201
|
TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat Commun 2018; 9:2560. [PMID: 29967491 PMCID: PMC6028646 DOI: 10.1038/s41467-018-04994-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Cellular senescence is a well-orchestrated programmed process involved in age-related pathologies, tumor suppression and embryonic development. TGF-β/Smad is one of the predominant pathways that regulate damage-induced and developmentally programmed senescence. Here we show that canonical TGF-β signaling promotes senescence via miR-29-induced loss of H4K20me3. Mechanistically, oxidative stress triggers TGF-β signaling. Activated TGF-β signaling gives rise to acute accumulation of miR-29a and miR-29c, both of which directly suppress their novel target, Suv4-20h, thus reducing H4K20me3 abundance in a Smad-dependent manner, which compromises DNA damage repair and genome maintenance. Loss of H4K20me3 mediated by the senescent TGF-β/miR-29 pathway contributes to cardiac aging in vivo. Disruption of TGF-β signaling restores H4K20me3 and improves cardiac function in aged mice. Our study highlights the sequential mechanisms underlying the regulation of senescence, from senescence-inducing triggers to activation of responsive signaling followed by specific epigenetic alterations, shedding light on potential therapeutic interventions in cardiac aging.
Collapse
|
202
|
Oliveira AN, Hood DA. Effect of Tim23 knockdown in vivo on mitochondrial protein import and retrograde signaling to the UPR mt in muscle. Am J Physiol Cell Physiol 2018; 315:C516-C526. [PMID: 29949403 DOI: 10.1152/ajpcell.00275.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mitochondrial unfolded protein response (UPRmt) is a protein quality control mechanism that strives to achieve proteostasis in the face of misfolded proteins. Because of the reliance of mitochondria on both the nuclear and mitochondrial genomes, a perturbation of the coordination of these genomes results in a mitonuclear imbalance in which holoenzymes are unable to assume mature stoichiometry and thereby activates the UPRmt. Thus, we sought to perturb this genomic coordination by using a systemic antisense oligonucleotide (in vivo morpholino) targeted to translocase of the inner membrane channel subunit 23 (Tim23), the major channel of the inner membrane. This resulted in a 40% reduction in Tim23 protein content, a 32% decrease in matrix-destined protein import, and a trend to elevate reactive oxygen species (ROS) emission under maximal respiration conditions. This import defect activated the C/EBP homologous protein (CHOP) branch of the UPRmt, as evident from increases in caseinolytic mitochondrial matrix peptidase proteolytic subunit (ClpP) and chaperonin 10 (cpn10) but not the activating transcription factor 5 (ATF5) arm. Thus, in the face of proteotoxic stress, CHOP and ATF5 could be activated independently to regain proteostasis. Our second aim was to investigate the role of proteolytically derived peptides in mediating retrograde signaling. Peptides released from the mitochondrion following basal proteolysis were isolated and incubated with import reactions. Dose- and time-dependent effect of peptides on protein import was observed. Our data suggest that mitochondrial proteolytic byproducts exert an inhibitory effect on protein import, possibly to reduce excessive protein import as a potential negative feedback mechanism. The inhibition of import into the organelle also serves a retrograde function, possibly via ROS emission, to modify nuclear gene expression and ultimately improve folding capacity.
Collapse
Affiliation(s)
- Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| |
Collapse
|
203
|
Seok S, Kim YC, Byun S, Choi S, Xiao Z, Iwamori N, Zhang Y, Wang C, Ma J, Ge K, Kemper B, Kemper JK. Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid β-oxidation. J Clin Invest 2018; 128:3144-3159. [PMID: 29911994 DOI: 10.1172/jci97736] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Jumonji D3 (JMJD3) histone demethylase epigenetically regulates development and differentiation, immunity, and tumorigenesis by demethylating a gene repression histone mark, H3K27-me3, but a role for JMJD3 in metabolic regulation has not been described. SIRT1 deacetylase maintains energy balance during fasting by directly activating both hepatic gluconeogenic and mitochondrial fatty acid β-oxidation genes, but the underlying epigenetic and gene-specific mechanisms remain unclear. In this study, JMJD3 was identified unexpectedly as a gene-specific transcriptional partner of SIRT1 and epigenetically activated mitochondrial β-oxidation, but not gluconeogenic, genes during fasting. Mechanistically, JMJD3, together with SIRT1 and the nuclear receptor PPARα, formed a positive autoregulatory loop upon fasting-activated PKA signaling and epigenetically activated β-oxidation-promoting genes, including Fgf21, Cpt1a, and Mcad. Liver-specific downregulation of JMJD3 resulted in intrinsic defects in β-oxidation, which contributed to hepatosteatosis as well as glucose and insulin intolerance. Remarkably, the lipid-lowering effects by JMJD3 or SIRT1 in diet-induced obese mice were mutually interdependent. JMJD3 histone demethylase may serve as an epigenetic drug target for obesity, hepatosteatosis, and type 2 diabetes that allows selective lowering of lipid levels without increasing glucose levels.
Collapse
Affiliation(s)
- Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sangwon Byun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sunge Choi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhen Xiao
- Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Naoki Iwamori
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Chaochen Wang
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
204
|
Mohrin M, Widjaja A, Liu Y, Luo H, Chen D. The mitochondrial unfolded protein response is activated upon hematopoietic stem cell exit from quiescence. Aging Cell 2018; 17:e12756. [PMID: 29575576 PMCID: PMC5946069 DOI: 10.1111/acel.12756] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 12/31/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt ), a cellular protective program that ensures proteostasis in the mitochondria, has recently emerged as a regulatory mechanism for adult stem cell maintenance that is conserved across tissues. Despite the emerging genetic evidence implicating the UPRmt in stem cell maintenance, the underlying molecular mechanism is unknown. While it has been speculated that the UPRmt is activated upon stem cell transition from quiescence to proliferation, the direct evidence is lacking. In this study, we devised three experimental approaches that enable us to monitor quiescent and proliferating hematopoietic stem cells (HSCs) and provided the direct evidence that the UPRmt is activated upon HSC transition from quiescence to proliferation, and more broadly, mitochondrial integrity is actively monitored at the restriction point to ensure metabolic fitness before stem cells are committed to proliferation.
Collapse
Affiliation(s)
- Mary Mohrin
- Program in Metabolic Biology, Nutritional Sciences & Toxicology University of California Berkeley CA USA
| | - Andrew Widjaja
- Program in Metabolic Biology, Nutritional Sciences & Toxicology University of California Berkeley CA USA
| | - Yufei Liu
- Program in Metabolic Biology, Nutritional Sciences & Toxicology University of California Berkeley CA USA
| | - Hanzhi Luo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology University of California Berkeley CA USA
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology University of California Berkeley CA USA
| |
Collapse
|
205
|
Moehle EA, Shen K, Dillin A. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J Biol Chem 2018; 294:5396-5407. [PMID: 29622680 DOI: 10.1074/jbc.tm117.000893] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
As a central hub of cellular metabolism and signaling, the mitochondrion is a crucial organelle whose dysfunction can cause disease and whose activity is intimately connected to aging. We review how the mitochondrial network maintains proteomic integrity, how mitochondrial proteotoxic stress is communicated and resolved in the context of the entire cell, and how mitochondrial systems function in the context of organismal health and aging. A deeper understanding of how mitochondrial protein quality control mechanisms are coordinated across these distinct biological levels should help explain why these mechanisms fail with age and, ultimately, how routes to intervention might be attained.
