Open
Abstract
In the outer mitochondrial membrane, the voltage-dependent anion channel 1 (VDAC1) functions in cellular Ca2+ homeostasis by mediating the transport of Ca2+ in and out of mitochondria. VDAC1 is highly Ca2+-permeable and modulates Ca2+ access to the mitochondrial intermembrane space. Intramitochondrial Ca2+ controls energy metabolism by enhancing the rate of NADH production via modulating critical enzymes in the tricarboxylic acid cycle and fatty acid oxidation. Mitochondrial [Ca2+] is regarded as an important determinant of cell sensitivity to apoptotic stimuli and was proposed to act as a "priming signal," sensitizing the organelle and promoting the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ ([Ca2+]i) mediates apoptosis is not known. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis and in apoptosis. Accumulated evidence shows that apoptosis-inducing agents act by increasing [Ca2+]i and that this, in turn, augments VDAC1 expression levels. Thus, a new concept of how increased [Ca2+]i activates apoptosis is postulated. Specifically, increased [Ca2+]i enhances VDAC1 expression levels, followed by VDAC1 oligomerization, cytochrome c release, and subsequently apoptosis. Evidence supporting this new model suggesting that upregulation of VDAC1 expression constitutes a major mechanism by which apoptotic stimuli induce apoptosis with VDAC1 oligomerization being a molecular focal point in apoptosis regulation is presented. A new proposed mechanism of pro-apoptotic drug action, namely Ca2+-dependent enhancement of VDAC1 expression, provides a platform for developing a new class of anticancer drugs modulating VDAC1 levels via the promoter and for overcoming the resistance of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Soumasree De
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Meir
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
213
|
Logan A, Murphy MP. Using chemical biology to assess and modulate mitochondria: progress and challenges. Interface Focus 2017; 7:20160151. [PMID: 28382206 PMCID: PMC5311910 DOI: 10.1098/rsfs.2016.0151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Our understanding of the role of mitochondria in biomedical sciences has expanded considerably over the past decade. In addition to their well-known metabolic roles, mitochondrial are also central to signalling for various processes through the generation of signals such as ROS and metabolites that affect cellular homeostasis, as well as other processes such as cell death and inflammation. Thus, mitochondrial function and dysfunction are central to the health and fate of the cell. Consequently, there is considerable interest in better understanding and assessing the many roles of mitochondria. Furthermore, there is also a growing realization that mitochondrial are a promising drug target in a wide range of pathologies. The application of interdisciplinary approaches at the interface between chemistry and biology are opening up new opportunities to understand mitochondrial function and in assessing the role of the organelle in biology. This work and the experience thus gained are leading to the development of new classes of therapies. Here, we overview the progress that has been made to date on exploring the chemical biology of the organelle and then focus on future challenges and opportunities that face this rapidly developing field.
Collapse
Affiliation(s)
- Angela Logan
- MRC Mitochondrial Biology Unit , Hills Road, Cambridge CB2 0XY , UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit , Hills Road, Cambridge CB2 0XY , UK
| |
Collapse
|
214
|
Busanello ENB, Marques AC, Lander N, de Oliveira DN, Catharino RR, Oliveira HCF, Vercesi AE. Pravastatin Chronic Treatment Sensitizes Hypercholesterolemic Mice Muscle to Mitochondrial Permeability Transition: Protection by Creatine or Coenzyme Q 10. Front Pharmacol 2017; 8:185. [PMID: 28424622 PMCID: PMC5380726 DOI: 10.3389/fphar.2017.00185] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/22/2017] [Indexed: 01/24/2023] Open
Abstract
Statins are efficient cholesterol-lowering medicines utilized worldwide. However, 10% of patients suffer from adverse effects specially related to skeletal muscle function. Pro- or anti-oxidant effects of statins have been reported. Here we hypothesized that statins induce muscle mitochondrial oxidative stress leading to mitochondrial permeability transition (MPT) which may explain statin muscle toxicity. Thus, our aims were to investigate the effects of statin chronic treatment on muscle mitochondrial respiration rates, MPT and redox state indicators in the context of hypercholesterolemia. For this purpose, we studied muscle biopsies of the hypercholesterolemic LDL receptor knockout mice (LDLr-/-) treated with pravastatin during 3 months. Plantaris, but not soleus muscle of treated mice showed significant inhibition of respiration rates induced by ADP (–14%), oligomycin (–20%) or FCCP (–40%). Inhibitions of respiratory rates were sensitive to EGTA (Ca2+ chelator), cyclosporin A (MPT inhibitor), ruthenium red (inhibitor of mitochondria Ca2+ uptake) and coenzyme Q10 (antioxidant), indicating that pravastatin treatment favors Ca2+ induced MPT. Diet supplementation with creatine (antioxidant) also protected treated mice against pravastatin sensitization to Ca2+ induced MPT. Among several antioxidant enzymes analyzed, only catalase activity was increased by 30% in plantaris muscle of pravastatin treated mice. Oxidized lipids, but not proteins biomarkers were identified in treated LDLr-/- plantaris muscle. Taken together, the present results suggest that chronic pravastatin administration to a model of familial hypercholesterolemia promotes mitochondrial dysfunctions in plantaris muscle that can be counteracted by antioxidants administered either in vitro (CoQ10) or in vivo (creatine). Therefore, we propose that inhibition of muscle mitochondrial respiration by pravastatin leads to an oxidative stress that, in the presence of calcium, opens the permeability transition pore. This mitochondrial oxidative stress caused by statin treatment also signals for cellular antioxidant system responses such as catalase upregulation. These results suggest that the detrimental effects of statins on muscle mitochondria could be prevented by co-administration of a safe antioxidant such as creatine or CoQ10.
Collapse
Affiliation(s)
- Estela N B Busanello
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de CampinasSão Paulo, Brazil
| | - Ana C Marques
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de CampinasSão Paulo, Brazil
| | - Noelia Lander
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de CampinasSão Paulo, Brazil
| | - Diogo N de Oliveira
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de CampinasSão Paulo, Brazil
| | - Rodrigo R Catharino
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de CampinasSão Paulo, Brazil
| | - Helena C F Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de BiologiaUniversidade Estadual de Campinas, São Paulo, Brazil
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de CampinasSão Paulo, Brazil
| |
Collapse
|
215
|
Masgras I, Sanchez-Martin C, Colombo G, Rasola A. The Chaperone TRAP1 As a Modulator of the Mitochondrial Adaptations in Cancer Cells. Front Oncol 2017; 7:58. [PMID: 28405578 PMCID: PMC5370238 DOI: 10.3389/fonc.2017.00058] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondria can receive, integrate, and transmit a variety of signals to shape many biochemical activities of the cell. In the process of tumor onset and growth, mitochondria contribute to the capability of cells of escaping death insults, handling changes in ROS levels, rewiring metabolism, and reprograming gene expression. Therefore, mitochondria can tune the bioenergetic and anabolic needs of neoplastic cells in a rapid and flexible way, and these adaptations are required for cell survival and proliferation in the fluctuating environment of a rapidly growing tumor mass. The molecular bases of pro-neoplastic mitochondrial adaptations are complex and only partially understood. Recently, the mitochondrial molecular chaperone TRAP1 (tumor necrosis factor receptor associated protein 1) was identified as a key regulator of mitochondrial bioenergetics in tumor cells, with a profound impact on neoplastic growth. In this review, we analyze these findings and discuss the possibility that targeting TRAP1 constitutes a new antitumor approach.
