201
|
Cao SS, Duan YP, Tu YJ, Tang Y, Liu J, Zhi WD, Dai C. Pharmaceuticals and personal care products in a drinking water resource of Yangtze River Delta Ecology and Greenery Integration Development Demonstration Zone in China: Occurrence and human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137624. [PMID: 32171137 DOI: 10.1016/j.scitotenv.2020.137624] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The occurrence, partition, and human health risk of thirteen pharmaceuticals and personal care products (PPCPs) have been investigated in surface water, overlying water, pore water and sediment samples from Dianshan Lake of Yangtze River Delta Ecology and Greenery Integration Development Demonstration Zone in China. PPCPs were ubiquitous in aqueous phase and sediments from Dianshan Lake. Sulfamethazine (SMZ) was dominated in surface water and overlying water, while ketoprofen (KPF) was rich in sediment. The total concentration of PPCPs ranged from 0.38-85.27 ng/L, 24.26-130.03 ng/L and 5.39-149.84 μg/kg in surface water, overlying water and sediment, respectively, which were in middle levels compared with these reported in other aquatic environment in China. Naproxen (NPX), sulfadimethoxine (SDM), sulfamethoxazole (SMX) and sulfamethazine (SMZ) in surface water showed a relatively higher level in lake side than those in lake center suggesting that a mixed containment source of human- and animal-derived from the areas around lake. The significant season variations of most PPCPs were mainly attributed to their usage, water temperature and dilution effect. The partition behaviors of PPCPs in sediment-overlying water and sediment-pore water system were mainly affected by their logKow values, and showed weak correlation with total organic carbon (TOC) content in sediment and molecular weights of PPCPs. Preliminary results indicated that PPCPs in Dianshan Lake have not posed a high risk to human health by exposure to drinking water for all age groups. Nevertheless, their potential to cause the mixture toxicity and resistance genes cannot be neglected. This work will contribute to the clear picture of PPCPs contamination in drinking water source in the Demonstration Zone, and provide reliable and simple-to-use information to regulators on the exposure and risk levels of PPCPs, as well as recommendations for future research.
Collapse
Affiliation(s)
- Shuang-Shuang Cao
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yan-Ping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Yao-Jen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yu Tang
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Jin Liu
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Wei-Di Zhi
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
202
|
Kroon FJ, Berry KLE, Brinkman DL, Kookana R, Leusch FDL, Melvin SD, Neale PA, Negri AP, Puotinen M, Tsang JJ, van de Merwe JP, Williams M. Sources, presence and potential effects of contaminants of emerging concern in the marine environments of the Great Barrier Reef and Torres Strait, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:135140. [PMID: 31859059 DOI: 10.1016/j.scitotenv.2019.135140] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Current policy and management for marine water quality in the Great Barrier Reef (GBR) in north-eastern Australia primarily focusses on sediment, nutrients and pesticides derived from diffuse source pollution related to agricultural land uses. In addition, contaminants of emerging concern (CECs) are known to be present in the marine environments of the GBR and the adjacent Torres Strait (TS). Current and projected agricultural, urban and industrial developments are likely to increase the sources and diversity of CECs being released into these marine ecosystems. In this review, we evaluate the sources, presence and potential effects of six different categories of CECs known to be present, or likely to be present, in the GBR and TS marine ecosystems. Specifically, we summarize available monitoring, source and effect information for antifouling paints; coal dust and particles; heavy/trace metals and metalloids; marine debris and microplastics; pharmaceuticals and personal care products (PPCPs); and petroleum hydrocarbons. Our study highlights the lack of (available) monitoring data for most of these CECs, and recommends: (i) the inclusion of all relevant environmental data into integrated databases for building marine baselines for the GBR and TS regions, and (ii) the implementation of local, targeted monitoring programs informed by predictive methods for risk prioritization. Further, our spatial representation of the known and likely sources of these CECs will contribute to future ecological risk assessments of CECs to the GBR and TS marine environments, including risks relative to those identified for sediment, nutrients and pesticides.
Collapse
Affiliation(s)
- Frederieke J Kroon
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Kathryn L E Berry
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; James Cook University, Townsville, QLD 4810, Australia
| | - Diane L Brinkman
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Rai Kookana
- CSIRO Land and Water, Adelaide, SA 5000, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Marji Puotinen
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Jeffrey J Tsang
- Australian Institute of Marine Science, Darwin, NT 0811, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | | |
Collapse
|
203
|
Liang M, Yan S, Chen R, Hong X, Zha J. 3-(4-Methylbenzylidene) camphor induced reproduction toxicity and antiandrogenicity in Japanese medaka (Oryzias latipes). CHEMOSPHERE 2020; 249:126224. [PMID: 32088463 DOI: 10.1016/j.chemosphere.2020.126224] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
To assess the toxic effects of 3-(4-Methylbenzylidene) camphor (4-MBC) at environmentally relevant concentrations on the reproduction and development of Japanese medaka (Oryzias latipes), adult paired medaka (F0) were exposed to 5, 50, and 500 μg/L 4-MBC for 28 d in the current study. The fecundity and fertility were significantly decreased at 500 μg/L 4-MBC (p < 0.05). Histological observations showed that spermatogenesis in F0 males was significantly inhibited at 50 and 500 μg/L 4-MBC, similar to the effects obtained with all treatments of plasma 11-ketotestosterone (p < 0.05). Moreover, the plasma vitellogenin and estradiol levels in F0 females were significantly increased at 5 μg/L 4-MBC (p < 0.05). All the transcripts of hypothalamic-pituitary-gonadal (HPG) axis-related genes tested in the brains and gonads of males were significantly increased at all treatments, similar to the effects obtained for erα, erβ and vtg in the livers and in contrast to those found for arα in the livers (p < 0.05). Equal numbers of embryos were exposed to tap water and 4-MBC solutions. Significantly increased times to hatching, decreased hatching rates and decreased body lengths at 14-day post-hatching (dph) were obtained at 500 μg/L 4-MBC treatment (p < 0.05). The cumulative death rates at 14 dph were significantly increased with all the treatments (p < 0.05). Therefore, our results showed that long-term exposure to 50 and 500 μg/L 4-MBC causes reproductive and developmental toxicity and thus provide new insight into antiandrogenicity and the mechanism of 4-MBC in Japanese medaka.