Collapse
Affiliation(s)
- Erica A Moehle
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Koning Shen
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Andrew Dillin
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
206
|
Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: Focus on mitochondria. Front Neuroendocrinol 2018; 49:72-85. [PMID: 29339091 PMCID: PMC5964020 DOI: 10.1016/j.yfrne.2018.01.001] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
Energy is required to sustain life and enable stress adaptation. At the cellular level, energy is largely derived from mitochondria - unique multifunctional organelles with their own genome. Four main elements connect mitochondria to stress: (1) Energy is required at the molecular, (epi)genetic, cellular, organellar, and systemic levels to sustain components of stress responses; (2) Glucocorticoids and other steroid hormones are produced and metabolized by mitochondria; (3) Reciprocally, mitochondria respond to neuroendocrine and metabolic stress mediators; and (4) Experimentally manipulating mitochondrial functions alters physiological and behavioral responses to psychological stress. Thus, mitochondria are endocrine organelles that provide both the energy and signals that enable and direct stress adaptation. Neural circuits regulating social behavior - as well as psychopathological processes - are also influenced by mitochondrial energetics. An integrative view of stress as an energy-driven process opens new opportunities to study mechanisms of adaptation and regulation across the lifespan.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University, Medical Center, New York, NY 10032, USA; Department of Neurology, The H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA; Columbia Aging Center, Columbia University, New York, NY 10032, USA.
| | - Bruce S McEwen
- Laboratory for Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Elissa S Epel
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
207
|
Hernando-Rodríguez B, Erinjeri AP, Rodríguez-Palero MJ, Millar V, González-Hernández S, Olmedo M, Schulze B, Baumeister R, Muñoz MJ, Askjaer P, Artal-Sanz M. Combined flow cytometry and high-throughput image analysis for the study of essential genes in Caenorhabditis elegans. BMC Biol 2018; 16:36. [PMID: 29598825 PMCID: PMC5875015 DOI: 10.1186/s12915-018-0496-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/06/2018] [Indexed: 12/28/2022] Open
Abstract
Background Advances in automated image-based microscopy platforms coupled with high-throughput liquid workflows have facilitated the design of large-scale screens utilising multicellular model organisms such as Caenorhabditis elegans to identify genetic interactions, therapeutic drugs or disease modifiers. However, the analysis of essential genes has lagged behind because lethal or sterile mutations pose a bottleneck for high-throughput approaches, and a systematic way to analyse genetic interactions of essential genes in multicellular organisms has been lacking. Results In C. elegans, non-conditional lethal mutations can be maintained in heterozygosity using chromosome balancers, commonly expressing green fluorescent protein (GFP) in the pharynx. However, gene expression or function is typically monitored by the use of fluorescent reporters marked with the same fluorophore, presenting a challenge to sort worm populations of interest, particularly at early larval stages. Here, we develop a sorting strategy capable of selecting homozygous mutants carrying a GFP stress reporter from GFP-balanced animals at the second larval stage. Because sorting is not completely error-free, we develop an automated high-throughput image analysis protocol that identifies and discards animals carrying the chromosome balancer. We demonstrate the experimental usefulness of combining sorting of homozygous lethal mutants and automated image analysis in a functional genomic RNA interference (RNAi) screen for genes that genetically interact with mitochondrial prohibitin (PHB). Lack of PHB results in embryonic lethality, while homozygous PHB deletion mutants develop into sterile adults due to maternal contribution and strongly induce the mitochondrial unfolded protein response (UPRmt). In a chromosome-wide RNAi screen for C. elegans genes having human orthologues, we uncover both known and new PHB genetic interactors affecting the UPRmt and growth. Conclusions The method presented here allows the study of balanced lethal mutations in a high-throughput manner. It can be easily adapted depending on the user’s requirements and should serve as a useful resource for the C. elegans community for probing new biological aspects of essential nematode genes as well as the generation of more comprehensive genetic networks. Electronic supplementary material The online version of this article (10.1186/s12915-018-0496-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Blanca Hernando-Rodríguez
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Annmary Paul Erinjeri
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - María Jesús Rodríguez-Palero
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Val Millar
- GE Healthcare Life Sciences, Maynard Centre, Forest Farm, Whitchurch, Cardiff, UK.,Present address: Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sara González-Hernández
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Present address: Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Olmedo
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Present address: Department of Genetics, University of Seville, Seville, Spain
| | - Bettina Schulze
- Centre for Biological Signalling Studies (BIOSS), Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, and ZBMZ Center for Biochemistry and Molecular Cell Biology (Faculty of Medicine), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Centre for Biological Signalling Studies (BIOSS), Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, and ZBMZ Center for Biochemistry and Molecular Cell Biology (Faculty of Medicine), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Manuel J Muñoz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain. .,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
208
|
Callegari S, Dennerlein S. Sensing the Stress: A Role for the UPR mt and UPR am in the Quality Control of Mitochondria. Front Cell Dev Biol 2018; 6:31. [PMID: 29644217 PMCID: PMC5882792 DOI: 10.3389/fcell.2018.00031] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023] Open
Abstract
Mitochondria exist as compartmentalized units, surrounded by a selectively permeable double membrane. Within is contained the mitochondrial genome and protein synthesis machinery, required for the synthesis of OXPHOS components and ultimately, ATP production. Despite their physical barrier, mitochondria are tightly integrated into the cellular environment. A constant flow of information must be maintained to and from the mitochondria and the nucleus, to ensure mitochondria are amenable to cell metabolic requirements and also to feedback on their functional state. This review highlights the pathways by which mitochondrial stress is signaled to the nucleus, with a particular focus on the mitochondrial unfolded protein response (UPRmt) and the unfolded protein response activated by the mistargeting of proteins (UPRam). Although these pathways were originally discovered to alleviate proteotoxic stress from the accumulation of mitochondrial-targeted proteins that are misfolded or unimported, we review recent findings indicating that the UPRmt can also sense defects in mitochondrial translation. We further discuss the regulation of OXPHOS assembly and speculate on a possible role for mitochondrial stress pathways in sensing OXPHOS biogenesis.
Collapse
Affiliation(s)
- Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
209
|
Targeting Mitochondria to Counteract Age-Related Cellular Dysfunction. Genes (Basel) 2018; 9:genes9030165. [PMID: 29547561 PMCID: PMC5867886 DOI: 10.3390/genes9030165] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
Senescence is related to the loss of cellular homeostasis and functions, which leads to a progressive decline in physiological ability and to aging-associated diseases. Since mitochondria are essential to energy supply, cell differentiation, cell cycle control, intracellular signaling and Ca2+ sequestration, fine-tuning mitochondrial activity appropriately, is a tightrope walk during aging. For instance, the mitochondrial oxidative phosphorylation (OXPHOS) ensures a supply of adenosine triphosphate (ATP), but is also the main source of potentially harmful levels of reactive oxygen species (ROS). Moreover, mitochondrial function is strongly linked to mitochondrial Ca2+ homeostasis and mitochondrial shape, which undergo various alterations during aging. Since mitochondria play such a critical role in an organism’s process of aging, they also offer promising targets for manipulation of senescent cellular functions. Accordingly, interventions delaying the onset of age-associated disorders involve the manipulation of mitochondrial function, including caloric restriction (CR) or exercise, as well as drugs, such as metformin, aspirin, and polyphenols. In this review, we discuss mitochondria’s role in and impact on cellular aging and their potential to serve as a target for therapeutic interventions against age-related cellular dysfunction.
Collapse
|
210
|
Melber A, Haynes CM. UPR mt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 2018; 28:281-295. [PMID: 29424373 PMCID: PMC5835775 DOI: 10.1038/cr.2018.16] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial network is not only required for the production of energy, essential cofactors and amino acids, but also serves as a signaling hub for innate immune and apoptotic pathways. Multiple mechanisms have evolved to identify and combat mitochondrial dysfunction to maintain the health of the organism. One such pathway is the mitochondrial unfolded protein response (UPRmt), which is regulated by the mitochondrial import efficiency of the transcription factor ATFS-1 in C. elegans and potentially orthologous transcription factors in mammals (ATF4, ATF5, CHOP). Upon mitochondrial dysfunction, import of ATFS-1 into mitochondria is reduced, allowing it to be trafficked to the nucleus where it promotes the expression of genes that promote survival and recovery of the mitochondrial network. Here, we discuss recent findings underlying UPRmt signal transduction and how this adaptive transcriptional response may interact with other mitochondrial stress response pathways.
Collapse
Affiliation(s)
- Andrew Melber
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cole M Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
211
|
Abstract
Metabolic changes are hallmarks of aging and genetic and pharmacologic alterations of relevant pathways can extend life span. In this review, we will outline how cellular biochemistry and energy homeostasis change during aging. We will highlight protein quality control, mitochondria, epigenetics, nutrient-sensing pathways, as well as the interplay between these systems with respect to their impact on cellular health.
