201
|
Houbaert D, Nikolakopoulos AP, Jacobs KA, Meçe O, Roels J, Shankar G, Agrawal M, More S, Ganne M, Rillaerts K, Boon L, Swoboda M, Nobis M, Mourao L, Bosisio F, Vandamme N, Bergers G, Scheele CLGJ, Agostinis P. An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade. Cell Rep 2024; 43:114020. [PMID: 38554280 DOI: 10.1016/j.celrep.2024.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.
Collapse
Affiliation(s)
- Diede Houbaert
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Apostolos Panagiotis Nikolakopoulos
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kathryn A Jacobs
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Odeta Meçe
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Jana Roels
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gautam Shankar
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Sanket More
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Kristine Rillaerts
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | | | - Magdalena Swoboda
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Max Nobis
- Intravital Imaging Expertise Center, VIB-CCB, Leuven, Belgium
| | - Larissa Mourao
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Niels Vandamme
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gabriele Bergers
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium.
| |
Collapse
|
202
|
Etesami NS, Barker KA, Shenoy AT, De Ana CL, Arafa EI, Grifno GN, Matschulat AM, Vannini ME, Pihl RMF, Breen MP, Soucy AM, Goltry WN, Ha CT, Betsuyaku H, Browning JL, Varelas X, Traber KE, Jones MR, Quinton LJ, Maglione PJ, Nia HT, Belkina AC, Mizgerd JP. B cells in the pneumococcus-infected lung are heterogeneous and require CD4 + T cell help including CD40L to become resident memory B cells. Front Immunol 2024; 15:1382638. [PMID: 38715601 PMCID: PMC11074383 DOI: 10.3389/fimmu.2024.1382638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.
Collapse
Affiliation(s)
- Neelou S. Etesami
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Kimberly A. Barker
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Anukul T. Shenoy
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carolina Lyon De Ana
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Emad I. Arafa
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Gabrielle N. Grifno
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, MA, United States
| | - Adeline M. Matschulat
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Michael E. Vannini
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Riley M. F. Pihl
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Michael P. Breen
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Alicia M. Soucy
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Wesley N. Goltry
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Catherine T. Ha
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Hanae Betsuyaku
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jeffrey L. Browning
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Xaralabos Varelas
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Katrina E. Traber
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Matthew R. Jones
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Lee J. Quinton
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Paul J. Maglione
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Hadi T. Nia
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, MA, United States
| | - Anna C. Belkina
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Flow Cytometry Core Facility, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
203
|
Xu AM, Haro M, Walts AE, Hu Y, John J, Karlan BY, Merchant A, Orsulic S. Spatiotemporal architecture of immune cells and cancer-associated fibroblasts in high-grade serous ovarian carcinoma. SCIENCE ADVANCES 2024; 10:eadk8805. [PMID: 38630822 PMCID: PMC11023532 DOI: 10.1126/sciadv.adk8805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
High-grade serous ovarian carcinoma (HGSOC), the deadliest form of ovarian cancer, is typically diagnosed after it has metastasized and often relapses after standard-of-care platinum-based chemotherapy, likely due to advanced tumor stage, heterogeneity, and immune evasion and tumor-promoting signaling from the tumor microenvironment. To understand how spatial heterogeneity contributes to HGSOC progression and early relapse, we profiled an HGSOC tissue microarray of patient-matched longitudinal samples from 42 patients. We found spatial patterns associated with early relapse, including changes in T cell localization, malformed tertiary lymphoid structure (TLS)-like aggregates, and increased podoplanin-positive cancer-associated fibroblasts (CAFs). Using spatial features to compartmentalize the tissue, we found that plasma cells distribute in two different compartments associated with TLS-like aggregates and CAFs, and these distinct microenvironments may account for the conflicting reports about the role of plasma cells in HGSOC prognosis.
Collapse
Affiliation(s)
- Alexander M. Xu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marcela Haro
- Department of Obstetrics and Gynecology and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ann E. Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ye Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joshi John
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Medicine, Division of Geriatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Akil Merchant
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
204
|
Ding J, Garber JJ, Uchida A, Lefkovith A, Carter GT, Vimalathas P, Canha L, Dougan M, Staller K, Yarze J, Delorey TM, Rozenblatt-Rosen O, Ashenberg O, Graham DB, Deguine J, Regev A, Xavier RJ. An esophagus cell atlas reveals dynamic rewiring during active eosinophilic esophagitis and remission. Nat Commun 2024; 15:3344. [PMID: 38637492 PMCID: PMC11026436 DOI: 10.1038/s41467-024-47647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Coordinated cell interactions within the esophagus maintain homeostasis, and disruption can lead to eosinophilic esophagitis (EoE), a chronic inflammatory disease with poorly understood pathogenesis. We profile 421,312 individual cells from the esophageal mucosa of 7 healthy and 15 EoE participants, revealing 60 cell subsets and functional alterations in cell states, compositions, and interactions that highlight previously unclear features of EoE. Active disease displays enrichment of ALOX15+ macrophages, PRDM16+ dendritic cells expressing the EoE risk gene ATP10A, and cycling mast cells, with concomitant reduction of TH17 cells. Ligand-receptor expression uncovers eosinophil recruitment programs, increased fibroblast interactions in disease, and IL-9+IL-4+IL-13+ TH2 and endothelial cells as potential mast cell interactors. Resolution of inflammation-associated signatures includes mast and CD4+ TRM cell contraction and cell type-specific downregulation of eosinophil chemoattractant, growth, and survival factors. These cellular alterations in EoE and remission advance our understanding of eosinophilic inflammation and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jiarui Ding
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - John J Garber
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Amiko Uchida
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ariel Lefkovith
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Grace T Carter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Praveen Vimalathas
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Lauren Canha
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Michael Dougan
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kyle Staller
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Joseph Yarze
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Genentech, South San Francisco, CA, 94080, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Daniel B Graham
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jacques Deguine
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Genentech, South San Francisco, CA, 94080, USA.
| | - Ramnik J Xavier
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
205
|
Morizet D, Foucher I, Alunni A, Bally-Cuif L. Reconstruction of macroglia and adult neurogenesis evolution through cross-species single-cell transcriptomic analyses. Nat Commun 2024; 15:3306. [PMID: 38632253 PMCID: PMC11024210 DOI: 10.1038/s41467-024-47484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Macroglia fulfill essential functions in the adult vertebrate brain, producing and maintaining neurons and regulating neuronal communication. However, we still know little about their emergence and diversification. We used the zebrafish D. rerio as a distant vertebrate model with moderate glial diversity as anchor to reanalyze datasets covering over 600 million years of evolution. We identify core features of adult neurogenesis and innovations in the mammalian lineage with a potential link to the rarity of radial glia-like cells in adult humans. Our results also suggest that functions associated with astrocytes originated in a multifunctional cell type fulfilling both neural stem cell and astrocytic functions before these diverged. Finally, we identify conserved elements of macroglial cell identity and function and their time of emergence during evolution.
Collapse
Affiliation(s)
- David Morizet
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
- Sorbonne Université, Collège doctoral, F-75005, Paris, France.
| | - Isabelle Foucher
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
| | - Alessandro Alunni
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, F-91190, Gif-sur-Yvette, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
| |
Collapse
|
206
|
Romero R, Chu T, González-Robles TJ, Smith P, Xie Y, Kaur H, Yoder S, Zhao H, Mao C, Kang W, Pulina MV, Lawrence KE, Gopalan A, Zaidi S, Yoo K, Choi J, Fan N, Gerstner O, Karthaus WR, DeStanchina E, Ruggles KV, Westcott PM, Chaligné R, Pe’er D, Sawyers CL. The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588557. [PMID: 38645223 PMCID: PMC11030418 DOI: 10.1101/2024.04.09.588557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy outcomes. The underlying cellular and molecular mechanisms mediating lineage plasticity remain poorly understood. Here, we describe a versatile in vivo platform to identify and interrogate the molecular determinants of neuroendocrine lineage transformation at different stages of prostate cancer progression. Adenocarcinomas reliably develop following orthotopic transplantation of primary mouse prostate organoids acutely engineered with human-relevant driver alterations (e.g., Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+), but only those with Rb1 deletion progress to ASCL1+ neuroendocrine prostate cancer (NEPC), a highly aggressive, androgen receptor signaling inhibitor (ARSI)-resistant tumor. Importantly, we show this lineage transition requires a native in vivo microenvironment not replicated by conventional organoid culture. By integrating multiplexed immunofluorescence, spatial transcriptomics and PrismSpot to identify cell type-specific spatial gene modules, we reveal that ASCL1+ cells arise from KRT8+ luminal epithelial cells that progressively acquire transcriptional heterogeneity, producing large ASCL1+;KRT8- NEPC clusters. Ascl1 loss in established NEPC results in transient tumor regression followed by recurrence; however, Ascl1 deletion prior to transplantation completely abrogates lineage plasticity, yielding adenocarcinomas with elevated AR expression and marked sensitivity to castration. The dynamic feature of this model reveals the importance of timing of therapies focused on lineage plasticity and offers a platform for identification of additional lineage plasticity drivers.
Collapse
Affiliation(s)
- Rodrigo Romero
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tinyi Chu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tania J. González-Robles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY 10061, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10061, USA
| | - Perianne Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harmanpreet Kaur
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sara Yoder
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chenyi Mao
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wenfei Kang
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria V. Pulina
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayla E. Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia Gerstner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wouter R. Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kelly V. Ruggles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY 10061, USA
| | | | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe’er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
207
|
Firestone RS, McAvoy D, Shekarkhand T, Serrano E, Hamadeh I, Wang A, Zhu M, Qin WG, Patel D, Tan CR, Hultcrantz M, Mailankody S, Hassoun H, Shah US, Korde N, Maclachlan KH, Landau HJ, Scordo M, Shah GL, Lahoud OB, Giralt S, Murata K, Hosszu KK, Chung DJ, Lesokhin AM, Usmani SZ. CD8 effector T cells enhance teclistamab response in BCMA-exposed and -naïve multiple myeloma. Blood Adv 2024; 8:1600-1611. [PMID: 37878808 PMCID: PMC10987849 DOI: 10.1182/bloodadvances.2023011225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
ABSTRACT Teclistamab, a B-cell maturation antigen (BCMA)- and CD3-targeting bispecific antibody, is an effective novel treatment for relapsed/refractory multiple myeloma (R/RMM), but efficacy in patients exposed to BCMA-directed therapies and mechanisms of resistance have yet to be fully delineated. We conducted a real-world retrospective study of commercial teclistamab, capturing both clinical outcomes and immune correlates of treatment response in a cohort of patients (n = 52) with advanced R/RMM. Teclistamab was highly effective with an overall response rate (ORR) of 64%, including an ORR of 50% for patients with prior anti-BCMA therapy. Pretreatment plasma cell BCMA expression levels had no bearing on response. However, comprehensive pretreatment immune profiling identified that effector CD8+ T-cell populations were associated with response to therapy and a regulatory T-cell population associated with nonresponse, indicating a contribution of immune status in outcomes with potential utility as a biomarker signature to guide patient management.
Collapse
Affiliation(s)
- Ross S. Firestone
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Devin McAvoy
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tala Shekarkhand
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Edith Serrano
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Issam Hamadeh
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alice Wang
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Menglei Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wei Ge Qin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dhwani Patel
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carlyn R. Tan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sham Mailankody
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hani Hassoun
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Urvi S. Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neha Korde
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kylee H. Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Heather J. Landau
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Scordo
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gunjan L. Shah
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Oscar B. Lahoud
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sergio Giralt
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kazunori Murata
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kinga K. Hosszu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David J. Chung
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander M. Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Saad Z. Usmani
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
208
|
Putri GH, Howitt G, Marsh-Wakefield F, Ashhurst TM, Phipson B. SuperCellCyto: enabling efficient analysis of large scale cytometry datasets. Genome Biol 2024; 25:89. [PMID: 38589921 PMCID: PMC11003185 DOI: 10.1186/s13059-024-03229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Advancements in cytometry technologies have enabled quantification of up to 50 proteins across millions of cells at single cell resolution. Analysis of cytometry data routinely involves tasks such as data integration, clustering, and dimensionality reduction. While numerous tools exist, many require extensive run times when processing large cytometry data containing millions of cells. Existing solutions, such as random subsampling, are inadequate as they risk excluding rare cell subsets. To address this, we propose SuperCellCyto, an R package that builds on the SuperCell tool which groups highly similar cells into supercells. SuperCellCyto is available on GitHub ( https://github.com/phipsonlab/SuperCellCyto ) and Zenodo ( https://doi.org/10.5281/zenodo.10521294 ).
Collapse
Affiliation(s)
- Givanna H Putri
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - George Howitt
- Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Felix Marsh-Wakefield
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility and School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Belinda Phipson
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
209
|
Gao Q, Ji Z, Wang L, Owzar K, Li QJ, Chan C, Xie J. SifiNet: A robust and accurate method to identify feature gene sets and annotate cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.24.541352. [PMID: 37577619 PMCID: PMC10418061 DOI: 10.1101/2023.05.24.541352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
SifiNet is a robust and accurate computational pipeline for identifying distinct gene sets, extracting and annotating cellular subpopulations, and elucidating intrinsic relationships among these subpopulations. Uniquely, SifiNet bypasses the cell clustering stage, commonly integrated into other cellular annotation pipelines, thereby circumventing potential inaccuracies in clustering that may compromise subsequent analyses. Consequently, SifiNet has demonstrated superior performance in multiple experimental datasets compared with other state-of-the-art methods. SifiNet can analyze both single-cell RNA and ATAC sequencing data, thereby rendering comprehensive multiomic cellular profiles. It is conveniently available as an open-source R package.