Collapse
Affiliation(s)
- Ionica Masgras
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| | - Carlos Sanchez-Martin
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche (CNR) , Milano , Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), Università di Padova , Padova , Italy
| |
Collapse
|
216
|
Anwar H. Capturing intracellular Ca 2+ dynamics in computational models of neurodegenerative diseases. ACTA ACUST UNITED AC 2017; 19:37-42. [PMID: 28983320 DOI: 10.1016/j.ddmod.2017.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many signaling pathways crucial for homeostatic regulation, synaptic plasticity, apoptosis and immune response depend on Ca2+. Ca2+ dysregulation disrupts normal function of neurons and neuronal networks. This causes severe motor and cognitive disabilities. Understanding how Ca2+ dysregulation triggers disease onset and progression, and affects downstream processes, can help identify targets for treatments. Because of intermingling of molecular pathways, dissecting the role of individual mechanisms and establishing causality is very challenging. Computational models provide a way to decipher these processes. I review some computational models with Ca2+ dynamics to illustrate their predictive power, and note where extending those models to capture multiscale interaction of Ca2+ dependent molecular pathways can be useful for therapeutic and drug discovery purposes.
Collapse
Affiliation(s)
- Haroon Anwar
- Department of Biological Sciences, New Jersey Institute of Technology, 100 Summit St, University Heights, Newark, NJ 07102, United States
| |
Collapse
|
217
|
Cecatto C, Amaral AU, da Silva JC, Wajner A, Godoy KDS, Ribeiro RT, Gonçalves ADM, Vargas CR, Wajner M. Mevalonolactone disrupts mitochondrial functions and induces permeability transition pore opening in rat brain mitochondria: Implications for the pathogenesis of mevalonic aciduria. Neurochem Int 2017; 108:133-145. [PMID: 28284974 DOI: 10.1016/j.neuint.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/07/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Mevalonic aciduria (MVA) is caused by severe deficiency of mevalonic kinase activity leading to tissue accumulation and high urinary excretion of mevalonic acid (MA) and mevalonolactone (ML). Patients usually present severe neurologic symptoms whose pathophysiology is poorly known. Here, we tested the hypothesis that the major accumulating metabolites are toxic by investigating the in vitro effects of MA and ML on important mitochondrial functions in rat brain and liver mitochondria. ML, but not MA, markedly decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and the capacity to retain Ca2+ in the brain, besides inducing mitochondrial swelling. These biochemical alterations were totally prevented by the classical inhibitors of mitochondrial permeability transition (MPT) cyclosporine A and ADP, as well as by ruthenium red in Ca2+-loaded mitochondria, indicating the involvement of MPT and an important role for mitochondrial Ca2+ in these effects. ML also induced lipid peroxidation and markedly inhibited aconitase activity, an enzyme that is highly susceptible to free radical attack, in brain mitochondrial fractions, indicating that lipid and protein oxidative damage may underlie some of ML-induced deleterious effects including MTP induction. In contrast, ML and MA did not compromise oxidative phosphorylation in the brain and all mitochondrial functions evaluated in the liver, evidencing a selective toxicity of ML towards the central nervous system. Our present study provides for the first time evidence that ML impairs essential brain mitochondrial functions with the involvement of MPT pore opening. It is therefore presumed that disturbance of brain mitochondrial homeostasis possibly contributes to the neurologic symptoms in MVA.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Janaína Camacho da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kálita Dos Santos Godoy
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline de Mello Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
218
|
Filadi R, Theurey P, Pizzo P. The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance. Cell Calcium 2017; 62:1-15. [PMID: 28108029 DOI: 10.1016/j.ceca.2017.01.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
The close apposition between endoplasmic reticulum (ER) and mitochondria represents a key platform, capable to regulate different fundamental cellular pathways. Among these, Ca2+ signaling and lipid homeostasis have been demonstrated over the last years to be deeply modulated by ER-mitochondria cross-talk. Given its importance in cell life/death decisions, increasing evidence suggests that alterations of the ER-mitochondria axis could be responsible for the onset and progression of several diseases, including neurodegeneration, cancer and obesity. However, the molecular identity of the proteins controlling this inter-organelle apposition is still debated. In this review, we summarize the main cellular pathways controlled by ER-mitochondria appositions, focusing on the principal molecules reported to be involved in this interplay and on those diseases for which alterations in organelles communication have been reported.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Italy
| | - Pierre Theurey
- Department of Biomedical Sciences, University of Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council (CNR), Padova, Italy.
| |
Collapse
|
219
|
Charles E, Hammadi M, Kischel P, Delcroix V, Demaurex N, Castelbou C, Vacher AM, Devin A, Ducret T, Nunes P, Vacher P. The antidepressant fluoxetine induces necrosis by energy depletion and mitochondrial calcium overload. Oncotarget 2017; 8:3181-3196. [PMID: 27911858 PMCID: PMC5356874 DOI: 10.18632/oncotarget.13689] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022] Open
Abstract
Selective Serotonin Reuptake Inhibitor antidepressants, such as fluoxetine (Prozac), have been shown to induce cell death in cancer cells, paving the way for their potential use as cancer therapy. These compounds are able to increase cytosolic calcium concentration ([Ca2+]cyt), but the involved mechanisms and their physiological consequences are still not well understood. Here, we show that fluoxetine induces an increase in [Ca2+]cyt by emptying the endoplasmic reticulum (ER) through the translocon, an ER Ca2+ leakage structure. Our data also show that fluoxetine inhibits oxygen consumption and lowers mitochondrial ATP. This latter is essential for Ca2+ reuptake into the ER, and we postulated therefore that the fluoxetine-induced decrease in mitochondrial ATP production results in the emptying of the ER, leading to capacitative calcium entry. Furthermore, Ca2+ quickly accumulated in the mitochondria, leading to mitochondrial Ca2+ overload and cell death. We found that fluoxetine could induce an early necrosis in human peripheral blood lymphocytes and Jurkat cells, and could also induce late apoptosis, especially in the tumor cell line. These results shed light on fluoxetine-induced cell death and its potential use in cancer treatment.
Collapse
Affiliation(s)
- Emilie Charles
- INSERM U1218, Institut Bergonié, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Mehdi Hammadi
- INSERM U1218, Institut Bergonié, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Philippe Kischel
- Laboratory of Cellular and Molecular Physiology EA4667, Université de Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Vanessa Delcroix
- INSERM U1218, Institut Bergonié, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cyril Castelbou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Anne-Marie Vacher
- INSERM U1218, Institut Bergonié, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Anne Devin
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Thomas Ducret
- INSERM U1045, Centre de Recherche Cardio-Thoracique, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Pierre Vacher
- INSERM U1218, Institut Bergonié, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
220
|
Mishra J, Jhun BS, Hurst S, O-Uchi J, Csordás G, Sheu SS. The Mitochondrial Ca 2+ Uniporter: Structure, Function, and Pharmacology. Handb Exp Pharmacol 2017; 240:129-156. [PMID: 28194521 PMCID: PMC5554456 DOI: 10.1007/164_2017_1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mitochondrial Ca2+ uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca2+ uptake and our current understanding of mitochondrial Ca2+ homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca2+ uniporter complex.
