201
|
Justesen TF, Orhan A, Raskov H, Nolsoe C, Gögenur I. Electroporation and Immunotherapy-Unleashing the Abscopal Effect. Cancers (Basel) 2022; 14:cancers14122876. [PMID: 35740542 PMCID: PMC9221311 DOI: 10.3390/cancers14122876] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Electrochemotherapy and irreversible electroporation are primarily used for treating patients with cutaneous and subcutaneous tumors and pancreatic cancer, respectively. Increasing numbers of studies have shown that the treatments may elicit an immune response in addition to eliminating the tumor cells. The purpose of this review is to give an in-depth introduction to the electroporation-induced immune response and the local and peripheral immune systems, and to describe the various studies investigating the combination of electroporation and immunotherapy. The review may help guide and inspire the design of future clinical trials investigating the potential synergy of electroporation and immunotherapy in cancer treatment. Abstract The discovery of electroporation in 1968 has led to the development of electrochemotherapy (ECT) and irreversible electroporation (IRE). ECT and IRE have been established as treatments of cutaneous and subcutaneous tumors and locally advanced pancreatic cancer, respectively. Interestingly, the treatment modalities have been shown to elicit immunogenic cell death, which in turn can induce an immune response towards the tumor cells. With the dawn of the immunotherapy era, the potential of combining ECT and IRE with immunotherapy has led to the launch of numerous studies. Data from the first clinical trials are promising, and new combination regimes might change the way we treat tumors characterized by low immunogenicity and high levels of immunosuppression, such as melanoma and pancreatic cancer. In this review we will give an introduction to ECT and IRE and discuss the impact on the immune system. Additionally, we will present the results of clinical and preclinical trials, investigating the combination of electroporation modalities and immunotherapy.
Collapse
Affiliation(s)
- Tobias Freyberg Justesen
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Correspondence:
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Christian Nolsoe
- Center for Surgical Ultrasound, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark;
- Copenhagen Academy for Medical Education and Simulation (CAMES), University of Copenhagen and the Capital Region of Denmark, Ryesgade 53B, 2100 Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
202
|
Xiong X, Huang KB, Wang Y, Cao B, Luo Y, Chen H, Yang Y, Long Y, Liu M, Chan ASC, Liang H, Zou T. Target Profiling of an Iridium(III)-Based Immunogenic Cell Death Inducer Unveils the Engagement of Unfolded Protein Response Regulator BiP. J Am Chem Soc 2022; 144:10407-10416. [PMID: 35658433 DOI: 10.1021/jacs.2c02435] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical chemotherapeutic drugs have occasionally been observed to induce antitumor immune responses beyond the direct cytotoxicity. Such effects are coined as immunogenic cell death (ICD), representing a "second hit" from the host immune system to tumor cells. Although chemo-immunotherapy is highly promising, ICD inducers remain sparse with vague drug-target mechanisms. Here, we report an endoplasmic reticulum stress-inducing cyclometalated Ir(III)-bisNHC complex (1a) as a new ICD inducer, and based on this compound, a clickable photoaffinity probe was designed for target identification, which unveiled the engagement of the master regulator protein BiP (binding immunoglobulin protein)/GRP78 of the unfolded protein response pathway. This has been confirmed by a series of cellular and biochemical studies including fluorescence microscopy, cellular thermal shift assay, enzymatic assays, and so forth, showing the capability of 1a for BiP destabilization. Notably, besides 1a, the previously reported ICD inducers including KP1339, mitoxantrone, and oxaliplatin were also found to engage BiP interaction, suggesting the important role of BiP in eliciting anticancer immunity. We believe that the ICD-related target information in this work will help to understand the mode of action of ICD that is beneficial to designing new ICD agents with high specificity and improved efficacy.
Collapse
Affiliation(s)
- Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Yunli Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Huowen Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yan Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yan Long
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Moyi Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Albert S C Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
203
|
Jarr KU, Kojima Y, Weissman IL, Leeper NJ. 2021 Jeffrey M. Hoeg Award Lecture: Defining the Role of Efferocytosis in Cardiovascular Disease: A Focus on the CD47 (Cluster of Differentiation 47) Axis. Arterioscler Thromb Vasc Biol 2022; 42:e145-e154. [PMID: 35387480 PMCID: PMC9183217 DOI: 10.1161/atvbaha.122.317049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/21/2022] [Indexed: 01/09/2023]
Abstract
A key feature of atherogenesis is the accumulation of diseased and dying cells within the lesional necrotic core. While the burden of intraplaque apoptotic cells may be driven in part by an increase in programmed cell death, mounting evidence suggests that their presence may primarily be dictated by a defect in programmed cell removal, or efferocytosis. In this brief review, we will summarize the evidence suggesting that inflammation-dependent changes within the plaque render target cells inedible and reduce the appetite of lesional phagocytes. We will present the genetic causation studies, which indicate these phenomena promote lesion expansion and plaque vulnerability, and the interventional data which suggest that these processes can be reversed. Particular emphasis is provided related to the antiphagocytic CD47 (cluster of differentiation 47) do not eat me axis, which has emerged as a novel antiatherosclerotic translational target that is predicted to provide benefit independent of traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Kai-Uwe Jarr
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yoko Kojima
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Irving L. Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
204
|
A single local delivery of paclitaxel and nucleic acids via an immunoactive polymer eliminates tumors and induces antitumor immunity. Proc Natl Acad Sci U S A 2022; 119:e2122595119. [PMID: 35609195 DOI: 10.1073/pnas.2122595119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SignificanceThe rationale of local cancer immunotherapy is that the treated tumor cells can serve as a depot of tumor antigens and activate/mobilize the patient's immune system to address systemic diseases. However, the challenge is to coordinate several events involved in the activation of antitumor immune responses, colocalize and retain multiple therapies in tumors, and support the functions of immune cells. Our carrier polyethyleneimine-lithocholic acid conjugate (2E') addresses these challenges based on the amphiphilic structure and inherent immunostimulatory activity. 2E' codelivers hydrophobic drugs and nucleic acids and leverages their effects to eliminate primary tumors and protect the hosts from distant and recurrent diseases. The versatility of 2E' will enable the use of therapeutic combinations to improve clinical outcomes of cancer immunotherapy.
Collapse
|
205
|
Murphy-Ullrich JE. Thrombospondin-1 Signaling Through the Calreticulin/LDL Receptor Related Protein 1 Axis: Functions and Possible Roles in Glaucoma. Front Cell Dev Biol 2022; 10:898772. [PMID: 35693935 PMCID: PMC9185677 DOI: 10.3389/fcell.2022.898772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular extracellular matrix protein. Matricellular proteins are components of the extracellular matrix (ECM) that regulate key cellular functions and impact ECM organization, but which lack direct primary structural roles in the ECM. TSP-1 expression is upregulated in response to injury, hypoxia, growth factor stimulation, inflammation, glucose, and by reactive oxygen species. Relevant to glaucoma, TSP-1 is also a mechanosensitive molecule upregulated by mechanical stretch. TSP-1 expression is increased in ocular remodeling in glaucoma in both the trabecular meshwork and in the optic nerve head. The exact roles of TSP-1 in glaucoma remain to be defined, however. It plays important roles in cell behavior and in ECM remodeling during wound healing, fibrosis, angiogenesis, and in tumorigenesis and metastasis. At the cellular level, TSP-1 can modulate cell adhesion and migration, protease activity, growth factor activity, anoikis resistance, apoptosis, and collagen secretion and matrix assembly and cross-linking. These multiple functions and macromolecular and receptor interactions have been ascribed to specific domains of the TSP-1 molecule. In this review, we will focus on the cell regulatory activities of the TSP-1 N-terminal domain (NTD) sequence that binds to cell surface calreticulin (Calr) and which regulates cell functions via signaling through Calr complexed with LDL receptor related protein 1 (LRP1). We will describe TSP-1 actions mediated through the Calr/LRP1 complex in regulating focal adhesion disassembly and cytoskeletal reorganization, cell motility, anoikis resistance, and induction of collagen secretion and matrix deposition. Finally, we will consider the relevance of these TSP-1 functions to the pathologic remodeling of the ECM in glaucoma.
Collapse
Affiliation(s)
- Joanne E. Murphy-Ullrich
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Joanne E. Murphy-Ullrich,
| |
Collapse
|
206
|
Brown M. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity. Cancer Treat Res 2022; 183:91-129. [PMID: 35551657 DOI: 10.1007/978-3-030-96376-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant tumors frequently exploit innate immunity to evade immune surveillance. The priming, function, and polarization of antitumor immunity fundamentally depends upon context provided by the innate immune system, particularly antigen presenting cells. Such context is determined in large part by sensing of pathogen specific and damage associated features by pathogen recognition receptors (PRRs). PRR activation induces the delivery of T cell priming cues (e.g. chemokines, co-stimulatory ligands, and cytokines) from antigen presenting cells, playing a decisive role in the cancer immunity cycle. Indeed, endogenous PRR activation within the tumor microenvironment (TME) has been shown to generate spontaneous antitumor T cell immunity, e.g., cGAS-STING mediated activation of antigen presenting cells after release of DNA from dying tumor cells. Thus, instigating intratumor PRR activation, particularly with the goal of generating Th1-promoting inflammation that stokes endogenous priming of antitumor CD8+ T cells, is a growing area of clinical investigation. This approach is analogous to in situ vaccination, ultimately providing a personalized antitumor response against relevant tumor associated antigens. Here I discuss clinical stage intratumor modalities that function via activation of PRRs. These approaches are being tested in various solid tumor contexts including melanoma, colorectal cancer, glioblastoma, head and neck squamous cell carcinoma, bladder cancer, and pancreatic cancer. Their mechanism (s) of action relative to other immunotherapy approaches (e.g., antigen-defined cancer vaccines, CAR T cells, dendritic cell vaccines, and immune checkpoint blockade), as well as their potential to complement these approaches are also discussed. Examples to be reviewed include TLR agonists, STING agonists, RIG-I agonists, and attenuated or engineered viruses and bacterium. I also review common key requirements for effective in situ immune activation, discuss differences between various strategies inclusive of mechanisms that may ultimately limit or preclude antitumor efficacy, and provide a summary of relevant clinical data.