Collapse
|
210
|
Budden KF, Shukla SD, Bowerman KL, Vaughan A, Gellatly SL, Wood DLA, Lachner N, Idrees S, Rehman SF, Faiz A, Patel VK, Donovan C, Alemao CA, Shen S, Amorim N, Majumder R, Vanka KS, Mason J, Haw TJ, Tillet B, Fricker M, Keely S, Hansbro N, Belz GT, Horvat J, Ashhurst T, van Vreden C, McGuire H, Fazekas de St Groth B, King NJC, Crossett B, Cordwell SJ, Bonaguro L, Schultze JL, Hamilton-Williams EE, Mann E, Forster SC, Cooper MA, Segal LN, Chotirmall SH, Collins P, Bowman R, Fong KM, Yang IA, Wark PAB, Dennis PG, Hugenholtz P, Hansbro PM. Faecal microbial transfer and complex carbohydrates mediate protection against COPD. Gut 2024; 73:751-769. [PMID: 38331563 DOI: 10.1136/gutjnl-2023-330521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear. DESIGN Using an in vivo mouse model of cigarette smoke (CS)-induced COPD and faecal microbial transfer (FMT), we characterised the faecal microbiota using metagenomics, proteomics and metabolomics. Findings were correlated with airway and systemic inflammation, lung and gut histopathology and lung function. Complex carbohydrates were assessed in mice using a high resistant starch diet, and in 16 patients with COPD using a randomised, double-blind, placebo-controlled pilot study of inulin supplementation. RESULTS FMT alleviated hallmark features of COPD (inflammation, alveolar destruction, impaired lung function), gastrointestinal pathology and systemic immune changes. Protective effects were additive to smoking cessation, and transfer of CS-associated microbiota after antibiotic-induced microbiome depletion was sufficient to increase lung inflammation while suppressing colonic immunity in the absence of CS exposure. Disease features correlated with the relative abundance of Muribaculaceae, Desulfovibrionaceae and Lachnospiraceae family members. Proteomics and metabolomics identified downregulation of glucose and starch metabolism in CS-associated microbiota, and supplementation of mice or human patients with complex carbohydrates improved disease outcomes. CONCLUSION The gut microbiome contributes to COPD pathogenesis and can be targeted therapeutically.
Collapse
Affiliation(s)
- Kurtis F Budden
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kate L Bowerman
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Annalicia Vaughan
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - David L A Wood
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Nancy Lachner
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Saima Firdous Rehman
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vyoma K Patel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Charlotte A Alemao
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sj Shen
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Nadia Amorim
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Rajib Majumder
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kanth S Vanka
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Jazz Mason
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Bree Tillet
- Frazer Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Simon Keely
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nicole Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Gabrielle T Belz
- Frazer Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Jay Horvat
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Thomas Ashhurst
- Sydney Cytometry, Charles Perkins Centre, Centenary Institute and The University of Sydney, Sydney, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Caryn van Vreden
- Sydney Cytometry, Charles Perkins Centre, Centenary Institute and The University of Sydney, Sydney, NSW, Australia
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre and The University of Sydney, Sydney, NSW, Australia
| | - Helen McGuire
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre and The University of Sydney, Sydney, NSW, Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre and The University of Sydney, Sydney, NSW, Australia
| | - Nicholas J C King
- Sydney Cytometry, Charles Perkins Centre, Centenary Institute and The University of Sydney, Sydney, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre and The University of Sydney, Sydney, NSW, Australia
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW, Australia
| | - Stuart J Cordwell
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, Charles Perkins Centre and The University of Sydney, Sydney, NSW, Australia
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn, Bonn, Germany
| | | | - Elizabeth Mann
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases and Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Melbourne, VIC, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Leopoldo N Segal
- Division of Pulmonary and Critical Care Medicine, Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Translational Respiratory Research Laboratory, Singapore
| | - Peter Collins
- Mater Research Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Department of Dietetics & Food Services, Mater Hospital, Brisbane, QLD, Australia
| | - Rayleen Bowman
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Kwun M Fong
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Ian A Yang
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
211
|
Chang H, Marquez J, Chen BK, Kim DM, Cheng ML, Liu EV, Yang H, Zhang L, Sinha M, Cheung A, Kwek SS, Chow ED, Bridge M, Aggarwal RR, Friedlander TW, Small EJ, Anderson M, Fong L. Immune Modulation with RANKL Blockade through Denosumab Treatment in Patients with Cancer. Cancer Immunol Res 2024; 12:453-461. [PMID: 38276989 PMCID: PMC10993769 DOI: 10.1158/2326-6066.cir-23-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/21/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Denosumab is a fully human mAb that binds receptor activator of NFκB ligand (RANKL). It is routinely administered to patients with cancer to reduce the incidence of new bone metastasis. RANK-RANKL interactions regulate bone turnover by controlling osteoclast recruitment, development, and activity. However, these interactions also can regulate immune cells including dendritic cells and medullary thymic epithelial cells. Inhibition of the latter results in reduced thymic negative selection of T cells and could enhance the generation of tumor-specific T cells. We examined whether administering denosumab could modify modulate circulating immune cells in patients with cancer. Blood was collected from 23 patients with prostate cancer and 3 patients with renal cell carcinoma, all of whom had advanced disease and were receiving denosumab, prior to and during denosumab treatment. Using high-dimensional mass cytometry, we found that denosumab treatment by itself induced modest effects on circulating immune cell frequency and activation. We also found minimal changes in the circulating T-cell repertoire and the frequency of new thymic emigrants with denosumab treatment. However, when we stratified patients by whether they were receiving chemotherapy and/or steroids, patients receiving these concomitant treatments showed significantly greater immune modulation, including an increase in the frequency of natural killer cells early and classical monocytes later. We also saw broad induction of CTLA-4 and TIM3 expression in circulating lymphocytes and some monocyte populations. These findings suggest that denosumab treatment by itself has modest immunomodulatory effects, but when combined with conventional cancer treatments, can lead to the induction of immunologic checkpoints. See related Spotlight by Nasrollahi and Davar, p. 383.
Collapse
Affiliation(s)
- Hewitt Chang
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jaqueline Marquez
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Brandon K. Chen
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Daniel M. Kim
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Michael L. Cheng
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric V. Liu
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Hai Yang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Li Zhang
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Meenal Sinha
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Alexander Cheung
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Serena S. Kwek
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric D. Chow
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Biochemistry and Biophysics, Center for Advanced Technologies, University of California San Francisco, San Francisco, California
| | - Mark Bridge
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Rahul R. Aggarwal
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Terence W. Friedlander
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric J. Small
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Mark Anderson
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
212
|
Schäufele TJ, Kolbinger A, Friedel J, Gurke R, Geisslinger G, Weigert A, Pierre S, Scholich K. Meloxicam treatment disrupts the regional structure of innate inflammation sites by targeting the pro-inflammatory effects of prostanoids. Br J Pharmacol 2024; 181:1051-1067. [PMID: 37823675 DOI: 10.1111/bph.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely prescribed drugs in the world due to their analgesic, antipyretic and anti-inflammatory effects. However, NSAIDs inhibit prostanoid synthesis, interfering with their pro-inflammatory and anti-inflammatory functions and potentially prolonging acute inflammation. EXPERIMENTAL APPROACH We used high-content immunohistochemistry to define the impact of meloxicam treatment on spatially separated pro-inflammatory and anti-inflammatory processes during innate inflammation in mice induced by zymosan. This allowed us to determine the effect of meloxicam treatment on the organization of pro-inflammatory and anti-inflammatory microenvironments, thereby identifying relevant changes in immune cell localization, recruitment and activation. KEY RESULTS Meloxicam treatment reduced zymosan-induced thermal hypersensitivity at early time points but delayed its resolution. High-content immunohistochemistry revealed that the pro-inflammatory area was smaller after treatment, diminishing neutrophil recruitment, M1-like macrophage polarization, and especially phagocytosis by neutrophils and macrophages. The polarization of macrophages towards the M2-like anti-inflammatory phenotype was unaffected, and the number of anti-inflammatory eosinophils actually increased. CONCLUSION AND IMPLICATIONS High-content immunohistochemistry was able to identify relevant meloxicam-mediated effects on inflammatory processes based on alterations in the regional structure of inflammation sites. Meloxicam delayed the clearance of pathogens by inhibiting pro-inflammatory processes, causing prolonged inflammation. Our data suggest that the prescription of NSAIDs as a treatment during an acute pathogen-driven inflammation should be reconsidered in patients with compromised immune systems.
Collapse
Affiliation(s)
- Tim J Schäufele
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Anja Kolbinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Joschua Friedel
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
213
|
Ross JB, Myers LM, Noh JJ, Collins MM, Carmody AB, Messer RJ, Dhuey E, Hasenkrug KJ, Weissman IL. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 2024; 628:162-170. [PMID: 38538791 PMCID: PMC11870232 DOI: 10.1038/s41586-024-07238-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.
Collapse
Affiliation(s)
- Jason B Ross
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lara M Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Joseph J Noh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Madison M Collins
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, USA
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Erica Dhuey
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
214
|
Wang R, Li G, Gao F, Xu F, Li X, Zhang J, Li J, Guan X. Ultrasound-responsive spherical nucleic acid against c-Myc/PD-L1 to enhance anti-tumoral macrophages in triple-negative breast cancer progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:698-710. [PMID: 38151609 DOI: 10.1007/s11427-023-2433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/31/2023] [Indexed: 12/29/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype because of its aggressive behavior and limited therapeutic targets. c-Myc is hyperactivated in the majority of TNBC tissues, however, it has been considered an "undruggable" target due to its disordered structure. Herein, we developed an ultrasound-responsive spherical nucleic acid (SNA) against c-Myc and PD-L1 in TNBC. It is a self-assembled and carrier-free system composed of a hydrophilic small-interfering RNA (siRNA) shell and a hydrophobic core made of a peptide nucleic acid (PNA)-based antisense oligonucleotide (ASO) and a sonosensitizer. We accomplished significant enrichment in the tumor by enhanced permeability and retention (EPR) effect, the controllable release of effective elements by ultrasound activation, and the combination of targeted therapy, immunotherapy and physiotherapy. Our study demonstrated significant anti-tumoral effects in vitro and in vivo. Mass cytometry showed an invigorated tumor microenvironment (TME) characterized by a significant alteration in the composition of tumor-associated macrophages (TAM) and decreased proportion of PD-1-positive (PD-1+) T effector cells after appropriate treatment of the ultrasound-responsive SNA (USNA). Further experiments verified that tumor-conditioned macrophages residing in the TME were transformed into the anti-tumoral population. Our finding offers a novel therapeutic strategy against the "undruggable" c-Myc, develops a new targeted therapy for c-Myc/PD-L1 and provides a treatment option for the TNBC.
Collapse
Affiliation(s)
- Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gaigai Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Feng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xintong Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
215
|
Calderon-Gonzalez R, Dumigan A, Sá-Pessoa J, Kissenpfennig A, Bengoechea JA. In vivo single-cell high-dimensional mass cytometry analysis to track the interactions between Klebsiella pneumoniae and myeloid cells. PLoS Pathog 2024; 20:e1011900. [PMID: 38578798 PMCID: PMC11023633 DOI: 10.1371/journal.ppat.1011900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
In vivo single-cell approaches have transformed our understanding of the immune populations in tissues. Mass cytometry (CyTOF), that combines the resolution of mass spectrometry with the ability to conduct multiplexed measurements of cell molecules at the single cell resolution, has enabled to resolve the diversity of immune cell subsets, and their heterogeneous functionality. Here we assess the feasibility of taking CyTOF one step further to immuno profile cells while tracking their interactions with bacteria, a method we term Bac-CyTOF. We focus on the pathogen Klebsiella pneumoniae interrogating the pneumonia mouse model. Using Bac-CyTOF, we unveil the atlas of immune cells of mice infected with a K. pneumoniae hypervirulent strain. The atlas is characterized by a decrease in the populations of alveolar and monocyte-derived macrophages. Conversely, neutrophils, and inflammatory monocytes are characterized by an increase in the subpopulations expressing markers of less active cells such as the immune checkpoint PD-L1. These are the cells infected. We show that the type VI secretion system (T6SS) contributes to shape the lung immune landscape. The T6SS governs the interaction with monocytes/macrophages by shifting Klebsiella from alveolar macrophages to interstitial macrophages and limiting the infection of inflammatory monocytes. The lack of T6SS results in an increase of cells expressing markers of active cells, and a decrease in the subpopulations expressing PD-L1. By probing Klebsiella, and Acinetobacter baumannii strains with limited ability to survive in vivo, we uncover that a heightened recruitment of neutrophils, and relative high levels of alveolar macrophages and eosinophils and the recruitment of a characteristic subpopulation of neutrophils are features of mice clearing infections. We leverage Bac-CyTOF-generated knowledge platform to investigate the role of the DNA sensor STING in Klebsiella infections. sting-/- infected mice present features consistent with clearing the infection including the reduced levels of PD-L1. STING absence facilitates Klebsiella clearance.