Collapse
Affiliation(s)
- Andre Catic
- Huffington Center on Aging, Stem Cells and Regenerative Medicine Center, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
212
|
Ahringer J, Gasser SM. Repressive Chromatin in Caenorhabditis elegans: Establishment, Composition, and Function. Genetics 2018; 208:491-511. [PMID: 29378810 PMCID: PMC5788517 DOI: 10.1534/genetics.117.300386] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/18/2017] [Indexed: 01/08/2023] Open
Abstract
Chromatin is organized and compacted in the nucleus through the association of histones and other proteins, which together control genomic activity. Two broad types of chromatin can be distinguished: euchromatin, which is generally transcriptionally active, and heterochromatin, which is repressed. Here we examine the current state of our understanding of repressed chromatin in Caenorhabditis elegans, focusing on roles of histone modifications associated with repression, such as methylation of histone H3 lysine 9 (H3K9me2/3) or the Polycomb Repressive Complex 2 (MES-2/3/6)-deposited modification H3K27me3, and on proteins that recognize these modifications. Proteins involved in chromatin repression are important for development, and have demonstrated roles in nuclear organization, repetitive element silencing, genome integrity, and the regulation of euchromatin. Additionally, chromatin factors participate in repression with small RNA pathways. Recent findings shed light on heterochromatin function and regulation in C. elegans, and should inform our understanding of repressed chromatin in other animals.
Collapse
Affiliation(s)
- Julie Ahringer
- The Gurdon Institute, University of Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge CB2 1QN, United Kingdom
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland, and
- Faculty of Natural Sciences, University of Basel, 4056, Switzerland
| |
Collapse
|
213
|
Lipan O, Ferwerda C. Hill functions for stochastic gene regulatory networks from master equations with split nodes and time-scale separation. Phys Rev E 2018; 97:022413. [PMID: 29548212 DOI: 10.1103/physreve.97.022413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 06/08/2023]
Abstract
The deterministic Hill function depends only on the average values of molecule numbers. To account for the fluctuations in the molecule numbers, the argument of the Hill function needs to contain the means, the standard deviations, and the correlations. Here we present a method that allows for stochastic Hill functions to be constructed from the dynamical evolution of stochastic biocircuits with specific topologies. These stochastic Hill functions are presented in a closed analytical form so that they can be easily incorporated in models for large genetic regulatory networks. Using a repressive biocircuit as an example, we show by Monte Carlo simulations that the traditional deterministic Hill function inaccurately predicts time of repression by an order of two magnitudes. However, the stochastic Hill function was able to capture the fluctuations and thus accurately predicted the time of repression.
Collapse
Affiliation(s)
- Ovidiu Lipan
- Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, Virginia 23173, USA
| | - Cameron Ferwerda
- Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
214
|
Abstract
Impaired mitochondrial energy metabolism contributes to a wide range of pathologic conditions, including neurodegenerative diseases. Mitochondrial apoptosis-inducing factor (AIF) is required for the correct maintenance of mitochondrial electron transport chain. An emerging body of clinical evidence indicates that several mutations in the AIFM1 gene are causally linked to severe forms of mitochondrial disorders. Here we investigate the consequence of WAH-1/AIF deficiency in the survival of the nematode Caenorhabditis elegans. Moreover, we assess the survival of C. elegans strains expressing a disease-associated WAH-1/AIF variant. We demonstrate that wah-1 downregulation compromises the function of the oxidative phosphorylation system and reduces C. elegans lifespan. Notably, the loss of respiratory subunits induces a nuclear-encoded mitochondrial stress response independently of an evident increase of oxidative stress. Overall, our data pinpoint an evolutionarily conserved role of WAH-1/AIF in the maintenance of proper mitochondrial activity.
Collapse
|
215
|
Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A. A Futile Battle? Protein Quality Control and the Stress of Aging. Dev Cell 2018; 44:139-163. [PMID: 29401418 PMCID: PMC5896312 DOI: 10.1016/j.devcel.2017.12.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph West Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Uhlein Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
216
|
|
217
|
The chromatin remodeling factor ISW-1 integrates organismal responses against nuclear and mitochondrial stress. Nat Commun 2017; 8:1818. [PMID: 29180639 PMCID: PMC5703887 DOI: 10.1038/s41467-017-01903-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Age-associated changes in chromatin structure have a major impact on organismal longevity. Despite being a central part of the ageing process, the organismal responses to the changes in chromatin organization remain unclear. Here we show that moderate disturbance of histone balance during C. elegans development alters histone levels and triggers a stress response associated with increased expression of cytosolic small heat-shock proteins. This stress response is dependent on the transcription factor, HSF-1, and the chromatin remodeling factor, ISW-1. In addition, we show that mitochondrial stress during developmental stages also modulates histone levels, thereby activating a cytosolic stress response similar to that caused by changes in histone balance. These data indicate that histone and mitochondrial perturbations are both monitored through chromatin remodeling and involve the activation of a cytosolic response that affects organismal longevity. HSF-1 and ISW-1 hence emerge as a central mediator of this multi-compartment proteostatic response regulating longevity.
Collapse
|
218
|
Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 2017; 19:109-120. [DOI: 10.1038/nrm.2017.110] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
219
|
Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets. Cell Rep 2017; 18:299-306. [PMID: 28076775 PMCID: PMC5263231 DOI: 10.1016/j.celrep.2016.12.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/21/2016] [Accepted: 12/08/2016] [Indexed: 11/20/2022] Open
Abstract
Consumption of unhealthy diets is exacerbating the burden of age-related ill health in aging populations. Such diets can program mammalian physiology to cause long-term, detrimental effects. Here, we show that, in Drosophila melanogaster, an unhealthy, high-sugar diet in early adulthood programs lifespan to curtail later-life survival despite subsequent dietary improvement. Excess dietary sugar promotes insulin-like signaling, inhibits dFOXO-the Drosophila homolog of forkhead box O (FOXO) transcription factors-and represses expression of dFOXO target genes encoding epigenetic regulators. Crucially, dfoxo is required both for transcriptional changes that mark the fly's dietary history and for nutritional programming of lifespan by excess dietary sugar, and this mechanism is conserved in Caenorhabditis elegans. Our study implicates FOXO factors, the evolutionarily conserved determinants of animal longevity, in the mechanisms of nutritional programming of animal lifespan.
Collapse
|
220
|
Vazquez-Martin A, Van den Haute C, Cufí S, Corominas-Faja B, Cuyàs E, Lopez-Bonet E, Rodriguez-Gallego E, Fernández-Arroyo S, Joven J, Baekelandt V, Menendez JA. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate. Aging (Albany NY) 2017; 8:1330-52. [PMID: 27295498 PMCID: PMC4993334 DOI: 10.18632/aging.100976] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022]
Abstract
Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts from PINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain pluripotency or differentiate in tissue regeneration and aging, tumor growth, and regenerative medicine.
Collapse
Affiliation(s)
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | - Sílvia Cufí
- Josep Carreras Leukemia Research Institute, Stem Cell Lab, Barcelona, Spain
| | - Bruna Corominas-Faja
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Elisabet Cuyàs
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Eugeni Lopez-Bonet
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona, Catalonia, Spain
| | - Esther Rodriguez-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | - Javier A Menendez
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
| |
Collapse
|
221
|
Yin JA, Gao G, Liu XJ, Hao ZQ, Li K, Kang XL, Li H, Shan YH, Hu WL, Li HP, Cai SQ. Genetic variation in glia-neuron signalling modulates ageing rate. Nature 2017; 551:198-203. [PMID: 29120414 DOI: 10.1038/nature24463] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022]
Abstract
The rate of behavioural decline in the ageing population is remarkably variable among individuals. Despite the considerable interest in studying natural variation in ageing rate to identify factors that control healthy ageing, no such factor has yet been found. Here we report a genetic basis for variation in ageing rates in Caenorhabditis elegans. We find that C. elegans isolates show diverse lifespan and age-related declines in virility, pharyngeal pumping, and locomotion. DNA polymorphisms in a novel peptide-coding gene, named regulatory-gene-for-behavioural-ageing-1 (rgba-1), and the neuropeptide receptor gene npr-28 influence the rate of age-related decline of worm mating behaviour; these two genes might have been subjected to recent selective sweeps. Glia-derived RGBA-1 activates NPR-28 signalling, which acts in serotonergic and dopaminergic neurons to accelerate behavioural deterioration. This signalling involves the SIR-2.1-dependent activation of the mitochondrial unfolded protein response, a pathway that modulates ageing. Thus, natural variation in neuropeptide-mediated glia-neuron signalling modulates the rate of ageing in C. elegans.