Collapse
Affiliation(s)
- Michael Brown
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
207
|
Design of Smart Nanomedicines for Effective Cancer Treatment. Int J Pharm 2022; 621:121791. [PMID: 35525473 DOI: 10.1016/j.ijpharm.2022.121791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a novel field of study that involves the use of nanomaterials to address challenges and issues that are associated with conventional therapeutics for cancer treatment including, but not limited to, low bioavailability, low water-solubility, narrow therapeutic window, nonspecific distribution, and multiple side effects of the drugs. Multiple strategies have been exploited to reduce the nonspecific distribution, and thus the side effect of the active pharmaceutical ingredients (API), including active and passive targeting strategies and externally controllable release of the therapeutic cargo. Site-specific release of the drug prevents it from impacting healthy cells, thereby significantly reducing side effects. API release triggers can be either externally applied, as in ultrasound-mediated activation, or induced by the tumor. To rationally design such nanomedicines, a thorough understanding of the differences between the tumor microenvironment versus that of healthy tissues must be pared with extensive knowledge of stimuli-responsive biomaterials. Herein, we describe the characteristics that differentiate tumor tissues from normal tissues. Then, we introduce smart materials that are commonly used for the development of smart nanomedicines to be triggered by stimuli such as changes in pH, temperature, and enzymatic activity. The most recent advances and their impact on the field of cancer therapy are further discussed.
Collapse
|
208
|
Lai JJ, Chau ZL, Chen S, Hill JJ, Korpany KV, Liang N, Lin L, Lin Y, Liu JK, Liu Y, Lunde R, Shen W. Exosome Processing and Characterization Approaches for Research and Technology Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103222. [PMID: 35332686 PMCID: PMC9130923 DOI: 10.1002/advs.202103222] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/28/2022] [Indexed: 05/05/2023]
Abstract
Exosomes are extracellular vesicles that share components of their parent cells and are attractive in biotechnology and biomedical research as potential disease biomarkers as well as therapeutic agents. Crucial to realizing this potential is the ability to manufacture high-quality exosomes; however, unlike biologics such as proteins, exosomes lack standardized Good Manufacturing Practices for their processing and characterization. Furthermore, there is a lack of well-characterized reference exosome materials to aid in selection of methods for exosome isolation, purification, and analysis. This review informs exosome research and technology development by comparing exosome processing and characterization methods and recommending exosome workflows. This review also provides a detailed introduction to exosomes, including their physical and chemical properties, roles in normal biological processes and in disease progression, and summarizes some of the on-going clinical trials.
Collapse
Affiliation(s)
- James J. Lai
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Zoe L. Chau
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Sheng‐You Chen
- Department of Mechanical EngineeringUniversity of WashingtonSeattleWA98195USA
| | - John J. Hill
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | | | - Nai‐Wen Liang
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Li‐Han Lin
- Department of Mechanical EngineeringNational Taiwan UniversityTaipei City10617Taiwan
| | - Yi‐Hsuan Lin
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Joanne K. Liu
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Yu‐Chung Liu
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Ruby Lunde
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Wei‐Ting Shen
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu30013Taiwan
| |
Collapse
|
209
|
Li M, Yu H, Qi F, Ye Y, Hu D, Cao J, Wang D, Mi L, Wang Z, Ding N, Ping L, Shu S, Zhu J. Anti-CD47 immunotherapy in combination with BCL-2 inhibitor to enhance anti-tumor activity in B-cell lymphoma. Hematol Oncol 2022; 40:596-608. [PMID: 35477179 DOI: 10.1002/hon.3009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
CD47 expressed on cancer cells enables macrophage immune evasion. Blocking CD47 using anti-CD47 monoclonal antibodies (mAbs) is a promising strategy. The anti-CD47 mAb TJC4 has anti-tumor activity but lacks hematological toxicity. Venetoclax, a B-cell lymphoma 2 (BCL-2) inhibitor for B-cell malignancy, induces phosphatidylserine (PS) extracellular exposure, representing an 'eat-me' signal for macrophages. The present study aimed to explore whether TJC4-Venetoclax combined therapy exerts synergistic anti-cancer properties in B-cell lymphoma. In vitro, flow cytometry and microscopy assessed whether TJC4 monotherapy or combination treatment could promote macrophage-mediated phagocytosis of tumor cells. Induced PS exposure on the cell membrane was measured using flow cytometry with Annexin V-FITC staining. In vivo, Venetoclax and TJC4's synergistic anti-tumor effects were evaluated. B cell lymphoma cell lines express high levels of CD47 and patients with diffuse large B cell lymphoma expressing CD47 have a worse clinical prognosis. TJC4 eliminates tumor cells via macrophage-mediated phagocytosis. In vitro and in vivo, the TJC4-Venetoclax combination increased phagocytosis significantly compared with either agent alone, showing synergistic phagocytosis, and displayed synergistic anti-cancer properties in B-cell lymphoma. Our results support the TJC4-Venetoclax combination as a promising therapy, and suppressing BCL-2 and CD47 simultaneously could represent a novel therapeutic paradigm for B-cell lymphoma. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Hui Yu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Fei Qi
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Yingying Ye
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Dingyao Hu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Jiaowu Cao
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Dedao Wang
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Lan Mi
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | | | - Ning Ding
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Lingyan Ping
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Shaokun Shu
- Department of Biomedical Engineering, Peking University, Beijing, 100871, China
| | - Jun Zhu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| |
Collapse
|
210
|
Reid KM, Kitchener EJA, Butler CA, Cockram TOJ, Brown GC. Brain Cells Release Calreticulin That Attracts and Activates Microglia, and Inhibits Amyloid Beta Aggregation and Neurotoxicity. Front Immunol 2022; 13:859686. [PMID: 35514983 PMCID: PMC9065406 DOI: 10.3389/fimmu.2022.859686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Calreticulin is a chaperone, normally found in the endoplasmic reticulum, but can be released by macrophages into the extracellular medium. It is also found in cerebrospinal fluid bound to amyloid beta (Aβ). We investigated whether brain cells release calreticulin, and whether extracellular calreticulin had any effects on microglia and neurons relevant to neuroinflammation and neurodegeneration. We found that microglia release nanomolar levels of calreticulin when inflammatory-activated with lipopolysaccharide, when endoplasmic reticulum stress was induced by tunicamycin, or when cell death was induced by staurosporine, and that neurons release calreticulin when crushed. Addition of nanomolar levels of extracellular calreticulin was found to chemoattract microglia, and activate microglia to release cytokines TNF-α, IL-6 and IL-1β, as well as chemokine (C-C motif) ligand 2. Calreticulin blocked Aβ fibrillization and modified Aβ oligomerization, as measured by thioflavin T fluorescence and transmission electron microscopy. Extracellular calreticulin also altered microglial morphology and proliferation, and prevented Aβ-induced neuronal loss in primary neuron-glial cultures. Thus, calreticulin is released by microglia and neurons, and acts: as an alarmin to recruit and activate microglia, as an extracellular chaperone to prevent Aβ aggregation, and as a neuroprotectant against Aβ neurotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
211
|
Zinkevičiūtė R, Ražanskas R, Kaupinis A, Macijauskaitė N, Čiplys E, Houen G, Slibinskas R. Yeast Secretes High Amounts of Human Calreticulin without Cellular Stress. Curr Issues Mol Biol 2022; 44:1768-1787. [PMID: 35678651 PMCID: PMC9164041 DOI: 10.3390/cimb44050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/25/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
The ER chaperone calreticulin (CALR) also has extracellular functions and can exit the mammalian cell in response to various factors, although the mechanism by which this takes place is unknown. The yeast Saccharomyces cerevisiae efficiently secretes human CALR, and the analysis of this process in yeast could help to clarify how it gets out of eukaryotic cells. We have achieved a secretion titer of about 140 mg/L CALR in our S. cerevisiae system. Here, we present a comparative quantitative whole proteome study in CALR-secreting yeast using non-equilibrium pH gradient electrophoresis (NEPHGE)-based two-dimensional gel electrophoresis (2DE) as well as liquid chromatography mass spectrometry in data-independent analysis mode (LC-MSE). A reconstructed carrier ampholyte (CA) composition of NEPHGE-based first-dimension separation for 2DE could be used instead of formerly commercially available gels. Using LC-MSE, we identified 1574 proteins, 20 of which exhibited differential expression. The largest group of differentially expressed proteins were structural ribosomal proteins involved in translation. Interestingly, we did not find any signs of cellular stress which is usually observed in recombinant protein-producing yeast, and we did not identify any secretory pathway proteins that exhibited changes in expression. Taken together, high-level secretion of human recombinant CALR protein in S. cerevisiae does not induce cellular stress and does not burden the cellular secretory machinery. There are only small changes in the cellular proteome of yeast secreting CALR at a high level.