Collapse
Affiliation(s)
- Ricardo Calderon-Gonzalez
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Adrien Kissenpfennig
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - José A. Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
216
|
Liu Z, Mela A, Argenziano MG, Banu MA, Furnari J, Kotidis C, Sperring CP, Humala N, Mahajan A, Bruce JN, Canoll P, Sims PA. Single-cell analysis of 5-aminolevulinic acid intraoperative labeling specificity for glioblastoma. J Neurosurg 2024; 140:968-978. [PMID: 37773782 PMCID: PMC10535619 DOI: 10.3171/2023.7.jns23122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/11/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVE Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor, and resection is a key part of the standard of care. In fluorescence-guided surgery (FGS), fluorophores differentiate tumor tissue from surrounding normal brain. The heme synthesis pathway converts 5-aminolevulinic acid (5-ALA), a fluorogenic substrate used for FGS, to fluorescent protoporphyrin IX (PpIX). The resulting fluorescence is believed to be specific to neoplastic glioma cells, but this specificity has not been examined at a single-cell level. The objective of this study was to determine the specificity with which 5-ALA labels the diversity of cell types in GBM. METHODS The authors performed single-cell optical phenotyping and expression sequencing-version 2 (SCOPE-seq2), a paired single-cell imaging and RNA sequencing method, of individual cells on human GBM surgical specimens with macroscopically visible PpIX fluorescence from patients who received 5-ALA prior to surgery. SCOPE-seq2 allowed the authors to simultaneously image PpIX fluorescence and unambiguously identify neoplastic cells from single-cell RNA sequencing. Experiments were also conducted in cell culture and co-culture models of glioma and in acute slice cultures from a mouse glioma model to investigate cell- and tissue-specific uptake and secretion of 5-ALA and PpIX. RESULTS SCOPE-seq2 analysis of human GBM surgical specimens revealed that 5-ALA treatment resulted in labeling that was not specific to neoplastic glioma cells. The cell culture further demonstrated that nonneoplastic cells could be labeled by 5-ALA directly or by PpIX secreted from surrounding neoplastic cells. Acute slice cultures from mouse glioma models showed that 5-ALA preferentially labeled GBM tumor tissue over nonneoplastic brain tissue with significant labeling in the tumor margins, and that this contrast was not due to blood-brain barrier disruption. CONCLUSIONS Together, these findings support the use of 5-ALA as an indicator of GBM tissue but question the main advantage of 5-ALA for specific intracellular labeling of neoplastic glioma cells in FGS. Further studies are needed to systematically compare the performance of 5-ALA to that of potential alternatives for FGS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Peter A. Sims
- Departments of Systems Biology
- Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center
- Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
217
|
Chen Y, Yang M, Zhang M, Wang H, Zheng Y, Sun R, Li X. Single-Cell Transcriptome Reveals Potential Mechanisms for Coronary Artery Lesions in Kawasaki Disease. Arterioscler Thromb Vasc Biol 2024; 44:866-882. [PMID: 38357816 DOI: 10.1161/atvbaha.123.320188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Coronary artery lesions (CALs) are the most common and major complication of Kawasaki disease (KD) in developed countries. However, the underlying immunologic mechanisms of CAL development in KD remain unclear. METHODS Here, we conducted single-cell transcriptome analyses of 212 210 peripheral blood mononuclear cells collected from a cross-sectional cohort of 16 children, including 4 patients with KD with CALs, 5 patients with KD without CALs, 4 healthy controls, and 3 febrile controls. RESULTS KD altered the proportion of peripheral blood mononuclear cells, including an increasing trend in inflammatory cells (megakaryocytes and monocytes) and a decreasing trend in lymphocytes (eg, CD4+ T, CD8+ T, mucosal-associated invariant T, natural killer, and γδ T cells), highlighting the potential presence of lymphopenia phenomenon in KD. Our data indicated the presence of inflammatory cytokine storm in patients with KD with CALs, caused by systemic upregulation of TNFSF13B (tumor necrosis factor superfamily member 13b), CXCL16 (C-X-C motif chemokine ligand 16), TNFSF10 (tumor necrosis factor superfamily member 10), and IL1RN (interleukin 1 receptor antagonist), mainly produced by monocytes (especially for the Mono_CD14-CD16 cluster) and megakaryocytes. We also found that myeloid cells of patients with KD, particularly in those with CALs, might play a role in vascular injury (eg, increased MMP [matrix metalloproteinase] 9, MMP17, and MMP25) and immune cell recruitment. The immune landscape of patients with KD with CALs was featured by lower exhaustion levels in natural killer cells, a high cytotoxic state in the CD8_Pro cluster, and activation of the complement system in monocytes. Additionally, the activation of B cells was more pronounced in the early stage of KD. CONCLUSIONS Collectively, this study provides a comprehensive understanding of the roles of various immune cells and inflammatory cytokine storms in the development of CALs in KD and offers a valuable resource for identifying novel therapeutic targets for patients with KD with CALs.
Collapse
Affiliation(s)
- Yeshi Chen
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
| | - Minna Yang
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
| | - Mingming Zhang
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Beijing, China (M.Z., H.W., X.L.)
| | - Hongmao Wang
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Beijing, China (M.Z., H.W., X.L.)
| | - Yang Zheng
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Peking Union Medical College Graduate School, Beijing, China (Y.Z.)
| | - Rui Sun
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
| | - Xiaohui Li
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China (Y.C., M.Y., R.S., X.L.)
- Department of Cardiovascular Medicine, Children's Hospital Capital Institute of Pediatrics, Beijing, China (M.Z., H.W., X.L.)
| |
Collapse
|
218
|
Ranek JS, Stallaert W, Milner JJ, Redick M, Wolff SC, Beltran AS, Stanley N, Purvis JE. DELVE: feature selection for preserving biological trajectories in single-cell data. Nat Commun 2024; 15:2765. [PMID: 38553455 PMCID: PMC10980758 DOI: 10.1038/s41467-024-46773-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate, identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here, we present DELVE, an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation, and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations, single-cell RNA sequencing, and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation, we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package: https://github.com/jranek/delve .
Collapse
Affiliation(s)
- Jolene S Ranek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wayne Stallaert
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Justin Milner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Margaret Redick
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel C Wolff
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adriana S Beltran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Natalie Stanley
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
219
|
Chen R, Xu J, Wang B, Ding Y, Abdulla A, Li Y, Jiang L, Ding X. SpiDe-Sr: blind super-resolution network for precise cell segmentation and clustering in spatial proteomics imaging. Nat Commun 2024; 15:2708. [PMID: 38548720 PMCID: PMC10978886 DOI: 10.1038/s41467-024-46989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Spatial proteomics elucidates cellular biochemical changes with unprecedented topological level. Imaging mass cytometry (IMC) is a high-dimensional single-cell resolution platform for targeted spatial proteomics. However, the precision of subsequent clinical analysis is constrained by imaging noise and resolution. Here, we propose SpiDe-Sr, a super-resolution network embedded with a denoising module for IMC spatial resolution enhancement. SpiDe-Sr effectively resists noise and improves resolution by 4 times. We demonstrate SpiDe-Sr respectively with cells, mouse and human tissues, resulting 18.95%/27.27%/21.16% increase in peak signal-to-noise ratio and 15.95%/31.63%/15.52% increase in cell extraction accuracy. We further apply SpiDe-Sr to study the tumor microenvironment of a 20-patient clinical breast cancer cohort with 269,556 single cells, and discover the invasion of Gram-negative bacteria is positively correlated with carcinogenesis markers and negatively correlated with immunological markers. Additionally, SpiDe-Sr is also compatible with fluorescence microscopy imaging, suggesting SpiDe-Sr an alternative tool for microscopy image super-resolution.
Collapse
Grants
- This work was supported by National Key R&D Program of China (2022YFC2601700, 2022YFF0710202) and NSFC Projects (T2122002, 22077079, 81871448), Shanghai Municipal Science and Technology Project(22Z510202478), Shanghai Municipal Education Commission Project(21SG10), Shanghai Jiao Tong University Projects (YG2021ZD19, Agri-X20200101, 2020 SJTU-HUJI), Shanghai Municipal Health Commission Project (2019CXJQ03). Thanks for AEMD SJTU, Shanghai Jiao Tong University Laboratory Animal Center for the supporting.
Collapse
Affiliation(s)
- Rui Chen
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiasu Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Boqian Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aynur Abdulla
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyang Li
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
220
|
Gross CC, Schulte-Mecklenbeck A, Steinberg OV, Wirth T, Lauks S, Bittner S, Schindler P, Baranzini SE, Groppa S, Bellmann-Strobl J, Bünger N, Chien C, Dawin E, Eveslage M, Fleischer V, Gonzalez-Escamilla G, Gisevius B, Haas J, Kerschensteiner M, Kirstein L, Korsukewitz C, Lohmann L, Lünemann JD, Luessi F, Meyer Zu Hörste G, Motte J, Ruck T, Ruprecht K, Schwab N, Steffen F, Meuth SG, Paul F, Wildemann B, Kümpfel T, Gold R, Hahn T, Zipp F, Klotz L, Wiendl H. Multiple sclerosis endophenotypes identified by high-dimensional blood signatures are associated with distinct disease trajectories. Sci Transl Med 2024; 16:eade8560. [PMID: 38536936 DOI: 10.1126/scitranslmed.ade8560] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/29/2024] [Indexed: 09/05/2024]
Abstract
One of the biggest challenges in managing multiple sclerosis is the heterogeneity of clinical manifestations and progression trajectories. It still remains to be elucidated whether this heterogeneity is reflected by discrete immune signatures in the blood as a surrogate of disease pathophysiology. Accordingly, individualized treatment selection based on immunobiological principles is still not feasible. Using two independent multicentric longitudinal cohorts of patients with early multiple sclerosis (n = 309 discovery and n = 232 validation), we were able to identify three distinct peripheral blood immunological endophenotypes by a combination of high-dimensional flow cytometry and serum proteomics, followed by unsupervised clustering. Longitudinal clinical and paraclinical follow-up data collected for the cohorts revealed that these endophenotypes were associated with disease trajectories of inflammation versus early structural damage. Investigating the capacity of immunotherapies to normalize endophenotype-specific immune signatures revealed discrete effect sizes as illustrated by the limited effect of interferon-β on endophenotype 3-related immune signatures. Accordingly, patients who fell into endophenotype 3 subsequently treated with interferon-β exhibited higher disease progression and MRI activity over a 4-year follow-up compared with treatment with other therapies. We therefore propose that ascertaining a patient's blood immune signature before immunomodulatory treatment initiation may facilitate prediction of clinical disease trajectories and enable personalized treatment decisions based on pathobiological principles.
Collapse
Affiliation(s)
- Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Olga V Steinberg
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Timo Wirth
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Sarah Lauks
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Patrick Schindler
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Sergio E Baranzini
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Nora Bünger
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Univeritäsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Eva Dawin
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University of Münster, 48149 Münster, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Barbara Gisevius
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Jürgen Haas
- Department of Neurology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilians University of Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Lucienne Kirstein
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Catharina Korsukewitz
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Lisa Lohmann
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Jeremias Motte
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Brigitte Wildemann
- Department of Neurology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, 48149 Münster, Germany
| |
Collapse
|
221
|
MacDowell CJ, Briones BA, Lenzi MJ, Gustison ML, Buschman TJ. Differences in the expression of cortex-wide neural dynamics are related to behavioral phenotype. Curr Biol 2024; 34:1333-1340.e6. [PMID: 38417445 PMCID: PMC10965364 DOI: 10.1016/j.cub.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/12/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
Behavior differs across individuals, ranging from typical to atypical phenotypes.1 Understanding how differences in behavior relate to differences in neural activity is critical for developing treatments of neuropsychiatric and neurodevelopmental disorders. One hypothesis is that differences in behavior reflect individual differences in the dynamics of how information flows through the brain. In support of this, the correlation of neural activity between brain areas, termed "functional connectivity," varies across individuals2 and is disrupted in autism,3 schizophrenia,4 and depression.5 However, the changes in neural activity that underlie altered behavior and functional connectivity remain unclear. Here, we show that individual differences in the expression of different patterns of cortical neural dynamics explain variability in both functional connectivity and behavior. Using mesoscale imaging, we recorded neural activity across the dorsal cortex of behaviorally "typical" and "atypical" mice. All mice shared the same recurring cortex-wide spatiotemporal motifs of neural activity, and these motifs explained the large majority of variance in cortical activity (>75%). However, individuals differed in how frequently different motifs were expressed. These differences in motif expression explained differences in functional connectivity and behavior across both typical and atypical mice. Our results suggest that differences in behavior and functional connectivity are due to changes in the processes that select which pattern of neural activity is expressed at each moment in time.
