201
|
Disc1 variation leads to specific alterations in adult neurogenesis. PLoS One 2014; 9:e108088. [PMID: 25272038 PMCID: PMC4182707 DOI: 10.1371/journal.pone.0108088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/11/2014] [Indexed: 12/25/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is a risk factor for a spectrum of neuropsychiatric illnesses including schizophrenia, bipolar disorder, and major depressive disorder. Here we use two missense Disc1 mouse mutants, described previously with distinct behavioural phenotypes, to demonstrate that Disc1 variation exerts differing effects on the formation of newly generated neurons in the adult hippocampus. Disc1 mice carrying a homozygous Q31L mutation, and displaying depressive-like phenotypes, have fewer proliferating cells while Disc1 mice with a homozygous L100P mutation that induces schizophrenia-like phenotypes, show changes in the generation, placement and maturation of newly generated neurons in the hippocampal dentate gyrus. Our results demonstrate Disc1 allele specific effects in the adult hippocampus, and suggest that the divergence in behavioural phenotypes may in part stem from changes in specific cell populations in the brain.
Collapse
|
202
|
Hussaini SMQ, Choi CI, Cho CH, Kim HJ, Jun H, Jang MH. Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 2014; 47:369-83. [PMID: 25263701 DOI: 10.1016/j.neubiorev.2014.09.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 07/20/2014] [Accepted: 09/05/2014] [Indexed: 12/27/2022]
Abstract
In an effort to better understand and treat mental disorders, the Wnt pathway and adult hippocampal neurogenesis have received increased attention in recent years. One is a signaling pathway regulating key aspects of embryonic patterning, cell specification and adult tissue homeostasis. The other is the generation of newborn neurons in adulthood that integrate into the neural circuit and function in learning and memory, and mood behavior. In this review, we discuss the growing relationship between Wnt signaling-mediated regulation of adult hippocampal neurogenesis as it applies to neuropsychiatric disorders. Evidence suggests dysfunctional Wnt signaling may aberrantly regulate new neuron development and cognitive function. Indeed, altered expression of key Wnt pathway components are observed in the hippocampus of patients suffering from neuropsychiatric disorders. Clinically-utilized mood stabilizers also proceed through modulation of Wnt signaling in the hippocampus, while Wnt pathway antagonists can regulate the antidepressant response. Here, we review the role of Wnt signaling in disease etiology and pathogenesis, regulation of adult neurogenesis and behavior, and the therapeutic targeting of disease symptoms.
Collapse
Affiliation(s)
| | - Chan-Il Choi
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Chang Hoon Cho
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Hyo Jin Kim
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Heechul Jun
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
203
|
Hester MS, Danzer SC. Hippocampal granule cell pathology in epilepsy - a possible structural basis for comorbidities of epilepsy? Epilepsy Behav 2014; 38:105-16. [PMID: 24468242 PMCID: PMC4110172 DOI: 10.1016/j.yebeh.2013.12.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 01/31/2023]
Abstract
Temporal lobe epilepsy in both animals and humans is characterized by abnormally integrated hippocampal dentate granule cells. Among other abnormalities, these cells make axonal connections with inappropriate targets, grow dendrites in the wrong direction, and migrate to ectopic locations. These changes promote the formation of recurrent excitatory circuits, leading to the appealing hypothesis that these abnormal cells may by epileptogenic. While this hypothesis has been the subject of intense study, less attention has been paid to the possibility that abnormal granule cells in the epileptic brain may also contribute to comorbidities associated with the disease. Epilepsy is associated with a variety of general findings, such as memory disturbances and cognitive dysfunction, and is often comorbid with a number of other conditions, including schizophrenia and autism. Interestingly, recent studies implicate disruption of common genes and gene pathways in all three diseases. Moreover, while neuropsychiatric conditions are associated with changes in a variety of brain regions, granule cell abnormalities in temporal lobe epilepsy appear to be phenocopies of granule cell deficits produced by genetic mouse models of autism and schizophrenia, suggesting that granule cell dysmorphogenesis may be a common factor uniting these seemingly diverse diseases. Disruption of common signaling pathways regulating granule cell neurogenesis may begin to provide mechanistic insight into the cooccurrence of temporal lobe epilepsy and cognitive and behavioral disorders.
Collapse
Affiliation(s)
- Michael S Hester
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesia, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
204
|
Braun SMG, Jessberger S. Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol Appl Neurobiol 2014; 40:3-12. [PMID: 24308291 DOI: 10.1111/nan.12107] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/04/2013] [Indexed: 01/19/2023]
Abstract
Neural stem/progenitor cells (NSPCs) in the mammalian brain retain the ability to generate new neurones throughout life in discrete brain regions, through a process called adult neurogenesis. Adult neurogenesis, a dramatic form of adult brain circuitry plasticity, has been implicated in physiological brain function and appears to be of pivotal importance for certain forms of learning and memory. In addition, failing or altered neurogenesis has been associated with a variety of brain diseases such as major depression, epilepsy and age-related cognitive decline. Here we review recent advances in our understanding of the basic biology underlying the neurogenic process in the adult brain, focusing on mechanisms that regulate quiescence, proliferation and differentiation of NSPCs. In addition, we discuss how neurogenesis influences normal brain function, and in particular its role in memory formation, as well as its contribution to neuropsychiatric diseases. Finally, we evaluate the potential of targeting endogenous NSPCs for brain repair.
Collapse
Affiliation(s)
- S M G Braun
- Brain Research Institute, Faculty of Medicine and Science, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
205
|
Wang H, Yuan Y, Zhang Z, Yan H, Feng Y, Li W. Dysbindin-1C is required for the survival of hilar mossy cells and the maturation of adult newborn neurons in dentate gyrus. J Biol Chem 2014; 289:29060-72. [PMID: 25157109 DOI: 10.1074/jbc.m114.590927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DTNBP1 (dystrobrevin-binding protein 1), which encodes dysbindin-1, is one of the leading susceptibility genes for schizophrenia. Both dysbindin-1B and -1C isoforms are decreased, but the dysbindin-1A isoform is unchanged in schizophrenic hippocampal formation, suggesting dysbindin-1 isoforms may have distinct roles in schizophrenia. We found that mouse dysbindin-1C, but not dysbindin-1A, is localized in the hilar glutamatergic mossy cells of the dentate gyrus. The maturation rate of newborn neurons in sandy (sdy) mice, in which both dysbindin-1A and -1C are deleted, is significantly delayed when compared with that in wild-type mice or with that in muted (mu) mice in which dysbindin-1A is destabilized but dysbindin-1C is unaltered. Dysbindin-1C deficiency leads to a decrease in mossy cells, which causes the delayed maturation of newborn neurons. This suggests that dysbindin-1C, rather than dysbindin-1A, regulates adult hippocampal neurogenesis in a non-cell autonomous manner.
Collapse
Affiliation(s)
- Hao Wang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Yefeng Yuan
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Zhao Zhang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Hui Yan
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Department of Histology and Embryology, Shanxi Medical University, Taiyuan 030001, and
| | - Yaqin Feng
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Department of Histology and Embryology, Shanxi Medical University, Taiyuan 030001, and
| | - Wei Li
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China
| |
Collapse
|
206
|
Polajnar M, Zerovnik E. Impaired autophagy: a link between neurodegenerative and neuropsychiatric diseases. J Cell Mol Med 2014; 18:1705-11. [PMID: 25139375 PMCID: PMC4196646 DOI: 10.1111/jcmm.12349] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022] Open
Abstract
Protein misfolding, and subsequent aggregation have been proven as the leading cause of most known dementias. Many of these, in addition to neurodegeneration, show profound changes in behaviour and thinking, thus, psychiatric symptoms. On the basis of the observation that progressive myoclonic epilepsies and neurodegenerative diseases share some common features of neurodegeneration, we proposed autophagy as a possible common impairment in these diseases. Here, we argue along similar lines for some neuropsychiatric conditions, among them depression and schizophrenia. We propose that existing and new therapies for these seemingly different diseases could be augmented with drugs used for neurodegenerative or neuropsychiatric diseases, respectively, among them some which modulate or augment autophagy.