Collapse
Affiliation(s)
- Rūta Zinkevičiūtė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (R.R.); (N.M.); (E.Č.); (R.S.)
| | - Raimundas Ražanskas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (R.R.); (N.M.); (E.Č.); (R.S.)
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| | - Neringa Macijauskaitė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (R.R.); (N.M.); (E.Č.); (R.S.)
| | - Evaldas Čiplys
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (R.R.); (N.M.); (E.Č.); (R.S.)
| | - Gunnar Houen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark;
| | - Rimantas Slibinskas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (R.R.); (N.M.); (E.Č.); (R.S.)
| |
Collapse
|
212
|
The Molecular Mechanism of Retina Light Injury Focusing on Damage from Short Wavelength Light. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8482149. [PMID: 35498134 PMCID: PMC9042598 DOI: 10.1155/2022/8482149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/31/2022] [Indexed: 12/30/2022]
Abstract
Natural visible light is an electromagnetic wave composed of a spectrum of monochromatic wavelengths, each with a characteristic color. Photons are the basic units of light, and their wavelength correlates to the energy of light; short-wavelength photons carry high energy. The retina is a fragile neuronal tissue that senses light and generates visual signals conducted to the brain. However, excessive and intensive light exposure will cause retinal light damage. Within the visible spectrum, short-wavelength light, such as blue light, carries higher energy, and thus the retinal injury, is more significant when exposed to these wavelengths. The damage mechanism triggered by different short-wavelength light varies due to photons carrying different energy and being absorbed by different photosensitive molecules in the retinal neurons. However, photooxidation might be a common molecular step to initiate cell death. Herein, we summarize the historical understanding of light, the key molecular steps related to retinal light injury, and the death pathways of photoreceptors to further decipher the molecular mechanism of retinal light injury and explore potential neuroprotective strategies.
Collapse
|
213
|
Qu T, Li B, Wang Y. Targeting CD47/SIRPα as a therapeutic strategy, where we are and where we are headed. Biomark Res 2022; 10:20. [PMID: 35418166 PMCID: PMC9009010 DOI: 10.1186/s40364-022-00373-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/31/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy using PD-1 and CTLA4 inhibitors to stimulate T cell immunity has achieved significant clinical success. However, only a portion of patients benefit from T cell-based immunotherapy. Macrophages, the most abundant type of innate immune cells in the body, play an important role in eliminating tumor cells and infectious microbes. The phagocytic check point protein CD47 inhibits the phagocytic activity of macrophages through binding to SIRPα expressed on macrophages. Blockade of the interaction between CD47 and SIRPα could restore phagocytic activity and eliminate tumor cells in vitro and in vivo. In this manuscript, we review the mechanism of action and development status of agents (antibodies targeting CD47 and SIRPα, SIRPα-Fc fusion proteins, and bi-specific antibodies) that block CD47/SIRPα interaction in preclinical studies and in the clinical setting. In addition, small molecules, mRNA, and CAR-T/M that target the CD47/SIRPα axis are also reviewed in this article.
Collapse
Affiliation(s)
- Tailong Qu
- College of life Science and Technology, Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong 510632 People’s Republic of China
- Department of Antibody Discovery, Akeso Biopharma, No.6 of Shennong Road, Torch Development District, Zhongshan, 528437 People’s Republic of China
| | - Baiyong Li
- Department of Antibody Discovery, Akeso Biopharma, No.6 of Shennong Road, Torch Development District, Zhongshan, 528437 People’s Republic of China
| | - Yifei Wang
- College of life Science and Technology, Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong 510632 People’s Republic of China
| |
Collapse
|
214
|
Wang Y, Zhang W, Xu Y, Wu D, Gao Z, Zhou J, Qian H, He B, Wang G. Extracellular HMGB1 Impairs Macrophage-Mediated Efferocytosis by Suppressing the Rab43-Controlled Cell Surface Transport of CD91. Front Immunol 2022; 13:767630. [PMID: 35392093 PMCID: PMC8980266 DOI: 10.3389/fimmu.2022.767630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
High-mobility group box 1 (HMGB1) protein can impair phagocyte function by suppressing the macrophage-mediated clearance of apoptotic cells (ACs), thereby delaying inflammation resolution in the lungs and allowing the progression of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, the precise mechanism underlying this HMGB1-mediated inhibition of efferocytosis remains unknown. The aim of this study was to determine the effect of HMGB1 on macrophage-mediated efferocytosis. We discovered that HMGB1 prevented efferocytosis by bone marrow-derived macrophages (BMDMs) and suppressed the expression of Ras-related GTP-binding protein 43 (Rab43), a member of the Ras-associated binding (Rab) family. The downregulation of Rab43 expression resulted in impaired clearance of apoptotic thymocytes by BMDMs. Subsequent analysis of HMGB1-treated and Rab43-deficient BMDMs revealed the inhibited transport of cluster of differentiation 91 (CD91), a phagocyte recognition receptor, from the cytoplasm to the cell surface. Notably, Rab43 directly interacted with CD91 to mediate its intercellular trafficking. Furthermore, Rab43 knockout delayed the inflammation resolution and aggravated the lung tissue damage in mice with ALI. Therefore, our results provide evidence that HMGB1 impairs macrophage-mediated efferocytosis and delays inflammation resolution by suppressing the Rab43-regulated anterograde transport of CD91, suggesting that the restoration of Rab43 levels is a promising strategy for attenuating ALI and ARDS in humans.
Collapse
Affiliation(s)
- Yao Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wen Zhang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Xu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Di Wu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhan Gao
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jianchun Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Binfeng He
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
215
|
Mercier R, LaPointe P. The role of cellular proteostasis in anti-tumor immunity. J Biol Chem 2022; 298:101930. [PMID: 35421375 PMCID: PMC9108985 DOI: 10.1016/j.jbc.2022.101930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint blockade therapy is perhaps the most important development in cancer treatment in recent memory. It is based on decades of investigation into the biology of immune cells and the role of the immune system in controlling cancer growth. While the molecular circuitry that governs the immune system in general - and anti-tumor immunity in particular - is intensely studied, far less attention has been paid to the role of cellular stress in this process. Proteostasis, intimately linked to cell stress responses, refers to the dynamic regulation of the cellular proteome and is maintained through a complex network of systems that govern the synthesis, folding, and degradation of proteins in the cell. Disruption of these systems can result in the loss of protein function, altered protein function, the formation of toxic aggregates, or pathologies associated with cell stress. However, the importance of proteostasis extends beyond its role in maintaining proper protein function; proteostasis governs how tolerant cells may be to mutations in protein coding genes and the overall half-life of proteins. Such gene expression changes may be associated with human diseases including neurodegenerative diseases, metabolic disease, and cancer and manifest at the protein level against the backdrop of the proteostasis network in any given cellular environment. In this review, we focus on the role of proteostasis in regulating immune responses against cancer as well the role of proteostasis in determining immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
216
|
Miguel Cejalvo J, Falato C, Villanueva L, Tolosa P, González X, Pascal M, Canes J, Gavilá J, Manso L, Pascual T, Prat A, Salvador F. Oncolytic Viruses: a new immunotherapeutic approach for breast cancer treatment? Cancer Treat Rev 2022; 106:102392. [DOI: 10.1016/j.ctrv.2022.102392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
|
217
|
Wen X, Shi C, Zeng X, Zhao L, Yao L, Liu Z, Feng L, Zhang D, Huang J, Li Y, Lin Q, Chen H, Zhuang R, Chen X, Zhang X, Guo Z. A paradigm of cancer immunotherapy based on 2-[18F]FDG and anti-PD-L1 mAb combination to enhance the anti-tumor effect. Clin Cancer Res 2022; 28:2923-2937. [PMID: 35320358 DOI: 10.1158/1078-0432.ccr-22-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Efforts have been devoted to select eligible candidates for PD-1/PD-L1 immune checkpoint blocker (ICB) immunotherapy. Here, we have a serendipitous finding of positron emitting tomography (PET) imaging tracer 2-[18F]FDG as a potential immunomodulator. Therefore, we hypothesize that 2-[18F]FDG could induce PD-L1 expression change and create an immune-favorable microenvironment for tumor immunotherapy. EXPERIMENTAL DESIGN We designed a series of assays to verify PD-L1 upregulation, and tested immunotherapy regimens based on 2-[18F]FDG and anti-PD-L1 mAb, as monotherapy and in combination, in fully immunocompetent mice of MC38 and CT26 models. PD-L1 expression and tumor microenvironment (TME) changes were analyzed by western blot, transcriptomics study and flow-cytometric analysis. RESULTS PD-L1 was upregulated in a time- and dose-dependent manner after being induced by 2-[18F]FDG. The activation of NF-κB/IRF3 pathway and STAT1/3-IRF1 pathway play crucial parts in modulating PD-L1 expression after DNA damage and repair. Improved αPD-L1 mAb utilization rate and significant tumor growth delay were observed when the personalized therapeutic alliance of 2-[18F]FDG stimulation and ICB were employed. In addition, combination of 2-[18F]FDG with αPD-L1 mAb could reprogram a TME from "cold" to "hot", to make low immunoactivity tumors sensitive to ICB therapy. CONCLUSIONS In summary, this promising paradigm has the potential to expand the traditional tumor theranostics. [18F]FDG-based ICB immunotherapy is highly significant in enhancing anti-tumor effect.