Collapse
Affiliation(s)
- Jyotsna Mishra
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Bong Sook Jhun
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Jin O-Uchi
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| | - György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA.
| |
Collapse
|
221
|
Shoshan-Barmatz V, De S. Mitochondrial VDAC, the Na +/Ca 2+ Exchanger, and the Ca 2+ Uniporter in Ca 2+ Dynamics and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:323-347. [PMID: 29594867 DOI: 10.1007/978-3-319-55858-5_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrial Ca2+ uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca2+ signaling, energy metabolism, and cell death. Ca2+ transport across the inner and outer mitochondrial membranes (IMM, OMM, respectively), is mediated by several proteins, including the voltage-dependent anion channel 1 (VDAC1) in the OMM, and the mitochondrial Ca2+ uniporter (MCU) and Na+-dependent mitochondrial Ca2+ efflux transporter, (the NCLX), both in the IMM. By transporting Ca2+ across the OMM to the mitochondrial inner-membrane space (IMS), VDAC1 allows Ca2+ access to the MCU, facilitating transport of Ca2+ to the matrix, and also from the IMS to the cytosol. Intra-mitochondrial Ca2+ controls energy production and metabolism by modulating critical enzymes in the tricarboxylic acid (TCA) cycle and fatty acid oxidation. Thus, by transporting Ca2+, VDAC1 plays a fundamental role in regulating mitochondrial Ca2+ homeostasis, oxidative phosphorylation, and Ca2+ crosstalk among mitochondria, cytoplasm, and the endoplasmic reticulum (ER). VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, and apoptosis stimuli induce overexpression of the protein in a Ca2+-dependent manner. The overexpressed VDAC1 undergoes oligomerization leading to the formation of a channel, through which apoptogenic agents can be released. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis, in apoptosis, and in diseases associated with mitochondria dysfunction.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Soumasree De
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
222
|
Shultz RB, Zhong Y. Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res 2017; 12:702-713. [PMID: 28616020 PMCID: PMC5461601 DOI: 10.4103/1673-5374.206633] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Minocycline hydrochloride (MH), a semi-synthetic tetracycline derivative, is a clinically available antibiotic and anti-inflammatory drug that also exhibits potent neuroprotective activities. It has been shown to target multiple secondary injury mechanisms in spinal cord injury, via its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The secondary injury mechanisms that MH can potentially target include inflammation, free radicals and oxidative stress, glutamate excitotoxicity, calcium influx, mitochondrial dysfunction, ischemia, hemorrhage, and edema. This review discusses the potential mechanisms of the multifaceted actions of MH. Its anti-inflammatory and neuroprotective effects are partially achieved through conserved mechanisms such as modulation of p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways as well as inhibition of matrix metalloproteinases (MMPs). Additionally, MH can directly inhibit calcium influx through the N-methyl-D-aspartate (NMDA) receptors, mitochondrial calcium uptake, poly(ADP-ribose) polymerase-1 (PARP-1) enzymatic activity, and iron toxicity. It can also directly scavenge free radicals. Because it can target many secondary injury mechanisms, MH treatment holds great promise for reducing tissue damage and promoting functional recovery following spinal cord injury.
Collapse
Affiliation(s)
- Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
223
|
Brockerhoff SE. Genome Editing to Study Ca 2+ Homeostasis in Zebrafish Cone Photoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1016:91-100. [PMID: 29130155 DOI: 10.1007/978-3-319-63904-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photoreceptors are specialized sensory neurons with unique biological features. Phototransduction is well understood due in part to the exclusive expression and function of the molecular components of this cascade. Many other processes are less well understood, but also extremely important for understanding photoreceptor function and for treating disease. One example is the role of Ca2+ in the cell body and overall compartmentalization and regulation of Ca2+ within the cell. The recent development of CRISPR/Cas9 genome editing techniques has made it possible to rapidly and cheaply alter specific genes. This will help to define the biological function of elusive processes that have been more challenging to study. CRISPR/Cas9 has been optimized in many systems including zebrafish, which already has some distinct advantages for studying photoreceptor biology and function. These new genome editing technologies and the continued use of the zebrafish model system will help advance our understanding of important understudied aspects of photoreceptor biology.
Collapse
Affiliation(s)
- Susan E Brockerhoff
- Departments of Biochemistry and Ophthalmology, University of Washington, UW Medicine, 750 Republican St, Box 358058, Seattle, WA, 98109, USA.
| |
Collapse
|
224
|
Rasheed MZ, Tabassum H, Parvez S. Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson's disease. PROTOPLASMA 2017; 254:33-42. [PMID: 26825389 DOI: 10.1007/s00709-015-0930-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Among the neurodegenerative diseases (ND), Parkinson's disease affects 6.3 million people worldwide characterized by the progressive loss of dopaminergic neurons in substantia nigra. The mitochondrial permeability transition pore (mtPTP) is a non-selective voltage-dependent mitochondrial channel whose opening modifies the permeability properties of the mitochondrial inner membrane. It is recognized as a potent pharmacological target for diseases associated with mitochondrial dysfunction and excessive cell death including ND such as Parkinson's disease (PD). Imbalance in Ca2+ concentration, change in mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), or mutation in mitochondrial genome has been implicated in the pathophysiology of the opening of the mtPTP. Different proteins are released by permeability transition including cytochrome c which is responsible for apoptosis. This review aims to discuss the importance of PTP in the pathophysiology of PD and puts together different positive as well as negative aspects of drugs such as pramipexole, ropinirole, minocyclin, rasagilin, and safinamide which act as a blocker or modifier for mtPTP. Some of them may be detrimental in their neuroprotective nature.
Collapse
Affiliation(s)
- Md Zeeshan Rasheed
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India.
| |
Collapse
|
225
|
Arnaiz-Cot JJ, Cleemann L, Morad M. Xanthohumol Modulates Calcium Signaling in Rat Ventricular Myocytes: Possible Antiarrhythmic Properties. J Pharmacol Exp Ther 2016; 360:239-248. [PMID: 27815365 DOI: 10.1124/jpet.116.236588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/05/2016] [Indexed: 01/24/2023] Open
Abstract
Cardiac arrhythmia is a major cause of mortality in cardiovascular pathologies. A host of drugs targeted to sarcolemmal Na+, Ca2+, and K+ channels has had limited success clinically. Recently, Ca2+ signaling has been target of pharmacotherapy based on finding that leaky ryanodine receptors elevate local Ca2+ concentrations causing membrane depolarizations that trigger arrhythmias. In this study, we report that xanthohumol, an antioxidant extracted from hops showing therapeutic effects in other pathologies, suppresses aberrant ryanodine receptor Ca2+ release. The effects of xanthohumol (5-1000 nM) on Ca2+ signaling pathways were probed in isolated rat ventricular myocytes incubated with Fluo-4 AM using the perforated patch-clamp technique. We found that 5-50 nM xanthohumol reduced the frequency of spontaneously occurring Ca2+ sparks (>threefold) and Ca2+ waves in control myocytes and in cells subjected to Ca2+ overload caused by the following: 1) exposure to low K+ solutions, 2) periods of high frequency electrical stimulation, 3) exposures to isoproterenol, or 4) caffeine. At room temperatures, 50-100 nM xanthohumol reduced the rate of relaxation of electrically- or caffeine-triggered Ca2+transients, without suppressing ICa, but this effect was small and reversed by isoproterenol at physiologic temperatures. Xanthohumol also suppressed the Ca2+ content of the SR and its rate of recirculation. The stabilizing effects of xanthohumol on the frequency of spontaneously triggered Ca2+ sparks and waves combined with its antioxidant properties, and lack of significant effects on Na+ and Ca2+ channels, may provide this compound with clinically desirable antiarrhythmic properties.
Collapse
Affiliation(s)
- Juan Jose Arnaiz-Cot
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Lars Cleemann
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Martin Morad
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| |
Collapse
|
226
|
Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:685-707. [PMID: 27289382 PMCID: PMC5045486 DOI: 10.1007/s00249-016-1143-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.