Collapse
Affiliation(s)
- Mira Polajnar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | | |
Collapse
|
207
|
Jessberger S, Gage FH. Adult neurogenesis: bridging the gap between mice and humans. Trends Cell Biol 2014; 24:558-63. [PMID: 25124338 DOI: 10.1016/j.tcb.2014.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 01/17/2023]
Abstract
Neural stem/progenitor cells (NSPCs) generate new neurons in the mammalian brain throughout life. Over the past two decades, substantial progress has been made in deciphering the cellular and molecular mechanisms underlying adult neurogenesis and in understanding the role played by new neurons in brain function in animal models of health and disease. By contrast, knowledge regarding the extent and relevance of neurogenesis in the adult human brain remains scant. Here we review new concepts about how new neurons shape adult brain circuits, discuss fundamental, unanswered questions about stem cell-associated neural plasticity, and illustrate how the gap between the animal-based basic research and current efforts to analyze life-long neuronal development of the human brain may be overcome by using novel experimental strategies.
Collapse
Affiliation(s)
- Sebastian Jessberger
- Laboratory of Neural Plasticity, Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
208
|
Abazyan S, Yang EJ, Abazyan B, Xia M, Yang C, Rojas C, Slusher B, Sattler R, Pletnikov M. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res 2014; 92:1659-68. [PMID: 25131692 DOI: 10.1002/jnr.23459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 01/05/2023]
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a genetic risk factor that has been implicated in major mental disorders. DISC1 binds to and stabilizes serine racemase to regulate production of D-serine by astrocytes, contributing to glutamate (GLU) neurotransmission. However, the possible involvement of astrocytic DISC1 in synthesis, metabolism, reuptake, or secretion of GLU remains unexplored. Therefore, we studied the effects of dominant-negative mutant DISC1 on various aspects of GLU metabolism by using primary astrocyte cultures and hippocampal tissue from transgenic mice with astrocyte-restricted expression of mutant DISC1. Although mutant DISC1 had no significant effects on astrocyte proliferation, GLU reuptake, glutaminase, or glutamate carboxypeptidase II activity, expression of mutant DISC1 was associated with increased levels of alanine-serine-cysteine transporter 2, vesicular glutamate transporters 1 and 3 in primary astrocytes and in the hippocampus, and elevated expression of the NR1 subunit and diminished expression of the NR2A subunit of N-methyl-D-aspartate (NMDA) receptors in the hippocampus, at postnatal day 21. Our findings indicate that decreased D-serine production by astrocytic mutant DISC1 might lead to compensatory changes in levels of the amino acid transporters and NMDA receptors in the context of tripartite synapse.
Collapse
Affiliation(s)
- Sofya Abazyan
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Crowther AJ, Song J. Activity-dependent signaling mechanisms regulating adult hippocampal neural stem cells and their progeny. Neurosci Bull 2014; 30:542-56. [PMID: 25082534 DOI: 10.1007/s12264-014-1453-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/15/2014] [Indexed: 01/13/2023] Open
Abstract
Adult neural stem cells (NSCs) reside in a restricted microenvironment, where their development is controlled by subtle and presently underexplored cues. This raises a significant question: what instructions must be provided by this supporting niche to regulate NSC development and functions? Signaling from the niche is proposed to control many aspects of NSC behavior, including balancing the quiescence and proliferation of NSCs, determining the cell division mode (symmetric versus asymmetric), and preventing premature depletion of stem cells to maintain neurogenesis throughout life. Interactions between neurogenic niches and NSCs also govern the homeostatic regulation of adult neurogenesis under diverse physiological, environmental, and pathological conditions. An important implication from revisiting many previously-identifi ed regulatory factors is that most of them (e.g., the antidepressant fluoxetine and exercise) affect gross neurogenesis by acting downstream of NSCs at the level of intermediate progenitors and neuroblasts, while leaving the NSC pool unaffected. Therefore, it is critically important to address how various niche components, signaling pathways, and environmental stimuli differentially regulate distinct stages of adult neurogenesis.
Collapse
Affiliation(s)
- Andrew J Crowther
- Graduate Program of Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | |
Collapse
|
210
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
211
|
Steinecke A, Gampe C, Nitzsche F, Bolz J. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton. Front Cell Neurosci 2014; 8:190. [PMID: 25071449 PMCID: PMC4086047 DOI: 10.3389/fncel.2014.00190] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a risk gene for a spectrum of major mental disorders. It has been shown to regulate radial migration as well as dendritic arborization during neurodevelopment and corticogenesis. In a previous study we demonstrated through in vitro experiments that DISC1 also controls the tangential migration of cortical interneurons originating from the medial ganglionic eminence (MGE). Here we first show that DISC1 is necessary for the proper tangential migration of cortical interneurons in the intact brain. Expression of EGFP under the Lhx6 promotor allowed us to analyze exclusively interneurons transfected in the MGE after in utero electroporation. After 3 days in utero, DISC1 deficient interneurons displayed prolonged leading processes and, compared to control, fewer neurons reached the cortex. Time-lapse video microscopy of cortical feeder-layers revealed a decreased migration velocity due to a reduction of soma translocations. Immunostainings indicated that DISC1 is co-localized with F-actin in the growth cone-like structure of the leading process. DISC1 knockdown reduced F-actin levels whereas the overall actin level was not altered. Moreover, DISC1 knockdown also decreased levels of phosphorylated Girdin, which cross-links F-actin, as well as the Girdin-activator pAkt. In contrast, using time-lapse video microscopy of fluorescence-tagged tubulin and EB3 in fibroblasts, we found no effects on microtubule polymerization when DISC1 was reduced. However, DISC1 affected the acetylation of microtubules in the leading processes of MGE-derived cortical interneurons. Together, our results provide a mechanism how DISC1 might contribute to interneuron migration thereby explaining the reduced number of specific classes of cortical interneurons in some DISC1 mouse models.
Collapse
Affiliation(s)
- André Steinecke
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Christin Gampe
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Falk Nitzsche
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Jürgen Bolz
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| |
Collapse
|
212
|
He Y, Zhang H, Yung A, Villeda SA, Jaeger PA, Olayiwola O, Fainberg N, Wyss-Coray T. ALK5-dependent TGF-β signaling is a major determinant of late-stage adult neurogenesis. Nat Neurosci 2014; 17:943-52. [PMID: 24859199 PMCID: PMC4096284 DOI: 10.1038/nn.3732] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/30/2014] [Indexed: 01/19/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway serves critical functions in CNS development, but, apart from its proposed neuroprotective actions, its physiological role in the adult brain is unclear. We observed a prominent activation of TGF-β signaling in the adult dentate gyrus and expression of downstream Smad proteins in this neurogenic zone. Consistent with a function of TGF-β signaling in adult neurogenesis, genetic deletion of the TGF-β receptor ALK5 reduced the number, migration and dendritic arborization of newborn neurons. Conversely, constitutive activation of neuronal ALK5 in forebrain caused a marked increase in these aspects of neurogenesis and was associated with higher expression of c-Fos in newborn neurons and with stronger memory function. Our findings describe an unexpected role for ALK5-dependent TGF-β signaling as a regulator of the late stages of adult hippocampal neurogenesis, which may have implications for changes in neurogenesis during aging and disease.
Collapse
Affiliation(s)
- Yingbo He
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hui Zhang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Andrea Yung
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Saul A Villeda
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Philipp A Jaeger
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Oluwatobi Olayiwola
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nina Fainberg
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Tissue Regeneration, Repair and Rehabilitation, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| |
Collapse
|
213
|
Risk genes for schizophrenia: Translational opportunities for drug discovery. Pharmacol Ther 2014; 143:34-50. [DOI: 10.1016/j.pharmthera.2014.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 12/11/2022]
|
214
|
Harraz MM, Xu JC, Guiberson N, Dawson TM, Dawson VL. MiR-223 regulates the differentiation of immature neurons. MOLECULAR AND CELLULAR THERAPIES 2014; 2:18. [PMID: 25400937 PMCID: PMC4229944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/28/2014] [Indexed: 11/21/2023]
Abstract
BACKGROUND Small non-coding microRNA RNA molecules can regulate stem cell function. The role of microRNAs in neural stem/progenitor cells (NS/PCs) differentiation is not entirely clear. METHODS MiRNA profiling, loss and gain of function studies coupled with dendritic tree development morphometric analysis and calcium influx imaging were utilized to investigate the role of micoRNA-223 in differentiating NS/PCs. RESULTS MiRNA profiling in human NS/PCs before and after differentiation in vitro reveals modulation of miRNAs following differentiation of NS/PCs. MiR-223, a microRNA well characterized as a hematopoietic-specific miRNA was identified. Cell-autonomous inhibition of miR-223 in the adult mouse dentate gyrus NS/PCs led to a significant increase in immature neurons soma size, dendritic tree total length, branch number per neuron and complexity, while neuronal migration in the dentate gyrus remained unaffected. Overexpression of miR-223 decreased dendritic tree total length, branch number and complexity in neurons differentiated from human embryonic stem cells (hESCs). Inhibition of miR-223 enhanced N-methyl-D-aspartate (NMDA) induced calcium influx in human neurons differentiated from NS/PCs. CONCLUSIONS Taken together, these findings indicate that miR-223 regulates the differentiation of neurons derived from NS/PCs.