Collapse
Affiliation(s)
| | | | | | - Liang Zhao
- First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lanlin Yao
- First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | | | | | | | - Yesen Li
- Xiamen University, Xiamen, China
| | - Qin Lin
- First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Haojun Chen
- First Affiliated Hospital of Xiamen University, Xiamen, China
| | | | - Xiaoyuan Chen
- National University of Singapore, Sinagpore, Singapore
| | | | | |
Collapse
|
218
|
Simon Davis DA, Atmosukarto II, Garrett J, Gosling K, Syed FM, Quah BJ. Irradiation immunity interactions. J Med Imaging Radiat Oncol 2022; 66:519-535. [PMID: 35261190 PMCID: PMC9314628 DOI: 10.1111/1754-9485.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The immune system can influence cancer development by both impeding and/or facilitating tumour growth and spread. A better understanding of this complex relationship is fundamental to optimise current and future cancer therapeutic strategies. Although typically regarded as a localised and immunosuppressive anti‐cancer treatment modality, radiation therapy has been associated with generating profound systemic effects beyond the intended target volume. These systemic effects are immune‐driven suggesting radiation therapy can enhance anti‐tumour immunosurveillance in some instances. In this review, we summarise how radiation therapy can positively and negatively affect local and systemic anti‐tumour immune responses, how co‐administration of immunotherapy with radiation therapy may help promote anti‐tumour immunity, and how the use of immune biomarkers may help steer radiation therapy‐immunotherapy personalisation to optimise clinical outcomes.
Collapse
Affiliation(s)
- David A Simon Davis
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ines I Atmosukarto
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jessica Garrett
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katharine Gosling
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Farhan M Syed
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Radiation Oncology Department, Canberra Hospital, Canberra Health Services, Canberra, Australian Capital Territory, Australia
| | - Ben Jc Quah
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Radiation Oncology Department, Canberra Hospital, Canberra Health Services, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
219
|
Taheri F, Taghizadeh E, Navashenaq JG, Rezaee M, Gheibihayat SM. The role of efferocytosis in neuro-degenerative diseases. Neurol Sci 2022; 43:1593-1603. [PMID: 35059903 DOI: 10.1007/s10072-021-05835-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/11/2021] [Indexed: 02/06/2023]
Abstract
Efferocytosis has a critical role in maintaining tissues and organs' homeostasis by removing apoptotic cells. It is essential for human health, and disturbances in efferocytosis may result indifferent illnesses. In case of inadequate clearance of the dead cells, the content in the cells would be released. In fact, it induces some damages to the tissue and leads to the prolonged inflammation, so unsuitable phagocytosis of the apoptotic cells is involved in occurrence as well as expansion of numerous human chronic inflammatory diseases. Studies have shown age dependence of the neuro-degenerative diseases, which are largely due to the neuro-inflammation and the loss of neurons and thus cause the brain's functional disorders. Efferocytosis is coupled to anti-inflammatory responses that contribute to the elimination of the dying neurons in neuro-degenerative diseases, so its disruption may make a risk factor in numerous human chronic inflammatory diseases such as multiple sclerosis, Alzheimer's disease, glioblastoma, and Rett syndrome. This study is a review of the efferocytosis molecular pathways and their role in neuro-degenerative diseases in order to discover a new treatment option to cure patients.
Collapse
Affiliation(s)
- Forough Taheri
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Eskandar Taghizadeh
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, Iran.
| |
Collapse
|
220
|
Matsusaka K, Azuma Y, Kaga Y, Uchida S, Takebayashi Y, Tsuyama T, Tada S. Distinct roles in phagocytosis of the early and late increases of cell surface calreticulin induced by oxaliplatin. Biochem Biophys Rep 2022; 29:101222. [PMID: 35146135 PMCID: PMC8818541 DOI: 10.1016/j.bbrep.2022.101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Calreticulin (CRT), a chaperone typically located in the endoplasmic reticulum (ER), is known to translocate to the cell surface in response to anticancer drugs. Cell surface CRT (ecto-CRT) on apoptotic or pre-apoptotic cells serves as an “eat me” signal that can promote phagocytosis. In this study, we observed the biphasic (early transient and late sustained) increase of ecto-CRT on HT-29 cells after treatment with oxaliplatin (L-OHP). To investigate the role of ecto-CRT that accumulates in the early and late phases as “eat me” signals, we examined the phagocytosis of HT-29 cells by macrophage-like cells and dendritic cell (DC) -like cells prepared from THP-1 cells. The results indicated that the early ecto-CRT-expressed cells were phagocytosed by immature DC-like cells, and the late ecto-CRT-expressed cells were phagocytosed primarily by macrophage-like cells, while mature DC-like cells did not respond to the either class of ecto-CRT-expressed cells. Both types of phagocytotic events were inhibited by CRT Blocking Peptide, suggesting that such events depended on the ecto-CRT. Our results suggested that the early increase of ecto-CRT is related to phagocytosis as part of immunogenic cell death (ICD), while the late increase of ecto-CRT is related to the removal of apoptotic cells by macrophages. Oxaliplatin induced the early transient and late sustained increases of ecto-CRT. The early ecto-CRT-expressed cells were phagocytosed by immature DC-like cells. The late ecto-CRT-expressed cells were phagocytosed by macrophage-like cells. The early and late increases in ecto-CRT may play distinct roles in phagocytosis.
Collapse
|
221
|
He Y, Zheng Z, Liu C, Li W, Zhao L, Nie G, Li H. Inhibiting DNA methylation alleviates cisplatin-induced hearing loss by decreasing oxidative stress-induced mitochondria-dependent apoptosis via the LRP1-PI3K/AKT pathway. Acta Pharm Sin B 2022; 12:1305-1321. [PMID: 35530135 PMCID: PMC9069410 DOI: 10.1016/j.apsb.2021.11.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin-related ototoxicity is a critical side effect of chemotherapy and can lead to irreversible hearing loss. This study aimed to assess the potential effect of the DNA methyltransferase (DNMT) inhibitor RG108 on cisplatin-induced ototoxicity. Immunohistochemistry, apoptosis assay, and auditory brainstem response (ABR) were employed to determine the impacts of RG108 on cisplatin-induced injury in murine hair cells (HCs) and spiral ganglion neurons (SGNs). Rhodamine 123 and TMRM were utilized for mitochondrial membrane potential (MMP) assessment. Reactive oxygen species (ROS) amounts were evaluated by Cellrox green and Mitosox-red probes. Mitochondrial respiratory function evaluation was performed by determining oxygen consumption rates (OCRs). The results showed that RG108 can markedly reduce cisplatin induced damage in HCs and SGNs, and alleviate apoptotic rate by protecting mitochondrial function through preventing ROS accumulation. Furthermore, RG108 upregulated BCL-2 and downregulated APAF1, BAX, and BAD in HEI-OC1 cells, and triggered the PI3K/AKT pathway. Decreased expression of low-density lipoprotein receptor-related protein 1 (LRP1) and high methylation of the LRP1 promoter were observed after cisplatin treatment. RG108 treatment can increase LRP1 expression and decrease LRP1 promoter methylation. In conclusion, RG108 might represent a new potential agent for preventing hearing loss induced by cisplatin via activating the LRP1-PI3K/AKT pathway.
Collapse
Key Words
- 5-mC, 5-methylcytosine
- ABR, auditory brainstem response
- Apoptosis
- Cisplatin
- DNMT
- DNMT, DNA methyltransferase
- EdU, 5-ethynyl-2′-deoxyuridine
- HCs, hair cells
- Hair cell
- IHCs, inner hair cells
- LRP1, low-density lipoprotein receptor-related protein 1
- MMP, mitochondrial membrane potential
- Mitochondrial dysfunction
- OCRs, oxygen consumption rates
- OHCs, outer hair cells
- PI, propidium iodide
- RG108
- ROS
- ROS, reactive oxygen species
- SGNs, spiral ganglion neurons
- Spiral ganglion neurons
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling
Collapse
|
222
|
|
223
|
Abstract
CD47 is a "don't eat me" signal to phagocytes that is overexpressed on many tumor cells as a potential mechanism for immune surveillance evasion. CD47 and its interaction with signal-regulating protein alpha (SIRPα) on phagocytes is therefore a promising cancer target. Therapeutic antibodies and fusion proteins that block CD47 or SIRPα have been developed and have shown activity in preclinical models of hematologic and solid tumors. Anemia is a common adverse event associated with anti-CD47 treatment, but mitigation strategies-including use of a low 'priming' dose-have substantially reduced this risk in clinical studies. While efficacy in single-agent clinical studies is lacking, findings from studies of CD47-SIRPα blockade in combination with agents that increase 'eat me' signals or with antitumor antibodies are promising. Magrolimab, an anti-CD47 antibody, is the furthest along in clinical development among agents in this class. Magrolimab combination therapy in phase Ib/II studies has been well tolerated with encouraging response rates in hematologic and solid malignancies. Similar combination therapy studies with other anti-CD47-SIRPα agents are beginning to report. Based on these early clinical successes, many trials have been initiated in hematologic and solid tumors testing combinations of CD47-SIRPα blockade with standard therapies. The results of these studies will help determine the role of this novel approach in clinical practice and are eagerly awaited.