Collapse
Affiliation(s)
- Mengmeng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
204
|
Yan S, Liang M, Chen R, Hong X, Zha J. Reproductive toxicity and estrogen activity in Japanese medaka (Oryzias latipes) exposed to environmentally relevant concentrations of octocrylene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114104. [PMID: 32045793 DOI: 10.1016/j.envpol.2020.114104] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The growing use of octocrylene (OC) in sunscreens has posed a great threat to aquatic organisms. In the present study, to assess its reproductive toxicity and mechanism, paired Japanese medaka (Oryzias latipes) (F0) were exposed to OC at nominal concentrations of 5, 50, and 500 μg/L for 28 d. Significant increases were observed in the gonadosomatic index (GSI) and hepatosomatic index (HSI) of F0 medaka at 500 μg/L OC (p < 0.05) without significant differences in fecundity. The fertility was significantly decreased at all treatments (p < 0.05). Significant increases in the percent of mature oocytes were observed at 5 and 500 μg/L OC, in which contrary to the percent of spermatozoa (p < 0.05). The plasma sex hormones and vitellogenin levels significantly increased in males at all treatments and in females at 50 and 500 μg/L OC (p < 0.05). In addition, the levels of fshβ and lhβ in the brains and the levels of fshr, lhr and cyp17α in the gonads were significantly upregulated in males at all treatments (p < 0.05), in line with those of ar, erα, erβ and cyp19β in the brains of male and female. The upregulation of vtg in male and female livers was observed only at 500 μg/L OC and upregulation of star and hsd3β was observed in testis at all treatments (p < 0.05). Continued exposure to OC significantly induced increases in the time to hatching, morphological abnormality rates, and cumulative death rates of F1 embryos, inconsistent with body length of F1 larvae (p < 0.05). Therefore, the responses of the exposed fish at the biochemical and molecular levels indicated reproductive toxicity and estrogenic activity of OC, providing insights into the mechanism of OC.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Mengmeng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
205
|
Campos D, Machado AL, Cardoso DN, Silva ARR, Silva PV, Rodrigues ACM, Simão FCP, Loureiro S, Grabicová K, Nováková P, Soares AMVM, Pestana JLT. Effects of the organic UV-filter, 3-(4-methylbenzylidene) camphor, on benthic invertebrates and ecosystem function in artificial streams. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113981. [PMID: 32041008 DOI: 10.1016/j.envpol.2020.113981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
In the last decades, the use of organic ultraviolet-filters (UV-filters) has increased worldwide, and these compounds are now considered emerging contaminants of many freshwater ecosystems. The present study aimed to assess the effects of 3-(4-methylbenzylidene) camphor (4-MBC) on a freshwater invertebrate community and on associated ecological functions. For that, artificial streams were used, and a natural invertebrate benthic community was exposed to sediments contaminated with two concentrations of 4-MBC. Effects were evaluated regarding macroinvertebrate abundance and community structure, as well as leaf decomposition and primary production. Results showed that the macroinvertebrate community parameters and leaf decomposition rates were not affected by 4-MBC exposure. On the other hand, primary production was strongly reduced. This study highlights the importance of higher tier ecotoxicity experiments for the assessment of the effects of low concentrations of organic UV-filters on freshwater invertebrate community structure and ecosystem functioning.
Collapse
Affiliation(s)
- Diana Campos
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Ana L Machado
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Diogo N Cardoso
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Rita R Silva
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Patrícia V Silva
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andreia C M Rodrigues
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fátima C P Simão
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Kateřina Grabicová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 725/II, 389 25, Vodnany, Czech Republic
| | - Petra Nováková
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 725/II, 389 25, Vodnany, Czech Republic
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João L T Pestana
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
206
|
Dar OI, Sharma S, Singh K, Sharma A, Bhardwaj R, Kaur A. Biochemical markers for prolongation of the acute stress of triclosan in the early life stages of four food fishes. CHEMOSPHERE 2020; 247:125914. [PMID: 31972493 DOI: 10.1016/j.chemosphere.2020.125914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
In the present study, embryos of four food fishes viz. Cyprinus carpio, Ctenopharyngodon idella, Labeo rohita and Cirrhinus mrigala were given acute (96 h) exposure to their respective LC0, LC10 and LC30 (causing 0, 10 and 30% mortality, respectively) concentrations of triclosan [TCS, 5-chloro-2-(2,4-dichlorophenoxy) phenol], a broad spectrum biocide. Bioaccumulation, contents of protein, non-enzymatic antioxidants (GSH and GSSG), MDA (lipid peroxidation product) and organic acids (fumarate, succinate, malate and citrate) along with the activities of AChE (neurological enzyme), GST (detoxification enzyme) and three metabolic enzymes (LDH, AST and ALT) were estimated after 48 and 96 h exposure and 10 days post exposure. Around 1/10 of the TCS in water got accumulated in the hatchlings after 96 h, increase over 48 h values was maximum at LC0 (+195.30, +143.23 and + 140.75%) but minimum at LC30 (+89.62, +84.26 and + 126.72%) for C. idella, L. rohita and C. mrigala, respectively. In C. carpio, TCS got accumulated only at LC30 after 48 h but at all the concentrations after 96 h exposure. Contents of protein, GSH, GSSG and activity of AChE decreased but activities of GSH, LDH, AST and ALT and contents of MDA and organic acids increased concentration dependently in all the fishes. TCS declined by 85-90% but its toxic effects on biomolecules prolonged till the end of the recovery period. Such acute exposures are accidental but there is a need to evaluate biomarkers for prolongation of the stress of small concentrations especially LC0 and LC10 (causing negligible mortality) of lipophilic pollutants like TCS.
Collapse
Affiliation(s)
- Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirpal Singh
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anket Sharma
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India; State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
207
|
O'Malley E, O'Brien JW, Verhagen R, Mueller JF. Annual release of selected UV filters via effluent from wastewater treatment plants in Australia. CHEMOSPHERE 2020; 247:125887. [PMID: 31978656 DOI: 10.1016/j.chemosphere.2020.125887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Studies conducted globally have identified wastewater effluent as a key source of UV filters released into the aquatic environment. We assessed the annual release of UV filters from wastewater treatment plant effluent in Australia and evaluated the removal of these chemicals during wastewater treatment. Effluent samples were collected from 33 sites alongside matching influent samples. Sample collection predominately occurred during the Australian Census in August 2016, which allowed for accurate per capita normalisation of the results. A subset of sites was also sampled over the Southern Hemisphere summer (December-February) period. Five UV filters were detected with at least one detected in 95% of effluent samples. The summed concentration of UV filters ranged from 130 ng L-1 to 8400 ng L-1 and averaged 2800 (±1900) ng L-1. Of the target UV filters, 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and benzophenone 4 (BP4) showed the lowest removal efficiencies (11 ± 36% and 51 ± 43%, respectively) across all sites and were the most abundant in effluent. Average estimated removal efficiencies of the other compounds were between 59 (±24) % (4-methylbenzylidene camphor (4-MBC)) and 74 (±22) % (benzophenone 1 (BP1)). We did not find a trend in seasonal differences in the per capita release of UV filters in effluent samples. We estimate that approximately 40% of UV filter loads measured in influent are breaking through to the effluent resulting in the release of approximately 20 kg day-1 of the selected UV filters into the aquatic environment from treated wastewater effluent in Australia.
Collapse
Affiliation(s)
- Elissa O'Malley
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia.
| | - Jake W O'Brien
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| | - Rory Verhagen
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| |
Collapse
|
208
|
Ilyas H, van Hullebusch ED. Performance Comparison of Different Constructed Wetlands Designs for the Removal of Personal Care Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093091. [PMID: 32365511 PMCID: PMC7246432 DOI: 10.3390/ijerph17093091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022]
Abstract
This research investigates the performance of four types of constructed wetlands (CWs): free water surface CW (FWSCW), horizontal flow CW (HFCW), vertical flow CW (VFCW), and hybrid CW (HCW) for the removal of 20 personal care products (PCPs), based on secondary data compiled for 137 CWs reported in 39 peer reviewed journal papers. In spite of considerable variation in the re-moval efficiency of PCPs, CWs prove to be a promising treatment technology. The average removal efficiency of 15 widely studied PCPs ranged from 9.0% to 84%. Although CWs effectively reduced the environmental risks caused by many PCPs, triclosan was still classified under high risk category based on effluent concentration. Five other PCPs were classified under medium risk category (triclocarban > methylparaben > galaxolide > oxybenzone > methyl dihydrojasmonate). In most of the examined PCPs, adsorption and/or sorption is the most common removal mechanism followed by biodegradation and plant uptake. The comparatively better performance of HCW followed by VFCW, HFCW, and FWSCW might be due to the co-existence of aerobic and anaerobic conditions, and longer hydraulic retention time enhancing the removal of PCPs (e.g., triclosan, methyl dihydro-jasmonate, galaxolide, tonalide, and oxybenzone), which are removed under both conditions and by adsorption/sorption processes.