Collapse
Affiliation(s)
- Jiang-An Yin
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ge Gao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Juan Liu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zi-Qian Hao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kai Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin-Lei Kang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hong Li
- Core Facility of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan-Hong Shan
- Core Facility Center of the Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wen-Li Hu
- Core Facility Center of the Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hai-Peng Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shi-Qing Cai
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
222
|
van der Bliek AM, Sedensky MM, Morgan PG. Cell Biology of the Mitochondrion. Genetics 2017; 207:843-871. [PMID: 29097398 PMCID: PMC5676242 DOI: 10.1534/genetics.117.300262] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are best known for harboring pathways involved in ATP synthesis through the tricarboxylic acid cycle and oxidative phosphorylation. Major advances in understanding these roles were made with Caenorhabditiselegans mutants affecting key components of the metabolic pathways. These mutants have not only helped elucidate some of the intricacies of metabolism pathways, but they have also served as jumping off points for pharmacology, toxicology, and aging studies. The field of mitochondria research has also undergone a renaissance, with the increased appreciation of the role of mitochondria in cell processes other than energy production. Here, we focus on discoveries that were made using C. elegans, with a few excursions into areas that were studied more thoroughly in other organisms, like mitochondrial protein import in yeast. Advances in mitochondrial biogenesis and membrane dynamics were made through the discoveries of novel functions in mitochondrial fission and fusion proteins. Some of these functions were only apparent through the use of diverse model systems, such as C. elegans Studies of stress responses, exemplified by mitophagy and the mitochondrial unfolded protein response, have also benefitted greatly from the use of model organisms. Recent developments include the discoveries in C. elegans of cell autonomous and nonautonomous pathways controlling the mitochondrial unfolded protein response, as well as mechanisms for degradation of paternal mitochondria after fertilization. The evolutionary conservation of many, if not all, of these pathways ensures that results obtained with C. elegans are equally applicable to studies of human mitochondria in health and disease.
Collapse
Affiliation(s)
- Alexander M van der Bliek
- Department of Biological Chemistry, Jonsson Comprehensive Cancer Center and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90024
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington and Center for Developmental Therapeutics, Seattle Children's Research Institute, Washington 98101
| | - Phil G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington and Center for Developmental Therapeutics, Seattle Children's Research Institute, Washington 98101
| |
Collapse
|
223
|
Systems Phytohormone Responses to Mitochondrial Proteotoxic Stress. Mol Cell 2017; 68:540-551.e5. [DOI: 10.1016/j.molcel.2017.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
|
224
|
Rottenberg H, Hoek JB. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 2017; 16:943-955. [PMID: 28758328 PMCID: PMC5595682 DOI: 10.1111/acel.12650] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/23/2022] Open
Abstract
Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D; 23 W. Bridge Street New Hope PA 18038 USA
| | - Jan B. Hoek
- Department of Anatomy, Pathology and Cell Biology; MitoCare Center; Thomas Jefferson University; Philadelphia PA 19107 USA
| |
Collapse
|
225
|
Cai H, Rasulova M, Vandemeulebroucke L, Meagher L, Vlaeminck C, Dhondt I, Braeckman BP. Life-Span Extension by Axenic Dietary Restriction Is Independent of the Mitochondrial Unfolded Protein Response and Mitohormesis in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2017; 72:1311-1318. [PMID: 28329170 PMCID: PMC5861982 DOI: 10.1093/gerona/glx013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/16/2017] [Indexed: 11/14/2022] Open
Abstract
In Caenorhabditis elegans, a broad range of dietary restriction regimens extend life span to different degrees by separate or partially overlapping molecular pathways. One of these regimens, axenic dietary restriction, doubles the worm's life span but currently, almost nothing is known about the underlying molecular mechanism. Previous studies suggest that mitochondrial stress responses such as the mitochondrial unfolded protein response (UPRmt) or mitohormesis may play a vital role in axenic dietary restriction-induced longevity. Here, we provide solid evidence that axenic dietary restriction treatment specifically induces an UPRmt response in C elegans but this induction is not required for axenic dietary restriction-mediated longevity. We also show that reactive oxygen species-mediated mitohormesis is not involved in this phenotype. Hence, changes in mitochondrial physiology and induction of a mitochondrial stress response are not necessarily causal to large increases in life span.
Collapse
Affiliation(s)
- Huaihan Cai
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Madina Rasulova
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | | | - Lea Meagher
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Caroline Vlaeminck
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Belgium
| |
Collapse
|
226
|
Chen D, Gao W, Wang S, Ni B, Gao Y. Critical effects of epigenetic regulation in pulmonary arterial hypertension. Cell Mol Life Sci 2017; 74:3789-3808. [PMID: 28573430 PMCID: PMC11107652 DOI: 10.1007/s00018-017-2551-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/14/2017] [Accepted: 05/29/2017] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by persistent pulmonary vasoconstriction and pulmonary vascular remodeling. The pathogenic mechanisms of PAH remain to be fully clarified and measures of effective prevention are lacking. Recent studies; however, have indicated that epigenetic processes may exert pivotal influences on PAH pathogenesis. In this review, we summarize the latest research findings regarding epigenetic regulation in PAH, focusing on the roles of non-coding RNAs, histone modifications, ATP-dependent chromatin remodeling and DNA methylation, and discuss the potential of epigenetic-based therapies for PAH.
Collapse
Affiliation(s)
- Dewei Chen
- Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, People's Republic of China
- Key Laboratory of High Altitude Medicine of PLA, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Wenxiang Gao
- Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, People's Republic of China
- Key Laboratory of High Altitude Medicine of PLA, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Shouxian Wang
- Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, People's Republic of China
- Key Laboratory of High Altitude Medicine of PLA, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, People's Republic of China.
- Key Laboratory of High Altitude Medicine of PLA, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| | - Yuqi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, People's Republic of China.
- Key Laboratory of High Altitude Medicine of PLA, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
227
|
Abstract
Mitochondria are essential organelles for many aspects of cellular homeostasis, including energy harvesting through oxidative phosphorylation. Alterations of mitochondrial function not only impact on cellular metabolism but also critically influence whole-body metabolism, health, and life span. Diseases defined by mitochondrial dysfunction have expanded from rare monogenic disorders in a strict sense to now also include many common polygenic diseases, including metabolic, cardiovascular, neurodegenerative, and neuromuscular diseases. This has led to an intensive search for new therapeutic and preventive strategies aimed at invigorating mitochondrial function by exploiting key components of mitochondrial biogenesis, redox metabolism, dynamics, mitophagy, and the mitochondrial unfolded protein response. As such, new findings linking mitochondrial function to the progression or outcome of this ever-increasing list of diseases has stimulated the discovery and development of the first true mitochondrial drugs, which are now entering the clinic and are discussed in this review.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa K1H 8M5, Canada;
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
228
|
Borch Jensen M, Qi Y, Riley R, Rabkina L, Jasper H. PGAM5 promotes lasting FoxO activation after developmental mitochondrial stress and extends lifespan in Drosophila. eLife 2017; 6:26952. [PMID: 28891792 PMCID: PMC5614561 DOI: 10.7554/elife.26952] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) has been associated with long lifespan across metazoans. In Caenorhabditis elegans, mild developmental mitochondrial stress activates UPRmt reporters and extends lifespan. We show that similar developmental stress is necessary and sufficient to extend Drosophila lifespan, and identify Phosphoglycerate Mutase 5 (PGAM5) as a mediator of this response. Developmental mitochondrial stress leads to activation of FoxO, via Apoptosis Signal-regulating Kinase 1 (ASK1) and Jun-N-terminal Kinase (JNK). This activation persists into adulthood and induces a select set of chaperones, many of which have been implicated in lifespan extension in flies. Persistent FoxO activation can be reversed by a high-protein diet in adulthood, through mTORC1 and GCN-2 activity. Accordingly, the observed lifespan extension is prevented on a high-protein diet and in FoxO-null flies. The diet-sensitivity of this pathway has important implications for interventions that seek to engage the UPRmt to improve metabolic health and longevity.