Collapse
Affiliation(s)
- Maged M Harraz
- />Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Histology and Genetics, Suez Canal University School of Medicine, Ismailia, Egypt
| | - Jin-Chong Xu
- />Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Noah Guiberson
- />Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD USA
| | - Ted M Dawson
- />Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Valina L Dawson
- />Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
215
|
Ji B, Higa KK, Kim M, Zhou L, Young JW, Geyer MA, Zhou X. Inhibition of protein translation by the DISC1-Boymaw fusion gene from a Scottish family with major psychiatric disorders. Hum Mol Genet 2014; 23:5683-705. [PMID: 24908665 DOI: 10.1093/hmg/ddu285] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The t(1; 11) translocation appears to be the causal genetic lesion with 70% penetrance for schizophrenia, major depression and other psychiatric disorders in a Scottish family. Molecular studies identified the disruption of the disrupted-in-schizophrenia 1 (DISC1) gene by chromosome translocation at chromosome 1q42. Our previous studies, however, revealed that the translocation also disrupted another gene, Boymaw (also termed DISC1FP1), on chromosome 11. After translocation, two fusion genes [the DISC1-Boymaw (DB7) and the Boymaw-DISC1 (BD13)] are generated between the DISC1 and Boymaw genes. In the present study, we report that expression of the DB7 fusion gene inhibits both intracellular NADH oxidoreductase activities and protein translation. We generated humanized DISC1-Boymaw mice with gene targeting to examine the in vivo functions of the fusion genes. Consistent with the in vitro studies on the DB7 fusion gene, protein translation activity is decreased in the hippocampus and in cultured primary neurons from the brains of the humanized mice. Expression of Gad67, Nmdar1 and Psd95 proteins are also reduced. The humanized mice display prolonged and increased responses to the NMDA receptor antagonist, ketamine, on various mouse genetic backgrounds. Abnormal information processing of acoustic startle and depressive-like behaviors are also observed. In addition, the humanized mice display abnormal erythropoiesis, which was reported to associate with depression in humans. Expression of the DB7 fusion gene may reduce protein translation to impair brain functions and thereby contribute to the pathogenesis of major psychiatric disorders.
Collapse
Affiliation(s)
- Baohu Ji
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kerin K Higa
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Minjung Kim
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lynn Zhou
- La Jolla High School, 750 Nautilus St., San Diego, CA 92037, USA and
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA, Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92037, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA, Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92037, USA
| | - Xianjin Zhou
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA, Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92037, USA
| |
Collapse
|
216
|
Enomoto A, Asai N, Takahashi M. [Mechanisms for the differentiation of postnatal and adult neural stem cells: new insights and pathological issues based on the analysis of Girdin]. Nihon Yakurigaku Zasshi 2014; 143:289-294. [PMID: 24919555 DOI: 10.1254/fpj.143.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
217
|
Abstract
Adult neurogenesis, a developmental process of generating functionally integrated neurons, occurs throughout life in the hippocampus of the mammalian brain and showcases the highly plastic nature of the mature central nervous system. Significant progress has been made in recent years to decipher how adult neurogenesis contributes to brain functions. Here we review recent findings that inform our understanding of adult hippocampal neurogenesis processes and special properties of adult-born neurons. We further discuss potential roles of adult-born neurons at the circuitry and behavioral levels in cognitive and affective functions and how their dysfunction may contribute to various brain disorders. We end by considering a general model proposing that adult neurogenesis is not a cell-replacement mechanism, but instead maintains a plastic hippocampal neuronal circuit via the continuous addition of immature, new neurons with unique properties and structural plasticity of mature neurons induced by new-neuron integration.
Collapse
|
218
|
NDEL1 was decreased in the CA3 region but increased in the hippocampal blood vessel network during the spontaneous seizure period after pilocarpine-induced status epilepticus. Neuroscience 2014; 268:276-83. [DOI: 10.1016/j.neuroscience.2014.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
|
219
|
Pei Z, Lang B, Fragoso YD, Shearer KD, Zhao L, Mccaffery PJA, Shen S, Ding YQ, McCaig CD, Collinson JM. The expression and roles of Nde1 and Ndel1 in the adult mammalian central nervous system. Neuroscience 2014; 271:119-36. [PMID: 24785679 PMCID: PMC4048543 DOI: 10.1016/j.neuroscience.2014.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/08/2014] [Accepted: 04/18/2014] [Indexed: 11/01/2022]
Abstract
Mental and neurological illnesses affect one in four people. While genetic linkage analyses have shown an association of nuclear distribution factor E (NDE1, or NudE) and its ohnolog NDE-like 1 (NDEL1, or Nudel) with mental disorders, the cellular mechanisms remain unclear. In the present study, we have demonstrated that Nde1 and Ndel1 are differentially localised in the subventricular zone (SVZ) of the forebrain and the subgranular zone (SGZ) of the hippocampus, two regions where neurogenesis actively occurs in the adult brain. Nde1, but not Ndel1, is localized to putative SVZ stem cells, and to actively dividing progenitors of the SGZ. The influence of these proteins on neural stem cell differentiation was investigated by overexpression in a hippocampal neural stem cell line, HCN-A94. Increasing Nde1 expression in this neural stem cell line led to increased neuronal differentiation while decreasing levels of astroglial differentiation. In primary cultured neurons and astrocytes, Nde1 and Ndel1 were found to have different but comparable subcellular localizations. In addition, we have shown for the first time that Nde1 is heterogeneously distributed in cortical astrocytes of human brains. Our data indicate that Nde1 and Ndel1 have distinct but overlapping distribution patterns in mouse brain and cultured nerve cells. They may function differently and therefore their dosage changes may contribute to some aspects of mental disorders.
Collapse
Affiliation(s)
- Z Pei
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - B Lang
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| | - Y D Fragoso
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Department of Neurology, Medical Faculty, Universidade Metropolitana de Santos, Sao Paulo, Brazil
| | - K D Shearer
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - L Zhao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - P J A Mccaffery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - S Shen
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Regenerative Medicine Institute, School of Medicine, NUI Galway, Galway, Ireland
| | - Y Q Ding
- Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - C D McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - J M Collinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|
220
|
Watanabe Y, Khodosevich K, Monyer H. Dendrite development regulated by the schizophrenia-associated gene FEZ1 involves the ubiquitin proteasome system. Cell Rep 2014; 7:552-564. [PMID: 24726361 DOI: 10.1016/j.celrep.2014.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/05/2014] [Accepted: 03/07/2014] [Indexed: 02/06/2023] Open
Abstract
Downregulation of the schizophrenia-associated gene DISC1 and its interacting protein FEZ1 positively regulates dendrite growth in young neurons. However, little is known about the mechanism that controls these molecules during neuronal development. Here, we identify several components of the ubiquitin proteasome system and the cell-cycle machinery that act upstream of FEZ1. We demonstrate that the ubiquitin ligase cell division cycle 20/anaphase-promoting complex (Cdc20/APC) controls dendrite growth by regulating the degradation of FEZ1. Furthermore, dendrite growth is modulated by BubR1, whose known function so far has been restricted to control Cdc20/APC activity during the cell cycle. The modulatory function of BubR1 is dependent on its acetylation status. We show that BubR1 is deacetylated by Hdac11, thereby disinhibiting the Cdc20/APC complex. Because dendrite growth is affected both in hippocampal dentate granule cells and olfactory bulb neurons upon modifying expression of these genes, we conclude that the proposed mechanism governs neuronal development in a general fashion.