Collapse
Affiliation(s)
- R. Maute
- Gilead Sciences, Inc., Foster City, USA
| | - J. Xu
- Gilead Sciences, Inc., Foster City, USA
| | - I.L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
224
|
Liu KE, Raymond MH, Ravichandran KS, Kucenas S. Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development. Annu Rev Neurosci 2022; 45:177-198. [PMID: 35226828 PMCID: PMC10157384 DOI: 10.1146/annurev-neuro-110920-022431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger of neurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kendra E Liu
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA
| | - Kodi S Ravichandran
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.,VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
225
|
Ge Y, Huang M, Yao YM. Efferocytosis and Its Role in Inflammatory Disorders. Front Cell Dev Biol 2022; 10:839248. [PMID: 35281078 PMCID: PMC8913510 DOI: 10.3389/fcell.2022.839248] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Efferocytosis is the effective clearance of apoptotic cells by professional and non-professional phagocytes. The process is mechanically different from other forms of phagocytosis and involves the localization, binding, internalization, and degradation of apoptotic cells. Defective efferocytosis has been demonstrated to associate with the pathogenesis of various inflammatory disorders. In the current review, we summarize recent findings with regard to efferocytosis networks and discuss the relationship between efferocytosis and different immune cell populations, as well as describe how efferocytosis helps resolve inflammatory response and modulate immune balance. Our knowledge so far about efferocytosis suggests that it may be a useful target in the treatment of numerous inflammatory diseases.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-ming Yao
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
226
|
Liu J, Zhu Z, Leung GKK. Erythrophagocytosis by Microglia/Macrophage in Intracerebral Hemorrhage: From Mechanisms to Translation. Front Cell Neurosci 2022; 16:818602. [PMID: 35237132 PMCID: PMC8882619 DOI: 10.3389/fncel.2022.818602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating condition characterized by hematoma related mass effect. Microglia/macrophage (M φ) are rapidly recruited in order to remove the red blood cells through erythrophagocytosis. Efficient erythrophagocytosis can detoxify hemolytic products and facilitate neurological recovery after ICH. The underlying mechanisms include modulation of inflammatory response and oxidative stress, among others. It is a dynamic process mediated by a cascade of signal transduction, including “find-me” signals, “eat-me” signals and a set of phagocytotic receptors-ligand pairs that may be exploited as therapeutic targets. This review summarizes mechanistic signaling pathways of erythrophagocytosis and highlights the potential of harnessing M φ-mediated phagocytosis for ICH treatment.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Zhiyuan Zhu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- Department of Functional Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Gilberto Ka-Kit Leung,
| |
Collapse
|
227
|
Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol 2022; 23:487-500. [PMID: 35145297 DOI: 10.1038/s41590-022-01132-2] [Citation(s) in RCA: 698] [Impact Index Per Article: 232.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Dying mammalian cells emit numerous signals that interact with the host to dictate the immunological correlates of cellular stress and death. In the absence of reactive antigenic determinants (which is generally the case for healthy cells), such signals may drive inflammation but cannot engage adaptive immunity. Conversely, when cells exhibit sufficient antigenicity, as in the case of infected or malignant cells, their death can culminate with adaptive immune responses that are executed by cytotoxic T lymphocytes and elicit immunological memory. Suggesting a key role for immunogenic cell death (ICD) in immunosurveillance, both pathogens and cancer cells evolved strategies to prevent the recognition of cell death as immunogenic. Intriguingly, normal cells succumbing to conditions that promote the formation of post-translational neoantigens (for example, oxidative stress) can also drive at least some degree of antigen-specific immunity, pointing to a novel implication of ICD in the etiology of non-infectious, non-malignant disorders linked to autoreactivity.
Collapse
Affiliation(s)
- Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France.,INSERM U1015, Villejuif, France.,Equipe labellisée par la Ligue contre le cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
228
|
Konishi H, Koizumi S, Kiyama H. Phagocytic astrocytes: Emerging from the shadows of microglia. Glia 2022; 70:1009-1026. [PMID: 35142399 PMCID: PMC9305589 DOI: 10.1002/glia.24145] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Elimination of dead or live cells take place in both a healthy and diseased central nervous system (CNS). Dying or dead cells are quickly cleared by phagocytosis for the maintenance of a healthy CNS or for recovery after injury. Live cells or parts thereof, such as the synapses and myelin, are appropriately eliminated by phagocytosis to maintain or refine neural networks during development and adulthood. Microglia, the specific population of resident macrophages in the CNS, are classically considered as primary phagocytes; however, astrocytes have also been highlighted as phagocytes in the last decade. Phagocytic targets and receptors are reported to be mostly common between astrocytes and microglia, which raises the question of how astrocytic phagocytosis differs from microglial phagocytosis, and how these two phagocytic systems cooperate. In this review, we address the consequences of astrocytic phagocytosis, particularly focusing on these elusive points.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, University of Yamanashi, Yamanashi, Japan.,GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
229
|
CW. Wong K, Johnson D, Hui EP, CT. Lam R, BY. Ma B, TC. Chan A. Opportunities and Challenges in Combining Immunotherapy and Radiotherapy in Head and Neck Cancers. Cancer Treat Rev 2022; 105:102361. [DOI: 10.1016/j.ctrv.2022.102361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023]
|
230
|
Theruvath J, Menard M, Smith BAH, Linde MH, Coles GL, Dalton GN, Wu W, Kiru L, Delaidelli A, Sotillo E, Silberstein JL, Geraghty AC, Banuelos A, Radosevich MT, Dhingra S, Heitzeneder S, Tousley A, Lattin J, Xu P, Huang J, Nasholm N, He A, Kuo TC, Sangalang ERB, Pons J, Barkal A, Brewer RE, Marjon KD, Vilches-Moure JG, Marshall PL, Fernandes R, Monje M, Cochran JR, Sorensen PH, Daldrup-Link HE, Weissman IL, Sage J, Majeti R, Bertozzi CR, Weiss WA, Mackall CL, Majzner RG. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat Med 2022; 28:333-344. [PMID: 35027753 PMCID: PMC9098186 DOI: 10.1038/s41591-021-01625-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The disialoganglioside GD2 is overexpressed on several solid tumors, and monoclonal antibodies targeting GD2 have substantially improved outcomes for children with high-risk neuroblastoma. However, approximately 40% of patients with neuroblastoma still relapse, and anti-GD2 has not mediated significant clinical activity in any other GD2+ malignancy. Macrophages are important mediators of anti-tumor immunity, but tumors resist macrophage phagocytosis through expression of the checkpoint molecule CD47, a so-called 'Don't eat me' signal. In this study, we establish potent synergy for the combination of anti-GD2 and anti-CD47 in syngeneic and xenograft mouse models of neuroblastoma, where the combination eradicates tumors, as well as osteosarcoma and small-cell lung cancer, where the combination significantly reduces tumor burden and extends survival. This synergy is driven by two GD2-specific factors that reorient the balance of macrophage activity. Ligation of GD2 on tumor cells (a) causes upregulation of surface calreticulin, a pro-phagocytic 'Eat me' signal that primes cells for removal and (b) interrupts the interaction of GD2 with its newly identified ligand, the inhibitory immunoreceptor Siglec-7. This work credentials the combination of anti-GD2 and anti-CD47 for clinical translation and suggests that CD47 blockade will be most efficacious in combination with monoclonal antibodies that alter additional pro- and anti-phagocytic signals within the tumor microenvironment.
Collapse
Affiliation(s)
- Johanna Theruvath
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Marie Menard
- Departments of Neurology, Pediatrics, and Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin A H Smith
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, USA
| | - Miles H Linde
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry L Coles
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Wei Wu
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Louise Kiru
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - John L Silberstein
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, CA, USA
| | - Anna C Geraghty
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Allison Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Shaurya Dhingra
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sabine Heitzeneder
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aidan Tousley
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - John Lattin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Peng Xu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Huang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Nasholm
- Departments of Neurology, Pediatrics, and Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Andy He
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Amira Barkal
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Rachel E Brewer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristopher D Marjon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton L Marshall
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Ricardo Fernandes
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michelle Monje
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, CA, USA
| | | | - Heike E Daldrup-Link
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, USA
| | - William A Weiss
- Departments of Neurology, Pediatrics, and Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
231
|
Zhang Y, Wang Y, Ding J, Liu P. Efferocytosis in multisystem diseases (Review). Mol Med Rep 2022; 25:13. [PMID: 34779503 PMCID: PMC8600411 DOI: 10.3892/mmr.2021.12529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
Efferocytosis, the phagocytosis of apoptotic cells performed by both specialized phagocytes (such as macrophages) and non‑specialized phagocytes (such as epithelial cells), is involved in tissue repair and homeostasis. Effective efferocytosis prevents secondary necrosis, terminates inflammatory responses, promotes self‑tolerance and activates pro‑resolving pathways to maintain homeostasis. When efferocytosis is impaired, apoptotic cells that could not be cleared in time aggregate, resulting in the necrosis of apoptotic cells and release of pro‑inflammatory factors. In addition, defective efferocytosis inhibits the intracellular cholesterol reverse transportation pathways, which may lead to atherosclerosis, lung damage, non‑alcoholic fatty liver disease and neurodegenerative diseases. The uncleared apoptotic cells can also release autoantigens, which can cause autoimmune diseases. Cancer cells escape from phagocytosis via efferocytosis. Therefore, new treatment strategies for diseases related to defective efferocytosis are proposed. This review illustrated the mechanisms of efferocytosis in multisystem diseases and organismal homeostasis and the pathophysiological consequences of defective efferocytosis. Several drugs and treatments available to enhance efferocytosis are also mentioned in the review, serving as new evidence for clinical application.