Collapse
Affiliation(s)
- Huma Ilyas
- Institut de physique du globe de Paris, Université de Paris, CNRS, F-75005 Paris, France;
- Water Treatment and Management Consultancy, B.V., 2289 ED Rijswijk, The Netherlands
- Correspondence:
| | - Eric D. van Hullebusch
- Institut de physique du globe de Paris, Université de Paris, CNRS, F-75005 Paris, France;
| |
Collapse
|
209
|
Lee HJ, Kadokami K, Oh JE. Occurrences of microorganic pollutants in the Kumho River by a comprehensive target analysis using LC-Q/TOF-MS with sequential window acquisition of all theoretical fragment ion spectra (SWATH). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136508. [PMID: 32019012 DOI: 10.1016/j.scitotenv.2020.136508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
In this study, simultaneous identification and semi-quantification of hundreds of micropollutant compounds, including pharmaceutical and personal care products (PPCPs) and pesticides were performed in river and effluent samples from the Kumho River Basin using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) with sequential window acquisition of all theoretical fragment ion spectra (SWATH). In total, 85 compounds (29 pesticides and 56 PPCPs) were identified. The highest proportions of PPCP residues were detected in the downstream area of the Kumho River, close to the central city. On the other hand, the highest proportions of pesticide residues were observed upstream, near agricultural land and golf courses. Additionally, the highly exposable chemicals were prioritized using a scoring and ranking system based on their concentration and detection frequency. Thus, 20 compounds (7 pesticides and 13 PPCPs) with scores of 200 or higher were defined as highly exposable compounds in Kumho River basin.
Collapse
Affiliation(s)
- Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea
| | - Kiwao Kadokami
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
210
|
Xu YQ, Liu SS, Chen F, Wang ZJ. pH affects the hormesis profiles of personal care product components on luminescence of the bacteria Vibrio qinghaiensis sp. -Q67. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136656. [PMID: 31958732 DOI: 10.1016/j.scitotenv.2020.136656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Hormesis describes a specific phenomenon in a biphasic concentration-response curve: low concentrations stimulate a response, while high concentrations suppress it. Hormesis could be influenced by several environmental factors, e.g. pH. In this study, the concentration-response/bioluminescence inhibition profiles (CRPs) of six components in personal care products to Vibrio qinghaiensis sp.-Q67 were measured at five different pH levels. When the exposure lasted for 0.25 h, CRPs of the six components at various pH levels were S-shaped, except ascorbic acid 2-glucoside (AA2G) at pH 10.5. When it lasted for 12 h, the CRPs were J-shaped, except AA2G at pH 6.5, 7.5, and 9.5. To rationally explain these changes in hormesis expressed by J-shaped CRP, four characteristic parameters, the minimum effect (Emin) and its corresponding concentration (ECmin), the median effective concentration (EC50), and the zero effect concentration point (ZEP, where the effect is 0 and the concentration is ZEP), were used to quantify the J-shaped CRP. The results indicated that these parameters vary with pH. Additionally, ZEP showed an excellent linear relationship with EC10 (R2 = 0.9994) at all pH levels, indicating that EC10 could replace the no-observed effective concentration (NOEC) in ecological risk assessment. Furthermore, to elucidate the possible mechanism of hormesis, the binding of the components to the luciferase receptors was analyzed using molecular docking technology. The results showed that the components displaying hormesis bind more easily to the α subunit of luciferase than to the β subunit.
Collapse
Affiliation(s)
- Ya-Qian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Fu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Environmental Science and Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ze-Jun Wang
- Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
211
|
Song C, Liu HY, Guo S, Wang SG. Photolysis mechanisms of tetracycline under UV irradiation in simulated aquatic environment surrounding limestone. CHEMOSPHERE 2020; 244:125582. [PMID: 32050352 DOI: 10.1016/j.chemosphere.2019.125582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/30/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
As the most typical geological environment, limestone landforms are widespreading in the world and affect the waters that flow around them, which may also change the fate of organic contaminants in these waters. In this study, aquatic environment surrounding limestone was simulated with calcium carbonate, and the photolysis of tetracycline was evaluated under UV irradiation (30 μW/cm2). More tetracycline (up to 98%) was removed in 4 h in the presence of calcium carbonate while only 50% of tetracycline was eliminated in control experiment. The removal of tetracycline was greatly enhanced due to the major roles of alkaline pH and minor roles of Ca2+ and HCO3-/CO32-. In alkaline pH, tetracycline existed as TCs- with higher electronic density in the ring structures, which was more easily attacked by OH. Besides, it could also change the bond orbital energy to facilitate tetracycline absorbing more photon. Moreover, alkaline pH was beneficial to generate more OH and thus promote the indirect photolysis. In addition, alkaline pH also changed the degradation path of tetracycline and rapidly convert tetracycline to the byproducts with m/z 457 via hydroxylation and hydrogen abstraction. This work provides not only better understanding about the fate of tetracycline in aquatic environments but also new insights into the treatment of antibiotic-contaminated water.
Collapse
Affiliation(s)
- Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Hua-Yu Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuang Guo
- Jinzhou Inspection, Examination and Certification Centre, Jinzhou, 121000, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
212
|
Seaweed Invasion! Temporal Changes in Beach Conditions Lead to Increasing Cenote Usage and Contamination in the Riviera Maya. SUSTAINABILITY 2020. [DOI: 10.3390/su12062474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since 2011, tourism to Mexico’s Yucatán Peninsula has been heavily impacted by large masses of sargassum seaweed washing up on the beaches, with the largest seaweed event occurring in 2019. Seaweed deters beach tourism, potentially shifting tourism inland towards other activities such as swimming in cenotes (sinkholes). Our mixed methods study combined data from surveys of visitors to the region, interviews with tourists and tour operators, thematic analysis of newspaper articles, laws and policies and analysis of water samples from a cenote to understand the environmental impact on cenotes of this shifting tourism industry. We identified intentional efforts by the tourism industry to encourage cenote tourism in response to the seaweed problem, and our survey and interview data confirmed that tourists are choosing to visit cenotes in lieu of beaches. Water samples from one tourist cenote in 2019 indicated increased pollution relative to previous years. Current regulations and management of tourist cenotes are weak, creating the potential for significant long term harm to the environment and to the water sovereignty of surrounding communities. Regulation of cenotes should be strengthened to protect these fragile karst ecosystems and to give local and indigenous residents a formal voice in the management process.