Collapse
Affiliation(s)
| | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
227
|
Ahmed-Belkacem A, Colliandre L, Ahnou N, Nevers Q, Gelin M, Bessin Y, Brillet R, Cala O, Douguet D, Bourguet W, Krimm I, Pawlotsky JM, Guichou JF. Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities. Nat Commun 2016; 7:12777. [PMID: 27652979 PMCID: PMC5036131 DOI: 10.1038/ncomms12777] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Cyclophilins are peptidyl-prolyl cis/trans isomerases (PPIase) that catalyse the interconversion of the peptide bond at proline residues. Several cyclophilins play a pivotal role in the life cycle of a number of viruses. The existing cyclophilin inhibitors, all derived from cyclosporine A or sanglifehrin A, have disadvantages, including their size, potential for side effects unrelated to cyclophilin inhibition and drug–drug interactions, unclear antiviral spectrum and manufacturing issues. Here we use a fragment-based drug discovery approach using nucleic magnetic resonance, X-ray crystallography and structure-based compound optimization to generate a new family of non-peptidic, small-molecule cyclophilin inhibitors with potent in vitro PPIase inhibitory activity and antiviral activity against hepatitis C virus, human immunodeficiency virus and coronaviruses. This family of compounds has the potential for broad-spectrum, high-barrier-to-resistance treatment of viral infections. Cyclophilins play a key role in the life cycle of many viruses and represent important drug targets for broad-spectrum antiviral therapies. Here, the authors use fragment-based drug discovery to develop non-peptidic inhibitors of human cyclophilins with high activity against replication of a number of viral families.
Collapse
Affiliation(s)
- Abdelhakim Ahmed-Belkacem
- INSERM U955 'Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers', Hôpital Henri Mondor, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Lionel Colliandre
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.,INSERM U1054, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Nazim Ahnou
- INSERM U955 'Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers', Hôpital Henri Mondor, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Quentin Nevers
- INSERM U955 'Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers', Hôpital Henri Mondor, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Muriel Gelin
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.,INSERM U1054, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Yannick Bessin
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.,INSERM U1054, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Rozenn Brillet
- INSERM U955 'Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers', Hôpital Henri Mondor, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Olivier Cala
- Institut des Sciences Analytiques, CNRS UMR5280, Université Lyon 1, École Nationale Supérieure de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Dominique Douguet
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.,INSERM U1054, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - William Bourguet
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.,INSERM U1054, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Isabelle Krimm
- Institut des Sciences Analytiques, CNRS UMR5280, Université Lyon 1, École Nationale Supérieure de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Jean-Michel Pawlotsky
- INSERM U955 'Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers', Hôpital Henri Mondor, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France.,National Reference Center for Viral Hepatitis B, C and Delta, Department of Virology, Hôpital Henri Mondor, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Jean-François Guichou
- CNRS UMR5048, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.,INSERM U1054, Centre de Biochimie Structurale, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| |
Collapse
|
228
|
An animal model of Miller Fisher syndrome: Mitochondrial hydrogen peroxide is produced by the autoimmune attack of nerve terminals and activates Schwann cells. Neurobiol Dis 2016; 96:95-104. [PMID: 27597525 DOI: 10.1016/j.nbd.2016.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 01/08/2023] Open
Abstract
The neuromuscular junction is a tripartite synapse composed of the presynaptic nerve terminal, the muscle and perisynaptic Schwann cells. Its functionality is essential for the execution of body movements and is compromised in a number of disorders, including Miller Fisher syndrome, a variant of Guillain-Barré syndrome: this autoimmune peripheral neuropathy is triggered by autoantibodies specific for the polysialogangliosides GQ1b and GT1a present in motor axon terminals, including those innervating ocular muscles, and in sensory neurons. Their binding to the presynaptic membrane activates the complement cascade, leading to a nerve degeneration that resembles that caused by some animal presynaptic neurotoxins. Here we have studied the intra- and inter-cellular signaling triggered by the binding and complement activation of a mouse monoclonal anti-GQ1b/GT1a antibody to primary cultures of spinal cord motor neurons and cerebellar granular neurons. We found that a membrane attack complex is rapidly assembled following antibody binding, leading to calcium accumulation, which affects mitochondrial functionality. Consequently, using fluorescent probes specific for mitochondrial hydrogen peroxide, we found that this reactive oxygen species is rapidly produced by mitochondria of damaged neurons, and that it triggers the activation of the MAP kinase pathway in Schwann cells. These results throw light on the molecular and cellular pathogenesis of Miller Fisher syndrome, and may well be relevant to other pathologies of the motor axon terminals, including some subtypes of the Guillain Barré syndrome.
Collapse
|
229
|
The effect of chronic alcohol consumption on mitochondrial calcium handling in hepatocytes. Biochem J 2016; 473:3903-3921. [PMID: 27582500 DOI: 10.1042/bcj20160255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023]
Abstract
The damage to liver mitochondria is universally observed in both humans and animal models after excessive alcohol consumption. Acute alcohol treatment has been shown to stimulate calcium (Ca2+) release from internal stores in hepatocytes. The resultant increase in cytosolic Ca2+ is expected to be accumulated by neighboring mitochondria, which could potentially lead to mitochondrial Ca2+ overload and injury. Our data indicate that total and free mitochondrial matrix Ca2+ levels are, indeed, elevated in hepatocytes isolated from alcohol-fed rats compared with their pair-fed control littermates. In permeabilized hepatocytes, the rates of mitochondrial Ca2+ uptake were substantially increased after chronic alcohol feeding, whereas those of mitochondrial Ca2+ efflux were decreased. The changes in mitochondrial Ca2+ handling could be explained by an up-regulation of the mitochondrial Ca2+ uniporter and loss of a cyclosporin A-sensitive Ca2+ transport pathway. In intact cells, hormone-induced increases in mitochondrial Ca2+ declined at slower rates leading to more prolonged elevations of matrix Ca2+ in the alcohol-fed group compared with controls. Moreover, treatment with submaximal concentrations of Ca2+-mobilizing hormones markedly increased the levels of mitochondrial reactive oxygen species (ROS) in hepatocytes from alcohol-fed rats, but did not affect ROS levels in controls. The changes in mitochondrial Ca2+ handling are expected to buffer and attenuate cytosolic Ca2+ increases induced by acute alcohol exposure or hormone stimulation. However, these alterations in mitochondrial Ca2+ handling may also lead to Ca2+ overload during cytosolic Ca2+ increases, which may stimulate the production of mitochondrial ROS, and thus contribute to alcohol-induced liver injury.
Collapse
|
230
|
Ye W, Zhu S, Liao C, Xiao J, Wu Q, Lin Z, Chen J. Advanced oxidation protein products induce apoptosis of human chondrocyte through reactive oxygen species-mediated mitochondrial dysfunction and endoplasmic reticulum stress pathways. Fundam Clin Pharmacol 2016; 31:64-74. [PMID: 27483042 DOI: 10.1111/fcp.12229] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/04/2016] [Accepted: 07/29/2016] [Indexed: 12/25/2022]
Abstract
Advanced oxidation production products (AOPPs) have been confirmed to accumulate in patients with rheumatoid arthritis (RA). Previous study demonstrated that AOPPs could accelerate cartilage destruction in rabbit arthritis model. However, the effect of AOPP stimulation on apoptosis of human chondrocyte and the underlying mechanisms remains unclear. This study demonstrated that exposure of chondrocyte to AOPPs resulted in cell apoptosis. AOPP stimulation triggered reactive oxygen species (ROS) production, which induced mitochondrial dysfunction and endoplasmic reticulum stress (ER stress) resulted in caspase activation. Furthermore, an antioxidant, N-acetylcysteine, markedly blocked these signals. Our study demonstrated that AOPPs induce apoptosis via ROS-related mitochondria- and ER-dependent signals in human chondrocyte. Targeting AOPP-triggered ROS generation might be as a promising option for patients with RA.