Collapse
Affiliation(s)
- Yasuhito Watanabe
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of Heidelberg University, Heidelberg 69120, Germany
| | - Konstantin Khodosevich
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of Heidelberg University, Heidelberg 69120, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
221
|
Kobayashi M, Nakatani T, Koda T, Matsumoto KI, Ozaki R, Mochida N, Takao K, Miyakawa T, Matsuoka I. Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders. Mol Brain 2014; 7:12. [PMID: 24528488 PMCID: PMC3928644 DOI: 10.1186/1756-6606-7-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have previously identified BRINP (BMP/RA-inducible neural-specific protein-1, 2, 3) family genes that possess the ability to suppress cell cycle progression in neural stem cells. Of the three family members, BRINP1 is the most highly expressed in various brain regions, including the hippocampus, in adult mice and its expression in dentate gyrus (DG) is markedly induced by neural activity. In the present study, we generated BRINP1-deficient (KO) mice to clarify the physiological functions of BRINP1 in the nervous system. RESULTS Neurogenesis in the subgranular zone of dentate gyrus was increased in BRINP1-KO mice creating a more immature neuronal population in granule cell layer. The number of parvalbumin expressing interneuron in hippocampal CA1 subregion was also increased in BRINP1-KO mice. Furthermore, BRINP1-KO mice showed abnormal behaviors with increase in locomotor activity, reduced anxiety-like behavior, poor social interaction, and slight impairment of working memory, all of which resemble symptoms of human psychiatric disorders such as schizophrenia and attention-deficit/hyperactivity disorder (ADHD). CONCLUSIONS Absence of BRINP1 causes deregulation of neurogenesis and impairments of neuronal differentiation in adult hippocampal circuitry. Abnormal behaviors comparable to those of human psychiatric disorders such as hyperactivity and poor social behavior were observed in BRINP1-KO mice. These abnormal behaviors could be caused by alteration of hippocampal circuitry as a consequence of the lack of BRINP1.
Collapse
Affiliation(s)
- Miwako Kobayashi
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Toshiyuki Nakatani
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo 060-0812, Japan
| | - Toshiaki Koda
- Laboratory of Embryonic and Genetic Engineering, Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
| | - Ken-ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Ryosuke Ozaki
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Natsuki Mochida
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigo-naka Myodaiji, Okazaki 444-8585, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigo-naka Myodaiji, Okazaki 444-8585, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Ichiro Matsuoka
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
222
|
Saaltink DJ, Vreugdenhil E. Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition? Cell Mol Life Sci 2014; 71:2499-515. [PMID: 24522255 PMCID: PMC4055840 DOI: 10.1007/s00018-014-1568-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/26/2013] [Accepted: 01/16/2014] [Indexed: 02/06/2023]
Abstract
Adult neurogenesis, the birth of new neurons in the mature brain, has attracted considerable attention in the last decade. One of the earliest identified and most profound factors that affect adult neurogenesis both positively and negatively is stress. Here, we review the complex interplay between stress and adult neurogenesis. In particular, we review the role of the glucocorticoid receptor, the main mediator of the stress response in the proliferation, differentiation, migration, and functional integration of newborn neurons in the hippocampus. We review a multitude of mechanisms regulating glucocorticoid receptor activity in relationship to adult neurogenesis. We postulate a novel concept in which the level of glucocorticoid receptor expression directly regulates the excitation-inhibition balance, which is key for proper neurogenesis. We furthermore argue that an excitation-inhibition dis-balance may underlie aberrant functional integration of newborn neurons that is associated with psychiatric and paroxysmal brain disorders.
Collapse
Affiliation(s)
- Dirk-Jan Saaltink
- Department of Medical Pharmacology, Leiden University Medical Center/Leiden Amsterdam Center for Drug Research, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
223
|
Hattori T, Shimizu S, Koyama Y, Emoto H, Matsumoto Y, Kumamoto N, Yamada K, Takamura H, Matsuzaki S, Katayama T, Tohyama M, Ito A. DISC1 (disrupted-in-schizophrenia-1) regulates differentiation of oligodendrocytes. PLoS One 2014; 9:e88506. [PMID: 24516667 PMCID: PMC3917910 DOI: 10.1371/journal.pone.0088506] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 01/08/2014] [Indexed: 02/05/2023] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a gene disrupted by a translocation, t(1;11) (q42.1;q14.3), that segregates with major psychiatric disorders, including schizophrenia, recurrent major depression and bipolar affective disorder, in a Scottish family. Here we report that mammalian DISC1 endogenously expressed in oligodendroglial lineage cells negatively regulates differentiation of oligodendrocyte precursor cells into oligodendrocytes. DISC1 expression was detected in oligodendrocytes of the mouse corpus callosum at P14 and P70. DISC1 mRNA was expressed in primary cultured rat cortical oligodendrocyte precursor cells and decreased when oligodendrocyte precursor cells were induced to differentiate by PDGF deprivation. Immunocytochemical analysis showed that overexpressed DISC1 was localized in the cell bodies and processes of oligodendrocyte precursor cells and oligodendrocytes. We show that expression of the myelin related markers, CNPase and MBP, as well as the number of cells with a matured oligodendrocyte morphology, were decreased following full length DISC1 overexpression. Conversely, both expression of CNPase and the number of oligodendrocytes with a mature morphology were increased following knockdown of endogenous DISC1 by RNA interference. Overexpression of a truncated form of DISC1 also resulted in an increase in expression of myelin related proteins and the number of mature oligodendrocytes, potentially acting via a dominant negative mechanism. We also identified involvement of Sox10 and Nkx2.2 in the DISC1 regulatory pathway of oligodendrocyte differentiation, both well-known transcription factors involved in the regulation of myelin genes.
Collapse
Affiliation(s)
- Tsuyoshi Hattori
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Sayama, Osaka, Japan
| | - Yoshihisa Koyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisayo Emoto
- Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co, Ltd, Suita, Osaka, Japan
| | - Yuji Matsumoto
- Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co, Ltd, Suita, Osaka, Japan
| | - Natsuko Kumamoto
- Department of Neurobiology and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kohei Yamada
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Hironori Takamura
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Taiichi Katayama
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Masaya Tohyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Sayama, Osaka, Japan
| | - Akira Ito
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
224
|
Baloyianni N, Tsangaris GT. The audacity of proteomics: a chance to overcome current challenges in schizophrenia research. Expert Rev Proteomics 2014; 6:661-74. [DOI: 10.1586/epr.09.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
225
|
Na KS, Jung HY, Kim YK. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:277-86. [PMID: 23123365 DOI: 10.1016/j.pnpbp.2012.10.022] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/11/2012] [Accepted: 10/26/2012] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a serious mental illness with chronic symptoms and significant impairment in psychosocial functioning. Although novel antipsychotics have been developed, the negative and cognitive symptoms of schizophrenia are still unresponsive to pharmacotherapy. The high level of social impairment and a chronic deteriorating course suggest that schizophrenia likely has neurodegenerative characteristics. Inflammatory markers such as pro-inflammatory cytokines are well-known etiological factors for psychiatric disorders, including schizophrenia. Inflammation in the central nervous system is closely related to neurodegeneration. In addition to pro-inflammatory cytokines, microglia also play an important role in the inflammatory process in the CNS. Uncontrolled activity of pro-inflammatory cytokines and microglia can induce schizophrenia in tandem with genetic vulnerability and glutamatergic neurotransmitters. Several studies have investigated the possible effects of antipsychotics on inflammation and neurogenesis. Additionally, anti-inflammatory adjuvant therapy has been under investigation as a treatment option for schizophrenia. Further studies should consider the confounding effects of systemic factors such as metabolic syndrome and smoking. In addition, the unique mechanisms by which pro-inflammatory cytokines are involved in the etiopathology of schizophrenia should be investigated. In this article, we aimed to review (1) major findings regarding neuroinflammation and pro-inflammatory cytokine alterations in schizophrenia, (2) interactions between neuroinflammation and neurogenesis as possible neural substrates for schizophrenia, and (3) novel pharmacological approaches.