Collapse
Affiliation(s)
| | - Yanyan Qi
- Buck Institute for Research on Aging, Novato, United States
| | - Rebeccah Riley
- Buck Institute for Research on Aging, Novato, United States
| | - Liya Rabkina
- Buck Institute for Research on Aging, Novato, United States
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, United States.,Immunology Discovery, Genentech, South San Francisco, United States
| |
Collapse
|
229
|
Sobue S, Inoue C, Hori F, Qiao S, Murate T, Ichihara M. Molecular hydrogen modulates gene expression via histone modification and induces the mitochondrial unfolded protein response. Biochem Biophys Res Commun 2017; 493:318-324. [PMID: 28890349 DOI: 10.1016/j.bbrc.2017.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
Abstract
Molecular hydrogen (H2) is a biologically active gas that is used medically to ameliorate various systemic pathological conditions. H2 also regulates gene expression involved in intracellular signaling and metabolic pathways. However, it is unclear whether H2 affects gene expression directly or through indirect effects as a consequence of health improvement. Therefore, we attempted to identify genes that exhibit similar changes in expression in response to H2 by employing DNA microarrays and gene set enrichment analysis to analyze RNA from liver and lung of rats and mice with or without dietary stress. We found that H2 activated the expression of sets of genes regulated by histone H3K27 methylation status. H2 also modified the expression of many genes regulated by a wide variety of signaling pathways. RT-qPCR showed that H2 up-regulated expression of Kcnc3, a H3K27-regulated gene, in organs such as liver, lung, kidney and brain. Furthermore, using immunohistochemistry and immunoblot analysis, we observed changes in H3K27 methylation status in the liver of mice and rats administered H2. Moreover, we showed that H2 simultaneously induced the H3K27 demethylase, Jmjd3, and mitochondrial unfolded protein response (mtUPR)-related genes. Recently, alteration of mitochondrial function was shown to cause induction of H3K27 demethylase or chromatin restructuring, followed by mtUPR activation through the alteration of H3K27 or H3K9 methylation states. Taken together, our study suggests that H2 can induce beneficial effects through mtUPR activation via epigenetic histone modification and by modification of gene expression.
Collapse
Affiliation(s)
- Sayaka Sobue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Chisato Inoue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Fumiko Hori
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan; Department of Occupational Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Shanlou Qiao
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Takashi Murate
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan.
| |
Collapse
|
230
|
Abstract
PURPOSE OF THE REVIEW The connections between allergy, asthma and metabolic syndrome are becoming increasingly clear. Recent research suggests a unifying mitochondrial link between the diverse phenotypes of these interlinked morbidities. The scope of this review is to highlight cellular mechanisms, epidemiology and environmental allergens influencing mitochondrial function and its importance in allergy and asthma. We briefly also consider the potential of mitochondria-targeted therapies in prevention and cure. RECENT FINDINGS Recent research has shown allergy, asthma and metabolic syndrome to be linked to mitochondrial dysfunction. Environmental pollutants and allergens are observed to cause mitochondrial dysfunction, primarily by inducing oxidative stress and ROS production. Malfunctioning mitochondria change the bioenergetics of the cell and its metabolic profile to favour systemic inflammation, which drives all three types of morbidities. Given the existing experimental evidence, approaches targeting mitochondria (e.g. antioxidant therapy and mitochondrial replacement) are being conducted in relevant disease models-with some progressing towards clinical trials, making mitochondrial function the focus of translational therapy research in asthma, allergy and linked metabolic syndrome.
Collapse
Affiliation(s)
- Divyaanka Iyer
- CSIR Institute of Genomics and Integrative Biology, Delhi University campus, Mall Road, Delhi, 110007, India
| | - Navya Mishra
- Indian Institute of Public Health, Gurugram, India.,Chest Research Foundation, Pune, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, Delhi University campus, Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
231
|
Abstract
Stem cell aging and exhaustion are considered important drivers of organismal aging. Age-associated declines in stem cell function are characterized by metabolic and epigenetic changes. Understanding the mechanisms underlying these changes will likely reveal novel therapeutic targets for ameliorating age-associated phenotypes and for prolonging human healthspan. Recent studies have shown that metabolism plays an important role in regulating epigenetic modifications and that this regulation dramatically affects the aging process. This review focuses on current knowledge regarding the mechanisms of stem cell aging, and the links between cellular metabolism and epigenetic regulation. In addition, we discuss how these interactions sense and respond to environmental stress in order to maintain stem cell homeostasis, and how environmental stimuli regulate stem cell function. Additionally, we highlight recent advances in the development of therapeutic strategies to rejuvenate dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Ruotong Ren
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro Ocampo
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guang-Hui Liu
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Beijing 100069, China.
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
232
|
D’Amico D, Sorrentino V, Auwerx J. Cytosolic Proteostasis Networks of the Mitochondrial Stress Response. Trends Biochem Sci 2017; 42:712-725. [DOI: 10.1016/j.tibs.2017.05.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
|
233
|
Alvarez-Illera P, García-Casas P, Arias-del-Val J, Fonteriz RI, Alvarez J, Montero M. Pharynx mitochondrial [Ca 2+] dynamics in live C. elegans worms during aging. Oncotarget 2017; 8:55889-55900. [PMID: 28915560 PMCID: PMC5593531 DOI: 10.18632/oncotarget.18600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/12/2017] [Indexed: 11/25/2022] Open
Abstract
Progressive decline in mitochondrial function is generally considered one of the hallmarks of aging. We have expressed a Ca2+ sensor in the mitochondrial matrix of C. elegans pharynx cells and we have measured for the first time mitochondrial [Ca2+] ([Ca2+]M) dynamics in the pharynx of live C. elegans worms during aging. Our results show that worms stimulated with serotonin display a pharynx [Ca2+]M oscillatory kinetics that includes both high frequency oscillations (up to about 1Hz) and very prolonged "square-wave" [Ca2+]M increases, indicative of energy depletion of the pharynx cells. Mitochondrial [Ca2+] is therefore able to follow "beat-to-beat" the fast oscillations of cytosolic [Ca2+]. The fast [Ca2+]M oscillations kept steady frequency values during the whole worm life, from 2 to 12 days old, but the height and width of the peaks was progressively reduced. [Ca2+]M oscillations were also present with similar kinetics in respiratory chain complex I nuo-6 mutant worms, although with smaller height and frequency than in the controls, and larger width. In summary, Ca2+ fluxes in and out of the mitochondria are relatively well preserved during the C. elegans life, but there is a clear progressive decrease in their magnitude during aging. Moreover, mitochondrial Ca2+ fluxes were smaller in nuo-6 mutants with respect to the controls at every age and decreased similarly during aging.