Collapse
Affiliation(s)
- Wenbin Ye
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Siyuan Zhu
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Congrui Liao
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jun Xiao
- Department of Orthopedic Joint Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qian Wu
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Zhen Lin
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jianting Chen
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| |
Collapse
|
231
|
Cecatto C, Godoy KDS, da Silva JC, Amaral AU, Wajner M. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle. Toxicol In Vitro 2016; 36:1-9. [PMID: 27371118 DOI: 10.1016/j.tiv.2016.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/10/2016] [Accepted: 06/24/2016] [Indexed: 12/19/2022]
Abstract
The pathogenesis of the muscular symptoms and recurrent rhabdomyolysis that are commonly manifested in patients with mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) deficiencies is still unknown. In this study we investigated the effects of the major long-chain monocarboxylic 3-hydroxylated fatty acids (LCHFA) accumulating in these disorders, namely 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, on important mitochondrial functions in rat skeletal muscle mitochondria. 3HTA and 3HPA markedly increased resting (state 4) and decreased ADP-stimulated (state 3) and CCCP-stimulated (uncoupled) respiration. 3HPA provoked similar effects in permeabilized skeletal muscle fibers, validating the results obtained in purified mitochondria. Furthermore, 3HTA and 3HPA markedly diminished mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded mitochondria. Mitochondrial permeability transition (mPT) induction probably underlie these effects since they were totally prevented by cyclosporin A and ADP. In contrast, the dicarboxylic analogue of 3HTA did not alter the tested parameters. Our data strongly indicate that 3HTA and 3HPA behave as metabolic inhibitors, uncouplers of oxidative phosphorylation and mPT inducers in skeletal muscle. It is proposed that these pathomechanisms disrupting mitochondrial homeostasis may be involved in the muscle alterations characteristic of MTP and LCHAD deficiencies.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kálita Dos Santos Godoy
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Janaína Camacho da Silva
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
232
|
Joshi AU, Kornfeld OS, Mochly-Rosen D. The entangled ER-mitochondrial axis as a potential therapeutic strategy in neurodegeneration: A tangled duo unchained. Cell Calcium 2016; 60:218-34. [PMID: 27212603 DOI: 10.1016/j.ceca.2016.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) and mitochondrial function have both been shown to be critical events in neurodegenerative diseases. The ER mediates protein folding, maturation, sorting as well acts as calcium storage. The unfolded protein response (UPR) is a stress response of the ER that is activated by the accumulation of misfolded proteins within the ER lumen. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Similarly, calcium-mediated mitochondrial function and dynamics not only contribute to ATP generation and calcium buffering but are also a linchpin in mediating cell fate. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintaining cellular homeostasis and determining cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of pro-survival/pro-death pathways. In this review, we summarize the latest therapeutic strategies that target these essential organelles in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Opher S Kornfeld
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA.
| |
Collapse
|
233
|
Abstract
In the last 5 years, most of the molecules that control mitochondrial Ca(2+) homeostasis have been finally identified. Mitochondrial Ca(2+) uptake is mediated by the Mitochondrial Calcium Uniporter (MCU) complex, a macromolecular structure that guarantees Ca(2+) accumulation inside mitochondrial matrix upon increases in cytosolic Ca(2+). Conversely, Ca(2+) release is under the control of the Na(+)/Ca(2+) exchanger, encoded by the NCLX gene, and of a H(+)/Ca(2+) antiporter, whose identity is still debated. The low affinity of the MCU complex, coupled to the activity of the efflux systems, protects cells from continuous futile cycles of Ca(2+) across the inner mitochondrial membrane and consequent massive energy dissipation. In this review, we discuss the basic principles that govern mitochondrial Ca(2+) homeostasis and the methods used to investigate the dynamics of Ca(2+) concentration within the organelles. We discuss the functional and structural role of the different molecules involved in mitochondrial Ca(2+) handling and their pathophysiological role.
Collapse
Affiliation(s)
- Diego De Stefani
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; , ,
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; , , .,National Research Council (CNR) Neuroscience Institute, 35121 Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; , , .,National Research Council (CNR) Neuroscience Institute, 35121 Padova, Italy.,Venetian Institute of Molecular Medicine, 35121 Padova, Italy
| |
Collapse
|
234
|
Witowski NE, Lusczek ER, Determan CE, Lexcen DR, Mulier KE, Wolf A, Ostrowski BG, Beilman GJ. Metabolomic analysis of survival in carbohydrate pre-fed pigs subjected to shock and polytrauma. MOLECULAR BIOSYSTEMS 2016; 12:1638-52. [PMID: 26989839 PMCID: PMC5577932 DOI: 10.1039/c5mb00637f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemorrhagic shock, a result of extensive blood loss, is a dominant factor in battlefield morbidity and mortality. Early rodent studies in hemorrhagic shock reported carbohydrate feeding prior to the induction of hemorrhagic shock decreased mortality. When repeated in our laboratory with a porcine model, carbohydrate pre-feed resulted in a 60% increase in death rate following hemorrhagic shock with trauma when compared to fasted animals (15/32 or 47% vs. 9/32 or 28%). In an attempt to explain the unexpected death rate for pre-fed animals, we further investigated the metabolic profiles of pre-fed non-survivors (n = 15) across 4 compartments (liver, muscle, serum, and urine) at specific time intervals (pre-shock, shock, and resuscitation) and compared them to pre-fed survivors (n = 17). As hypothesized, pre-fed pigs that died as a result of hemorrhage and trauma showed differences in their metabolic and physiologic profiles at all time intervals and in all compartments when compared to pre-fed survivors. Our data suggest that, although all animals were subjected to the same shock and trauma protocol, non-survivors exhibited altered carbohydrate processing as early as the pre-shock sampling point. This was evident in (for example) the higher levels of ATP and markers of greater anabolic activity in the muscle at the pre-shock time point. Based on the metabolic findings, we propose two mechanisms that connect pre-fed status to a higher death rate: (1) animals that die are more susceptible to opening of the mitochondrial permeability transition pore, a major factor in ischemia/reperfusion injury; and (2) loss of fasting-associated survival mechanisms in pre-fed animals.
Collapse
Affiliation(s)
- Nancy E Witowski
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| | | | | | - Daniel R Lexcen
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| | - Kristine E Mulier
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| | - Andrea Wolf
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| | | | - Greg J Beilman
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
235
|
La Rovere RML, Roest G, Bultynck G, Parys JB. Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 2016; 60:74-87. [PMID: 27157108 DOI: 10.1016/j.ceca.2016.04.005] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER), mitochondria and lysosomes are physically and/or functionally linked, establishing close contact sites between these organelles. As a consequence, Ca(2+) release events from the ER, the major intracellular Ca(2+)-storage organelle, have an immediate effect on the physiological function of mitochondria and lysosomes. Also, the lysosomes can act as a Ca(2+) source for Ca(2+) release into the cytosol, thereby influencing ER-based Ca(2+) signaling. Given the important role for mitochondria and lysosomes in cell survival, cell death and cell adaptation processes, it has become increasingly clear that Ca(2+) signals from or towards these organelles impact these processes. In this review, we discuss the most recent insights in the emerging role of Ca(2+) signaling in cellular survival by controlling basal mitochondrial bioenergetics and by regulating apoptosis, a mitochondrial process, and autophagy, a lysosomal process, in response to cell damage and cell stress.