Collapse
|
213
|
Kharbouche L, Gil García MD, Lozano A, Hamaizi H, Martínez Galera M. Determination of personal care products in water using UHPLC–MS after solid phase extraction with mesoporous silica‐based MCM‐41 functionalized with cyanopropyl groups. J Sep Sci 2020; 43:2142-2153. [DOI: 10.1002/jssc.201901148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Leila Kharbouche
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Département de Chimie, Laboratoire de synthèse organique appliquéeUniversité Oran1 Oran Algeria
| | - María Dolores Gil García
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Campus de Excelencia Internacional Agroalimentario CeiA3 Almería Spain
| | - Ana Lozano
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Campus de Excelencia Internacional Agroalimentario CeiA3 Almería Spain
| | - Hadj Hamaizi
- Département de Chimie, Laboratoire de synthèse organique appliquéeUniversité Oran1 Oran Algeria
| | - María Martínez Galera
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Campus de Excelencia Internacional Agroalimentario CeiA3 Almería Spain
| |
Collapse
|
214
|
Wang H, Jin M, Mao W, Chen C, Fu L, Li Z, Du S, Liu H. Photosynthetic toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) on green algae Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136176. [PMID: 31972914 DOI: 10.1016/j.scitotenv.2019.136176] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
The widespread use of pharmaceuticals and personal care products (PPCPs) has raised serious concerns regarding their potential ecotoxicological effects. We examined the photosynthetic toxicity of four non-steroidal anti-inflammatory drugs (NSAIDs), i.e. ibuprofen (rac-IBU and S-(+)-IBU), aspirin (ASA) and ketoprofen (KEP) on the green alga Scenedesmus obliquus. Our results showed that NSAIDs exerted inhibitory effects on algal growth; the IC50-24h of S-(+)-IBU, rac-IBU, ASA, and KEP was 123.29, 107.91, 103.05, and 4.03 mg/L, respectively. KEP was the most toxic, ASA was slightly more toxic than rac-IBU, and S-(+)-IBU was the least toxic. NSAIDs adversely affected the cellular ultrastructure, as evident from plasmolysis, chloroplast deformation and disintegration. NSAID treatments decreased the chlorophyll and carotenoid content, and chlorophyll fluorescence parameters such as minimum fluorescence yield (F0), maximum fluorescence yield (Fm), maximum photochemical quantum yield (Fv/Fm), PSII (photosystem II) effective quantum yield [Y(II)], photosynthetic electron transfer rate (ETR), and the photochemical quenching (qP), were also adversely affected. Algal photosynthetic and respiratory rates decreased following NSAID treatments, and the expression of genes involved in photosynthetic electron transport (psaA, psaB, psbB, psbD, and rbcL) was down-regulated. Furthermore, the functioning of the photosynthetic electron transport chain from PSI (photosystem I) to PSII, carbon assimilation, and photorespiration were affected. Our results suggest that NSAIDs can exert considerable toxic effects on the photosynthetic system of S. obliquus. These results provide a basis for evaluating the environmental safety of NSAIDs.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenfeng Mao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Cijia Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Linya Fu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhe Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
215
|
Mokhtari M, Hamaizi H, Gil García M, Martínez Galera M. Synthesis and characterization of a sulfonic species-based mesoporous sorbent for the pre-concentration of nine personal care products in wastewater and swimming pool water. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
216
|
Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117672] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
217
|
Ku PC, Liu TY, Lee SH, Kung TA, Wang WH. An environmentally friendly strategy for determining organic ultraviolet filters in seawater using liquid-phase microextraction with liquid chromatography-tandem mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9818-9825. [PMID: 31925700 DOI: 10.1007/s11356-020-07599-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Benzophenone-3, benzophenone-8, and 4-methylbenzylidene camphor are used in sunscreens because they can protect the skin from UV radiation. The widespread use of organic UV filters may mean that they directly or indirectly enter seawater during recreational activities or through sewage discharge. In this study, a simple and efficient method using 1-octanol:isooctane (2:8, v/v) as an extraction solvent and liquid chromatography-electrospray tandem mass spectrometry was developed to measure trace levels of organic UV filters in seawater samples. This proposed method proved to be a highly sensitive, low-cost, and green analytical tool that requires minimal sample preparation. The method was validated and it exhibited favorable performance as well as acceptable accuracy (67 to 115%), precision (2.1 to 7.3%), coefficients of determination (0.9952 < R2 < 0.9987), sensitivity (limits of quantification [3.3 to 5.7 ng L-1]), and an acceptable matrix effect (87 to 99%). This methodology was successfully applied to analyze seawater taken from Kenting National Park located in the Hengchun Peninsula of southern Taiwan. Benzophenone-3 was detected at all sampling sites and at a higher concentration than the other organic UV filters. The highest concentration of benzophenone-3 was 514.6 ng L-1 in a sample collected from Baisha Beach.
Collapse
Affiliation(s)
- Ping-Chang Ku
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung, 80424, Taiwan
| | - Ting-Yu Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung, 80424, Taiwan
| | - Shu Hui Lee
- Center of General Education, National Kaohsiung University of Science and Technology, No. 415, Jiangong Road, Kaohsiung, 80778, Taiwan
| | - Te-An Kung
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Wei-Hsien Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
218
|
Abstract
Cosmetic products are used in large quantities across the world. An increasing number of chemical compounds are being added to the formulation of cosmetic products as additives, fragrances, preservatives, stabilizers, surfactants, dye and shine to potentiate their quality, property and shelf life. Owing to their widespread use, active residues of cosmetic products are continuously introduced into the environment in several ways. Many of these chemicals are bioactive and are characterized by potential bioaccumulation ability and environmental persistence, thus exerting a major risk to humans and the health of ecosystems. Hence, the indiscriminate consumption of cosmetics may present a looming issue with significant adverse impacts on public health. This review intends to spotlight a current overview of toxic ingredients used in formulating cosmetics such as parabens, triclosan, benzalkonium chloride, 1,4-dioxane, plastic microbeads, formaldehyde, diazolidinyl urea, imidazolidinyl urea, sunscreen elements (organic and inorganic UV filters) and trace metals. Specific focus is given to illustrate the biological risks of these substances on human health and aquatic system in terms of genotoxicity, cytotoxicity, neurotoxicity mutagenicity, and estrogenicity. In addition to conclusive remarks, future directions are also suggested.
Collapse
|
219
|
de Oliveira M, Frihling BEF, Velasques J, Filho FJCM, Cavalheri PS, Migliolo L. Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135568. [PMID: 31846817 DOI: 10.1016/j.scitotenv.2019.135568] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 04/13/2023]
Abstract
Emerging contaminants are increasingly present in the environment, and their appearance on both the environment and health of living beings are still poorly understood by society. Conventional sewage treatment facilities that are under validity and were designed years ago are not developed to remove pharmaceutical compounds, their main focus is organic and bacteriological removal. Pharmaceutical residues are associated directly with quantitative production aspects as well as inadequate waste management policies. Persistent classes of emerging compounds such as xenobiotics present molecules whose physicochemical properties such as small molecular size, ionizability, water solubility, lipophilicity, polarity and volatility make degradability, identification and quantification of these complex compounds difficult. Based on research results showing that there is a possibility of risk to human and environmental health the presence of these compounds in the environment this article aimed to review the main pharmaceutical and xenobiotic residues present in the environment, as well as to present the most common methodologies used. The most commonly used analytical methods for identifying these compounds were HPLC and Gas Chromatography coupled with mass spectrometry with potential for characterize complex substances in the environment with low concentrations. An alternative and low-cost technology for emerging compound treatment demonstrated in the literature with a satisfactory performance for several types of sewage such as domestic sewage, wastewater and agroindustrial, was the Wetlands Constructed. The study was able to identify the main compounds that are being found in the environment and identify the most used analytical methods to identify and quantify these compounds, bringing some alternatives combining technologies for the treatment of compounds. Environmental contamination is eminent, since the production of emerging compounds aims to increase along with technological development. This demonstrates the need to explore and aggregate sewage treatment technologies to reduce or prevent the deposition of these compounds into the environment.