Collapse
Affiliation(s)
- Pilar Alvarez-Illera
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics, Faculty of Medicine, University of Valladolid and CSIC, Valladolid, Spain
| | - Paloma García-Casas
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics, Faculty of Medicine, University of Valladolid and CSIC, Valladolid, Spain
| | - Jessica Arias-del-Val
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics, Faculty of Medicine, University of Valladolid and CSIC, Valladolid, Spain
| | - Rosalba I. Fonteriz
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics, Faculty of Medicine, University of Valladolid and CSIC, Valladolid, Spain
| | - Javier Alvarez
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics, Faculty of Medicine, University of Valladolid and CSIC, Valladolid, Spain
| | - Mayte Montero
- Department of Biochemistry and Molecular Biology and Physiology, Institute of Biology and Molecular Genetics, Faculty of Medicine, University of Valladolid and CSIC, Valladolid, Spain
| |
Collapse
|
234
|
Abstract
During aging, the mechanisms that normally maintain health and stress resistance strikingly decline, resulting in decrepitude, frailty, and ultimately death. Exactly when and how this decline occurs is unknown. Changes in transcriptional networks and chromatin state lie at the heart of age-dependent decline. These epigenomic changes are not only observed during aging but also profoundly affect cellular function and stress resistance, thereby contributing to the progression of aging. We propose that the dysregulation of transcriptional and chromatin networks is a crucial component of aging. Understanding age-dependent epigenomic changes will yield key insights into how aging begins and progresses and should lead to the development of new therapeutics that delay or even reverse aging and age-related diseases.
Collapse
Affiliation(s)
- Lauren N Booth
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
235
|
Shemesh N, Meshnik L, Shpigel N, Ben-Zvi A. Dietary-Induced Signals That Activate the Gonadal Longevity Pathway during Development Regulate a Proteostasis Switch in Caenorhabditis elegans Adulthood. Front Mol Neurosci 2017; 10:254. [PMID: 28848390 PMCID: PMC5552676 DOI: 10.3389/fnmol.2017.00254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022] Open
Abstract
Cell-non-autonomous signals dictate the functional state of cellular quality control systems, remodeling the ability of cells to cope with stress and maintain protein homeostasis (proteostasis). One highly regulated cell-non-autonomous switch controls proteostatic capacity in Caenorhabditis elegans adulthood. Signals from the reproductive system down-regulate cyto-protective pathways, unless countered by signals reporting on germline proliferation disruption. Here, we utilized dihomo-γ-linolenic acid (DGLA) that depletes the C. elegans germline to ask when cell-non-autonomous signals from the reproductive system determine somatic proteostasis and whether such regulation is reversible. We found that diet supplementation of DGLA resulted in the maintenance of somatic proteostasis after the onset of reproduction. DGLA-dependent proteostasis remodeling was only effective if animals were exposed to DGLA during larval development. A short exposure of 16 h during the second to fourth larval stages was sufficient and required to maintain somatic proteostasis in adulthood but not to extend lifespan. The reproductive system was required for DGLA-dependent remodeling of proteostasis in adulthood, likely via DGLA-dependent disruption of germline stem cells. However, arachidonic acid (AA), a somatic regulator of this pathway that does not require the reproductive system, presented similar regulatory timing. Finally, we showed that DGLA- and AA-supplementation led to activation of the gonadal longevity pathway but presented differential regulatory timing. Proteostasis and stress response regulators, including hsf-1 and daf-16, were only activated if exposed to DGLA and AA during development, while other gonadal longevity factors did not show this regulatory timing. We propose that C. elegans determines its proteostatic fate during development and is committed to either reproduction, and thus present restricted proteostasis, or survival, and thus present robust proteostasis. Given the critical role of proteostatic networks in the onset and progression of many aging-related diseases, such a choice could impact susceptibility to protein misfolding diseases later in life.
Collapse
Affiliation(s)
- Netta Shemesh
- Department of Life Sciences, The National Institute for Biotechnology in the NegevBen-Gurion University of the Negev, Beer Sheva, Israel
| | - Lana Meshnik
- Department of Life Sciences, The National Institute for Biotechnology in the NegevBen-Gurion University of the Negev, Beer Sheva, Israel
| | - Nufar Shpigel
- Department of Life Sciences, The National Institute for Biotechnology in the NegevBen-Gurion University of the Negev, Beer Sheva, Israel
| | - Anat Ben-Zvi
- Department of Life Sciences, The National Institute for Biotechnology in the NegevBen-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
236
|
Mechanisms underlying longevity: A genetic switch model of aging. Exp Gerontol 2017; 107:136-139. [PMID: 28797825 DOI: 10.1016/j.exger.2017.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023]
Abstract
While the questions of "What causes aging?" and "Why do we age?" and "How can we stop it?" remain unanswered, recent advances in aging research have continued to increase our understanding of the aging process. Until the last couple of decades, aging was viewed as an inevitable process of damage accumulation and not a subject for scientific pursuit. This view changed when it was demonstrated that the aging process is in fact malleable and genetically determined: mutations in single genes can have dramatic effects on longevity. Despite the rapid advancement of our knowledge about aging, the cause of aging remains unclear. In this paper, experiments demonstrating the roles of genetics and epigenetics in modulating longevity are reviewed, concluding with a new model of aging. This genetic switch model of aging proposes that aging is caused by a genetically-programmed turning off of survival and maintenance pathways after reproduction finishes leading to a progressive functional decline. If this model is correct, it may be possible to extend lifespan and healthspan by identifying the molecular pathways involved and simply turning the switch back on.
Collapse
|
237
|
Sands WA, Page MM, Selman C. Proteostasis and ageing: insights from long-lived mutant mice. J Physiol 2017; 595:6383-6390. [PMID: 28718225 PMCID: PMC5638872 DOI: 10.1113/jp274334] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022] Open
Abstract
The global increase in life expectancy is creating significant medical, social and economic challenges to current and future generations. Consequently, there is a need to identify the fundamental mechanisms underlying the ageing process. This knowledge should help develop realistic interventions capable of combatting age‐related disease, and thus improving late‐life health and vitality. While several mechanisms have been proposed as conserved lifespan determinants, the loss of proteostasis – where proteostasis is defined here as the maintenance of the proteome – appears highly relevant to both ageing and disease. Several studies have shown that multiple proteostatic mechanisms, including the endoplasmic reticulum (ER)‐induced unfolded protein response (UPR), the ubiquitin–proteasome system (UPS) and autophagy, appear indispensable for longevity in many long‐lived invertebrate mutants. Similarly, interspecific comparisons suggest that proteostasis may be an important lifespan determinant in vertebrates. Over the last 20 years a number of long‐lived mouse mutants have been described, many of which carry single‐gene mutations within the growth‐hormone, insulin/IGF‐1 or mTOR signalling pathways. However, we still do not know how these mutations act mechanistically to increase lifespan and healthspan, and accordingly whether mechanistic commonality occurs between different mutants. Recent evidence supports the premise that the successful maintenance of the proteome during ageing may be linked to the increased lifespan and healthspan of long‐lived mouse mutants.
Collapse
Affiliation(s)
- William A Sands
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Melissa M Page
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
238
|
Lv Y, Shi Y, Han Q, Dai G. Histone demethylase PHF8 accelerates the progression of colorectal cancer and can be regulated by miR-488 in vitro. Mol Med Rep 2017; 16:4437-4444. [PMID: 28765946 PMCID: PMC5647003 DOI: 10.3892/mmr.2017.7130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 04/19/2017] [Indexed: 12/22/2022] Open
Abstract
Plant homeo domain finger protein 8 (PHF8), as an oncogene, has been highlighted in cancer development and progression. However, its clinical significance and underlying molecular mechanisms in colorectal cancer (CRC) remain to be fully elucidated. In the present study, the role of PHF8 in the progression of CRC was investigated. The mRNA and protein levels of PHF8 in tissues from patients with CRC and cell lines were detected using the reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Cell viability was analyzed using an MTT assay. The targeted genes were predicted using a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. Cell migration was evaluated using a Transwell assay. The results demonstrated that the expression of PHF8 was significantly increased in tumor tissues from patients with CRC and was correlated with tumor‑node‑metastasis stage. In addition, it was found that overexpressed PHF8 was a predictor of poor overall survival rates in patients with CRC. PHF8 loss‑of‑function significantly inhibited proliferation and migration, and promoted apoptosis of CRC cells. In addition, bioinformatics methods demonstrated that PHF8 was a putative target of microRNA (miR)‑488, and miR‑488 was able to inhibit the expression of PHF8 in CRC cells. miR‑488 loss‑of‑function showed increased proliferation and migration, and these effects were reversed by sh‑PHF8 transfection in CRC cells. In vitro and in vivo experiments revealed that PHF8 accelerated cancer cell growth and migration, confirming the oncogenic role of PHF8 in human CRC. In conclusion, PHF8 and miR‑488 may serve as CRC biomarkers for the prediction of clinical outcome and provide a target for the diagnosis and therapy of CRC.