Collapse
Affiliation(s)
- Rita M L La Rovere
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Gemma Roest
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| |
Collapse
|
236
|
Ruiz LM, Jensen EL, Rossel Y, Puas GI, Gonzalez-Ibanez AM, Bustos RI, Ferrick DA, Elorza AA. Non-cytotoxic copper overload boosts mitochondrial energy metabolism to modulate cell proliferation and differentiation in the human erythroleukemic cell line K562. Mitochondrion 2016; 29:18-30. [PMID: 27094959 DOI: 10.1016/j.mito.2016.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/15/2016] [Accepted: 04/14/2016] [Indexed: 12/25/2022]
Abstract
Copper is integral to the mitochondrial respiratory complex IV and contributes to proliferation and differentiation, metabolic reprogramming and mitochondrial function. The K562 cell line was exposed to a non-cytotoxic copper overload to evaluate mitochondrial dynamics, function and cell fate. This induced higher rates of mitochondrial turnover given by an increase in mitochondrial fusion and fission events and in the autophagic flux. The appearance of smaller and condensed mitochondria was also observed. Bioenergetics activity included more respiratory complexes, higher oxygen consumption rate, superoxide production and ATP synthesis, with no decrease in membrane potential. Increased cell proliferation and inhibited differentiation also occurred. Non-cytotoxic copper levels can modify mitochondrial metabolism and cell fate, which could be used in cancer biology and regenerative medicine.
Collapse
Affiliation(s)
- Lina M Ruiz
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Centro de Investigación Biomédica, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Erik L Jensen
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile
| | - Yancing Rossel
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile
| | - German I Puas
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, 8331150 Santiago, Chile
| | - Alvaro M Gonzalez-Ibanez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, 8331150 Santiago, Chile
| | - Rodrigo I Bustos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile
| | | | - Alvaro A Elorza
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, 8331150 Santiago, Chile.
| |
Collapse
|
237
|
Calì B, Ceolin S, Ceriani F, Bortolozzi M, Agnellini AHR, Zorzi V, Predonzani A, Bronte V, Molon B, Mammano F. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury. Oncotarget 2016; 6:10161-74. [PMID: 25868859 PMCID: PMC4496347 DOI: 10.18632/oncotarget.3553] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/14/2015] [Indexed: 12/02/2022] Open
Abstract
Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding “bystander” cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca2+-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy.
Collapse
Affiliation(s)
- Bianca Calì
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, Padua, Italy
| | - Stefano Ceolin
- University of Padua, Department of Physics and Astronomy, Padua, Italy
| | - Federico Ceriani
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Physics and Astronomy, Padua, Italy
| | - Mario Bortolozzi
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Physics and Astronomy, Padua, Italy
| | - Andrielly H R Agnellini
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, Padua, Italy
| | - Veronica Zorzi
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Physics and Astronomy, Padua, Italy
| | | | - Vincenzo Bronte
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,Verona University Hospital, Department of Pathology and Diagnostics, Immunology Section, Verona, Italy
| | | | - Fabio Mammano
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Physics and Astronomy, Padua, Italy.,Present address: CNR, Institute of Cell Biology and Neurobiology, Monterotondo (RM), Italy
| |
Collapse
|
238
|
Bidaux G, Borowiec AS, Prevarskaya N, Gordienko D. Fine-tuning of eTRPM8 expression and activity conditions keratinocyte fate. Channels (Austin) 2016; 10:320-31. [PMID: 27014839 DOI: 10.1080/19336950.2016.1168551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Recently, we reported the cloning and characterization of short isoform of the icilin-activated cold receptor TRPM8 channel in keratinocytes, dubbed eTRPM8. We demonstrated that eTRPM8 via fine tuning of the endoplasmic reticulum (ER) - mitochondria Ca(2+) shuttling regulates mitochondrial ATP and superoxide (O2(•-)) production and, thereby, mediates control of epidermal homeostasis by mild cold. Here, we provide additional information explaining why eTRPM8 suppression and TRPM8 stimulation both inhibit keratinocyte growth. We also demonstrate that stimulation of eTRPM8 with icilin may give rise to sustained oscillatory responses. Furthermore, we show that ATP-induced cytosolic and mitochondrial Ca(2+) responses are attenuated by eTRPM8 suppression. This suggests positive interplay between eTRPM8 and purinergic signaling pathways, what may serve to facilitate the ER-mitochondria Ca(2+) shuttling. Finally, we demonstrate that cold (25°C) induces eTRPM8-dependent superoxide-mediated necrosis of keratinocytes. Altogether, these results are in line with our model of eTRPM8-mediated cold-dependent balance between keratinocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Gabriel Bidaux
- a Inserm U-1003, Equipe labellisée par la Ligue Nationale contre le cancer, Université des Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq , Bron , France.,b Univ Lyon, CarMeN laboratory, Inserm UMR1060 , INRA UMR1397, Insa-Lyon, Bron , France.,c IHU OPERA, Hospices Civils de Lyon, Groupement Hospitalier EST , Bron , France
| | - Anne-Sophie Borowiec
- a Inserm U-1003, Equipe labellisée par la Ligue Nationale contre le cancer, Université des Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq , Bron , France
| | - Natalia Prevarskaya
- a Inserm U-1003, Equipe labellisée par la Ligue Nationale contre le cancer, Université des Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq , Bron , France
| | - Dmitri Gordienko
- a Inserm U-1003, Equipe labellisée par la Ligue Nationale contre le cancer, Université des Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq , Bron , France.,d Laboratory of Molecular Pharmacology and Biophysics of Cell Signaling; Bogomoletz Institute of Physiology , Kiev , Ukraine
| |
Collapse
|
239
|
Ketamine-Induced Apoptosis in Normal Human Urothelial Cells: A Direct, N-Methyl-d-Aspartate Receptor-Independent Pathway Characterized by Mitochondrial Stress. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1267-77. [PMID: 27001627 PMCID: PMC4861758 DOI: 10.1016/j.ajpath.2015.12.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/28/2015] [Accepted: 12/24/2015] [Indexed: 11/23/2022]
Abstract
Recreational abuse of ketamine has been associated with the emergence of a new bladder pain syndrome, ketamine-induced cystitis, characterized by chronic inflammation and urothelial ulceration. We investigated the direct effects of ketamine on normal human urothelium maintained in organ culture or as finite cell lines in vitro. Exposure of urothelium to ketamine resulted in apoptosis, with cytochrome c release from mitochondria and significant subsequent caspase 9 and 3/7 activation. The anesthetic mode-of-action for ketamine is mediated primarily through N-methyl d-aspartate receptor (NMDAR) antagonism; however, normal (nonimmortalized) human urothelial cells were unresponsive to NMDAR agonists or antagonists, and no expression of NMDAR transcript was detected. Exposure to noncytotoxic concentrations of ketamine (≤1 mmol/L) induced rapid release of ATP, which activated purinergic P2Y receptors and stimulated the inositol trisphosphate receptor to provoke transient release of calcium from the endoplasmic reticulum into the cytosol. Ketamine concentrations >1 mmol/L were cytotoxic and provoked a larger-amplitude increase in cytosolic Ca(2+) concentration that was unresolved. The sustained elevation in cytosolic Ca(2+) concentration was associated with pathological mitochondrial oxygen consumption and ATP deficiency. Damage to the urinary barrier initiates bladder pain and, in ketamine-induced cystitis, loss of urothelium from large areas of the bladder wall is a reported feature. This study offers first evidence for a mechanism of direct toxicity of ketamine to urothelial cells by activating the intrinsic apoptotic pathway.