Collapse
Affiliation(s)
- Milina de Oliveira
- Departamento de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | | | - Jannaina Velasques
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Fernando Jorge Corrêa Magalhães Filho
- Departamento de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande, Brazil; Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | | | - Ludovico Migliolo
- Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
220
|
Estimation of the Discharge of Sunscreens in Aquatic Environments of the Mexican Caribbean. ENVIRONMENTS 2020. [DOI: 10.3390/environments7020015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tourist growth in Quintana Roo, Mexico has brought with it an increase of pollution by sunscreens to aquatic ecosystems, which represents an environmental risk because of the chemical components of sunscreens that can negatively affect human health and aquatic ecosystems. However, the magnitude of pollution in aquatic environments is unknown. Consequently, we sought to estimate the contamination by sunscreens based on usage and tourism statistics. Our estimate indicates that the water in Quintana Roo will receive nearly 4367.25 tons of chemicals from sunscreens used by residents and tourists over a period of 18 years (2007 to 2025). On average, each tourist stays in Quintana Roo for 3.45 days, and 89.9% of these visitors apply sunscreen, although only the 83.7% engage in water activities. Additionally, 30.4% of residents engage in water activities for an average of 1.5 days/year. We considered direct sunscreen contaminant contamination, which occurs from the application of sunscreen and subsequent water activities, as well as indirect contamination, which occurs when people wash their skin with drinking water that then enters the drainage system. Our analysis indicated that the greatest contribution of sunscreen to the karst aquifer of Quintana Roo, is direct. Chemicals dissolved in water are a danger to aquatic life and human health.
Collapse
|
221
|
Yang L, Zhou Y, Shi B, Meng J, He B, Yang H, Yoon SJ, Kim T, Kwon BO, Khim JS, Wang T. Anthropogenic impacts on the contamination of pharmaceuticals and personal care products (PPCPs) in the coastal environments of the Yellow and Bohai seas. ENVIRONMENT INTERNATIONAL 2020; 135:105306. [PMID: 31881428 DOI: 10.1016/j.envint.2019.105306] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are recognized as one emerging group of environmental contaminants, capturing worldwide attention. These chemicals, closely connected to anthropogenic activities, are mainly transported through aquatic environments and reach coastal areas, eventually entering ocean offshore. Thus, this study concentrated on the 30 PPCPs in coastal waters of the Yellow and Bohai seas (77 sites), a fast-growing area with intensive anthropogenic activities. In general, the total concentrations of PPCPs in Chinese coastal waters (0.880-1194 ng L-1) greatly varied and were relatively greater than those (9.91-442 ng L-1) in Korean coastal waters. Sulfamethoxazole, sulfamethazine, oxytetracycline, ofloxacin, roxithromycin, anhydro-erythromycin, and caffeine were the seven predominant PPCPs in the coastal waters of study area. Further, we established the Predicted PPCPs Contamination Indicator (PPCI) to address potential anthropogenic activities being associated with site-specific PPCPs contamination. Three anthropogenic factors to PPCPs contamination were proven as the most influential, including (1) quantity of wastewater discharge, (2) gross product of meat, poultry, eggs and milk, and (3) gross aquatic product. The relatively high PPCI values appeared in Tianjin, Dalian, Tangshan, Yantai, and Qingdao in China and Gyeonggi and Jeonbuk in South Korea, which exhibited fairly good consistency with the corresponding PPCPs concentrations. A mini-review of the global PPCPs distributions revealed that seven priority PPCPs found in this study distributed widely in Asia rather than Europe, North America, and Australia. In general, global PPCPs contamination also reflected site- and region-specific distributions, suggesting varying usages and sources cross the region and/or country. Finally, the risk assessment suggested that ofloxacin and anhydro-erythromycin, with 36.4% and 23.4% sites higher than medium risks respectively, posed relatively high risks to sensitive algal species, Microcystis aeruginosa and Selenastrum capricornutum. Overall, the ecological risks of exposure of PPCPs in the Yellow and Bohai seas were higher compared to other regions of the world, thus the bilateral management of PPCPs between China and South Korea needs an immediate attention.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqiao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongfa Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
222
|
Freitas R, Silvestro S, Coppola F, Costa S, Meucci V, Battaglia F, Intorre L, Soares AMVM, Pretti C, Faggio C. Toxic impacts induced by Sodium lauryl sulfate in Mytilus galloprovincialis. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110656. [PMID: 31927089 DOI: 10.1016/j.cbpa.2020.110656] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Pharmaceuticals and personal care products (PPCPs) are continuously dispersed into the environment, as a result of human and veterinary use, reaching aquatic coastal systems and inhabiting organisms. However, information regarding to toxic effects of these compounds towards marine invertebrates is still scarce, especially in what regards to metabolic capacity and oxidative status alterations induced in bivalves after chronic exposure. In the present study, the toxic impacts of Sodium lauryl sulfate (SLS), an anionic surfactant widely used as an emulsifying cleaning agent in household and cosmetics, were evaluated in the mussel Mytilus galloprovincialis, after exposure for 28 days to different concentrations (0.0; 0.5; 1.0; 2.0 and 4.0 mg/L). For this, effects on mussels respitation rate, metabolic capacity and oxidative status were evaluated. The obtained results indicate a significant decrease on mussel's respiration rate after exposure to different SLS concentrations, an alteration that was accompanied by a decrease of bioconcentration factor along the increasing exposure gradient, especially at the highest exposure concentration. Nonetheless, the amount of SLS accumulated in organisms originated alterations in mussel's metabolic performance, with higher metabolic capacity up to 2.0 mg/L followed by a decrease at the highest tested concentration (4.0 mg/L). Mussels exposed to SLS revealed limited antioxidant defense mecanhisms but cellular damage was only observed at the highest exposure concentration (4.0 mg/L). In fact, up to 2.0 mg/L of SLS limited toxic impacts were observed, namely in terms of oxidative stress and redox balance. However, since mussel's respiration rate was greatly affected by the presence of SLS, the present study may highlight the potential threat of SLS towards marine bivalves, limiting their filtration capacity and, thus, affecting their global physiological development (including growth and reproduction) and ultimely their biochemical performance (afecting their defense capacity towards stressful conditons).
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Serena Silvestro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
223
|
Kwach BO, Shikuku VO. Microplastics as Emerging Contaminants. ADVANCES IN ENVIRONMENTAL ENGINEERING AND GREEN TECHNOLOGIES 2020. [DOI: 10.4018/978-1-7998-1871-7.ch003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ever-increasing production of plastics and concomitant poor plastic waste disposal systems explain the recent rising concerns over the occurrence of microplastics in freshwater resources. Microplastics are presently recognized as emerging contaminants owing to the increasing reports on their occurrence in the environment and the associated toxicological effects. This chapter discusses the recent trends in the monitoring of microplastics in freshwater resources, the toxicological effects of microplastics, and the sampling and analysis techniques available for detection and quantification. The challenges in analysis and comparison of various studies and future prospects have also been highlighted.