Collapse
Affiliation(s)
- Yao Lv
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan Shi
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Quanli Han
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Guanghai Dai
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
239
|
Daniele JR, Esping DJ, Garcia G, Parsons LS, Arriaga EA, Dillin A. "High-Throughput Characterization of Region-Specific Mitochondrial Function and Morphology". Sci Rep 2017; 7:6749. [PMID: 28751733 PMCID: PMC5532364 DOI: 10.1038/s41598-017-05152-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/24/2017] [Indexed: 11/09/2022] Open
Abstract
The tissue-specific etiology of aging and stress has been elusive due to limitations in data processing of current techniques. Despite that many techniques are high-throughput, they usually use singular features of the data (e.g. whole fluorescence). One technology at the nexus of fluorescence-based screens is large particle flow cytometry ("biosorter"), capable of recording positional fluorescence and object granularity information from many individual live animals. Current processing of biosorter data, however, do not integrate positional information into their analysis and data visualization. Here, we present a bioanalytical platform for the quantification of positional information ("longitudinal profiling") of C. elegans, which we posit embodies the benefits of both high-throughput screening and high-resolution microscopy. We show the use of these techniques in (1) characterizing distinct responses of a transcriptional reporter to various stresses in defined anatomical regions, (2) identifying regions of high mitochondrial membrane potential in live animals, (3) monitoring regional mitochondrial activity in aging models and during development, and (4) screening for regulators of muscle mitochondrial dynamics in a high-throughput format. This platform offers a significant improvement in the quality of high-throughput biosorter data analysis and visualization, opening new options for region-specific phenotypic screening of complex physiological phenomena and mitochondrial biology.
Collapse
Affiliation(s)
- Joseph R Daniele
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Daniel J Esping
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Gilbert Garcia
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Lee S Parsons
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Edgar A Arriaga
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| |
Collapse
|
240
|
Kenny TC, Manfredi G, Germain D. The Mitochondrial Unfolded Protein Response as a Non-Oncogene Addiction to Support Adaptation to Stress during Transformation in Cancer and Beyond. Front Oncol 2017; 7:159. [PMID: 28798902 PMCID: PMC5526845 DOI: 10.3389/fonc.2017.00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/10/2017] [Indexed: 12/27/2022] Open
Abstract
Upon accumulation of misfolded proteins in the mitochondria, the mitochondrial unfolded protein response (UPRmt) is activated. This review focuses on the role of this response in cancer. We discuss evidence that during transformation, the UPRmt may play an essential role in the maintenance of the integrity of the mitochondria in the face of increased oxidative stress. However, the role of the UPRmt in other diseases is also emerging and is therefore also briefly discussed.
Collapse
Affiliation(s)
- Timothy C Kenny
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, Unites States
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, Unites States
| | - Doris Germain
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, Unites States
| |
Collapse
|
241
|
Qureshi MA, Haynes CM, Pellegrino MW. The mitochondrial unfolded protein response: Signaling from the powerhouse. J Biol Chem 2017; 292:13500-13506. [PMID: 28687630 DOI: 10.1074/jbc.r117.791061] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are multifaceted and indispensable organelles required for cell performance. Accordingly, dysfunction to mitochondria can result in cellular decline and possibly the onset of disease. Cells use a variety of means to recover mitochondria and restore homeostasis, including the activation of retrograde pathways such as the mitochondrial unfolded protein response (UPRmt). In this Minireview, we will discuss how cells adapt to mitochondrial stress through UPRmt regulation. Furthermore, we will explore the current repertoire of biological functions that are associated with this essential stress-response pathway.
Collapse
Affiliation(s)
- Mohammed A Qureshi
- From the Department of Biology, University of Texas Arlington, Arlington, Texas 76019 and
| | - Cole M Haynes
- the Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Mark W Pellegrino
- From the Department of Biology, University of Texas Arlington, Arlington, Texas 76019 and
| |
Collapse
|
242
|
Quirós PM, Prado MA, Zamboni N, D'Amico D, Williams RW, Finley D, Gygi SP, Auwerx J. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol 2017; 216:2027-2045. [PMID: 28566324 PMCID: PMC5496626 DOI: 10.1083/jcb.201702058] [Citation(s) in RCA: 537] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial stress activates a mitonuclear response to safeguard and repair mitochondrial function and to adapt cellular metabolism to stress. Using a multiomics approach in mammalian cells treated with four types of mitochondrial stressors, we identify activating transcription factor 4 (ATF4) as the main regulator of the stress response. Surprisingly, canonical mitochondrial unfolded protein response genes mediated by ATF5 are not activated. Instead, ATF4 activates the expression of cytoprotective genes, which reprogram cellular metabolism through activation of the integrated stress response (ISR). Mitochondrial stress promotes a local proteostatic response by reducing mitochondrial ribosomal proteins, inhibiting mitochondrial translation, and coupling the activation of the ISR with the attenuation of mitochondrial function. Through a trans-expression quantitative trait locus analysis, we provide genetic evidence supporting a role for Fh1 in the control of Atf4 expression in mammals. Using gene expression data from mice and humans with mitochondrial diseases, we show that the ATF4 pathway is activated in vivo upon mitochondrial stress. Our data illustrate the value of a multiomics approach to characterize complex cellular networks and provide a versatile resource to identify new regulators of mitochondrial-related diseases.
Collapse
Affiliation(s)
- Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Davide D'Amico
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
243
|
Biphasic Modeling of Mitochondrial Metabolism Dysregulation during Aging. Trends Biochem Sci 2017; 42:702-711. [PMID: 28669456 DOI: 10.1016/j.tibs.2017.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 11/21/2022]
Abstract
Organismal aging is classically viewed as a gradual decline of cellular functions and a systemic deterioration of tissues that leads to an increased mortality rate in older individuals. According to the prevailing theory, aging is accompanied by a continuous and progressive decline in mitochondrial metabolic activity in cells. However, the most robust approaches to extending healthy lifespan are frequently linked with reduced energy intake or with lowering of mitochondrial activity. While these observations appear contradictory, recent work and technological advances demonstrate that metabolic deregulation during aging is potentially biphasic. In this Opinion we propose a novel framework where middle-age is accompanied by increased mitochondrial activity that subsequently declines at advanced ages.
Collapse
|
244
|
Mitochondrial form, function and signalling in aging. Biochem J 2017; 473:3421-3449. [PMID: 27729586 DOI: 10.1042/bcj20160451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Aging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes. However, mitochondria display a wide array of functions and signalling properties, and the roles of these different characteristics are still widely unexplored. Furthermore, differences in mitochondrial properties and responses between tissues and cell types, and how these affect whole body metabolism are also still poorly understood. This review uncovers aspects of mitochondrial biology that have an impact upon aging in model organisms and selected mammalian cells and tissues.
Collapse
|
245
|
Shemesh N, Shai N, Meshnik L, Katalan R, Ben-Zvi A. Uncoupling the Trade-Off between Somatic Proteostasis and Reproduction in Caenorhabditis elegans Models of Polyglutamine Diseases. Front Mol Neurosci 2017; 10:101. [PMID: 28503130 PMCID: PMC5409330 DOI: 10.3389/fnmol.2017.00101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022] Open
Abstract
Caenorhabditis elegans somatic protein homeostasis (proteostasis) is actively remodeled at the onset of reproduction. This proteostatic collapse is regulated cell-nonautonomously by signals from the reproductive system that transmit the commitment to reproduction to somatic cells. Here, we asked whether the link between the reproductive system and somatic proteostasis could be uncoupled by activating downstream effectors in the gonadal longevity cascade. Specifically, we examined whether over-expression of lipl-4 (lipl-4(oe)), a target gene of the gonadal longevity pathway, or increase in arachidonic acid (AA) levels, associated with lipl-4(oe), modulated proteostasis and reproduction. We found that lipl-4(oe) rescued somatic proteostasis and postponed the onset of aggregation and toxicity in C. elegans models of polyglutamine (polyQ) diseases. However, lipl-4(oe) also disrupted fatty acid transport into developing oocytes and reduced reproductive success. In contrast, diet supplementation of AA recapitulated lipl-4(oe)-mediated proteostasis enhancement in wild type animals but did not affect the reproductive system. Thus, the gonadal longevity pathway mediates a trade-off between somatic maintenance and reproduction, in part by regulating the expression of genes, such as lipl-4, with inverse effects on somatic maintenance and reproduction. We propose that AA could uncouple such germline to soma crosstalk, with beneficial implications protein misfolding diseases.