Collapse
Affiliation(s)
- Camden J MacDowell
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, New Brunswick, NJ 08901, USA
| | - Brandy A Briones
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Department of Psychology, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Anesthesiology and Pain Medicine at University of Washington, Seattle, WA 98105, USA
| | - Michael J Lenzi
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA
| | - Morgan L Gustison
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, Western University, London, ON N6A 3K7, Canada
| | - Timothy J Buschman
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Department of Psychology, Princeton University, Washington Road, Princeton, NJ 08540, USA.
| |
Collapse
|
222
|
Tu C, Buckle I, Leal Rojas I, Rossi GR, Sester DP, Moore AS, Radford K, Guillerey C, Souza‐Fonseca‐Guimaraes F. Exploring NK cell receptor dynamics in paediatric leukaemias: implications for immunotherapy and prognosis. Clin Transl Immunology 2024; 13:e1501. [PMID: 38525380 PMCID: PMC10960520 DOI: 10.1002/cti2.1501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Objectives Immunotherapies targeting natural killer (NK) cell receptors have shown promise against leukaemia. Unfortunately, cancer immunosuppressive mechanisms that alter NK cell phenotype prevent such approaches from being successful. The study utilises advanced cytometry to examine how cancer immunosuppressive pathways affect NK cell phenotypic changes in clinical samples. Methods In this study, we conducted a high-dimensional examination of the cell surface expression of 16 NK cell receptors in paediatric patients with acute myeloid leukaemia and acute lymphoblastic leukaemia, as well as in samples of non-age matched adult peripheral blood (APB) and umbilical cord blood (UCB). An unsupervised analysis was carried out in order to identify NK cell populations present in paediatric leukaemias. Results We observed that leukaemia NK cells clustered together with UCB NK cells and expressed relatively higher levels of the NKG2A receptor compared to APB NK cells. In addition, CD56dimCD16+CD57- NK cells lacking NKG2A expression were mainly absent in paediatric leukaemia patients. However, CD56br NK cell populations expressing high levels of NKG2A were highly represented in paediatric leukaemia patients. NKG2A expression on leukaemia NK cells was found to be positively correlated with the expression of its ligand, suggesting that the NKG2A-HLA-E interaction may play a role in modifying NK cell responses to leukaemia cells. Conclusion We provide an in-depth analysis of NK cell populations in paediatric leukaemia patients. These results support the development of immunotherapies targeting immunosuppressive receptors, such as NKG2A, to enhance innate immunity against paediatric leukaemia.
Collapse
Affiliation(s)
- Cui Tu
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
- Frazer Institute, The University of QueenslandWoolloongabbaQLDAustralia
| | - Irina Buckle
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Ingrid Leal Rojas
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | | | - David P Sester
- TRI Flow Cytometry SuiteTranslational Research InstituteWoolloongabbaQLDAustralia
- Translational Research InstituteQueensland University of TechnologyBrisbaneQLDAustralia
| | - Andrew S Moore
- Oncology ServiceChildren's Health Queensland Hospital & Health ServiceSouth BrisbaneQLDAustralia
- Child Health Research CentreThe University of QueenslandSouth BrisbaneQLDAustralia
| | - Kristen Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Camille Guillerey
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | | |
Collapse
|
223
|
Krull JE, Wenzl K, Hopper MA, Manske MK, Sarangi V, Maurer MJ, Larson MC, Mondello P, Yang Z, Novak JP, Serres M, Whitaker KR, Villasboas Bisneto JC, Habermann TM, Witzig TE, Link BK, Rimsza LM, King RL, Ansell SM, Cerhan JR, Novak AJ. Follicular lymphoma B cells exhibit heterogeneous transcriptional states with associated somatic alterations and tumor microenvironments. Cell Rep Med 2024; 5:101443. [PMID: 38428430 PMCID: PMC10983045 DOI: 10.1016/j.xcrm.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/14/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma of germinal center origin, which presents with significant biologic and clinical heterogeneity. Using RNA-seq on B cells sorted from 87 FL biopsies, combined with machine-learning approaches, we identify 3 transcriptional states that divide the biological ontology of FL B cells into inflamed, proliferative, and chromatin-modifying states, with relationship to prior GC B cell phenotypes. When integrated with whole-exome sequencing and immune profiling, we find that each state was associated with a combination of mutations in chromatin modifiers, copy-number alterations to TNFAIP3, and T follicular helper cells (Tfh) cell interactions, or primarily by a microenvironment rich in activated T cells. Altogether, these data define FL B cell transcriptional states across a large cohort of patients, contribute to our understanding of FL heterogeneity at the tumor cell level, and provide a foundation for guiding therapeutic intervention.
Collapse
Affiliation(s)
| | - Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - ZhiZhang Yang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Brian K Link
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Rebecca L King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
224
|
Kong XX, Xu JS, Hu YT, Jiao YR, Chen S, Yu CX, Dai SQ, Gao ZB, Hao XR, Li J, Ding KF. Circulation immune cell landscape in canonical pathogenesis of colorectal adenocarcinoma by CyTOF analysis. iScience 2024; 27:109229. [PMID: 38455977 PMCID: PMC10918214 DOI: 10.1016/j.isci.2024.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Current studies on the immune microenvironment of colorectal cancer (CRC) were mostly limited to the tissue level, lacking relevant studies in the peripheral blood, and failed to describe its alterations in the whole process of adenocarcinoma formation, especially of adenoma carcinogenesis. Here, we constructed a large-scale population cohort and used the CyTOF to explore the changes of various immune cell subsets in peripheral blood of CRC. We found monocytes and basophils cells were significantly higher in adenocarcinoma patients. Compared with early-stage CRC, effector CD4+T cells and naive B cells were higher in patients with lymph node metastasis, whereas the basophils were lower. We also performed random forest algorithm and found monocytes play the key role in carcinogenesis. Our study draws a peripheral blood immune cell landscape of the occurrence and development of CRC at the single-cell level and provides a reference for other researchers.
Collapse
Affiliation(s)
- Xiang-Xing Kong
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia-Sheng Xu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ye-Ting Hu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu-Rong Jiao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Chen
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng-Xuan Yu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si-Qi Dai
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zong-Bao Gao
- Zhejiang Puluoting Health Tech CO. LTD, Hangzhou, China
| | - Xu-Ran Hao
- Zhejiang Puluoting Health Tech CO. LTD, Hangzhou, China
| | - Jun Li
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke-Feng Ding
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
225
|
Chikkamenahalli LL, Jessen E, Bernard CE, Ip WE, Breen-Lyles M, Cipriani G, Pullapantula SR, Li Y, AlAsfoor S, Wilson L, Koch KL, Kuo B, Shulman RJ, Chumpitazi BP, McKenzie TJ, Kellogg TA, Tonascia J, Hamilton FA, Sarosiek I, McCallum R, Parkman HP, Pasricha PJ, Abell TL, Farrugia G, Dasari S, Grover M. Single cell atlas of human gastric muscle immune cells and macrophage-driven changes in idiopathic gastroparesis. iScience 2024; 27:108991. [PMID: 38384852 PMCID: PMC10879712 DOI: 10.1016/j.isci.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Gastrointestinal immune cells, particularly muscularis macrophages (MM) interact with the enteric nervous system and influence gastrointestinal motility. Here we determine the human gastric muscle immunome and its changes in patients with idiopathic gastroparesis (IG). Single cell sequencing was performed on 26,000 CD45+ cells obtained from the gastric tissue of 20 subjects. We demonstrate 11 immune cell clusters with T cells being most abundant followed by myeloid cells. The proportions of cells belonging to the 11 clusters were similar between IG and controls. However, 9/11 clusters showed 578-11,429 differentially expressed genes. In IG, MM had decreased expression of tissue-protective and microglial genes and increased the expression of monocyte trafficking and stromal activating genes. Furthermore, in IG, IL12 mediated JAK-STAT signaling involved in the activation of tissue-resident macrophages and Eph-ephrin signaling involved in monocyte chemotaxis were upregulated. Patients with IG had a greater abundance of monocyte-like cells. These data further link immune dysregulation to the pathophysiology of gastroparesis.
Collapse
Affiliation(s)
| | - Erik Jessen
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Cheryl E. Bernard
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - W.K. Eddie Ip
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Margaret Breen-Lyles
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Gianluca Cipriani
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Suraj R. Pullapantula
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Ying Li
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Shefaa AlAsfoor
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Laura Wilson
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Braden Kuo
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | - James Tonascia
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Frank A. Hamilton
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Irene Sarosiek
- Texas Tech University Health Sciences Center, El Paso, TX, USA
| | | | | | | | | | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - the NIDDK Gastroparesis Clinical Research Consortium (GpCRC)
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Wake Forest University, Winston-Salem, NC, USA
- Massachusetts General Hospital, Boston, MA, USA
- Baylor College of Medicine, Houston, TX, USA
- Duke University, Durham, NC, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Texas Tech University Health Sciences Center, El Paso, TX, USA
- Temple University, Philadelphia, PA, USA
- Mayo Clinic, Scottsdale, AZ, USA
- University of Louisville, Louisville, KY, USA
| |
Collapse
|
226
|
Pan YG, Bartolo L, Xu R, Patel B, Zarnitsyna V, Su L. Differentiation marker-negative CD4 + T cells persist after yellow fever virus vaccination and contribute to durable memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584523. [PMID: 38559113 PMCID: PMC10979963 DOI: 10.1101/2024.03.11.584523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Factors that contribute to durable immunological memory remain incompletely understood. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found naïve phenotype virus-specific CD4+ T cells that persisted months to years after immunization. These Marker negative T cells (TMN) lacked CD95, CXCR3, CD11a, and CD49d surface protein expression, distinguishing them from previously discovered stem-cell memory T cells. Functionally, they resembled genuine naïve T cells upon in vitro stimulation. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified a shared repertoire with memory and effector T cells. T cells expressing TMN-associated TCRs were rare before vaccination, suggesting their expansion following vaccination. Longitudinal tracking of YFV-specific responses over the subsequent years revealed superior stability of the TMN subset and their association with the longevity of the overall population. The identification of these long-lived, antigen-experienced T cells may inform the design of durable T cell-based vaccines and engineered T cell therapies.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruozhang Xu
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Bijal Patel
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Veronika Zarnitsyna
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Laura Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
227
|
Cords L, Engler S, Haberecker M, Rüschoff JH, Moch H, de Souza N, Bodenmiller B. Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer. Cancer Cell 2024; 42:396-412.e5. [PMID: 38242124 PMCID: PMC10929690 DOI: 10.1016/j.ccell.2023.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/02/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Despite advances in treatment, lung cancer survival rates remain low. A better understanding of the cellular heterogeneity and interplay of cancer-associated fibroblasts (CAFs) within the tumor microenvironment will support the development of personalized therapies. We report a spatially resolved single-cell imaging mass cytometry (IMC) analysis of CAFs in a non-small cell lung cancer cohort of 1,070 patients. We identify four prognostic patient groups based on 11 CAF phenotypes with distinct spatial distributions and show that CAFs are independent prognostic factors for patient survival. The presence of tumor-like CAFs is strongly correlated with poor prognosis. In contrast, inflammatory CAFs and interferon-response CAFs are associated with inflamed tumor microenvironments and higher patient survival. High density of matrix CAFs is correlated with low immune infiltration and is negatively correlated with patient survival. In summary, our data identify phenotypic and spatial features of CAFs that are associated with patient outcome in NSCLC.
Collapse
Affiliation(s)
- Lena Cords
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, 8049 Zurich, Switzerland; Life Science Zurich Graduate School, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Stefanie Engler
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, 8049 Zurich, Switzerland
| | - Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jan Hendrik Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Natalie de Souza
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, 8049 Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, 8049 Zurich, Switzerland.
| |
Collapse
|
228
|
Radtke AJ, Postovalova E, Varlamova A, Bagaev A, Sorokina M, Kudryashova O, Meerson M, Polyakova M, Galkin I, Svekolkin V, Isaev S, Wiebe D, Sharun A, Sarachakov A, Perelman G, Lozinsky Y, Yaniv Z, Lowekamp BC, Speranza E, Yao L, Pittaluga S, Shaffer AL, Jonigk D, Phelan JD, Davies-Hill T, Huang DW, Ovcharov P, Nomie K, Nuzhdina E, Kotlov N, Ataullakhanov R, Fowler N, Kelly M, Muppidi J, Davis JL, Hernandez JM, Wilson WH, Jaffe ES, Staudt LM, Roschewski M, Germain RN. Multi-omic profiling of follicular lymphoma reveals changes in tissue architecture and enhanced stromal remodeling in high-risk patients. Cancer Cell 2024; 42:444-463.e10. [PMID: 38428410 PMCID: PMC10966827 DOI: 10.1016/j.ccell.2024.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Follicular lymphoma (FL) is a generally incurable malignancy that evolves from developmentally blocked germinal center (GC) B cells. To promote survival and immune escape, tumor B cells undergo significant genetic changes and extensively remodel the lymphoid microenvironment. Dynamic interactions between tumor B cells and the tumor microenvironment (TME) are hypothesized to contribute to the broad spectrum of clinical behaviors observed among FL patients. Despite the urgent need, existing clinical tools do not reliably predict disease behavior. Using a multi-modal strategy, we examined cell-intrinsic and -extrinsic factors governing progression and therapeutic outcomes in FL patients enrolled onto a prospective clinical trial. By leveraging the strengths of each platform, we identify several tumor-specific features and microenvironmental patterns enriched in individuals who experience early relapse, the most high-risk FL patients. These features include stromal desmoplasia and changes to the follicular growth pattern present 20 months before first progression and first relapse.