Collapse
|
224
|
Narla S, Lim HW. Sunscreen: FDA regulation, and environmental and health impact. Photochem Photobiol Sci 2020; 19:66-70. [DOI: 10.1039/c9pp00366e] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Despite the concern for potential environmental and health effects, the FDA still considers organic UVR filters safe for use. For those who are concerned, inorganic UVR filter (namely, zinc oxide and titanium dioxide)-based sunscreens can be used.
Collapse
Affiliation(s)
- Shanthi Narla
- Department of Dermatology
- Henry Ford Health System
- Detroit
- USA
| | - Henry W. Lim
- Department of Dermatology
- Henry Ford Health System
- Detroit
- USA
| |
Collapse
|
225
|
Li Y, Zhang L, Ding J, Liu X. Prioritization of pharmaceuticals in water environment in China based on environmental criteria and risk analysis of top-priority pharmaceuticals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109732. [PMID: 31698331 DOI: 10.1016/j.jenvman.2019.109732] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/01/2019] [Accepted: 10/16/2019] [Indexed: 05/17/2023]
Abstract
Numerous studies have shown that a wide range of pharmaceuticals are present in the environment and many of their adverse biological effects on the aquatic ecosystem and human health are unknown. Due to the high population density and large number of pharmaceuticals produced and consumed in China, a systematic approach is needed to identify pharmaceuticals that require greater attention. The present study provides a ranking of pharmaceuticals in China in terms of their occurrence (O), persistence, bioaccumulation, and toxicity (PBT) based on the predicted environmental concentration (PEC). The total and partial ranking method implemented in the decision analysis by ranking techniques (DART) tool was used, which is an easy-to-use tool for the analysis of datasets. Using the DART approach, 10 pharmaceuticals were selected as priority compounds. These pharmaceuticals included antibiotics, anti-inflammatory and antilipidemic. In order to identify the characteristics of the priority pharmaceuticals, ecotoxicological endpoints were considered. The results of this study and the priority list facilitate the selection of candidate pollutants in future monitoring studies.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Luyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
226
|
Guo Q, Wei D, Zhao H, Du Y. Predicted no-effect concentrations determination and ecological risk assessment for benzophenone-type UV filters in aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113460. [PMID: 31685328 DOI: 10.1016/j.envpol.2019.113460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 05/21/2023]
Abstract
Benzophenones (BPs), a group of widely used ultraviolet filters, have been frequently detected out in multiple environment matrices even in organism bodies. Although a variety of toxicological effects of BPs have been disclosed recently, it is barely to evaluate the potential ecological risk of BPs due to lack of reference criteria. Therefore, the determination of predicted no-effect concentration (PNEC) values is necessary for assessing ecological risk of BPs and for protecting safety of aquatic organisms. The toxicological data of 14 BPs from both in vivo tests on aquatic organisms and in vitro tests on strains/cell lines were collected from previous reports, and two methods including assessment factor (AF) and species sensitivity distribution (SSD) were applied to calculate PNECs, respectively. Four groups of PNECs were obtained and compared, a final PNEC value was recommended for each BP based on reliable and conservative consideration. With these PNECs values, the risk quotients of 8 BPs from 35 ambient freshwater samples were calculated, the results demonstrated that 3 BPs including 2,2',4,4'-tetrahydroxyl-BP, 2-hydroxyl-4-methoxyl- BP, and 2-hydroxyl-4-methoxyl-5-sulfonic acid-BP exhibited high ecological risk, and the ecological risk posed by BPs in River Tiff in UK was great. It is anticipated that these results would provide useful reference for assessing and managing BP-type compounds, and for selecting toxicity data and methods to derive PNECs for emerging contaminants.
Collapse
Affiliation(s)
- Qiaorong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huimin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
227
|
Hellweger FL, Vick C, Rückbeil F, Bucci V. Fresh Ideas Bloom in Gut Healthcare to Cross-Fertilize Lake Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14099-14112. [PMID: 31647664 DOI: 10.1021/acs.est.9b04218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Harmful bacteria may be the most significant threat to human gut and lake ecosystem health, and they are often managed using similar tools, like poisoning with antibiotics or algicides. Out-of-the-box thinking in human microbiome engineering is leading to novel methods, like engineering bacteria to kill pathogens, "persuade" them not to produce toxins, or "mop up" their toxins. The bacterial agent can be given a competitive edge via an exclusive nutrient, and they can be engineered to commit suicide once their work is done. Viruses can kill pathogens with specific DNA sequences or knock out their antibiotic resistance genes using CRISPR technology. Some of these ideas may work for lakes. We critically review novel methods for managing harmful bacteria in the gut from the perspective of managing toxic cyanobacteria in lakes, and discuss practical aspects such as modifying bacteria using genetic engineering or directed evolution, mass culturing and controlling the agents. A key knowledge gap is in the ecology of strains, like toxigenic vs nontoxigenic Microcystis, including allelopathic and Black Queen interactions. Some of the "gut methods" may have future potential for lakes, but there presently is no substitute for established management approaches, including reducing N and P nutrient inputs, and mitigating climate change.