Collapse
Affiliation(s)
- Netta Shemesh
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Nadav Shai
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Lana Meshnik
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Rotem Katalan
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Anat Ben-Zvi
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| |
Collapse
|
246
|
Kenny TC, Germain D. mtDNA, Metastasis, and the Mitochondrial Unfolded Protein Response (UPR mt). Front Cell Dev Biol 2017; 5:37. [PMID: 28470001 PMCID: PMC5395626 DOI: 10.3389/fcell.2017.00037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 12/13/2022] Open
Abstract
While several studies have confirmed a link between mitochondrial DNA (mtDNA) mutations and cancer cell metastasis, much debate remains regarding the nature of the alternations in mtDNA leading to this effect. Meanwhile, the mitochondrial unfolded protein response (UPRmt) has gained much attention in recent years, with most studies of this pathway focusing on its role in aging. However, the UPRmt has also been studied in the context of cancer. More recent work suggests that rather than a single mutation or alternation, specific combinatorial mtDNA landscapes able to activate the UPRmt may be those that are selected by metastatic cells, while mtDNA landscapes unable to activate the UPRmt do not. This review aims at offering an overview of the confusing literature on mtDNA mutations and metastasis and the more recent work on the UPRmt in this setting.
Collapse
Affiliation(s)
- Timothy C Kenny
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer InstituteNew York, NY, USA
| | - Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer InstituteNew York, NY, USA
| |
Collapse
|
247
|
Brunet A, Rando TA. Interaction between epigenetic and metabolism in aging stem cells. Curr Opin Cell Biol 2017; 45:1-7. [PMID: 28129586 PMCID: PMC5482778 DOI: 10.1016/j.ceb.2016.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/31/2016] [Indexed: 01/03/2023]
Abstract
Aging is accompanied by a decline in tissue function, regeneration, and repair. A large part of this decline is caused by the deterioration of tissue stem cell function. Understanding the mechanisms that drive stem cell aging and how to counteract them is a critical step for enhancing tissue repair and maintenance during aging. Emerging evidence indicates that epigenetic modifiers and metabolism regulators interact to impact lifespan, suggesting that this mechanism may also affect stem cell function with age. This review focuses on the interaction between chromatin and metabolism in the regulation of tissue stem cells during aging. We also discuss how these mechanisms integrate environmental stimuli such as nutrient stress to regulate stem cell function. Finally, this review examines new perspectives for regeneration, rejuvenation, and treatment of age-related decline of stem cell function.
Collapse
Affiliation(s)
- Anne Brunet
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, USA.
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
248
|
Jeong DE, Lee D, Hwang SY, Lee Y, Lee JE, Seo M, Hwang W, Seo K, Hwang AB, Artan M, Son HG, Jo JH, Baek H, Oh YM, Ryu Y, Kim HJ, Ha CM, Yoo JY, Lee SJV. Mitochondrial chaperone HSP-60 regulates anti-bacterial immunity via p38 MAP kinase signaling. EMBO J 2017; 36:1046-1065. [PMID: 28283579 DOI: 10.15252/embj.201694781] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play key roles in cellular immunity. How mitochondria contribute to organismal immunity remains poorly understood. Here, we show that HSP-60/HSPD1, a major mitochondrial chaperone, boosts anti-bacterial immunity through the up-regulation of p38 MAP kinase signaling. We first identify 16 evolutionarily conserved mitochondrial components that affect the immunity of Caenorhabditis elegans against pathogenic Pseudomonas aeruginosa (PA14). Among them, the mitochondrial chaperone HSP-60 is necessary and sufficient to increase resistance to PA14. We show that HSP-60 in the intestine and neurons is crucial for the resistance to PA14. We then find that p38 MAP kinase signaling, an evolutionarily conserved anti-bacterial immune pathway, is down-regulated by genetic inhibition of hsp-60, and up-regulated by increased expression of hsp-60 Overexpression of HSPD1, the mammalian ortholog of hsp-60, increases p38 MAP kinase activity in human cells, suggesting an evolutionarily conserved mechanism. Further, cytosol-localized HSP-60 physically binds and stabilizes SEK-1/MAP kinase kinase 3, which in turn up-regulates p38 MAP kinase and increases immunity. Our study suggests that mitochondrial chaperones protect host eukaryotes from pathogenic bacteria by up-regulating cytosolic p38 MAPK signaling.
Collapse
Affiliation(s)
- Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Sun-Young Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Yujin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Jee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Mihwa Seo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Ara B Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Murat Artan
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Jay-Hyun Jo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Haeshim Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Young Min Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Youngjae Ryu
- Research Division, Korea Brain Research Institute, Daegu, Korea
| | - Hyung-Jun Kim
- Research Division, Korea Brain Research Institute, Daegu, Korea
| | - Chang Man Ha
- Research Division, Korea Brain Research Institute, Daegu, Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Seung-Jae V Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea .,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea.,Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| |
Collapse
|
249
|
Matilainen O, Quirós PM, Auwerx J. Mitochondria and Epigenetics - Crosstalk in Homeostasis and Stress. Trends Cell Biol 2017; 27:453-463. [PMID: 28274652 DOI: 10.1016/j.tcb.2017.02.004] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 12/22/2022]
Abstract
Through epigenetic mechanisms cells integrate environmental stimuli to fine-tune gene expression levels. Mitochondrial function is essential to provide the intermediate metabolites necessary to generate and modify epigenetic marks in the nucleus, which in turn can regulate the expression of mitochondrial proteins. In this review we summarize the function of mitochondria in the regulation of epigenetic mechanisms as a new aspect of mitonuclear communication. We focus in particular on the most common epigenetic modifications - histone acetylation and histone and DNA methylation. We also discuss the emerging field of mitochondrial DNA (mtDNA) methylation, whose physiological role remains unknown. Finally, we describe the essential role of some histone modifications in regulating the mitochondrial unfolded protein response (UPRmt) and the mitochondrial stress-dependent lifespan extension.
Collapse
Affiliation(s)
- Olli Matilainen
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
250
|
Fiorese CJ, Haynes CM. Integrating the UPR mt into the mitochondrial maintenance network. Crit Rev Biochem Mol Biol 2017; 52:304-313. [PMID: 28276702 DOI: 10.1080/10409238.2017.1291577] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial function is central to many different processes in the cell, from oxidative phosphorylation to the synthesis of iron-sulfur clusters. Therefore, mitochondrial dysfunction underlies a diverse array of diseases, from neurodegenerative diseases to cancer. Stress can be communicated to the cytosol and nucleus from the mitochondria through many different signals, and in response the cell can effect everything from transcriptional to post-transcriptional responses to protect the mitochondrial network. How these responses are coordinated have only recently begun to be understood. In this review, we explore how the cell maintains mitochondrial function, focusing on the mitochondrial unfolded protein response (UPRmt), a transcriptional response that can activate a wide array of programs to repair and restore mitochondrial function.
Collapse
Affiliation(s)
- Christopher J Fiorese
- a Department of Molecular Cell and Cancer Biology , University of Massachusetts Medical School , Worcester , MA , USA.,b BCMB Allied Program , Weill Cornell Medical College , New York , NY , USA
| | - Cole M Haynes
- a Department of Molecular Cell and Cancer Biology , University of Massachusetts Medical School , Worcester , MA , USA.,b BCMB Allied Program , Weill Cornell Medical College , New York , NY , USA
| |
Collapse
|