Collapse
Affiliation(s)
- Andrea J Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ziv Yaniv
- Bioinformatics and Computational Bioscience Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bradley C Lowekamp
- Bioinformatics and Computational Bioscience Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Emily Speranza
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA; Florida Research and Innovation Center, Cleveland Clinic Lerner Research Institute, Port Saint Lucie, FL 34987, USA
| | - Li Yao
- Li Yao Visuals, Rockville, MD 20855, USA
| | | | - Arthur L Shaffer
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA; Tumor Targeted Delivery, Heme Malignancy Target Discovery Group, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Danny Jonigk
- Institute of Pathology, Aachen Medical University, RWTH Aachen, 52074 Aachen, Germany; German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), 30625 Hannover, Germany
| | - James D Phelan
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Da Wei Huang
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | - Michael Kelly
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Jeremy L Davis
- Surgical Oncology Program, Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jonathan M Hernandez
- Surgical Oncology Program, Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Elaine S Jaffe
- Laboratory of Pathology, NCI, NIH, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Ronald N Germain
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
229
|
Madruga MP, Grun LK, Santos LSMD, Friedrich FO, Antunes DB, Rocha MEF, Silva PL, Dorneles GP, Teixeira PC, Oliveira TF, Romão PRT, Santos L, Moreira JCF, Michaelsen VS, Cypel M, Antunes MOB, Jones MH, Barbé-Tuana FM, Bauer ME. Excess of body weight is associated with accelerated T-cell senescence in hospitalized COVID-19 patients. Immun Ageing 2024; 21:17. [PMID: 38454515 PMCID: PMC10921685 DOI: 10.1186/s12979-024-00423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Several risk factors have been involved in the poor clinical progression of coronavirus disease-19 (COVID-19), including ageing, and obesity. SARS-CoV-2 may compromise lung function through cell damage and paracrine inflammation; and obesity has been associated with premature immunosenescence, microbial translocation, and dysfunctional innate immune responses leading to poor immune response against a range of viruses and bacterial infections. Here, we have comprehensively characterized the immunosenescence, microbial translocation, and immune dysregulation established in hospitalized COVID-19 patients with different degrees of body weight. RESULTS Hospitalised COVID-19 patients with overweight and obesity had similarly higher plasma LPS and sCD14 levels than controls (all p < 0.01). Patients with obesity had higher leptin levels than controls. Obesity and overweight patients had similarly higher expansions of classical monocytes and immature natural killer (NK) cells (CD56+CD16-) than controls. In contrast, reduced proportions of intermediate monocytes, mature NK cells (CD56+CD16+), and NKT were found in both groups of patients than controls. As expected, COVID-19 patients had a robust expansion of plasmablasts, contrasting to lower proportions of major T-cell subsets (CD4 + and CD8+) than controls. Concerning T-cell activation, overweight and obese patients had lower proportions of CD4+CD38+ cells than controls. Contrasting changes were reported in CD25+CD127low/neg regulatory T cells, with increased and decreased proportions found in CD4+ and CD8+ T cells, respectively. There were similar proportions of T cells expressing checkpoint inhibitors across all groups. We also investigated distinct stages of T-cell differentiation (early, intermediate, and late-differentiated - TEMRA). The intermediate-differentiated CD4 + T cells and TEMRA cells (CD4+ and CD8+) were expanded in patients compared to controls. Senescent T cells can also express NK receptors (NKG2A/D), and patients had a robust expansion of CD8+CD57+NKG2A+ cells than controls. Unbiased immune profiling further confirmed the expansions of senescent T cells in COVID-19. CONCLUSIONS These findings suggest that dysregulated immune cells, microbial translocation, and T-cell senescence may partially explain the increased vulnerability to COVID-19 in subjects with excess of body weight.
Collapse
Affiliation(s)
- Mailton Prestes Madruga
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Lucas Kich Grun
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Letícya Simone Melo Dos Santos
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | | | - Douglas Bitencourt Antunes
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Marcella Elesbão Fogaça Rocha
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Pedro Luis Silva
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Gilson P Dorneles
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Paula Coelho Teixeira
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Tiago Franco Oliveira
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Centro de Estudos em Estresse Oxidativo - Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (IB-UFRGS), Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo - Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (IB-UFRGS), Porto Alegre, RS, Brazil
| | - Vinicius Schenk Michaelsen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Marcelo Cypel
- Toronto General Hospital Research Institute, Department of Surgery, University Health Network, University of Toronto, Toronto, Canada
| | - Marcos Otávio Brum Antunes
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Marcus Herbert Jones
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Florencia María Barbé-Tuana
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Moisés Evandro Bauer
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil.
| |
Collapse
|
230
|
Yeo YY, Qiu H, Bai Y, Zhu B, Chang Y, Yeung J, Michel HA, Wright K, Shaban M, Sadigh S, Nkosi D, Shanmugam V, Rock P, Tung Yiu SP, Cramer P, Paczkowska J, Stephan P, Liao G, Huang AY, Wang H, Chen H, Frauenfeld L, Mitra B, Gewurz BE, Schürch CM, Zhao B, Nolan GP, Zhang B, Shalek AK, Angelo M, Mahmood F, Ma Q, Burack WR, Shipp MA, Rodig SJ, Jiang S. Epstein-Barr Virus Orchestrates Spatial Reorganization and Immunomodulation within the Classic Hodgkin Lymphoma Tumor Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583586. [PMID: 38496566 PMCID: PMC10942289 DOI: 10.1101/2024.03.05.583586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Classic Hodgkin Lymphoma (cHL) is a tumor composed of rare malignant Hodgkin and Reed-Sternberg (HRS) cells nested within a T-cell rich inflammatory immune infiltrate. cHL is associated with Epstein-Barr Virus (EBV) in 25% of cases. The specific contributions of EBV to the pathogenesis of cHL remain largely unknown, in part due to technical barriers in dissecting the tumor microenvironment (TME) in high detail. Herein, we applied multiplexed ion beam imaging (MIBI) spatial pro-teomics on 6 EBV-positive and 14 EBV-negative cHL samples. We identify key TME features that distinguish between EBV-positive and EBV-negative cHL, including the relative predominance of memory CD8 T cells and increased T-cell dysfunction as a function of spatial proximity to HRS cells. Building upon a larger multi-institutional cohort of 22 EBV-positive and 24 EBV-negative cHL samples, we orthogonally validated our findings through a spatial multi-omics approach, coupling whole transcriptome capture with antibody-defined cell types for tu-mor and T-cell populations within the cHL TME. We delineate contrasting transcriptomic immunological signatures between EBV-positive and EBV-negative cases that differently impact HRS cell proliferation, tumor-immune interactions, and mecha-nisms of T-cell dysregulation and dysfunction. Our multi-modal framework enabled a comprehensive dissection of EBV-linked reorganization and immune evasion within the cHL TME, and highlighted the need to elucidate the cellular and molecular fac-tors of virus-associated tumors, with potential for targeted therapeutic strategies.
Collapse
|
231
|
Monkman J, Moradi A, Yunis J, Ivison G, Mayer A, Ladwa R, O'Byrne K, Kulasinghe A. Spatial insights into immunotherapy response in non-small cell lung cancer (NSCLC) by multiplexed tissue imaging. J Transl Med 2024; 22:239. [PMID: 38439077 PMCID: PMC10910756 DOI: 10.1186/s12967-024-05035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/24/2024] [Indexed: 03/06/2024] Open
Abstract
The spatial localisation of immune cells within tumours are key to understand the intercellular communications that can dictate clinical outcomes. Here, we demonstrate an analysis pipeline for highly multiplexed CODEX data to phenotype and profile spatial features and interactions in NSCLC patients that subsequently received PD1 axis immunotherapy. We found that regulatory T cells (Tregs) are enriched in non-responding patients and this was consistent with their localization within stromal and peripheral tumour-margins. Proximity-based interactions between Tregs and both monocytes (p = 0.009) and CD8+ T cells (p = 0.009) were more frequently found in non-responding patients, while macrophages were more frequently located in proximity to HLADR+ tumour cells (p = 0.01) within responding patients. Cellular neighbourhoods analysis indicated that both macrophages (p = 0.003) and effector CD4+ T cells (p = 0.01) in mixed tumour neighbourhoods, as well as CD8+ T cells (p = 0.03) in HLADR+ tumour neighbourhoods were associated with favorable clinical response. Evaluation of the inferred regulatory functions between immune cells relative to the tumour suggested that macrophages exhibit an immunosuppressive phenotype against both CD4+ and CD8+ T cells, and that this association scores more highly in ICI refractory patients. These spatial patterns are associated with overall survival in addition to ICI response and may thus indicate features for the functional understanding of the tumour microenvironment.
Collapse
Affiliation(s)
- James Monkman
- Faculty of Medicine, Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Afshin Moradi
- Faculty of Medicine, Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Joseph Yunis
- Faculty of Medicine, Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia
- Faculty of Medicine, Ian Frazer Centre for Children's Immunotherapy Research, Children's Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Rahul Ladwa
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Ken O'Byrne
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Arutha Kulasinghe
- Faculty of Medicine, Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
232
|
Ren J, Lyu X, Guo J, Shi X, Zhou Y, Li Q. CDSKNN XMBD: a novel clustering framework for large-scale single-cell data based on a stable graph structure. J Transl Med 2024; 22:233. [PMID: 38433205 PMCID: PMC10910752 DOI: 10.1186/s12967-024-05009-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Accurate and efficient cell grouping is essential for analyzing single-cell transcriptome sequencing (scRNA-seq) data. However, the existing clustering techniques often struggle to provide timely and accurate cell type groupings when dealing with datasets with large-scale or imbalanced cell types. Therefore, there is a need for improved methods that can handle the increasing size of scRNA-seq datasets while maintaining high accuracy and efficiency. METHODS We propose CDSKNNXMBD (Community Detection based on a Stable K-Nearest Neighbor Graph Structure), a novel single-cell clustering framework integrating partition clustering algorithm and community detection algorithm, which achieves accurate and fast cell type grouping by finding a stable graph structure. RESULTS We evaluated the effectiveness of our approach by analyzing 15 tissues from the human fetal atlas. Compared to existing methods, CDSKNN effectively counteracts the high imbalance in single-cell data, enabling effective clustering. Furthermore, we conducted comparisons across multiple single-cell datasets from different studies and sequencing techniques. CDSKNN is of high applicability and robustness, and capable of balancing the complexities of across diverse types of data. Most importantly, CDSKNN exhibits higher operational efficiency on datasets at the million-cell scale, requiring an average of only 6.33 min for clustering 1.46 million single cells, saving 33.3% to 99% of running time compared to those of existing methods. CONCLUSIONS The CDSKNN is a flexible, resilient, and promising clustering tool that is particularly suitable for clustering imbalanced data and demonstrates high efficiency on large-scale scRNA-seq datasets.
Collapse
Affiliation(s)
- Jun Ren
- School of Informatics, Xiamen University, Xiamen, 361105, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361102, China
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xuejing Lyu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jintao Guo
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xiaodong Shi
- School of Informatics, Xiamen University, Xiamen, 361105, China
| | - Ying Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361102, China.
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Qiyuan Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361102, China.
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
233
|
Charalampous C, Dasari S, McPhail E, Theis JD, Vrana JA, Dispenzieri A, Leung N, Muchtar E, Gertz M, Ramirez-Alvarado M, Kourelis T. A proteomic atlas of kidney amyloidosis provides insights into disease pathogenesis. Kidney Int 2024; 105:484-495. [PMID: 38096952 PMCID: PMC10922603 DOI: 10.1016/j.kint.2023.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/04/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
The mechanisms of tissue damage in kidney amyloidosis are not well described. To investigate this further, we used laser microdissection-mass spectrometry to identify proteins deposited in amyloid plaques (expanded proteome) and proteins overexpressed in plaques compared to controls (plaque-specific proteome). This study encompassed 2650 cases of amyloidosis due to light chain (AL), heavy chain (AH), leukocyte chemotactic factor-2-type (ALECT2), secondary (AA), fibrinogen (AFib), apo AIV (AApoAIV), apo CII (AApoCII) and 14 normal/disease controls. We found that AFib, AA, and AApoCII have the most distinct proteomes predominantly driven by increased complement pathway proteins. Clustering of cases based on the expanded proteome identified two ALECT2 and seven AL subtypes. The main differences within the AL and ALECT2 subtypes were driven by complement proteins and, for AL only, 14-3-3 family proteins (a family of structurally similar phospho-binding proteins that regulate major cellular functions) widely implicated in kidney tissue dysfunction. The kidney AL plaque-specific proteome consisted of 24 proteins, including those implicated in kidney damage (α1 antitrypsin and heat shock protein β1). Hierarchical clustering of AL cases based on their plaque-specific proteome identified four clusters, of which one was associated with improved kidney survival and was characterized by higher overall proteomic content and 14-3-3 proteins but lower levels of light chains and most signature proteins. Thus, our results suggest that there is significant heterogeneity across and within amyloid types, driven predominantly by complement proteins, and that the plaque protein burden does not correlate with amyloid toxicity.