Collapse
Affiliation(s)
- Kyoung-Sae Na
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | | | | |
Collapse
|
226
|
Harraz MM, Xu JC, Guiberson N, Dawson TM, Dawson VL. MiR-223 regulates the differentiation of immature neurons. MOLECULAR AND CELLULAR THERAPIES 2014; 2. [PMID: 25400937 PMCID: PMC4229944 DOI: 10.1186/2052-8426-2-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Small non-coding microRNA RNA molecules can regulate stem cell function. The role of microRNAs in neural stem/progenitor cells (NS/PCs) differentiation is not entirely clear. Methods MiRNA profiling, loss and gain of function studies coupled with dendritic tree development morphometric analysis and calcium influx imaging were utilized to investigate the role of micoRNA-223 in differentiating NS/PCs. Results MiRNA profiling in human NS/PCs before and after differentiation in vitro reveals modulation of miRNAs following differentiation of NS/PCs. MiR-223, a microRNA well characterized as a hematopoietic-specific miRNA was identified. Cell-autonomous inhibition of miR-223 in the adult mouse dentate gyrus NS/PCs led to a significant increase in immature neurons soma size, dendritic tree total length, branch number per neuron and complexity, while neuronal migration in the dentate gyrus remained unaffected. Overexpression of miR-223 decreased dendritic tree total length, branch number and complexity in neurons differentiated from human embryonic stem cells (hESCs). Inhibition of miR-223 enhanced N-methyl-D-aspartate (NMDA) induced calcium influx in human neurons differentiated from NS/PCs. Conclusions Taken together, these findings indicate that miR-223 regulates the differentiation of neurons derived from NS/PCs. Electronic supplementary material The online version of this article (doi:10.1186/2052-8426-2-18) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maged M Harraz
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA ; Department of Histology and Genetics, Suez Canal University School of Medicine, Ismailia, Egypt
| | - Jin-Chong Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noah Guiberson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD, USA
| | - Ted M Dawson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA ; Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA ; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA ; Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA ; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
227
|
Ruan L, Lau BWM, Wang J, Huang L, Zhuge Q, Wang B, Jin K, So KF. Neurogenesis in neurological and psychiatric diseases and brain injury: from bench to bedside. Prog Neurobiol 2013; 115:116-37. [PMID: 24384539 DOI: 10.1016/j.pneurobio.2013.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 02/08/2023]
Abstract
Researchers who have uncovered the presence of stem cells in an adult's central nervous system have not only challenged the dogma that new neurons cannot be generated during adulthood, but also shed light on the etiology and disease mechanisms underlying many neurological and psychiatric disorders. Brain trauma, neurodegenerative diseases, and psychiatric disorders pose enormous burdens at both personal and societal levels. Although medications for these disorders are widely used, the treatment mechanisms underlying the illnesses remain largely elusive. In the past decade, an increasing amount of evidence indicate that adult neurogenesis (i.e. generating new CNS neurons during adulthood) may be involved in the pathology of different CNS disorders, and thus neurogenesis may be a potential target area for treatments. Although new neurons were shown to be a major player in mediating treatment efficacy of neurological and psychotropic drugs on cognitive functions, it is still debatable if the altered production of new neurons can cause the disorders. This review hence seeks to discuss pre and current clinical studies that demonstrate the functional impact adult neurogenesis have on neurological and psychiatric illnesses while examining the related underlying disease mechanisms.
Collapse
Affiliation(s)
- Linhui Ruan
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.
| | - Benson Wui-Man Lau
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Jixian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Lijie Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Kunlin Jin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; GMH Institute of CNS Regeneration, Jinan University, Guangzhou, PR China.
| |
Collapse
|
228
|
Protein kinase LKB1 regulates polarized dendrite formation of adult hippocampal newborn neurons. Proc Natl Acad Sci U S A 2013; 111:469-74. [PMID: 24367100 DOI: 10.1073/pnas.1321454111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult-born granule cells in the dentate gyrus of the rodent hippocampus are important for memory formation and mood regulation, but the cellular mechanism underlying their polarized development, a process critical for their incorporation into functional circuits, remains unknown. We found that deletion of the serine-threonine protein kinase LKB1 or overexpression of dominant-negative LKB1 reduced the polarized initiation of the primary dendrite from the soma and disrupted its oriented growth toward the molecular layer. This abnormality correlated with the dispersion of Golgi apparatus that normally accumulated at the base and within the initial segment of the primary dendrite, and was mimicked by disrupting Golgi organization via altering the expression of Golgi structural proteins GM130 or GRASP65. Thus, besides its known function in axon formation in embryonic pyramidal neurons, LKB1 plays an additional role in regulating polarized dendrite morphogenesis in adult-born granule cells in the hippocampus.
Collapse
|
229
|
Furuya M, Miyaoka T, Tsumori T, Liaury K, Hashioka S, Wake R, Tsuchie K, Fukushima M, Ezoe S, Horiguchi J. Yokukansan promotes hippocampal neurogenesis associated with the suppression of activated microglia in Gunn rat. J Neuroinflammation 2013; 10:145. [PMID: 24305622 PMCID: PMC4234324 DOI: 10.1186/1742-2094-10-145] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/25/2013] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The pathophysiology of schizophrenia (SCZ) remains unclear, and its treatment is far from ideal. We have previously reported that yokukansan (YKS), which is a traditional Japanese medicine, is effective as an adjunctive therapy for SCZ. However, the mechanisms underlying the action of YKS have not yet been completely elucidated. A recent meta-analysis study has shown that adjuvant anti-inflammatory drugs are effective for SCZ treatment, and it has been proposed that some of the cognitive deficits associated with inflammation may in part be related to inflammation-induced reductions in adult hippocampal neurogenesis. Although certain ingredients of YKS have potent anti-inflammatory activity, no study has determined if YKS has anti-inflammatory properties. METHODS Using the Gunn rat, which has been reported as a possible animal model of SCZ, we investigated whether YKS affects cognitive dysfunction in an object-location test and the suppression of microglial activation and neurogenesis in the hippocampus. RESULTS We found that YKS ameliorated spatial working memory in the Gunn rats. Furthermore, YKS inhibited microglial activation and promoted neurogenesis in the hippocampal dentate gyrus of these rats. These results suggest that the ameliorative effects of YKS on cognitive deficits may be mediated in part by the suppression of the inflammatory activation of microglia. CONCLUSIONS These findings shed light on the possible mechanism underlying the efficacy of YKS in treating SCZ.
Collapse
Affiliation(s)
| | - Tsuyoshi Miyaoka
- Department of Psychiatry, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Gamo NJ, Duque A, Paspalas CD, Kata A, Fine R, Boven L, Bryan C, Lo T, Anighoro K, Bermudez L, Peng K, Annor A, Raja A, Mansson E, Taylor SR, Patel K, Simen AA, Arnsten AFT. Role of disrupted in schizophrenia 1 (DISC1) in stress-induced prefrontal cognitive dysfunction. Transl Psychiatry 2013; 3:e328. [PMID: 24301646 PMCID: PMC4030323 DOI: 10.1038/tp.2013.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/05/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022] Open
Abstract
Recent genetic studies have linked mental illness to alterations in disrupted in schizophrenia 1 (DISC1), a multifunctional scaffolding protein that regulates cyclic adenosine monophosphate (cAMP) signaling via interactions with phosphodiesterase 4 (PDE4). High levels of cAMP during stress exposure impair function of the prefrontal cortex (PFC), a region gravely afflicted in mental illness. As stress can aggravate mental illness, genetic insults to DISC1 may worsen symptoms by increasing cAMP levels. The current study examined whether viral knockdown (KD) of the Disc1 gene in rat PFC increases susceptibility to stress-induced PFC dysfunction. Rats were trained in a spatial working memory task before receiving infusions of (a) an active viral construct that knocked down Disc1 in PFC (DISC1 KD group), (b) a 'scrambled' construct that had no effect on Disc1 (Scrambled group), or (c) an active construct that reduced DISC1 expression dorsal to PFC (Anatomical Control group). Data were compared with an unoperated Control group. Cognitive performance was assessed following mild restraint stress that had no effect on normal animals. DISC1 KD rats were impaired by 1 h restraint stress, whereas Scrambled, Control, and Anatomical Control groups were unaffected. Thus, knocking down Disc1 in PFC reduced the threshold for stress-induced cognitive dysfunction, possibly through disinhibited cAMP signaling at neuronal network synapses. These findings may explain why patients with DISC1 mutations may be especially vulnerable to the effects of stress.
Collapse
Affiliation(s)
- N J Gamo
- Department of Neurobiology, Yale University, New Haven, CT, USA,Department of Neurobiology, Yale University, 600 N. Wolfe Street, Baltimore, MD 21287, USA. E-mail:
| | - A Duque
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - C D Paspalas
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - A Kata
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - R Fine
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - L Boven
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - C Bryan
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - T Lo
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - K Anighoro
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - L Bermudez
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - K Peng
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - A Annor
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - A Raja
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - E Mansson
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - S R Taylor
- Department of Neurobiology, Yale University, New Haven, CT, USA
| | - K Patel
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - A A Simen
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - A F T Arnsten
- Department of Neurobiology, Yale University, New Haven, CT, USA
| |
Collapse
|
231
|
Abstract
In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity after the perinatal period suggests that unique aspects of the structure and function of DG and olfactory bulb circuits allow them to benefit from the adult generation of neurons. In this review, we consider the distinctive features of the DG that may account for it being able to profit from this singular form of neural plasticity. Approaches to the problem of neurogenesis are grouped as "bottom-up," where the phenotype of adult-born granule cells is contrasted to that of mature developmentally born granule cells, and "top-down," where the impact of altering the amount of neurogenesis on behavior is examined. We end by considering the primary implications of these two approaches and future directions.