Collapse
|
240
|
Role of inorganic polyphosphate in mammalian cells: from signal transduction and mitochondrial metabolism to cell death. Biochem Soc Trans 2016; 44:40-5. [DOI: 10.1042/bst20150223] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inorganic polyphosphate (polyP) is a polymer compromised of linearly arranged orthophosphate units that are linked through high-energy phosphoanhydride bonds. The chain length of this polymer varies from five to several thousand orthophosphates. PolyP is distributed in the most of the living organisms and plays multiple functions in mammalian cells, it is important for blood coagulation, cancer, calcium precipitation, immune response and many others. Essential role of polyP is shown for mitochondria, from implication into energy metabolism and mitochondrial calcium handling to activation of permeability transition pore (PTP) and cell death. PolyP is a gliotransmitter which transmits the signal in astrocytes via activation of P2Y1 receptors and stimulation of phospholipase C. PolyP-induced calcium signal in astrocytes can be stimulated by different lengths of this polymer but only long chain polyP induces mitochondrial depolarization by inhibition of respiration and opening of the PTP. It leads to induction of astrocytic cell death which can be prevented by inhibition of PTP with cyclosporine A. Thus, medium- and short-length polyP plays role in signal transduction and mitochondrial metabolism of astrocytes and long chain of this polymer can be toxic for the cells.
Collapse
|
241
|
Qi H, Shuai J. Alzheimer's disease via enhanced calcium signaling caused by the decrease of endoplasmic reticulum-mitochondrial distance. Med Hypotheses 2016; 89:28-31. [PMID: 26968904 DOI: 10.1016/j.mehy.2016.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
Abstract
It has long been recognized that Ca(2+) dysregulation is relevant to the initiation of Alzheimer's disease (AD), and most recent works have suggested that increased cross-talk between endoplasmic reticulum (ER) and mitochondria plays an important role in the pathogenesis of the disease. However, the detailed mechanism involved has not been fully elucidated. Owing to its importance in the regulation of Ca(2+) signaling, ER-mitochondrial distance in the neurons is tightly controlled in the physiological conditions. When the distance is decreased, Ca(2+) overload occurs both in the cytosol and mitochondria. The cytosolic Ca(2+) overload can (1) hyperactivate Ca(2+)-dependent enzymes, which in turn regulate activities of pro-apoptotic BCL-2 family proteins, causing mitochondrial outer membrane permeabilization and thereby resulting in the release of cytochrome c to activate caspase-3; (2) indirectly activate caspase-3 through the activation of caspase-12; and (3) promote the production and aggregation of β-amyloid. The three pathways eventually trigger neuronal apoptotic cell death. The mitochondrial Ca(2+) overload can lead to increased generation of reactive oxygen species, inducing the opening of the mitochondrial permeability transition pore and ultimately causing neuronal apoptotic and necrotic cell death. The resultant death of neurons which are responsible for memory and cognition would contribute to the pathogenesis of AD. Therefore, we propose that the reduction in the distance between ER and mitochondria may be implicated in AD pathology by enhanced Ca(2+) signaling, which provides a more complete picture of the Ca(2+) hypothesis of AD.
Collapse
Affiliation(s)
- Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, PR China.
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, PR China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
242
|
Couturier K, Hininger I, Poulet L, Anderson RA, Roussel AM, Canini F, Batandier C. Cinnamon intake alleviates the combined effects of dietary-induced insulin resistance and acute stress on brain mitochondria. J Nutr Biochem 2016; 28:183-90. [DOI: 10.1016/j.jnutbio.2015.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 12/26/2022]
|
243
|
Le Guen M, Chaté V, Hininger-Favier I, Laillet B, Morio B, Pieroni G, Schlattner U, Pison C, Dubouchaud H. A 9-wk docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats. Am J Physiol Endocrinol Metab 2016; 310:E213-24. [PMID: 26646102 DOI: 10.1152/ajpendo.00468.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/04/2015] [Indexed: 01/07/2023]
Abstract
Decline in skeletal muscle mass and function starts during adulthood. Among the causes, modifications of the mitochondrial function could be of major importance. Polyunsaturated fatty (ω-3) acids have been shown to play a role in intracellular functions. We hypothesize that docosahexaenoic acid (DHA) supplementation could improve muscle mitochondrial function that could contribute to limit the early consequences of aging on adult muscle. Twelve-month-old male Wistar rats were fed a low-polyunsaturated fat diet and were given DHA (DHA group) or placebo (control group) for 9 wk. Rats from the DHA group showed a higher endurance capacity (+56%, P < 0.05) compared with control animals. Permeabilized myofibers from soleus muscle showed higher O2 consumptions (P < 0.05) in the DHA group compared with the control group, with glutamate-malate as substrates, both in basal conditions (i.e., state 2) and under maximal conditions (i.e., state 3, using ADP), along with a higher apparent Km for ADP (P < 0.05). Calcium retention capacity of isolated mitochondria was lower in DHA group compared with the control group (P < 0.05). Phospho-AMPK/AMPK ratio and PPARδ mRNA content were higher in the DHA group compared with the control group (P < 0.05). Results showed that DHA enhanced endurance capacity in adult animals, a beneficial effect potentially resulting from improvement in mitochondrial function, as suggested by our results on permeabilized fibers. DHA supplementation could be of potential interest for the muscle function in adults and for fighting the decline in exercise tolerance with age that could imply energy-sensing pathway, as suggested by changes in phospho-AMPK/AMPK ratio.
Collapse
MESH Headings
- 3-Hydroxyacyl CoA Dehydrogenases/drug effects
- 3-Hydroxyacyl CoA Dehydrogenases/metabolism
- Animals
- Blotting, Western
- Calcium/metabolism
- Calorimetry, Indirect
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cholesterol/metabolism
- Citrate (si)-Synthase/drug effects
- Citrate (si)-Synthase/metabolism
- Dietary Supplements
- Docosahexaenoic Acids/pharmacology
- Electron Transport/drug effects
- Exercise Tolerance/drug effects
- Hydrogen Peroxide/metabolism
- Male
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Oxygen Consumption/drug effects
- Phospholipids/metabolism
- Physical Conditioning, Animal
- Physical Endurance/drug effects
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Real-Time Polymerase Chain Reaction
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Marie Le Guen
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France
| | - Valérie Chaté
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France
| | - Isabelle Hininger-Favier
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France
| | - Brigitte Laillet
- Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France; and Université d'Auvergne, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Béatrice Morio
- Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France; and Université d'Auvergne, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | | | - Uwe Schlattner
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France
| | - Christophe Pison
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France
| | - Hervé Dubouchaud
- Université Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, U1055, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1055, Grenoble, France;
| |
Collapse
|
244
|
Blomeyer CA, Bazil JN, Stowe DF, Dash RK, Camara AKS. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration. J Bioenerg Biomembr 2016; 48:175-88. [PMID: 26815005 DOI: 10.1007/s10863-016-9644-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.