Collapse
Affiliation(s)
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Ellen McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason D Theis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie A Vrana
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Morie Gertz
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
234
|
Daniel SK, Sullivan KM, Dickerson LK, van den Bijgaart RJE, Utria AF, Labadie KP, Kenerson HL, Jiang X, Smythe KS, Campbell JS, Pierce RH, Kim TS, Riehle KJ, Yeung RS, Carter JA, Barry KC, Pillarisetty VG. Reversing immunosuppression in the tumor microenvironment of fibrolamellar carcinoma via PD-1 and IL-10 blockade. Sci Rep 2024; 14:5109. [PMID: 38429349 PMCID: PMC10907637 DOI: 10.1038/s41598-024-55593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare liver tumor driven by the DNAJ-PKAc fusion protein that affects healthy young patients. Little is known about the immune response to FLC, limiting rational design of immunotherapy. Multiplex immunohistochemistry and gene expression profiling were performed to characterize the FLC tumor immune microenvironment and adjacent non-tumor liver (NTL). Flow cytometry and T cell receptor (TCR) sequencing were performed to determine the phenotype of tumor-infiltrating immune cells and the extent of T cell clonal expansion. Fresh human FLC tumor slice cultures (TSCs) were treated with antibodies blocking programmed cell death protein-1 (PD-1) and interleukin-10 (IL-10), with results measured by cleaved caspase-3 immunohistochemistry. Immune cells were concentrated in fibrous stromal bands, rather than in the carcinoma cell compartment. In FLC, T cells demonstrated decreased activation and regulatory T cells in FLC had more frequent expression of PD-1 and CTLA-4 than in NTL. Furthermore, T cells had relatively low levels of clonal expansion despite high TCR conservation across individuals. Combination PD-1 and IL-10 blockade signficantly increased cell death in human FLC TSCs. Immunosuppresion in the FLC tumor microenvironment is characterized by T cell exclusion and exhaustion, which may be reversible with combination immunotherapy.
Collapse
Affiliation(s)
- S K Daniel
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K M Sullivan
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - L K Dickerson
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - R J E van den Bijgaart
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - A F Utria
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K P Labadie
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - H L Kenerson
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - X Jiang
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K S Smythe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - J S Campbell
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - R H Pierce
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - T S Kim
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K J Riehle
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - R S Yeung
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - J A Carter
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K C Barry
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - V G Pillarisetty
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA.
| |
Collapse
|
235
|
Orozco RC, Marquardt K, Pratumchai I, Shaikh AF, Mowen K, Domissy A, Teijaro JR, Sherman LA. Autoimmunity-associated allele of tyrosine phosphatase gene PTPN22 enhances anti-viral immunity. PLoS Pathog 2024; 20:e1012095. [PMID: 38512979 PMCID: PMC10987006 DOI: 10.1371/journal.ppat.1012095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
The 1858C>T allele of the tyrosine phosphatase PTPN22 is present in 5-10% of the North American population and is strongly associated with numerous autoimmune diseases. Although research has been done to define how this allele potentiates autoimmunity, the influence PTPN22 and its pro-autoimmune allele has in anti-viral immunity remains poorly defined. Here, we use single cell RNA-sequencing and functional studies to interrogate the impact of this pro-autoimmune allele on anti-viral immunity during Lymphocytic Choriomeningitis Virus clone 13 (LCMV-cl13) infection. Mice homozygous for this allele (PEP-619WW) clear the LCMV-cl13 virus whereas wildtype (PEP-WT) mice cannot. This is associated with enhanced anti-viral CD4 T cell responses and a more immunostimulatory CD8α- cDC phenotype. Adoptive transfer studies demonstrated that PEP-619WW enhanced anti-viral CD4 T cell function through virus-specific CD4 T cell intrinsic and extrinsic mechanisms. Taken together, our data show that the pro-autoimmune allele of Ptpn22 drives a beneficial anti-viral immune response thereby preventing what is normally a chronic virus infection.
Collapse
Affiliation(s)
- Robin C. Orozco
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kristi Marquardt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Anam Fatima Shaikh
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kerri Mowen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Alain Domissy
- Genomics Core, Scripps Research, La Jolla, California, United States of America
| | - John R. Teijaro
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Linda A. Sherman
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| |
Collapse
|
236
|
Kvedaraite E, Lourda M, Mouratidou N, Düking T, Padhi A, Moll K, Czarnewski P, Sinha I, Xagoraris I, Kokkinou E, Damdimopoulos A, Weigel W, Hartwig O, Santos TE, Soini T, Van Acker A, Rahkonen N, Flodström Tullberg M, Ringqvist E, Buggert M, Jorns C, Lindforss U, Nordenvall C, Stamper CT, Unnersjö-Jess D, Akber M, Nadisauskaite R, Jansson J, Vandamme N, Sorini C, Grundeken ME, Rolandsdotter H, Rassidakis G, Villablanca EJ, Ideström M, Eulitz S, Arnell H, Mjösberg J, Henter JI, Svensson M. Intestinal stroma guides monocyte differentiation to macrophages through GM-CSF. Nat Commun 2024; 15:1752. [PMID: 38409190 PMCID: PMC10897309 DOI: 10.1038/s41467-024-46076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Stromal cells support epithelial cell and immune cell homeostasis and play an important role in inflammatory bowel disease (IBD) pathogenesis. Here, we quantify the stromal response to inflammation in pediatric IBD and reveal subset-specific inflammatory responses across colon segments and intestinal layers. Using data from a murine dynamic gut injury model and human ex vivo transcriptomic, protein and spatial analyses, we report that PDGFRA+CD142-/low fibroblasts and monocytes/macrophages co-localize in the intestine. In primary human fibroblast-monocyte co-cultures, intestinal PDGFRA+CD142-/low fibroblasts foster monocyte transition to CCR2+CD206+ macrophages through granulocyte-macrophage colony-stimulating factor (GM-CSF). Monocyte-derived CCR2+CD206+ cells from co-cultures have a phenotype similar to intestinal CCR2+CD206+ macrophages from newly diagnosed pediatric IBD patients, with high levels of PD-L1 and low levels of GM-CSF receptor. The study describes subset-specific changes in stromal responses to inflammation and suggests that the intestinal stroma guides intestinal macrophage differentiation.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.
| | - Magda Lourda
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Mouratidou
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tim Düking
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Avinash Padhi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Dermatology and Venereology Section, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kirsten Moll
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Biochemistry and Biophysics and National Bioinformatics Infrastructure Sweden, Stockholm University, Solna, Sweden
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ioanna Xagoraris
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Hartwig
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Telma E Santos
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tea Soini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aline Van Acker
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Tech Watch, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Nelly Rahkonen
- Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Malin Flodström Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Ringqvist
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carl Jorns
- Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrik Lindforss
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Pelvic Cancer, GI Oncology and Colorectal Surgery Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Nordenvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Pelvic Cancer, GI Oncology and Colorectal Surgery Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher T Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Unnersjö-Jess
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Mira Akber
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ruta Nadisauskaite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Jansson
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Niels Vandamme
- VIB Single Cell Core, VIB, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, 9052, Ghent, Belgium
| | - Chiara Sorini
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Marijke Elise Grundeken
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Rolandsdotter
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Department of Gastroenterology, Södersjukhuset, Stockholm, Sweden
| | - George Rassidakis
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Maja Ideström
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Eulitz
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Henrik Arnell
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Theme of Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
237
|
Yang Z, Chen J, Xiao Y, Yang C, Zhao CX, Chen D, Weitz DA. Digital Barcodes for High-Throughput Screening. CHEM & BIO ENGINEERING 2024; 1:2-12. [PMID: 39973970 PMCID: PMC11835184 DOI: 10.1021/cbe.3c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2025]
Abstract
High-throughput screening is an indispensable technology in drug discovery, cancer therapy, and disease diagnosis, and it could greatly reduce time cost, reagent consumption, and labor expense. Here, four high-throughput screening methods with high sensitivity and accessibility are discussed in detail. Fluorescence, DNA, heavy metal, and nonmetal isotope barcodes, which generally label antibodies, proteins, and saccharides to identify cells, are detected by flow cytometry, second-generation DNA sequencing, mass cytometry, and second-ion mass spectrometry, respectively. Encoding binary information in barcodes, labeling individual cells by barcodes, performing the characterization of cells together, and identifying the result belonging to individual cells via barcodes are the main steps for high-throughput screening. Applications of the four digital barcodes in high-throughput screening for both in vitro and in vivo tests are described in detail, and their advantages and disadvantages are also summarized. High-throughput screening has provided a powerful platform widely accessible for multidisciplinary studies and has greatly sped up the progress of drug discovery, disease diagnosis, and cancer therapy.
Collapse
Affiliation(s)
- Ze Yang
- College
of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
- Zhejiang
Key Laboratory of Smart Biomaterials, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, People’s Republic of China
| | - Jingyi Chen
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yao Xiao
- College
of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
| | - Chenjing Yang
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou, Zhejiang 325001, People’s Republic of China
| | - Chun-Xia Zhao
- School
of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dong Chen
- College
of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
- Zhejiang
Key Laboratory of Smart Biomaterials, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, People’s Republic of China
- Department
of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang
Province, People’s Republic
of China
| | - David A. Weitz
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
238
|
Lakatos E, Gunasri V, Zapata L, Househam J, Heide T, Trahearn N, Swinyard O, Cisneros L, Lynn C, Mossner M, Kimberley C, Spiteri I, Cresswell GD, Llibre-Palomar G, Mitchison M, Maley CC, Jansen M, Rodriguez-Justo M, Bridgewater J, Baker AM, Sottoriva A, Graham TA. Epigenome and early selection determine the tumour-immune evolutionary trajectory of colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579956. [PMID: 38405882 PMCID: PMC10888923 DOI: 10.1101/2024.02.12.579956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Immune system control is a major hurdle that cancer evolution must circumvent. The relative timing and evolutionary dynamics of subclones that have escaped immune control remain incompletely characterized, and how immune-mediated selection shapes the epigenome has received little attention. Here, we infer the genome- and epigenome-driven evolutionary dynamics of tumour-immune coevolution within primary colorectal cancers (CRCs). We utilise our existing CRC multi-region multi-omic dataset that we supplement with high-resolution spatially-resolved neoantigen sequencing data and highly multiplexed imaging of the tumour microenvironment (TME). Analysis of somatic chromatin accessibility alterations (SCAAs) reveals frequent somatic loss of accessibility at antigen presenting genes, and that SCAAs contribute to silencing of neoantigens. We observe that strong immune escape and exclusion occur at the outset of CRC formation, and that within tumours, including at the microscopic level of individual tumour glands, additional immune escape alterations have negligible consequences for the immunophenotype of cancer cells. Further minor immuno-editing occurs during local invasion and is associated with TME reorganisation, but that evolutionary bottleneck is relatively weak. Collectively, we show that immune evasion in CRC follows a "Big Bang" evolutionary pattern, whereby genetic, epigenetic and TME-driven immune evasion acquired by the time of transformation defines subsequent cancer-immune evolution.
Collapse
Affiliation(s)
- Eszter Lakatos
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Vinaya Gunasri
- UCL Cancer Institute, University College London, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Jacob Househam
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Timon Heide
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Nicholas Trahearn
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Ottilie Swinyard
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Luis Cisneros
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences Arizona State University, Tempe, USA
| | - Claire Lynn
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Maximilian Mossner
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Chris Kimberley
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - George D. Cresswell
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Gerard Llibre-Palomar
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Miriam Mitchison
- Histopathology Department, University College London Hospitals NHS Foundation Trust, London, UK
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences Arizona State University, Tempe, USA
| | - Marnix Jansen
- UCL Cancer Institute, University College London, London, UK
| | | | | | - Ann-Marie Baker
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Trevor A. Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
239
|
Shojaie L, Bogdanov JM, Alavifard H, Mohamed MG, Baktash A, Ali M, Mahov S, Murray S, Kanel GC, Liu ZX, Ito F, In GK, Merchant A, Stohl W, Dara L. Innate and adaptive immune cell interaction drives inflammasome activation and hepatocyte apoptosis in murine liver injury from immune checkpoint inhibitors. Cell Death Dis 2024; 15:140. [PMID: 38355725 PMCID: PMC10866933 DOI: 10.1038/s41419-024-06535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Immune checkpoints (CTLA4 & PD-1) are inhibitory pathways that block aberrant immune activity and maintain self-tolerance. Tumors co-opt these checkpoints to avoid immune destruction. Immune checkpoint inhibitors (ICIs) activate immune cells and restore their tumoricidal potential, making them highly efficacious cancer therapies. However, immunotolerant organs such as the liver depend on these tolerogenic mechanisms, and their disruption with ICI use can trigger the unintended side effect of hepatotoxicity termed immune-mediated liver injury from ICIs (ILICI). Learning how to uncouple ILICI from ICI anti-tumor activity is of paramount clinical importance. We developed a murine model to recapitulate human ILICI using CTLA4+/- mice treated with either combined anti-CTLA4 + anti-PDL1 or IgG1 + IgG2. We tested two forms of antisense oligonucleotides to knockdown caspase-3 in a total liver (parenchymal and non-parenchymal cells) or in a hepatocyte-specific manner. We also employed imaging mass cytometry (IMC), a powerful multiplex modality for immunophenotyping and cell interaction analysis in our model. ICI-treated mice had significant evidence of liver injury. We detected cleaved caspase-3 (cC3), indicating apoptosis was occurring, as well as Nod-like receptor protein 3 (NLRP3) inflammasome activation, but no necroptosis. Total liver knockdown of caspase-3 worsened liver injury, and induced further inflammasome activation, and Gasdermin-D-mediated pyroptosis. Hepatocyte-specific knockdown of caspase-3 reduced liver injury and NLRP3 inflammasome activation. IMC-generated single-cell data for 77,692 cells was used to identify 22 unique phenotypic clusters. Spatial analysis revealed that cC3+ hepatocytes had significantly closer interactions with macrophages, Kupffer cells, and NLRP3hi myeloid cells than other cell types. We also observed zones of three-way interaction between cC3+ hepatocytes, CD8 + T-cells, and macrophages. Our work is the first to identify hepatocyte apoptosis and NLRP3 inflammasome activation as drivers of ILICI. Furthermore, we report that the interplay between adaptive and innate immune cells is critical to hepatocyte apoptosis and ILICI.