Collapse
Affiliation(s)
- Liam J Drew
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York 10032, USA
| | | | | |
Collapse
|
232
|
Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat Neurosci 2013; 16:1728-30. [PMID: 24212671 DOI: 10.1038/nn.3572] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/08/2013] [Indexed: 02/08/2023]
Abstract
Using immunohistology, electron microscopy, electrophysiology and optogenetics, we found that proliferating adult mouse hippocampal neural precursors received immature GABAergic synaptic inputs from parvalbumin-expressing interneurons. Recently shown to suppress adult quiescent neural stem cell activation, parvalbumin interneuron activation promoted newborn neuronal progeny survival and development. Our results suggest a niche mechanism involving parvalbumin interneurons that couples local circuit activity to the diametric regulation of two critical early phases of adult hippocampal neurogenesis.
Collapse
|
233
|
Bradshaw NJ, Hennah W, Soares DC. NDE1 and NDEL1: twin neurodevelopmental proteins with similar 'nature' but different 'nurture'. Biomol Concepts 2013; 4:447-64. [PMID: 24093049 PMCID: PMC3787581 DOI: 10.1515/bmc-2013-0023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nuclear distribution element 1 (NDE1, also known as NudE) and NDE-like 1 (NDEL1, also known as Nudel) are paralogous proteins essential for mitosis and neurodevelopment that have been implicated in psychiatric and neurodevelopmental disorders. The two proteins possess high sequence similarity and have been shown to physically interact with one another. Numerous lines of experimental evidence in vivo and in cell culture have demonstrated that these proteins share common functions, although instances of differing functions between the two have recently emerged. We review the key aspects of NDE1 and NDEL1 in terms of recent advances in structure elucidation and cellular function, with an emphasis on their differing mechanisms of post-translational modification. Based on a review of the literature and bioinformatics assessment, we advance the concept that the twin proteins NDE1 and NDEL1, while sharing a similar 'nature' in terms of their structure and basic functions, appear to be different in their 'nurture', the manner in which they are regulated both in terms of expression and of post-translational modification within the cell. These differences are likely to be of significant importance in understanding the specific roles of NDE1 and NDEL1 in neurodevelopment and disease.
Collapse
Affiliation(s)
- Nicholas J. Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, University Medical School, Moorenstrasse 5, D-40225, Düsseldorf, Germany
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland; and National Institute for, Health and Welfare, Department of Mental Health and Substance, Abuse Services, Helsinki, Finland
| | - Dinesh C. Soares
- MRC Institute of Genetics and Molecular Medicine (MRC IGMM), University of Edinburgh, Western General, Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| |
Collapse
|
234
|
MESH Headings
- Causality
- Chromosome Breakpoints
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/ultrastructure
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- Conduct Disorder/genetics
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Lod Score
- Mental Disorders/genetics
- Mood Disorders/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Pedigree
- Phenotype
- RNA, Long Noncoding/genetics
- Risk Factors
- Schizophrenia/genetics
- Terminology as Topic
- Translocation, Genetic
Collapse
Affiliation(s)
- P F Sullivan
- Departments of Genetics and Psychiatry, Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
235
|
Lee MH, Amin ND, Venkatesan A, Wang T, Tyagi R, Pant HC, Nath A. Impaired neurogenesis and neurite outgrowth in an HIV-gp120 transgenic model is reversed by exercise via BDNF production and Cdk5 regulation. J Neurovirol 2013; 19:418-31. [PMID: 23982957 PMCID: PMC3799978 DOI: 10.1007/s13365-013-0194-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/31/2013] [Indexed: 01/26/2023]
Abstract
Human immunodeficiency virus (HIV) infection-associated neurocognitive disorders is accompanied with brain atrophy. In these patients, impairment of adult neurogenesis and neurite outgrowth in the hippocampus may contribute to cognitive dysfunction. Although running exercises can enhance neurogenesis and normalize neurite outgrowth, the underlying molecular mechanisms are not well understood. The HIV envelope protein, gp120, has been shown to impair neurogenesis. Using a gp120 transgenic mouse model, we demonstrate that exercise stimulated neural progenitor cell (NPC) proliferation in the hippocampal dentate gyrus and increased the survival rate and generation of newborn cells. However, sustained exercise activity was necessary as the effects were reversed by detraining. Exercise also normalized dendritic outgrowth of neurons. Furthermore, it increased the expression of hippocampal brain-derived neurotrophic factor (BDNF) and normalized hyperactivation of cyclin-dependent kinase 5 (Cdk5). Hyperactivated Cdk5 or gp120 treatment led to aberrant neurite outgrowth and BDNF treatment normalized the neurite outgrowth in NPC cultures. These results suggest that sustained exercise has trophic activity on the neuronal lineage which is mediated by Cdk5 modulation of the BDNF pathway.
Collapse
Affiliation(s)
- Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institutes of Health, M.D. Bldg 10, Room 7C-103, 10 Center Drive, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | |
Collapse
|
236
|
Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. J Neurosci 2013; 33:11400-11. [PMID: 23843512 DOI: 10.1523/jneurosci.1374-13.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the adult mammalian hippocampus, newborn dentate granule cells are continuously integrated into the existing circuitry and contribute to specific brain functions. Little is known about the axonal development of these newborn neurons in the adult brain due to technological challenges that have prohibited large-scale reconstruction of long, thin, and complex axonal processes within the mature nervous system. Here, using a new serial end-block imaging (SEBI) technique, we seamlessly reconstructed axonal and dendritic processes of intact individual retrovirus-labeled newborn granule cells at different developmental stages in the young adult mouse hippocampus. We found that adult-born dentate granule cells exhibit tortuous, yet highly stereotyped, axonal projections to CA3 hippocampal subregions. Primary axonal projections of cohorts of new neurons born around the same time organize into laminar patterns with staggered terminations that stack along the septo-temporal hippocampal axis. Analysis of individual newborn neuron development further defined an initial phase of rapid axonal and dendritic growth within 21 d after newborn neuron birth, followed by minimal growth of primary axonal and whole dendritic processes through the last time point examined at 77 d. Our results suggest that axonal development and targeting is a highly orchestrated, precise process in the adult brain. These findings demonstrate a striking regenerative capacity of the mature CNS to support long-distance growth and guidance of neuronal axons. Our SEBI approach can be broadly applied for analysis of intact, complex neuronal projections in limitless tissue volume.
Collapse
|
237
|
Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Mol Psychiatry 2013; 18:993-1005. [PMID: 22925833 DOI: 10.1038/mp.2012.123] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 06/28/2012] [Accepted: 07/05/2012] [Indexed: 01/24/2023]
Abstract
Glucocorticoids (GCs) secreted after stress reduce adult hippocampal neurogenesis, a process that has been implicated in cognitive aspects of psychopathology, amongst others. Yet, the exact role of the GC receptor (GR), a key mediator of GC action, in regulating adult neurogenesis is largely unknown. Here, we show that GR knockdown, selectively in newborn cells of the hippocampal neurogenic niche, accelerates their neuronal differentiation and migration. Strikingly, GR knockdown induced ectopic positioning of a subset of the new granule cells, altered their dendritic complexity and increased their number of mature dendritic spines and mossy fiber boutons. Consistent with the increase in synaptic contacts, cells with GR knockdown exhibit increased basal excitability parallel to impaired contextual freezing during fear conditioning. Together, our data demonstrate a key role for the GR in newborn hippocampal cells in mediating their synaptic connectivity and structural as well as functional integration into mature hippocampal circuits involved in fear memory consolidation.