Collapse
Affiliation(s)
- Ferdi L Hellweger
- Water Quality Engineering , Technical University of Berlin , Berlin 10623 , Germany
| | - Carsten Vick
- Water Quality Engineering , Technical University of Berlin , Berlin 10623 , Germany
| | - Fiona Rückbeil
- Water Quality Engineering , Technical University of Berlin , Berlin 10623 , Germany
| | - Vanni Bucci
- Department of Bioengineering , University of Massachusetts Dartmouth , North Dartmouth , Massachusetts 02747 , United States
| |
Collapse
|
228
|
Li Y, Ding J, Zhang L, Liu X, Wang G. Occurrence and ranking of pharmaceuticals in the major rivers of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133991. [PMID: 31465916 DOI: 10.1016/j.scitotenv.2019.133991] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Residual pharmaceuticals have received widespread attention worldwide due to their continuous release and potential hazard to the environment. As a result of rapid development and a large population, China has become a country with high production and consumption of pharmaceuticals. This may be the main reason for the high detection frequencies and concentrations of pharmaceuticals in the aquatic environment in China. Rivers represent an important water resource and play an important role in the sustainable development of the Chinese economy and society. This study summarizes the occurrence of frequently detected pharmaceuticals in major rivers. A hazard score based on the occurrence, exposure potential, and environmental effects of pharmaceuticals was calculated and a prioritization approach was used to rank 166 pharmaceuticals that were detected in the aquatic environment of major rivers in China. The priority list provides a basis for selecting candidate pharmaceuticals for future site-specific monitoring in rivers.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Luyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
229
|
Parrish SC, Dormio SM, Richards SL, McCoy KA, McCoy MW. Life in a contaminant milieu: PPCP mixtures generate unpredictable outcomes across trophic levels and life stages. Ecosphere 2019. [DOI: 10.1002/ecs2.2970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Samantha C. Parrish
- Department of Biology East Carolina University 108 Howell Science Complex Greenville North Carolina USA
| | - Samantha M. Dormio
- Department of Biology East Carolina University 108 Howell Science Complex Greenville North Carolina USA
| | - Stephanie L. Richards
- Department of Health Education and Promotion Environmental Health Program East Carolina University 3403 Carol Belk Building Greenville North Carolina USA
| | - Krista A. McCoy
- Department of Biology East Carolina University 108 Howell Science Complex Greenville North Carolina USA
| | - Michael W. McCoy
- Department of Biology East Carolina University 108 Howell Science Complex Greenville North Carolina USA
| |
Collapse
|
230
|
Lu Y, Jin H, Shao B, Xu H, Xu X. Physiological and biochemical effects of triclocarban stress on freshwater algae. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
231
|
Portrais KB, Stevens MA, Trask CN, Mundy SN, Szetela JM, Bleakley BH, Dzieweczynski TL. Exposure to the ultraviolet filter benzophenone-3 (BP3) interferes with social behaviour in male Siamese fighting fish. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
232
|
Jiang X, Qu Y, Zhong M, Li W, Huang J, Yang H, Yu G. Seasonal and spatial variations of pharmaceuticals and personal care products occurrence and human health risk in drinking water - A case study of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133711. [PMID: 31400687 DOI: 10.1016/j.scitotenv.2019.133711] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 05/11/2023]
Abstract
A case study was implemented to investigate the seasonal and spatial variations of 43 kinds of pharmaceuticals and personal care products (PPCPs) in the water supply system of Changzhou in China. The source water, water samples in each unit along the drinking water treatment process, as well as the drinking water product in both urban and rural area in different seasons have been included. The total concentrations of detected PPCPs range from 6.37 ng/L to 809.28 ng/L, the level of which is higher than other reports in China. In summer, more kinds of PPCPs were at higher concentrations in drinking water in urban area in spite of that fewer kinds of PPCPs were detected in raw water than in winter. It mainly because some kinds of PPCPs, which can be still detected under higher temperature and stronger irradiation in summer, were hardly removed by the drinking water treatment plant (DWTP). Therefore, people are at relatively higher health risk by PPCPs exposure through the intake of drinking water during summer than winter. The advanced treatment which applied GAC (granular activated carbon) filtration improved 2% to 46% of removal efficiency on PPCPs compared with conventional process, for which advanced treatment processes should be advocated in more DWTPs in China. In rural private wells, the situation is more worrying. Twelve more kinds of PPCPs were detected in rural drinking water than in urban, of which the max concentration reached 107 ng/L. The total concentrations of PPCPs in drinking water in rural area were obviously higher than in urban area, which lead to risk quotient (RQ) values of 4-6 times higher.
Collapse
Affiliation(s)
- Xinshu Jiang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Yingxi Qu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Mengmeng Zhong
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Wenchao Li
- CSD IDEA (Beijing) Environment Test & Analysis Co., Ltd., Beijing 100192, China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China.
| | - Hongwei Yang
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
233
|
An Insight into Ingredients of Toxicological Interest in Personal Care Products and A Small–Scale Sampling Survey of the Greek Market: Delineating a Potential Contamination Source for Water Resources. WATER 2019. [DOI: 10.3390/w11122501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wastewater is not a waste but a valuable resource that should be reused. Nevertheless, it should be devoid of physical, chemical, and microbiological parameters that can harm the consumer. Along with the multitude of possible pollutants found in wastewater treatment plants (WWTPs), emerging pollutants, such as Personal Care Products (PCPs), have arisen. The present research examines some of the main ingredients commonly found in PCPs, focusing on their toxicological profile on their occurrence in WWTPs influents and effluents worldwide and on their persistence and biodegradability. A small-scale market sampling of PCPs was performed in Athens, Greece, in June 2019, and their individual ingredients were recorded, coded according to their main activity, scanned for the presence of ingredients of important toxicological profile, and finally analyzed for the presence of other candidates of toxicological interest. Results show that some ingredients of concern (i.e., parabens and triclosan) are a decreasing trend. On the other hand, information on the presence of synthetic musks and perfume synthesis is scarce and encumbered by brand protection. Finally, UV filters are numerous, and they are used in various combinations, while other ingredients of toxicological interest are also present. Since the reclaimed water may well be used to cover irrigation needs in Greek areas with water deficiency or to enrich bodies of surface water, it is important to know what PCP ingredients are on the rise in the market, to monitor their presence in WWTPs influents and effluents and to extend research on their environmental fate and behavior.
Collapse
|
234
|
Juksu K, Zhao JL, Liu YS, Yao L, Sarin C, Sreesai S, Klomjek P, Jiang YX, Ying GG. Occurrence, fate and risk assessment of biocides in wastewater treatment plants and aquatic environments in Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1110-1119. [PMID: 31470474 DOI: 10.1016/j.scitotenv.2019.07.097] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 05/05/2023]
Abstract
This study investigated the occurrence and fate of 19 biocides in 8 wastewater treatment plants and receiving aquatic environments (both freshwater and estuarine systems) in Thailand. The predominant compound in wastewater and surface water was methylparaben with the maximum concentration of 15.2 μg/L detected in the receiving river, while in sludge and sediment was triclocarban with the maximum concentration of 8.47 μg/g in sludge. Triclosan was the main contaminants in the fish samples with the maximum concentration of 1.20 μg/g. Similar results of biocides were found in the estuarine system in Pattaya city, with the maximum concentration of 185 ng/L in sea water for methylparaben, and 242 ng/g in estuarine sediment for triclocarban. The aqueous removal rates for the biocides ranged from 15% to 95% in average. The back estimated-usage and total estimated emission of Ʃ19 biocides in Thailand was 279 and 202 tons/year, respectively. Preliminary ecological risk assessment showed that clotrimazole and triclosan could pose high risks to aquatic organisms in the receiving aquatic environments.
Collapse
Affiliation(s)
- Kanokthip Juksu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Li Yao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Charoon Sarin
- Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Siranee Sreesai
- Department of Environmental Health Science, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Pantip Klomjek
- Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
235
|
Ho WK, Leung KSY. Sorption and desorption of organic UV filters onto microplastics in single and multi-solute systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113066. [PMID: 31454575 DOI: 10.1016/j.envpol.2019.113066] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/03/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Sorption studies of organic pollutants by microplastics (MPs) in single-solute systems are well established in the literature. However, actual aquatic environments always contain a mixture of contaminants. Prediction of the fate and biological effects of MPs-mediated chemical exposure requires a better understanding of sorption-desorption processes of multiple organic contaminants by MPs. In this study, the altered sorption and desorption behaviors of individual organic UV filters (BP-3 and 4-MBC) in the presence of cosolutes (BP-3, 4-MBC, EHMC and OC) on two types of MPs (LDPE and PS) were examined. In most cases, co-occurrence of other organic UV filters appeared to have an antagonistic effect on the sorption of primary solute, which was consistent with trends found in previous studies. Nevertheless, the sorption uptake of 4-MBC as primary solute on PS was enhanced in the presence of cosolute(s), arising presumably from solute multilayer formation caused by laterally attractive π-π interactions between adsorbed cosolute(s) and 4-MBC molecules. Such formation of multilayer sorption in multi-solute systems depends on the solute hydrophobicity and concentration as well as inherent sorptivity of MPs. Our further desorption experiments revealed that the bioaccessibility of primary solute was significantly elevated with cosolutes, even though competitive sorption was observed under the same experimental conditions. These findings supplement the current knowledge on sorption mechanisms and interactions of multiple organic contaminants on MPs, which are critical for a comprehensive environmental risk assessment of both MPs and hazardous anthropogenic contaminants in natural environments.