Collapse
Affiliation(s)
- Layla Shojaie
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Jacob M Bogdanov
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Helia Alavifard
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
- Research Center for Liver Disease, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Mahmoud G Mohamed
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
- Research Center for Liver Disease, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Aria Baktash
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
- Research Center for Liver Disease, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Myra Ali
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Simeon Mahov
- Division of Hematology and Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard Pavilion A8700, Los Angeles, CA, 90048, USA
| | - Sue Murray
- Ionis Pharmaceuticals, Inc, 2855 Gazelle Ct, Carlsbad, CA, 92010, USA
| | - Gary C Kanel
- Research Center for Liver Disease, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 211, Los Angeles, CA, 90033, USA
| | - Zhang-Xu Liu
- Translational Research Laboratory (TRLab), Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences of the University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Fumito Ito
- Department of Surgery, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Gino K In
- Division of Oncology, Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Akil Merchant
- Division of Hematology and Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard Pavilion A8700, Los Angeles, CA, 90048, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 711, Los Angeles, CA, 90033, USA
| | - Lily Dara
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA.
- Research Center for Liver Disease, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA.
| |
Collapse
|
240
|
Maurer K, Park CY, Mani S, Borji M, Penter L, Jin Y, Zhang JY, Shin C, Brenner JR, Southard J, Krishna S, Lu W, Lyu H, Abbondanza D, Mangum C, Olsen LR, Neuberg DS, Bachireddy P, Farhi SL, Li S, Livak KJ, Ritz J, Soiffer RJ, Wu CJ, Azizi E. Coordinated Immune Cell Networks in the Bone Marrow Microenvironment Define the Graft versus Leukemia Response with Adoptive Cellular Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579677. [PMID: 38405900 PMCID: PMC10888840 DOI: 10.1101/2024.02.09.579677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Understanding how intra-tumoral immune populations coordinate to generate anti-tumor responses following therapy can guide precise treatment prioritization. We performed systematic dissection of an established adoptive cellular therapy, donor lymphocyte infusion (DLI), by analyzing 348,905 single-cell transcriptomes from 74 longitudinal bone-marrow samples of 25 patients with relapsed myeloid leukemia; a subset was evaluated by protein-based spatial analysis. In acute myelogenous leukemia (AML) responders, diverse immune cell types within the bone-marrow microenvironment (BME) were predicted to interact with a clonally expanded population of ZNF683 + GZMB + CD8+ cytotoxic T lymphocytes (CTLs) which demonstrated in vitro specificity for autologous leukemia. This population, originating predominantly from the DLI product, expanded concurrently with NK and B cells. AML nonresponder BME revealed a paucity of crosstalk and elevated TIGIT expression in CD8+ CTLs. Our study highlights recipient BME differences as a key determinant of effective anti-leukemia response and opens new opportunities to modulate cell-based leukemia-directed therapy.
Collapse
|
241
|
Gardner EE, Earlie EM, Li K, Thomas J, Hubisz MJ, Stein BD, Zhang C, Cantley LC, Laughney AM, Varmus H. Lineage-specific intolerance to oncogenic drivers restricts histological transformation. Science 2024; 383:eadj1415. [PMID: 38330136 PMCID: PMC11155264 DOI: 10.1126/science.adj1415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
Lung adenocarcinoma (LUAD) and small cell lung cancer (SCLC) are thought to originate from different epithelial cell types in the lung. Intriguingly, LUAD can histologically transform into SCLC after treatment with targeted therapies. In this study, we designed models to follow the conversion of LUAD to SCLC and found that the barrier to histological transformation converges on tolerance to Myc, which we implicate as a lineage-specific driver of the pulmonary neuroendocrine cell. Histological transformations are frequently accompanied by activation of the Akt pathway. Manipulating this pathway permitted tolerance to Myc as an oncogenic driver, producing rare, stem-like cells that transcriptionally resemble the pulmonary basal lineage. These findings suggest that histological transformation may require the plasticity inherent to the basal stem cell, enabling tolerance to previously incompatible oncogenic driver programs.
Collapse
Affiliation(s)
| | - Ethan M. Earlie
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Kate Li
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Jerin Thomas
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Melissa J. Hubisz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY
| | - Benjamin D. Stein
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Medicine, Weill Cornell Medicine
| | - Chen Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Medicine, Weill Cornell Medicine
| | - Ashley M. Laughney
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Harold Varmus
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
242
|
Wang Z, Zhan Q, Yang S, Mu S, Chen J, Garai S, Orzechowski P, Wagenaar J, Shen L. QOT: Efficient Computation of Sample Level Distance Matrix from Single-Cell Omics Data through Quantized Optimal Transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.578032. [PMID: 38370767 PMCID: PMC10871252 DOI: 10.1101/2024.02.06.578032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Single-cell technologies have emerged as a transformative technology enabling high-dimensional characterization of cell populations at an unprecedented scale. The data's innate complexity and voluminous nature pose significant computational and analytical challenges, especially in comparative studies delineating cellular architectures across various biological conditions (i.e., generation of sample level distance matrices). Optimal Transport (OT) is a mathematical tool that captures the intrinsic structure of data geometrically and has been applied to many bioinformatics tasks. In this paper, we propose QOT (Quantized Optimal Transport), a new method enables efficient computation of sample level distance matrix from large-scale single-cell omics data through a quantization step. We apply our algorithm to real-world single-cell genomics and pathomics datasets, aiming to extrapolate cell-level insights to inform sample level categorizations. Our empirical study shows that QOT outperforms OT-based algorithms in terms of accuracy and robustness when obtaining a distance matrix at the sample level from high throughput single-cell measures. Moreover, the sample level distance matrix could be used in downstream analysis (i.e. uncover the trajectory of disease progression), highlighting its usage in biomedical informatics and data science.
Collapse
Affiliation(s)
- Zexuan Wang
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania
| | - Qipeng Zhan
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania
| | - Shizhuo Mu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania
| | - Jiong Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania
| | - Sumita Garai
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania
| | - Patryk Orzechowski
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania
- AGH University of Science and Technology, Poland
| | - Joost Wagenaar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania
| |
Collapse
|
243
|
Hu Y, Rong J, Xu Y, Xie R, Peng J, Gao L, Tan K. Unsupervised and supervised discovery of tissue cellular neighborhoods from cell phenotypes. Nat Methods 2024; 21:267-278. [PMID: 38191930 PMCID: PMC10864185 DOI: 10.1038/s41592-023-02124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024]
Abstract
It is poorly understood how different cells in a tissue organize themselves to support tissue functions. We describe the CytoCommunity algorithm for the identification of tissue cellular neighborhoods (TCNs) based on cell phenotypes and their spatial distributions. CytoCommunity learns a mapping directly from the cell phenotype space to the TCN space using a graph neural network model without intermediate clustering of cell embeddings. By leveraging graph pooling, CytoCommunity enables de novo identification of condition-specific and predictive TCNs under the supervision of sample labels. Using several types of spatial omics data, we demonstrate that CytoCommunity can identify TCNs of variable sizes with substantial improvement over existing methods. By analyzing risk-stratified colorectal and breast cancer data, CytoCommunity revealed new granulocyte-enriched and cancer-associated fibroblast-enriched TCNs specific to high-risk tumors and altered interactions between neoplastic and immune or stromal cells within and between TCNs. CytoCommunity can perform unsupervised and supervised analyses of spatial omics maps and enable the discovery of condition-specific cell-cell communication patterns across spatial scales.
Collapse
Affiliation(s)
- Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi'an, China.
| | - Jiazhen Rong
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yafei Xu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Runzhi Xie
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Jacqueline Peng
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
244
|
Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, Srivastava A, Molla G, Madad S, Fernandez-Granda C, Satija R. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol 2024; 42:293-304. [PMID: 37231261 PMCID: PMC10928517 DOI: 10.1038/s41587-023-01767-y] [Citation(s) in RCA: 734] [Impact Index Per Article: 734.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/28/2023] [Indexed: 05/27/2023]
Abstract
Mapping single-cell sequencing profiles to comprehensive reference datasets provides a powerful alternative to unsupervised analysis. However, most reference datasets are constructed from single-cell RNA-sequencing data and cannot be used to annotate datasets that do not measure gene expression. Here we introduce 'bridge integration', a method to integrate single-cell datasets across modalities using a multiomic dataset as a molecular bridge. Each cell in the multiomic dataset constitutes an element in a 'dictionary', which is used to reconstruct unimodal datasets and transform them into a shared space. Our procedure accurately integrates transcriptomic data with independent single-cell measurements of chromatin accessibility, histone modifications, DNA methylation and protein levels. Moreover, we demonstrate how dictionary learning can be combined with sketching techniques to improve computational scalability and harmonize 8.6 million human immune cell profiles from sequencing and mass cytometry experiments. Our approach, implemented in version 5 of our Seurat toolkit ( http://www.satijalab.org/seurat ), broadens the utility of single-cell reference datasets and facilitates comparisons across diverse molecular modalities.
Collapse
Affiliation(s)
- Yuhan Hao
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Tim Stuart
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Madeline H Kowalski
- New York Genome Center, New York, NY, USA
- Institute for System Genetics, NYU Langone Medical Center, New York, NY, USA
| | - Saket Choudhary
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Paul Hoffman
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Austin Hartman
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Avi Srivastava
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | | | - Shaista Madad
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Carlos Fernandez-Granda
- Center for Data Science, New York University, New York, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Rahul Satija
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| |
Collapse
|
245
|
Velasco‐Hernandez T, Trincado JL, Vinyoles M, Closa A, Martínez‐Moreno A, Gutiérrez‐Agüera F, Molina O, Rodríguez‐Cortez VC, Ximeno‐Parpal P, Fernández‐Fuentes N, Petazzi P, Beneyto‐Calabuig S, Velten L, Romecin P, Casquero R, Abollo‐Jiménez F, de la Guardia RD, Lorden P, Bataller A, Lapillonne H, Stam RW, Vives S, Torrebadell M, Fuster JL, Bueno C, Sarry J, Eyras E, Heyn H, Menéndez P. Integrative single-cell expression and functional studies unravels a sensitization to cytarabine-based chemotherapy through HIF pathway inhibition in AML leukemia stem cells. Hemasphere 2024; 8:e45. [PMID: 38435427 PMCID: PMC10895904 DOI: 10.1002/hem3.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 03/05/2024] Open
Abstract
Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy. Here, we identify HIFhigh and HIFlow specific AML subgroups (inv(16)/t(8;21) and MLLr, respectively) and provide a comprehensive single-cell expression atlas of 119,000 AML cells and AML-LSCs in paired diagnostic-relapse samples from these molecular subgroups. The HIF/hypoxia pathway signature is attenuated in AML-LSCs compared with more differentiated AML cells but is more expressed than in healthy hematopoietic cells. Importantly, chemical inhibition of HIF cooperates with standard-of-care chemotherapy to impair AML growth and to substantially eliminate AML-LSCs in vitro and in vivo. These findings support the HIF pathway in the stem cell-driven drug resistance of AML and unravel avenues for combinatorial targeted and chemotherapy-based approaches to specifically eliminate AML-LSCs.