Collapse
Affiliation(s)
- Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jie Ding
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
232
|
Troitskaya OS, Novak DD, Richter VA, Koval OA. Immunogenic Cell Death in Cancer Therapy. Acta Naturae 2022; 14:40-53. [PMID: 35441043 PMCID: PMC9013441 DOI: 10.32607/actanaturae.11523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Apoptosis plays a crucial role in chemotherapy-induced cell death. The conventional theory holding that apoptosis needs to be immunologically silent has recently been revised, and the concept of immunogenic cell death (ICD) has been proposed. This review describes the main features of ICD induction. These ICD markers are important for the effectiveness of anticancer therapy, as well as for basic research into cell death regulation. The mechanism of the "vaccination effect" of dying cancer cells undergoing ICD has been fully described, including the activation of specific antitumor response after re-challenge by the same living tumor cells. This review also discusses the whole set of molecular events attributing cell death to immunogenic type: the exposure of calreticulin and the heat shock protein HSP70 to the outer surface of the cell membrane and the release of the nuclear protein HMGB1 and ATP into the extracellular space. ICD inducers of various nature (chemotherapy drugs, cytotoxic proteins, and oncolytic viruses), as well as physical methods, are classified in the current review.
Collapse
Affiliation(s)
- O. S. Troitskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - D. D. Novak
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| | - V. A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - O. A. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| |
Collapse
|
233
|
Interference of immunogenic chemotherapy by artificially controlled calreticulin secretion from tumor cells. Methods Cell Biol 2022; 172:99-114. [DOI: 10.1016/bs.mcb.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
234
|
Passeri G, Northcote-Smith J, Suntharalingam K. Delivery of an immunogenic cell death-inducing copper complex to cancer stem cells using polymeric nanoparticles. RSC Adv 2022; 12:5290-5299. [PMID: 35425564 PMCID: PMC8981415 DOI: 10.1039/d1ra08788f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
The major cause for cancer related deaths worldwide is tumour relapse and metastasis, both of which have been heavily linked to the existence of cancer stem cells (CSCs). CSCs are able to escape current treatment regimens, reform tumours, and promote their spread to secondary sites. Recently, our research group reported the first metal-based agent 1 (a copper(ii) compound ligated by a bidentate 4,7-diphenyl-1,10-phenanthroline and a tridentate Schiff base ligand) to potently kill CSCs via cytotoxic and immunogenic mechanisms. Here we show that encapsulation of 1 by polymeric nanoparticles at the appropriate feed (10%, 1 NP10) enhances CSC uptake and improves potency towards bulk cancer cells and CSCs (grown in monolayer and three-dimensional cultures). The nanoparticle formulation triggers a similar cellular response to the payload, which bodes well for further translation. Specifically, the nanoparticle formulation elevates intracellular reactive oxygen species levels, induces ER stress, and evokes damage-associated molecular patterns consistent with immunogenic cell death. To the best of our knowledge, this is the first study to demonstrate that polymeric nanoparticles can be used to effectively deliver immunogenic metal complexes into CSCs. In this study we deliver an immunogenic cell death-inducing copper(ii) complex, comprising of 4,7-diphenyl-1,10-phenanthroline and a Schiff base ligand, to breast cancer stem cells.![]()
Collapse
Affiliation(s)
- Ginevra Passeri
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | | | |
Collapse
|
235
|
Rodríguez AM, Rodríguez J, Giambartolomei GH. Microglia at the Crossroads of Pathogen-Induced Neuroinflammation. ASN Neuro 2022; 14:17590914221104566. [PMID: 35635133 PMCID: PMC9158411 DOI: 10.1177/17590914221104566] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microglia are the resident tissue macrophages of the central nervous system (CNS). Recent findings point out that in the steady state the major role of microglia, is to instruct and regulate the correct function of the neuronal networks and different components of the neurovascular unit in the adult CNS, while providing immune surveillance. Paradoxically, during CNS infection immune activation of microglia generates an inflammatory milieu that contributes to the clearance of the pathogen but can, in the process, harm nearby cells of CNS. Most of the knowledge about the harmful effects of activated microglia on CNS has arisen from studies on neurodegenerative diseases. In this review we will focus on the beneficial role and detrimental functions of microglial cells on the neighboring cells of the CNS upon infection.
Collapse
Affiliation(s)
- Ana María Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
236
|
Cabrera JTO, Makino A. Efferocytosis of vascular cells in cardiovascular disease. Pharmacol Ther 2022; 229:107919. [PMID: 34171333 PMCID: PMC8695637 DOI: 10.1016/j.pharmthera.2021.107919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Cell death and the clearance of apoptotic cells are tightly regulated by various signaling molecules in order to maintain physiological tissue function and homeostasis. The phagocytic removal of apoptotic cells is known as the process of efferocytosis, and abnormal efferocytosis is linked to various health complications and diseases, such as cardiovascular disease, inflammatory diseases, and autoimmune diseases. During efferocytosis, phagocytic cells and/or apoptotic cells release signals, such as "find me" and "eat me" signals, to stimulate the phagocytic engulfment of apoptotic cells. Primary phagocytic cells are macrophages and dendritic cells; however, more recently, other neighboring cell types have also been shown to exhibit phagocytic character, including endothelial cells and fibroblasts, although they are comparatively slower in clearing dead cells. In this review, we focus on macrophage efferocytosis of vascular cells, such as endothelial cells, smooth muscle cells, fibroblasts, and pericytes, and its relation to the progression and development of cardiovascular disease. We also highlight the role of efferocytosis-related molecules and their contribution to the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- Jody Tori O Cabrera
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
237
|
RT-PCR-assisted quantification of type I IFN responses in irradiated cancer cells. Methods Cell Biol 2022; 172:145-161. [DOI: 10.1016/bs.mcb.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
238
|
Samudyata, Oliveira AO, Malwade S, Rufino de Sousa N, Goparaju SK, Gracias J, Orhan F, Steponaviciute L, Schalling M, Sheridan SD, Perlis RH, Rothfuchs AG, Sellgren CM. SARS-CoV-2 promotes microglial synapse elimination in human brain organoids. Mol Psychiatry 2022; 27:3939-3950. [PMID: 36198765 PMCID: PMC9533278 DOI: 10.1038/s41380-022-01786-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 02/07/2023]
Abstract
Neuropsychiatric manifestations are common in both the acute and post-acute phase of SARS-CoV-2 infection, but the mechanisms of these effects are unknown. In a newly established brain organoid model with innately developing microglia, we demonstrate that SARS-CoV-2 infection initiate neuronal cell death and cause a loss of post-synaptic termini. Despite limited neurotropism and a decelerating viral replication, we observe a threefold increase in microglial engulfment of postsynaptic termini after SARS-CoV-2 exposure. We define the microglial responses to SARS-CoV-2 infection by single cell transcriptomic profiling and observe an upregulation of interferon-responsive genes as well as genes promoting migration and synapse engulfment. To a large extent, SARS-CoV-2 exposed microglia adopt a transcriptomic profile overlapping with neurodegenerative disorders that display an early synapse loss as well as an increased incident risk after a SARS-CoV-2 infection. Our results reveal that brain organoids infected with SARS-CoV-2 display disruption in circuit integrity via microglia-mediated synapse elimination and identifies a potential novel mechanism contributing to cognitive impairments in patients recovering from COVID-19.
Collapse
Affiliation(s)
- Samudyata
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Ana O. Oliveira
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Susmita Malwade
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nuno Rufino de Sousa
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Sravan K. Goparaju
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jessica Gracias
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Funda Orhan
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Laura Steponaviciute
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Martin Schalling
- grid.24381.3c0000 0000 9241 5705Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Steven D. Sheridan
- grid.32224.350000 0004 0386 9924Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Roy H. Perlis
- grid.32224.350000 0004 0386 9924Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Antonio G. Rothfuchs
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Carl M. Sellgren
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
239
|
Moradinasab S, Pourbagheri-Sigaroodi A, Ghaffari SH, Bashash D. Targeting macrophage-mediated tumor cell phagocytosis: An overview of phagocytosis checkpoints blockade, nanomedicine intervention, and engineered CAR-macrophage therapy. Int Immunopharmacol 2021; 103:108499. [PMID: 34972068 DOI: 10.1016/j.intimp.2021.108499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022]
Abstract
Immunotherapy has been developing at an unprecedented speed with promising therapeutic outcomes in the wide spectrum of cancers. Up until now, most immunotherapies have focused on adaptive immunity; however, investigating the potential of macrophage phagocytosis and consequent adaptive immune cross-priming has led to a growing interest in exploiting macrophages in cancer therapy. In light of the positive evidence from preclinical studies and early clinical data, targeting macrophage phagocytosis has become a promising therapeutic strategy. Here, we review therapies based on harnessing and amplifying macrophage phagocytosis, such as blocking phagocytosis checkpoints and exploiting nanoparticles as efficient approaches in elevating macrophages-mediated phagocytosis. The present study introduces CAR-macrophage as the state-of-the-art modality serving as the bridge between the innate and adaptive immune system to mount a superior anti-tumor response in the treatment of cancer. We also take a look at the recent reports of therapies based on CAR-engineered macrophages with the hope of providing a future research direction for expanding the application of CAR-macrophage therapy.