Collapse
|
238
|
Vadodaria KC, Jessberger S. Maturation and integration of adult born hippocampal neurons: signal convergence onto small Rho GTPases. Front Synaptic Neurosci 2013; 5:4. [PMID: 23986696 PMCID: PMC3752586 DOI: 10.3389/fnsyn.2013.00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/29/2013] [Indexed: 01/28/2023] Open
Abstract
Adult neurogenesis, restricted to specific regions in the mammalian brain, represents one of the most interesting forms of plasticity in the mature nervous system. Adult-born hippocampal neurons play important roles in certain forms of learning and memory, and altered hippocampal neurogenesis has been associated with a number of neuropsychiatric diseases such as major depression and epilepsy. Newborn neurons go through distinct developmental steps, from a dividing neurogenic precursor to a synaptically integrated mature neuron. Previous studies have uncovered several molecular signaling pathways involved in distinct steps of this maturational process. In this context, the small Rho GTPases, Cdc42, Rac1, and RhoA have recently been shown to regulate the morphological and synaptic maturation of adult-born dentate granule cells in vivo. Distinct upstream regulators, including growth factors that modulate maturation and integration of newborn neurons have been shown to also recruit the small Rho GTPases. Here we review recent findings and highlight the possibility that small Rho GTPases may act as central assimilators, downstream of critical input onto adult-born hippocampal neurons contributing to their maturation and integration into the existing dentate gyrus (DG) circuitry.
Collapse
Affiliation(s)
- Krishna C Vadodaria
- Brain Research Institute, University of Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | | |
Collapse
|
239
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
240
|
Soda T, Frank C, Ishizuka K, Baccarella A, Park YU, Flood Z, Park SK, Sawa A, Tsai LH. DISC1-ATF4 transcriptional repression complex: dual regulation of the cAMP-PDE4 cascade by DISC1. Mol Psychiatry 2013; 18:898-908. [PMID: 23587879 PMCID: PMC3730299 DOI: 10.1038/mp.2013.38] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/12/2013] [Accepted: 01/31/2013] [Indexed: 02/08/2023]
Abstract
Disrupted-In-Schizophrenia 1 (DISC1), a risk factor for major mental illnesses, has been studied extensively in the context of neurodevelopment. However, the role of DISC1 in neuronal signaling, particularly in conjunction with intracellular cascades that occur in response to dopamine, a neurotransmitter implicated in numerous psychiatric disorders, remains elusive. Previous data suggest that DISC1 interacts with numerous proteins that impact neuronal function, including activating transcription factor 4 (ATF4). In this study, we identify a novel DISC1 and ATF4 binding region in the genomic locus of phosphodiesterase 4D (PDE4D), a gene implicated in psychiatric disorders. We found that the loss of function of either DISC1 or ATF4 increases PDE4D9 transcription, and that the association of DISC1 with the PDE4D9 locus requires ATF4. We also show that PDE4D9 is increased by D1-type dopamine receptor dopaminergic stimulation. We demonstrate that the mechanism for this increase is due to DISC1 dissociation from the PDE4D locus in mouse brain. We further characterize the interaction of DISC1 with ATF4 to show that it is regulated via protein kinase A-mediated phosphorylation of DISC1 serine-58. Our results suggest that the release of DISC1-mediated transcriptional repression of PDE4D9 acts as feedback inhibition to regulate dopaminergic signaling. Furthermore, as DISC1 loss-of-function leads to a specific increase in PDE4D9, PDE4D9 itself may represent an attractive target for therapeutic approaches in psychiatric disorders.
Collapse
Affiliation(s)
- T Soda
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA,Howard Hughes Medical Institute, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA,Daniel Tosteson Medical Education Center, Boston, MA, USA
| | - C Frank
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA,Howard Hughes Medical Institute, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - K Ishizuka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Baccarella
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Y-U Park
- Division of Molecular and Life Science, Department of Life Science, Biotechnology Research Center, Pohang University of Science and Technology, Pohang, Korea
| | - Z Flood
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA,Howard Hughes Medical Institute, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - S K Park
- Division of Molecular and Life Science, Department of Life Science, Biotechnology Research Center, Pohang University of Science and Technology, Pohang, Korea
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - L-H Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA,Howard Hughes Medical Institute, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA,Howard Hughes Medical Institute, 77 Massachusetts Avenue, Room 46-4235, Cambridge, MA 02139, USA. E-mail:
| |
Collapse
|
241
|
|
242
|
The production of somatostatin interneurons in the olfactory bulb is regulated by the transcription factor sp8. PLoS One 2013; 8:e70049. [PMID: 23894587 PMCID: PMC3720950 DOI: 10.1371/journal.pone.0070049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Somatostatin (Som), one of the most concentrated neuropeptides in the brain, is highly expressed in the olfactory bulb (OB). However, the temporal profile by which OB somatostatin-expressing (Som+) interneurons are produced and the molecular mechanisms controlling this profile are totally unknown. In the present study, we found that all the Som+ interneurons in the mouse external plexiform layer (EPL) and the rat glomerular layer (GL) express the transcription factor Sp8.Using the 5-bromo-2'-deoxyuridine (BrdU) birth dating method, combined with immunostaining, we showed that the generation of Som+ interneurons in the mouse and rat OB is confined to the later embryonic and earlier postnatal stages. Within the mouse OB, the production of Som+ interneurons is maximal during late embryogenesis and decreases after birth, whereas the generation of Som+ interneurons is low during embryogenesis and increases gradually after birth in the rat OB. Interestingly, genetic ablation of Sp8 by cre/loxP-based recombination severely reduces the number of Som+ interneurons in the EPL of the mouse OB. Taken together, these results suggest that Sp8 is required for the normal production of Som+ interneurons in the EPL of the mouse OB.
Collapse
|
243
|
Abstract
Neurotransmitter gamma-aminobutiric acid (GABA) through ionotropic GABAA and metabotropic GABAB receptors plays key roles in modulating the development, plasticity and function of neuronal networks. GABA is inhibitory in mature neurons but excitatory in immature neurons, neuroblasts and neural stem/progenitor cells (NSCs/NPCs). The switch from excitatory to inhibitory occurs following the development of glutamatergic synaptic input and results from the dynamic changes in the expression of Na+/K+/2Cl- co-transporter NKCC1 driving Cl- influx and neuron-specific K+/Cl- co-transporter KCC2 driving Cl- efflux. The developmental transition of KCC2 expression is regulated by Disrupted-in-Schizophrenia 1 (DISC1) and brain-derived neurotrophic factor (BDNF) signaling. The excitatory GABA signaling during early neurogenesis is important to the activity/experience-induced regulation of NSC quiescence, NPC proliferation, neuroblast migration and newborn neuronal maturation/functional integration. The inhibitory GABA signaling allows for the sparse and static functional networking essential for learning/memory development and maintenance.
Collapse
Affiliation(s)
- Adalto Pontes
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA ; Universidade do Estado do Pará, Santarém, PA, Brasil
| | | | | |
Collapse
|
244
|
Konefal S, Elliot M, Crespi B. The adaptive significance of adult neurogenesis: an integrative approach. Front Neuroanat 2013; 7:21. [PMID: 23882188 PMCID: PMC3712125 DOI: 10.3389/fnana.2013.00021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/18/2013] [Indexed: 01/15/2023] Open
Abstract
Adult neurogenesis in mammals is predominantly restricted to two brain regions, the dentate gyrus (DG) of the hippocampus and the olfactory bulb (OB), suggesting that these two brain regions uniquely share functions that mediate its adaptive significance. Benefits of adult neurogenesis across these two regions appear to converge on increased neuronal and structural plasticity that subserves coding of novel, complex, and fine-grained information, usually with contextual components that include spatial positioning. By contrast, costs of adult neurogenesis appear to center on potential for dysregulation resulting in higher risk of brain cancer or psychological dysfunctions, but such costs have yet to be quantified directly. The three main hypotheses for the proximate functions and adaptive significance of adult neurogenesis, pattern separation, memory consolidation, and olfactory spatial, are not mutually exclusive and can be reconciled into a simple general model amenable to targeted experimental and comparative tests. Comparative analysis of brain region sizes across two major social-ecological groups of primates, gregarious (mainly diurnal haplorhines, visually-oriented, and in large social groups) and solitary (mainly noctural, territorial, and highly reliant on olfaction, as in most rodents) suggest that solitary species, but not gregarious species, show positive associations of population densities and home range sizes with sizes of both the hippocampus and OB, implicating their functions in social-territorial systems mediated by olfactory cues. Integrated analyses of the adaptive significance of adult neurogenesis will benefit from experimental studies motivated and structured by ecologically and socially relevant selective contexts.