Collapse
Affiliation(s)
- Talia Velasco‐Hernandez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Juan L. Trincado
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Meritxell Vinyoles
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Adria Closa
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network at the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | | | - Oscar Molina
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Virginia C. Rodríguez‐Cortez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | | | | | - Paolo Petazzi
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | - Sergi Beneyto‐Calabuig
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Lars Velten
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Paola Romecin
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
| | | | | | - Rafael D. de la Guardia
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- GENYO, Center for Genomics and Oncological ResearchPfizer/Universidad de Granada/Junta de AndalucíaGranadaSpain
| | - Patricia Lorden
- CNAG‐CRG, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Alex Bataller
- Department of HematologyHospital Clínic de BarcelonaBarcelonaSpain
| | - Hélène Lapillonne
- Centre de Recherce Saint‐AntoineArmand‐Trousseau Childrens HospitalParisFrance
| | - Ronald W. Stam
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Susana Vives
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Hematology DepartmentICO‐Hospital Germans Trias i PujolBarcelonaSpain
| | - Montserrat Torrebadell
- Hematology LaboratoryHospital Sant Joan de DéuBarcelonaSpain
- Leukemia and Other Pediatric Hemopathies. Developmental Tumors Biology Group. Institut de Recerca Hospital Sant Joan de DéuBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIIIMadridSpain
| | - Jose L. Fuster
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
- Sección de Oncohematología PediátricaHospital Clínico Universitario Virgen de la Arrixaca and Instituto Murciano de Investigación Biosanitaria (IMIB)MurciaSpain
| | - Clara Bueno
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
- CIBER‐ONCBarcelonaSpain
| | - Jean‐Emmanuel Sarry
- Centre de Recherches en Cancérologie de ToulouseUniversité de ToulouseInserm U1037, CNRS U5077ToulouseFrance
- LabEx ToucanToulouseFrance
- Équipe Labellisée Ligue Nationale Contre le CancerToulouseFrance
| | - Eduardo Eyras
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network at the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Holger Heyn
- CNAG‐CRG, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)‐Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029)MadridSpain
- CIBER‐ONCBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Department of Biomedicine, School of MedicineUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
246
|
Nieto Y, Banerjee P, Kaur I, Kim KH, Fang D, Thall PF, Griffin L, Barnett M, Basar R, Hosing C, Ramdial J, Srour S, Daher M, Marin D, Jiang X, Chen K, Champlin R, Shpall EJ, Rezvani K. Ex Vivo Expanded Cord Blood Natural Killer Cells Combined with Rituximab and High-Dose Chemotherapy and Autologous Stem Cell Transplantation for B Cell Non-Hodgkin Lymphoma. Transplant Cell Ther 2024; 30:203.e1-203.e9. [PMID: 38042257 DOI: 10.1016/j.jtct.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Relapse is the major cause of failure of high-dose chemotherapy (HDC) with autologous stem cell transplantation (ASCT) for B cell non-Hodgkin lymphomas (B-NHL). Improvement strategies include use in combination with effective immunotherapies. We hypothesized that the combination of rituximab/HDC/ASCT with expanded cord blood (CB)-derived natural killer (NK) cells is safe and active in B-NHL. Patients with B-NHL age 15 to 70 years and appropriate ASCT candidates were eligible for the study. The CB units were selected without considering HLA match with the recipient. The CB NK cells were expanded from day -19 to day -5. Treatment included rituximab on days -13 and -7, BEAM (carmustine/etoposide/cytarabine/melphalan) on days -13 to -7, lenalidomide on days -7 to -2, CB NK infusion (108/kg) on day -5, and ASCT (day 0). The primary endpoint was 30-day treatment-related mortality (TRM); secondary endpoints included relapse-free survival (RFS), overall survival (OS), and persistence of CB NK cells. We enrolled 20 patients. CB NK cells were expanded a median of 1552-fold with >98% purity and >96% viability. We saw no adverse events attributable to the CB NK cells and 0% 30-day TRM. At median follow-up of 47 months, the RFS and OS rates were 53% and 74%, respectively. CB NK cells were detectable in blood for 2 weeks, independent of HLA-mismatch status. CD16 expression in donor NK cells was correlated favorably with outcome, and homozygosity for the high-affinity CD16 variant (158 V/V) in CB, but not recipient, NK cells was correlated with better outcomes. Our data indicate that the combination of expanded and highly purified CB-derived NK cells with HDC/ASCT for B-NHL is safe. CD16 expression in donor NK cells, particularly if homozygous for the high-affinity CD16 variant, was correlated with better outcomes.
Collapse
Affiliation(s)
- Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Pinaki Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Indresh Kaur
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kun Hee Kim
- Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dexing Fang
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter F Thall
- Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lori Griffin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa Barnett
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeremy Ramdial
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samer Srour
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xianli Jiang
- Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken Chen
- Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
247
|
Küçükköse E, Baars MJD, Amini M, Schraa SJ, Floor E, Bol GM, Borel Rinkes IHM, Roodhart JML, Koopman M, Laoukili J, Kranenburg O, Vercoulen Y. Stromal localization of inactive CD8 + T cells in metastatic mismatch repair deficient colorectal cancer. Br J Cancer 2024; 130:213-223. [PMID: 38042958 PMCID: PMC10803761 DOI: 10.1038/s41416-023-02500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND The determinants of metastasis in mismatch repair deficiency with high levels of microsatellite instability (MSI-H) in colorectal cancer (CRC) are poorly understood. Here, we hypothesized that distinct immune and stromal microenvironments in primary tumors may discriminate between non-metastatic MSI-H CRC and metastatic MSI-H CRC. METHODS We profiled 46,727 single cells using high-plex imaging mass cytometry and analyzed both differential cell type abundance, and spatial distribution of fibroblasts and immune cells in primary CRC tumors with or without metastatic capacity. We validated our findings in a second independent cohort using immunohistochemistry. RESULTS High-plex imaging mass cytometry and hierarchical clustering based on microenvironmental markers separated primary MSI-H CRC tumors with and without metastatic capacity. Primary tumors with metastatic capacity displayed a high stromal content and low influx of CD8+ T cells, which expressed significantly lower levels of markers reflecting proliferation (Ki67) and antigen-experience (CD45RO) compared to CD8+ T cells in non-metastatic tumors. CD8+ T cells showed intra-epithelial localization in non-metastatic tumors, but stromal localization in metastatic tumors, which was validated in a second cohort. CONCLUSION We conclude that localization of phenotypically distinct CD8+ T cells within stroma may predict metastasis formation in MSI-H CRC.
Collapse
Affiliation(s)
- Emre Küçükköse
- Division of Imaging and Cancer, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthijs J D Baars
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mojtaba Amini
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- UCyTOF.nl, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Suzanna J Schraa
- Division of Imaging and Cancer, Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Evelien Floor
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Guus M Bol
- Division of Imaging and Cancer, Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inne H M Borel Rinkes
- Division of Imaging and Cancer, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine M L Roodhart
- Division of Imaging and Cancer, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Imaging and Cancer, Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Miriam Koopman
- Division of Imaging and Cancer, Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jamila Laoukili
- Division of Imaging and Cancer, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Onno Kranenburg
- Division of Imaging and Cancer, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, The Netherlands.
| | - Yvonne Vercoulen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- UCyTOF.nl, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
248
|
Yang J, Wang W, Zhang X. scSemiGCN: boosting cell-type annotation from noise-resistant graph neural networks with extremely limited supervision. Bioinformatics 2024; 40:btae091. [PMID: 38366925 PMCID: PMC10904148 DOI: 10.1093/bioinformatics/btae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/14/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
MOTIVATION Cell-type annotation is fundamental in revealing cell heterogeneity for single-cell data analysis. Although a host of works have been developed, the low signal-to-noise-ratio single-cell RNA-sequencing data that suffers from batch effects and dropout still poses obstacles in discovering grouped patterns for cell types by unsupervised learning and its alternative-semi-supervised learning that utilizes a few labeled cells as guidance for cell-type annotation. RESULTS We propose a robust cell-type annotation method scSemiGCN based on graph convolutional networks. Built upon a denoised network structure that characterizes reliable cell-to-cell connections, scSemiGCN generates pseudo labels for unannotated cells. Then supervised contrastive learning follows to refine the noisy single-cell data. Finally, message passing with the refined features over the denoised network structure is conducted for semi-supervised cell-type annotation. Comparison over several datasets with six methods under extremely limited supervision validates the effectiveness and efficiency of scSemiGCN for cell-type annotation. AVAILABILITY AND IMPLEMENTATION Implementation of scSemiGCN is available at https://github.com/Jane9898/scSemiGCN.
Collapse
Affiliation(s)
- Jue Yang
- School of Mathematics, Sun Yat-sen University, Guangzhou 510000, China
| | - Weiwen Wang
- Department of Mathematics, School of Information Science and Technology, Jinan University, Guangzhou 510000, China
| | - Xiwen Zhang
- Department of Bioinformatics, College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510000, China
| |
Collapse
|
249
|
Erreni M, Fumagalli MR, Zanini D, Candiello E, Tiberi G, Parente R, D’Anna R, Magrini E, Marchesi F, Cappello P, Doni A. Multiplexed Imaging Mass Cytometry Analysis in Preclinical Models of Pancreatic Cancer. Int J Mol Sci 2024; 25:1389. [PMID: 38338669 PMCID: PMC10855072 DOI: 10.3390/ijms25031389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. PDAC is characterized by a complex tumor microenvironment (TME), that plays a pivotal role in disease progression and resistance to therapy. Investigating the spatial distribution and interaction of TME cells with the tumor is the basis for understanding the mechanisms underlying disease progression and represents a current challenge in PDAC research. Imaging mass cytometry (IMC) is the major multiplex imaging technology for the spatial analysis of tumor heterogeneity. However, there is a dearth of reports of multiplexed IMC panels for different preclinical mouse models, including pancreatic cancer. We addressed this gap by utilizing two preclinical models of PDAC: the genetically engineered, bearing KRAS-TP53 mutations in pancreatic cells, and the orthotopic, and developed a 28-marker panel for single-cell IMC analysis to assess the abundance, distribution and phenotypes of cells involved in PDAC progression and their reciprocal functional interactions. Herein, we provide an unprecedented definition of the distribution of TME cells in PDAC and compare the diversity between transplanted and genetic disease models. The results obtained represent an important and customizable tool for unraveling the complexities of PDAC and deciphering the mechanisms behind therapy resistance.
Collapse
Affiliation(s)
- Marco Erreni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Maria Rita Fumagalli
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Damiano Zanini
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Ermes Candiello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44b, 10126 Torino, Italy
| | - Giorgia Tiberi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44b, 10126 Torino, Italy
| | - Raffaella Parente
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Raffaella D’Anna
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Elena Magrini
- IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44b, 10126 Torino, Italy
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital -, via Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|
250
|
Lu Q, Wang J, Tao Y, Zhong J, Zhang Z, Feng C, Wang X, Li T, He R, Wang Q, Xie Y. Small Cajal Body-Specific RNA12 Promotes Carcinogenesis through Modulating Extracellular Matrix Signaling in Bladder Cancer. Cancers (Basel) 2024; 16:483. [PMID: 38339238 PMCID: PMC10854576 DOI: 10.3390/cancers16030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Small Cajal body-specific RNAs (scaRNAs) are a specific subset of small nucleolar RNAs (snoRNAs) that have recently emerged as pivotal contributors in diverse physiological and pathological processes. However, their defined roles in carcinogenesis remain largely elusive. This study aims to explore the potential function and mechanism of SCARNA12 in bladder cancer (BLCA) and to provide a theoretical basis for further investigations into the biological functionalities of scaRNAs. Materials and Methods: TCGA, GEO and GTEx data sets were used to analyze the expression of SCARNA12 and its clinicopathological significance in BLCA. Quantitative real-time PCR (qPCR) and in situ hybridization were applied to validate the expression of SCARNA12 in both BLCA cell lines and tissues. RNA sequencing (RNA-seq) combined with bioinformatics analyses were conducted to reveal the changes in gene expression patterns and functional pathways in BLCA patients with different expressions of SCARNA12 and T24 cell lines upon SCARNA12 knockdown. Single-cell mass cytometry (CyTOF) was then used to evaluate the tumor-related cell cluster affected by SCARNA12. Moreover, SCARNA12 was stably knocked down in T24 and UMUC3 cell lines by lentivirus-mediated CRISPR/Cas9 approach. The biological effects of SCARNA12 on the proliferation, clonogenic, migration, invasion, cell apoptosis, cell cycle, and tumor growth were assessed by in vitro MTT, colony formation, wound healing, transwell, flow cytometry assays, and in vivo nude mice xenograft models, respectively. Finally, a chromatin isolation by RNA purification (ChIRP) experiment was further conducted to delineate the potential mechanisms of SCARNA12 in BLCA. Results: The expression of SCARNA12 was significantly up-regulated in both BLCA tissues and cell lines. RNA-seq data elucidated that SCARAN12 may play a potential role in cell adhesion and extracellular matrix (ECM) related signaling pathways. CyTOF results further showed that an ECM-related cell cluster with vimentin+, CD13+, CD44+, and CD47+ was enriched in BLCA patients with high SCARNA12 expression. Additionally, SCARNA12 knockdown significantly inhibited the proliferation, colony formation, migration, and invasion abilities in T24 and UMUC3 cell lines. SCARNA12 knockdown prompted cell arrest in the G0/G1 and G2/M phase and promoted apoptosis in T24 and UMUC3 cell lines. Furthermore, SCARNA12 knockdown could suppress the in vivo tumor growth in nude mice. A ChIRP experiment further suggested that SCARNA12 may combine transcription factors H2AFZ to modulate the transcription program and then affect BLCA progression. Conclusions: Our study is the first to propose aberrant alteration of SCARNA12 and elucidate its potential oncogenic roles in BLCA via the modulation of ECM signaling. The interaction of SCARNA12 with the transcriptional factor H2AFZ emerges as a key contributor to the carcinogenesis and progression of BLCA. These findings suggest SCARNA12 may serve as a diagnostic biomarker and potential therapeutic target for the treatment of BLCA.
Collapse
Affiliation(s)
- Qinchen Lu
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (Q.L.); (J.W.)
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Jiandong Wang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (Q.L.); (J.W.)
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
| | - Jialing Zhong
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Chao Feng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
| | - Tianyu Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China;
| | - Rongquan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China;
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
| | - Yuanliang Xie
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (Q.L.); (J.W.)
| |
Collapse
|