Collapse
Affiliation(s)
- Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
240
|
Ramírez-Toloza G, Aguilar-Guzmán L, Valck C, Menon SS, Ferreira VP, Ferreira A. Is It Possible to Intervene in the Capacity of Trypanosoma cruzi to Elicit and Evade the Complement System? Front Immunol 2021; 12:789145. [PMID: 34975884 PMCID: PMC8716602 DOI: 10.3389/fimmu.2021.789145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Chagas' disease is a zoonotic parasitic ailment now affecting more than 6 million people, mainly in Latin America. Its agent, the protozoan Trypanosoma cruzi, is primarily transmitted by endemic hematophagous triatomine insects. Transplacental transmission is also important and a main source for the emerging global expansion of this disease. In the host, the parasite undergoes intra (amastigotes) and extracellular infective (trypomastigotes) stages, both eliciting complex immune responses that, in about 70% of the cases, culminate in permanent immunity, concomitant with the asymptomatic presence of the parasite. The remaining 30% of those infected individuals will develop a syndrome, with variable pathological effects on the circulatory, nervous, and digestive systems. Herein, we review an important number of T. cruzi molecules, mainly located on its surface, that have been characterized as immunogenic and protective in various experimental setups. We also discuss a variety of parasite strategies to evade the complement system - mediated immune responses. Within this context, we also discuss the capacity of the T. cruzi infective trypomastigote to translocate the ER-resident chaperone calreticulin to its surface as a key evasive strategy. Herein, it is described that T. cruzi calreticulin inhibits the initial stages of activation of the host complement system, with obvious benefits for the parasite. Finally, we speculate on the possibility to experimentally intervene in the interaction of calreticulin and other T. cruzi molecules that interact with the complement system; thus resulting in significant inhibition of T. cruzi infectivity.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Lorena Aguilar-Guzmán
- Department of Pathology, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Carolina Valck
- Department of Immunology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Smrithi S. Menon
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Arturo Ferreira
- Department of Immunology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
241
|
Yu Y, Li J, Song B, Ma Z, Zhang Y, Sun H, Wei X, Bai Y, Lu X, Zhang P, Zhang X. Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy. Biomaterials 2021; 280:121312. [PMID: 34896861 DOI: 10.1016/j.biomaterials.2021.121312] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023]
Abstract
Checkpoint inhibitors, such as antibodies blocking the PD-1/PD-L1 pathway, are among the most promising immunotherapies to treat metastatic cancers, but their response rate remains low. In addition, the usage of monoclonal antibodies as checkpoint inhibitors is associated with a series of drawbacks. Herein, an all synthetic nanoparticle with PD-L1 blockade capability is developed for cancer photothermal-immunotherapy. The polymeric nanoparticle integrates photothermal treatment, antitumor vaccination, and PD-1/PD-L1 blockade in a single system to augment the antitumor efficacy. In a CT26 bilateral tumor model, intravenously injected nanoparticles accumulate in tumor sites and mediate strong photothermal effects, eradicate the NIR treated primary tumors and elicit strong antitumor immunity by inducing immunogenic cell death (ICD). Growth of the untreated distant tumors is also suppressed due to the synergies of systemic antitumor immune activation and PD-L1 blockade. Our strategy offers a simple but promising approach for the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Boyi Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Zhuang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Haonan Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Yayun Bai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Xueguang Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peng Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
242
|
Tang Z, Davidson D, Li R, Zhong MC, Qian J, Chen J, Veillette A. Inflammatory macrophages exploit unconventional pro-phagocytic integrins for phagocytosis and anti-tumor immunity. Cell Rep 2021; 37:110111. [PMID: 34910922 DOI: 10.1016/j.celrep.2021.110111] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
Blockade of the inhibitory checkpoint SIRPα-CD47 promotes phagocytosis of cancer cells by macrophages and is a promising avenue in anti-cancer therapy. Productive phagocytosis is strictly predicated on co-engagement of pro-phagocytic receptors-namely, Fc receptors (FcRs), integrin CD11b, or SLAMF7-by their ligands on cancer cells. Here, we examine whether additional pro-phagocytic receptors could be harnessed to broaden the scope of phagocytosis. Inflammatory stimuli, including multiple cytokines and Toll-like receptor (TLR) ligands, augment phagocytosis efficiency and fully alleviate the requirement of FcRs, CD11b, and SLAMF7 for phagocytosis. These effects are mediated by the unconventional pro-phagocytic integrins CD11a and CD11c, which act with CD18 to initiate actin polarization, leading to phagocytosis. Some inflammatory stimuli enable phagocytosis even in the absence of SIRPα-CD47 blockade. Higher CD11c expression in macrophage-enriched tumors correlates with improved survival in clinical studies. Thus, inflammatory macrophages exploit unconventional pro-phagocytic integrins for improved phagocytosis and anti-tumor immunity.
Collapse
Affiliation(s)
- Zhenghai Tang
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Rui Li
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Jun Chen
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada; Department of Medicine, University of Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
243
|
Melo Garcia L, Barabé F. Harnessing Macrophages through the Blockage of CD47: Implications for Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246258. [PMID: 34944878 PMCID: PMC8699809 DOI: 10.3390/cancers13246258] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
CD47 is a surface membrane protein expressed by all normal tissues. It is the so-called "don't eat me signal" because it protects the cells against phagocytosis. The CD47 interacts with the signal regulatory protein alpha (SIRPα) on the surface of macrophages, leading to downstream inhibitory signaling that dampens phagocytic capacity. Since macrophages exert immune surveillance against cancers, cancer cells overexpress CD47 to defend themselves against phagocytosis. Acute myeloid leukemia (AML) is a cancer of hematopoietic stem/progenitor cells (HSPC), and similar to other types of cancers, leukemic blasts show enhanced levels of CD47. In patients with AML, CD47 has been associated with a higher disease burden and poor overall survival. Blockage of CD47-SIRPα signaling leads to improved phagocytosis of AML cells and better overall survival in xenograft models. However, the introduction of a pro-phagocytic signal is needed to induce greater phagocytic capacity. These pro-phagocytic signals can be either Fc receptor stimulants (such as monoclonal antibodies) or natural pro-phagocytic molecules (such as calreticulin). Based on these pre-clinical findings, various clinical trials investigating the blockade of CD47-SIRPα interaction have been designed as monotherapy and in combination with other anti-leukemic agents. In this review, we will discuss CD47 biology, highlight its implications for AML pathophysiology, and explore the potential clinical translation of disrupting CD47-SIRPα to treat patients with AML.
Collapse
Affiliation(s)
- Luciana Melo Garcia
- MD Anderson Cancer Center, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, Houston, TX 77030, USA;
| | - Frédéric Barabé
- MD Anderson Cancer Center, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, Houston, TX 77030, USA;
- Centre Hospitalier Universitaire de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Correspondence:
| |
Collapse
|
244
|
Sun X, Gao J, Meng X, Lu X, Zhang L, Chen R. Polarized Macrophages in Periodontitis: Characteristics, Function, and Molecular Signaling. Front Immunol 2021; 12:763334. [PMID: 34950140 PMCID: PMC8688840 DOI: 10.3389/fimmu.2021.763334] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontitis (PD) is a common chronic infectious disease. The local inflammatory response in the host may cause the destruction of supporting periodontal tissue. Macrophages play a variety of roles in PD, including regulatory and phagocytosis. Moreover, under the induction of different factors, macrophages polarize and form different functional phenotypes. Among them, M1-type macrophages with proinflammatory functions and M2-type macrophages with anti-inflammatory functions are the most representative, and both of them can regulate the tendency of the immune system to exert proinflammatory or anti-inflammatory functions. M1 and M2 macrophages are involved in the destructive and reparative stages of PD. Due to the complex microenvironment of PD, the dynamic development of PD, and various local mediators, increasing attention has been given to the study of macrophage polarization in PD. This review summarizes the role of macrophage polarization in the development of PD and its research progress.
Collapse
Affiliation(s)
- Xiaoyu Sun
- *Correspondence: Lei Zhang, ; Xiaoyu Sun,
| | | | | | | | - Lei Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Periodontology, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | | |
Collapse
|
245
|
Teplova AD, Serebryakova MV, Galiullina RA, Chichkova NV, Vartapetian AB. Identification of Phytaspase Interactors via the Proximity-Dependent Biotin-Based Identification Approach. Int J Mol Sci 2021; 22:13123. [PMID: 34884925 PMCID: PMC8658550 DOI: 10.3390/ijms222313123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
Proteolytic enzymes are instrumental in various aspects of plant development, including senescence. This may be due not only to their digestive activity, which enables protein utilization, but also to fulfilling regulatory functions. Indeed, for the largest family of plant serine proteases, subtilisin-like proteases (subtilases), several members of which have been implicated in leaf and plant senescence, both non-specific proteolysis and regulatory protein processing have been documented. Here, we strived to identify the protein partners of phytaspase, a plant subtilase involved in stress-induced programmed cell death that possesses a characteristic aspartate-specific hydrolytic activity and unusual localization dynamics. A proximity-dependent biotin identification approach in Nicotiana benthamiana leaves producing phytaspase fused to a non-specific biotin ligase TurboID was employed. Although the TurboID moiety appeared to be unstable in the apoplast environment, several intracellular candidate protein interactors of phytaspase were identified. These were mainly, though not exclusively, represented by soluble residents of the endoplasmic reticulum, namely endoplasmin, BiP, and calreticulin-3. For calreticultin-3, whose gene is characterized by an enhanced expression in senescing leaves, direct interaction with phytaspase was confirmed in an in vitro binding assay using purified proteins. In addition, an apparent alteration of post-translational modification of calreticultin-3 in phytaspase-overproducing plant cells was observed.