Collapse
Affiliation(s)
- Sarah Konefal
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General HospitalMontreal, QC, Canada
| | - Mick Elliot
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| |
Collapse
|
245
|
Sabbagh JJ, Murtishaw AS, Bolton MM, Heaney CF, Langhardt M, Kinney JW. Chronic ketamine produces altered distribution of parvalbumin-positive cells in the hippocampus of adult rats. Neurosci Lett 2013; 550:69-74. [PMID: 23827228 DOI: 10.1016/j.neulet.2013.06.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/23/2013] [Accepted: 06/20/2013] [Indexed: 02/03/2023]
Abstract
The underlying mechanisms of schizophrenia pathogenesis are not well understood. Increasing evidence supports the glutamatergic hypothesis that posits a hypofunction of the N-methyl D-aspartate (NMDA) receptor on specific gamma amino-butyric acid (GABA)-ergic neurons may be responsible for the disorder. Alterations in the GABAergic system have been observed in schizophrenia, most notably a change in the expression of parvalbumin (PV) in the cortex and hippocampus. Several reports also suggest abnormal neuronal migration may play a role in the etiology of schizophrenia. The current study examined the positioning and distribution of PV-positive cells in the hippocampus following chronic treatment with the NMDA receptor antagonist ketamine. A robust increase was found in the number of PV-positive interneurons located outside the stratum oriens (SO), the layer where most of these cells are normally localized, as well as an overall numerical increase in CA3 PV cells. These results suggest ketamine leads to an abnormal distribution of PV-positive cells, which may be indicative of aberrant migratory activity and possibly related to the Morris water maze deficits observed. These findings may also be relevant to alterations observed in schizophrenia populations.
Collapse
Affiliation(s)
- Jonathan J Sabbagh
- Department of Psychology, University of Nevada Las Vegas, Las Vegas NV 89154, United States
| | | | | | | | | | | |
Collapse
|
246
|
Varela-Nallar L, Inestrosa NC. Wnt signaling in the regulation of adult hippocampal neurogenesis. Front Cell Neurosci 2013; 7:100. [PMID: 23805076 PMCID: PMC3693081 DOI: 10.3389/fncel.2013.00100] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/07/2013] [Indexed: 01/06/2023] Open
Abstract
In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells (NSCs) give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/β-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/β-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed.
Collapse
Affiliation(s)
- Lorena Varela-Nallar
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | | |
Collapse
|
247
|
Chambers RA. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depend 2013; 130:1-12. [PMID: 23279925 PMCID: PMC3640791 DOI: 10.1016/j.drugalcdep.2012.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND As knowledge deepens about how new neurons are born, differentiate, and wire into the adult mammalian brain, growing evidence depicts hippocampal neurogenesis as a special form of neuroplasticity that may be impaired across psychiatric disorders. This review provides an integrated-evidence based framework describing a neurogenic basis for addictions and addiction vulnerability in mental illness. METHODS Basic studies conducted over the last decade examining the effects of addictive drugs on adult neurogenesis and the impact of neurogenic activity on addictive behavior were compiled and integrated with relevant neurocomputational and human studies. RESULTS While suppression of hippocampal neurogenic proliferation appears to be a universal property of addictive drugs, the pathophysiology of addictions involves neuroadaptative processes within frontal-cortical-striatal motivation circuits that the neurogenic hippocampus regulates via direct projections. States of suppressed neurogenic activity may simultaneously underlie psychiatric and cognitive symptoms, but also confer or signify hippocampal dysfunction that heightens addiction vulnerability in mental illness as a basis for dual diagnosis disorders. CONCLUSIONS Research on pharmacological, behavioral and experiential strategies that enhance adaptive regulation of hippocampal neurogenesis holds potential in advancing preventative and integrative treatment strategies for addictions and dual diagnosis disorders.
Collapse
Affiliation(s)
- R Andrew Chambers
- Laboratory for Translational Neuroscience of Dual Diagnosis & Development, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, United States.
| |
Collapse
|
248
|
Kleine Borgmann FB, Bracko O, Jessberger S. Imaging neurite development of adult-born granule cells. Development 2013; 140:2823-7. [PMID: 23720045 DOI: 10.1242/dev.091249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neural stem/progenitor cells (NSPCs) generate new neurons throughout life in the mammalian hippocampus. Newborn granule cells mature over several weeks to functionally integrate into the pre-existing neural circuitry. Even though an increasing number of genes that regulate neuronal polarization and neurite extension have been identified, the cellular mechanisms underlying the extension of neurites arising from newborn granule cells remain largely unknown. This is mainly because of the current lack of longitudinal observations of neurite growth within the endogenous niche. Here we used a novel slice culture system of the adult mouse hippocampal formation combined with in vivo retroviral labeling of newborn neurons and longitudinal confocal imaging to analyze the mode and velocity of neurite growth extending from immature granule cells. Using this approach we show that dendritic processes show a linear growth pattern with a speed of 2.19±0.2 μm per hour, revealing a much faster growth dynamic than expected by snapshot-based in vivo time series. Thus, we here identified the growth pattern of neurites extending from newborn neurons within their niche and describe a novel technology that will be useful to monitor neuritic growth in physiological and disease states that are associated with altered dendritic morphology, such as rodent models of epilepsy.
Collapse
Affiliation(s)
- Felix B Kleine Borgmann
- Brain Research Institute, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
249
|
Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, Fillman SG, Rothmond DA, Sinclair D, Tiwari Y, Tsai SY, Weickert TW, Shannon Weickert C. Rethinking schizophrenia in the context of normal neurodevelopment. Front Cell Neurosci 2013; 7:60. [PMID: 23720610 PMCID: PMC3654207 DOI: 10.3389/fncel.2013.00060] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/16/2013] [Indexed: 01/11/2023] Open
Abstract
The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes identified in adult brain tissue can be accounted for by aberrant developmental processes occurring during fetal, childhood, or adolescent periods. To place schizophrenia neuropathology in a neurodevelopmental context requires solid, scrutinized evidence of changes occurring during normal development of the human brain, particularly in the cortex; however, too often data on normative developmental change are selectively referenced. This paper focuses on the development of the prefrontal cortex and charts major molecular, cellular, and behavioral events on a similar time line. We first consider the time at which human cognitive abilities such as selective attention, working memory, and inhibitory control mature, emphasizing that attainment of full adult potential is a process requiring decades. We review the timing of neurogenesis, neuronal migration, white matter changes (myelination), and synapse development. We consider how molecular changes in neurotransmitter signaling pathways are altered throughout life and how they may be concomitant with cellular and cognitive changes. We end with a consideration of how the response to drugs of abuse changes with age. We conclude that the concepts around the timing of cortical neuronal migration, interneuron maturation, and synaptic regression in humans may need revision and include greater emphasis on the protracted and dynamic changes occurring in adolescence. Updating our current understanding of post-natal neurodevelopment should aid researchers in interpreting gray matter changes and derailed neurodevelopmental processes that could underlie emergence of psychosis.
Collapse
Affiliation(s)
- Vibeke S. Catts
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Samantha J. Fung
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Leonora E. Long
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Dipesh Joshi
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Ans Vercammen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
- School of Psychology, Australian Catholic UniversitySydney, NSW, Australia
| | - Katherine M. Allen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Stu G. Fillman
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Debora A. Rothmond
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
| | - Duncan Sinclair
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Yash Tiwari
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Shan-Yuan Tsai
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Thomas W. Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
250
|
Kim WR, Sun W. Enhanced odor discrimination learning in aged Bax-KO mice. Neurosci Lett 2013; 548:196-200. [PMID: 23685130 DOI: 10.1016/j.neulet.2013.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
Abstract
Throughout life, new neurons are continuously generated from subventricular zone and added to the olfactory bulb (OB). Because a subset of mature OB neurons undergoes spontaneous cell death, adult OB neurogenesis serves for the replacement of this cell loss. Spontaneous cell turnover should alter the neuronal circuits, but the significance of cell turnover on olfactory learning is yet poorly understood. In this study, we explored the olfactory learning behaviors of model mice showing (1) absence of cell death and cell addition (aged Bax-KO mice); (2) absence of cell death but presence of cell addition (young Bax-KO mice); or (3) presence cell death but absence of cell addition (surgical lesion of rostral migratory stream of neuroblasts). Interestingly, aged Bax-KO mice with no cell replacement acquired the ability to discriminate odor differences faster than WT littermates, whereas other model mice exhibited virtually normal learning ability. These results suggest that the cell replacement is necessary for the normal olfactory learning behavior, and the chronic perturbation of cell replacement may result in the imbalance of neural circuits driving unexpected enhancement of olfactory learning ability.
Collapse
Affiliation(s)
- Woon Ryoung Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21, Republic of Korea
| | | |
Collapse
|