Collapse
Affiliation(s)
- Christoph A Blomeyer
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jason N Bazil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Ranjan K Dash
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
245
|
Colombini M. Ceramide channels and mitochondrial outer membrane permeability. J Bioenerg Biomembr 2016; 49:57-64. [PMID: 26801188 DOI: 10.1007/s10863-016-9646-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
Among the permeability pathways in the mitochondrial outer membrane (MOM), whose elucidation was pioneered by Kathleen Kinnally, there is one formed by the lipid, ceramide. Electron microscopic visualization shows that ceramide channels are large cylindrical structures of varying pore size, with a most frequent size of 10 nm in diameter, large enough to allow all soluble proteins to translocate between the cytosol and the mitochondrial intermembrane space. Similar results were obtained with electrophysiological measurements. Studies of the dynamics of the channels are consistent with a right cylinder. Ceramide channels form at mole fractions of ceramide that are found in the MOM early in the apoptotic process, before or at the time of protein release from mitochondria. That these channels are good candidates for the protein release pathway is supported by the fact that channel formation is inhibited by anti-apoptotic proteins and favored by Bax. Bcl-xL inhibits ceramide channel formation by binding to the apolar ceramide tails using its hydrophobic grove. Bax interaction with the polar regions of ceramide results in MOM permeabilization through synergy with ceramide. Evidence that ceramide channels actually function to favor apoptosis in vivo is supported by the expression of Bcl-xL containing point mutations in cells induced to undergo apoptosis. The Bcl-xL mutants inhibit differentially Bax and ceramide channels and thus tease apart, to some extent, these two modes of MOM permeabilization. Ceramide channels have the right properties and appropriate regulation to be key players in the induction of apoptosis.
Collapse
Affiliation(s)
- Marco Colombini
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
246
|
Zhang J, Nadtochiy SM, Urciuoli WR, Brookes PS. The cardioprotective compound cloxyquin uncouples mitochondria and induces autophagy. Am J Physiol Heart Circ Physiol 2016; 310:H29-38. [PMID: 26519034 PMCID: PMC4796459 DOI: 10.1152/ajpheart.00926.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 10/21/2015] [Indexed: 11/22/2022]
Abstract
Mitochondrial quality control mechanisms have been implicated in protection against cardiac ischemia-reperfusion (IR) injury. Previously, cloxyquin (5-chloroquinolin-8-ol) was identified via phenotypic screening as a cardioprotective compound. Herein, cloxyquin was identified as a mitochondrial uncoupler in both isolated heart mitochondria and adult cardiomyocytes. Additionally, cardiomyocytes isolated from transgenic mice expressing green fluorescent protein-tagged microtubule-associated protein light chain 3 showed increased autophagosome formation with cloxyquin treatment. The autophagy inhibitor chloroquine abolished cloxyquin-induced cardioprotection in both cellular and perfused heart (Langendorff) models of IR injury. Finally, in an in vivo murine left anterior descending coronary artery occlusion model of IR injury, cloxyquin significantly reduced infarct size from 31.4 ± 3.4% to 16.1 ± 2.2%. In conclusion, the cardioprotective compound cloxyquin simultaneously uncoupled mitochondria and induced autophagy. Importantly, autophagy appears to be required for cloxyquin-induced cardioprotection.
Collapse
Affiliation(s)
- Jimmy Zhang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Sergiy M Nadtochiy
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| | - William R Urciuoli
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
247
|
Golshani-Hebroni S. Mg(++) requirement for MtHK binding, and Mg(++) stabilization of mitochondrial membranes via activation of MtHK & MtCK and promotion of mitochondrial permeability transition pore closure: A hypothesis on mechanisms underlying Mg(++)'s antioxidant and cytoprotective effects. Gene 2015; 581:1-13. [PMID: 26732303 DOI: 10.1016/j.gene.2015.12.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022]
Abstract
Evidence points to magnesium's antioxidant, anti-necrotic, and anti-apoptotic effects in cardio- and neuroprotection. With magnesium being involved in over 300 biochemical reactions, the mechanisms underlying its cytoprotective and antioxidant effects have remained elusive. The profound anti-apoptotic, anabolic, and antioxidant effects of mitochondrion bound hexokinase (MtHk), and the anti-apoptotic, anti-necrotic, and antioxidant functions of mitochondrial creatine kinase (MtCK) have been established over the past few decades. As powerful regulators of the mitochondrial permeability transition pore (PTP), MtHK and MtCK promote anti-apoptosis and anti-necrosis by stabilizing mitochondrial outer and inner membranes. In this article, it is proposed that magnesium is essentially and directly involved in mitochondrial membrane stabilization via (i) Mg(++) ion requirement for the binding of mitochondrial hexokinase (ii) Mg(++)'s allosteric activation of mitochondrial bound hexokinase, and stimulation of mitochondrial bound creatine kinase activities, and (iii) Mg(++) inhibition of PTP opening by Ca(++) ions. These effects of Mg(++) ions are indirectly supplanted by the stimulatory effect of magnesium on the Akt kinase survival pathway. The "Magnesium/Calcium Yin Yang Hypothesis" proposes here that because of the antagonistic effects of Ca(++) and Mg(++) ions in the presence of high Ca(++) ion concentration at MtHK, MtCK, and PTP, magnesium supplementation may provide cytoprotective effects in the treatment of some degenerative diseases and cytopathies with high intracellular [Ca(++)]/ [Mg(++)] ratio at these sites, whether of genetic, developmental, drug induced, ischemic, immune based, toxic, or infectious etiology.
Collapse
|
248
|
Caldwell ST, Cairns AG, Olson M, Chalmers S, Sandison M, Mullen W, McCarron JG, Hartley RC. Synthesis of an azido-tagged low affinity ratiometric calcium sensor. Tetrahedron 2015; 71:9571-9578. [PMID: 26709317 PMCID: PMC4660056 DOI: 10.1016/j.tet.2015.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in high localised concentrations of Ca2+ ions are fundamental to cell signalling. The synthesis of a dual excitation, ratiometric calcium ion sensor with a Kd of 90 μM, is described. It is tagged with an azido group for bioconjugation, and absorbs in the blue/green and emits in the red region of the visible spectrum with a large Stokes shift. The binding modulating nitro group is introduced to the BAPTA core prior to construction of a benzofuran-2-yl carboxaldehyde by an allylation–oxidation–cyclisation sequence, which is followed by condensation with an azido-tagged thiohydantoin. The thiohydantoin unit has to be protected with an acetoxymethyl (AM) caging group to allow CuAAC click reaction and incorporation of the KDEL peptide endoplasmic reticulum (ER) retention sequence.
Collapse
Affiliation(s)
- Stuart T Caldwell
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew G Cairns
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marnie Olson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Mairi Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
249
|
Apoptosis or autophagy, that is the question: Two ways for muscle sacrifice towards meat. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
250
|
Santo-Domingo J, Wiederkehr A, De Marchi U. Modulation of the matrix redox signaling by mitochondrial Ca 2+. World J Biol Chem 2015; 6:310-323. [PMID: 26629314 PMCID: PMC4657127 DOI: 10.4331/wjbc.v6.i4.310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/04/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023] Open
Abstract
Mitochondria sense, shape and integrate signals, and thus function as central players in cellular signal transduction. Ca2+ waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca2+ transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance, the molecular nature of the proteins involved in mitochondrial Ca2+ transport has been revealed only recently. Mitochondrial Ca2+ promotes energy metabolism through the activation of matrix dehydrogenases and down-stream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)+ ratio, but at the same time will increase reactive oxygen species (ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state, which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redox-sensitive sensors, real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca2+ combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca2+ and redox signals and their impact on cell function. In this review, we describe mitochondrial Ca2+ handling, focusing on a number of newly identified proteins involved in mitochondrial Ca2+ uptake and release. We further discuss our recent findings, revealing how mitochondrial Ca2+ influences the matrix redox state. As a result, mitochondrial Ca2+ is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease.
Collapse
|