Collapse
Affiliation(s)
- Anastasia D. Teplova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (R.A.G.); (N.V.C.)
| | - Raisa A. Galiullina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (R.A.G.); (N.V.C.)
| | - Nina V. Chichkova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (R.A.G.); (N.V.C.)
| | - Andrey B. Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (R.A.G.); (N.V.C.)
| |
Collapse
|
246
|
Transformable vesicles for cancer immunotherapy. Adv Drug Deliv Rev 2021; 179:113905. [PMID: 34331988 DOI: 10.1016/j.addr.2021.113905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/22/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Immunotherapy that utilizes the human immune system to fight cancer represents a revolutionary method for cancer treatment. Immunotherapeutic agents that trigger the immune response should be carefully delivered to the desired site to maximize immunotherapy effectiveness and minimize side effects. Vesicles offer the possibility of encapsulating both hydrophilic and hydrophobic drugs and thus serve as a promising delivery tool. As multiple irreconcilable requirements exist at different transport stages, developing vesicles transformable in response to given stimuli is of great significance. In this review, we first introduced various vesicle types used for immunotherapy. Furthermore, the typical stimuli that trigger vesicle transformation and the usually generated transformation styles were described. Focusing on three aspects of antigen-presenting cell (APC)/T cell activation, tumor microenvironment (TME) amelioration, and immunogenic cell death (ICD)-induced immunotherapy, we reviewed recently reported transformable vesicles for tumor treatment. Finally, we put forward possible directions for future research and clinical translation.
Collapse
|
247
|
Dai Z, Wang Q, Tang J, Wu M, Li H, Yang Y, Zhen X, Yu C. Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy. Biomaterials 2021; 280:121261. [PMID: 34815099 DOI: 10.1016/j.biomaterials.2021.121261] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Immunogenic cell death (ICD) is a promising strategy in cancer immunotherapy to induce high immunogenicity and activate the immune system. However, its efficacy is counteracted by the concurrent exposure of phosphatidylserine (PS), an immunosuppressive signal on the surface of cancer cells. Here we report the synthesis of a bimetallic metal-organic framework (MOF) nanoparticle containing Gd3+ and Zn2+ (Gd-MOF-5) that can be used as an immunomodulator to downregulate the immunosuppressive PS signal and an ICD inducer to upregulate immunostimulatory signals. Gd3+ inhibits PS externalization via inhibiting the activity of scramblase, an enzyme to transfer PS to the outer leaflet of plasma membrane. Moreover, intracellular Zn2+ overload activates endoplasmic reticulum stress for ICD induction. In combination with an immune checkpoint inhibitor (PD-L1 antibody, denoted as aPDL1), Gd-MOF-5 activated potent immune response and effectively inhibited primary and distal tumor growth in a bilateral 4T1 tumor model. This work presents a new strategy using designed MOF materials to modulate the cell signalling and immunosuppressive microenvironment to improve the outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Zan Dai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Min Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Haoze Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
248
|
Zhang Y, Gao X, Yan B, Wen N, Lee WSV, Liang XJ, Liu X. Enhancement of CD8 + T-Cell-Mediated Tumor Immunotherapy via Magnetic Hyperthermia. ChemMedChem 2021; 17:e202100656. [PMID: 34806311 DOI: 10.1002/cmdc.202100656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Magnetic hyperthermia (MHT) uses magnetic iron oxide nanoparticles (MIONs) to irradiate heat when subjected to an alternating magnetic field (AMF), which then trigger a series of biological effects to realize rapid tumor-killing effects. With the deepening in research, MHT has also shown significant potential in achieving antitumor immunity. On the other hand, immunotherapy in cancer treatment has gained increasing attention over recent years and excellent results have generally been reported. Using MHT to activate antitumor immunity and clarifying its synergistic mechanism, i. e., immunogenic cell death (ICD) and immunosuppressive tumor microenvironment (TME) reversal, can achieve a synergistically enhanced therapeutic effect on primary tumors and metastatic lesions, and this can prevent cancer recurrence and metastasis, which thus prolong survival. In this review, we discussed the role of MHT when utilized alone and combining MHT with other treatments (such as radiotherapy, photodynamic therapy, and immune checkpoint blockers) in the process of tumor immunotherapy, including antigen release, dendritic cells (DCs) maturation, and activation of CD8+ cytotoxic T lymphocytes. Finally, the challenges and future development of current MHT and immunotherapy are discussed.
Collapse
Affiliation(s)
- Yihan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Xiao Gao
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Bin Yan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Nana Wen
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wee Siang Vincent Lee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology of China, China
| | - Xiaoli Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology of China, China
| |
Collapse
|
249
|
Abdullah TM, Whatmore J, Bremer E, Slibinskas R, Michalak M, Eggleton P. Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells. Cancer Immunol Immunother 2021; 71:1655-1669. [PMID: 34800147 PMCID: PMC9188521 DOI: 10.1007/s00262-021-03072-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/27/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone, but can appear surface bound on cancers cells, including ovarian cancers (OC). We investigated at what stage of cell viability, CRT appeared associated with surface of human OC cells. CRT on pre-apoptotic tumour cells is thought to initiate their eradication via a process termed immunogenic cell death (ICD). METHODS We treated OC cells with the chemotherapeutic-doxorubicin (DX) known to induce translocation of CRT to some tumour cell surfaces, with and without the ER stressor-thapsigargin (TG)-and/or an ER stress inhibitor-TUDCA. We monitored translocation/release of CRT in pre-apoptotic cells by flow cytometry, immunoblotting and ELISA. We investigated the difference in binding of FITC-CRT to pre-apoptotic, apoptotic and necrotic cells and the ability of extracellular CRT to generate immature dendritic cells from THP-1 monocytes. RESULTS Dx-treatment increased endogenously released CRT and extracellular FITC_CRT binding to human pre-apoptotic OC cells. DX and TG also promoted cell death in OC cells which also increased CRT release. These cellular responses were significantly inhibited by TUDCA, suggesting that ER stress is partially responsible for the changes in CRT cellular distribution. Extracellular CRT induces maturation of THP-1 towards a imDC phenotype, an important component of ICD. CONCLUSION Collectively, these cellular responses suggest that ER stress is partially responsible for the changes in CRT cellular distribution. ER-stress regulates in part the release and binding of CRT to human OC cells where it may play a role in ICD.
Collapse
Affiliation(s)
- Trefa M Abdullah
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,College of Pharmacy, Department Biochemistry and Clinical Chemistry, University of Sulaimani, Iraqi Kurdistan Region, Sulaimani, Iraq
| | - Jacqueline Whatmore
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| | - Edwin Bremer
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Experimental Hematology, Section Immunohematology, Cancer Research Center Groningen (CRCG), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rimantas Slibinskas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, 10257, Vilnius, Lithuania
| | - Marek Michalak
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Paul Eggleton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Revolo Biotherapeutics, New Orleans, LA, 70130, USA
| |
Collapse
|
250
|
He C, Ding H, Chen J, Ding Y, Yang R, Hu C, An Y, Liu D, Liu P, Tang Q, Zhang Z. Immunogenic Cell Death Induced by Chemoradiotherapy of Novel pH-Sensitive Cargo-Loaded Polymersomes in Glioblastoma. Int J Nanomedicine 2021; 16:7123-7135. [PMID: 34712045 PMCID: PMC8547843 DOI: 10.2147/ijn.s333197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background Inducing the immunogenic cell death of tumour cells can mediate the occurrence of antitumour immune responses and make the therapeutic effect more significant. Therefore, the development of treatments that can induce ICD to destroy tumour cells most effectively is promising. Previously, a new type of pH-sensitive polymersome was designed for the treatment of glioblastoma which represents a promising nanoplatform for future translational research in glioblastoma therapy. In this study, the aim of this work was to analyse whether chemoradiotherapy of the novel pH-sensitive cargo-loaded polymersomes can induce ICD. Methods Cell death in U87-MG and G422 cells was induced by Au-DOX@PO-ANG, and cell death was analysed by CCK-8 and flow cytometry. The release of CRT was determined by using laser scanning confocal microscopy and flow cytometry. ELISA kits were used to detect the release of HMGB1 and ATP. The dying cancer cells treated with different treatments were cocultured with bone-marrow-derived dendritic cells (BMDCs), and then flow cytometry was used to determine the maturation rate of BMDCs (CD11c+CD86+CD80+) to analyse the in vitro immunogenicity. Tumour vaccination experiments were used to evaluate the ability of Au-DOX@PO-ANG to induce ICD in vivo. Results We determined the optimal treatment strategy to evaluate the ability of chemotherapy combined with radiotherapy to induce ICD and dying cancer cells induced by Au-DOX@PO-ANG+RT could induce calreticulin eversion to the cell membrane, promote the release of HMGB1 and ATP, and induce the maturation of BMDCs. Using dying cancer cells induced by Au-DOX@PO-ANG+RT, we demonstrate the efficient vaccination potential of ICD in vivo. Conclusion These results identify Au-DOX@PO-ANG as a novel immunogenic cell death inducer in vitro and in vivo that could be effectively combined with RT in cancer therapy.
Collapse
Affiliation(s)
- Chen He
- Medical School of Southeast University, Nanjing, People's Republic of China
| | - Huiyan Ding
- Medical School of Southeast University, Nanjing, People's Republic of China
| | - Jing Chen
- Medical School of Southeast University, Nanjing, People's Republic of China
| | - Yinan Ding
- Medical School of Southeast University, Nanjing, People's Republic of China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Chunmei Hu
- Department of Tuberculosis, The Second Affiliated Hospital of Southeast University (The Second Hospital of Nanjing), Nanjing, People's Republic of China
| | - Yanli An
- Medical School of Southeast University, Nanjing, People's Republic of China
| | - Dongfang Liu
- Medical School of Southeast University, Nanjing, People's Republic of China
| | - Peidang Liu
- Medical School of Southeast University, Nanjing, People's Republic of China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, People's Republic of China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|