Collapse
Affiliation(s)
- Wai-Kit Ho
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
236
|
Araújo CVM, Gómez L, Silva DCVR, Pintado-Herrera MG, Lara-Martín PA, Hampel M, Blasco J. Risk of triclosan based on avoidance by the shrimp Palaemon varians in a heterogeneous contamination scenario: How sensitive is this approach? CHEMOSPHERE 2019; 235:126-135. [PMID: 31255752 DOI: 10.1016/j.chemosphere.2019.06.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 05/06/2023]
Abstract
As the exposure of organisms to contaminants can provoke harmful effects, some organisms try to avoid a continuous exposure by using different strategies. The aim of the current study was to assess the ability of the shrimp Palaemon varians to detect a triclosan gradient and escape to less contaminated areas. Two multi-compartmented exposure systems (the linear system and the HeMHAS-Heterogeneous Multi-Habitat Assay System) were used and then results were compared. Finally, it was aimed how sensitive the avoidance response is by comparing it with other endpoints through a sensitivity profile by biological groups and the species sensitive distribution. The distribution of the shrimps along the triclosan gradient was dependent on the concentrations, not exceeding 3% for 54 μg/L in the linear system and 7% for 81 μg/L in the HeMHAS; 25% of organisms preferred the compartment with the lowest concentrations in both systems. Half of the population seems to avoid concentrations around 40-50 μg/L. The triclosan concentration that might start (threshold) to trigger an important avoidance (around 20%) was estimated to be of 18 μg/L. The profile of sensitivity to triclosan showed that avoidance by shrimps was less sensitive than microalgae growth and avoidance by guppy; however, it might occur even at concentrations considered safe for more than 95% of the species. In summary, (i) the HeMHAS proved to be a suitable system to simulate heterogeneous contamination scenarios, (ii) triclosan triggered the avoidance response in P. varians, and (iii) the avoidance was very sensitive compared to other ecotoxicological responses.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain.
| | - Livia Gómez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain; Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Daniel C V R Silva
- Institute of Xingu Studies, Federal University of Southern and Southeastern Pará, São Félix do Xingu, Pará, Brazil
| | - Marina G Pintado-Herrera
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Miriam Hampel
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
237
|
Lawrence JR, Waiser MJ, Swerhone GD, Roy JL, Paule A, Korber DR. N,N-Diethyl-m-Toluamide Exposure at an Environmentally Relevant Concentration Influences River Microbial Community Development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2414-2425. [PMID: 31365141 PMCID: PMC6856691 DOI: 10.1002/etc.4550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/29/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Studies of the South Saskatchewan River confirmed that N,N-diethyl-m-toluamide (DEET) is ubiquitous at 10 to 20 ng/L, whereas in effluent-dominated Wascana Creek, levels of 100 to 450 ng/L were observed. Effects of DEET exposure were assessed in microbial communities using a wide variety of measures. Communities developed in rotating annular reactors with either 100 or 500 ng/L DEET, verified using gas chromatography-mass spectrometry analyses. Microscale analyses indicated that both DEET concentrations resulted in significant (p < 0.05) declines in photosynthetic biomass, whereas bacterial biomass was unaffected. There was no detectable effect of DEET on the levels of chlorophyll a. However, pigment analyses indicated substantial shifts in algal-cyanobacterial community structure, with reductions of green algae and some cyanobacterial groups at 500 ng/L DEET. Protozoan/micrometazoan grazers increased in communities exposed to 500 ng/L, but not 100 ng/L, DEET. Based on thymidine incorporation or utilization of carbon sources, DEET had no significant effects on metabolic activities. Fluorescent lectin-binding analyses showed significant (p < 0.05) changes in glycoconjugate composition at both DEET concentrations, consistent with altered community structure. Principal component cluster analyses of denaturing gradient gel electrophoresis indicated that DEET exposure at either concentration significantly changed the bacterial community (p < 0.05). Analyses based on 16S ribosomal RNA of community composition confirmed changes with DEET exposure, increasing detectable beta-proteobacteria, whereas actinobacteria and acidimicrobia became undetectable. Further, cyanobacteria in the subclass Oscillatoriophycideae were similarly not detected. Thus, DEET can alter microbial community structure and function, supporting the need for further evaluation of its effects in aquatic habitats. Environ Toxicol Chem 2019;38:2414-2425. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- John R. Lawrence
- Environment and Climate Change CanadaSaskatoonSaskatchewanCanada
| | - Marley J. Waiser
- Environment and Climate Change CanadaSaskatoonSaskatchewanCanada
| | | | - Julie L. Roy
- Environment and Climate Change CanadaSaskatoonSaskatchewanCanada
| | - Armelle Paule
- Global Institute for Water SecurityUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Darren R. Korber
- Department of Food and Bioproducts SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
238
|
Popiół J, Piska K, Słoczyńska K, Bień A, Żelaszczyk D, Gunia-Krzyżak A, Koczurkiewicz P, Wójcik-Pszczoła K, Marona H, Pękala E. Microbial biotransformation of some novel hydantoin derivatives: Perspectives for bioremediation of potential sunscreen agents. CHEMOSPHERE 2019; 234:108-115. [PMID: 31207416 DOI: 10.1016/j.chemosphere.2019.05.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Having identified novel hydantoin derivatives (compounds 1-5) demonstrating promising photoprotective capacity against UV radiation, and understainding the problem of the biotic and abiotic degradation of UV filters, the aim of the study was to evaluate their metabolic fate with the environmental fungus Cunninghamella echinulata. In parallel, compound 1 in vitro microsomal metabolic pattern was evaluated. Finally, in silico toxicity of test compounds and their biotransformation products was estimated, and parent compounds photostability was assessed. The study demonstrated the capacity for C. echinulata to metabolize 1-5, which were biotransformed to a greater extent than the standard UV filter. O-dealkylation of the side chains attached to the phenyl or hydantoin rings, and hydroxylation of the phenyl ring occurred during microbial transformation. O-dealkylation product was a unique metabolite observed in microsomal biotransformation of 1, being its intrinsic clearance in the medium category range. In silico study demonstrated that compounds 1-5 have low toxicity risk. Among the resulting metabolites, four can increase the risk of reproductive effects as shown by OSIRIS prediction. Noteworthy, all indicated metabolites belong to minor metabolites, except for compound 3 major metabolite. Moreover, the results of the photostability study showed that 1-5 were considered to be photostable. To sum up, the obtained in vitro biotransformation, photostability, and in silico toxicity results encourage further studies on hydantoin derivatives as potential UV photoprotective agents. The presented biotransformation profile of compounds 1-5 by C. echinulata suggests that these compounds may follow a similar biodegradation fate when released into the environment.
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland; Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Anna Bień
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| |
Collapse
|
239
|
Holt EL, Stavros VG. Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2019.1663062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emily L. Holt
- Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | | |
Collapse
|
240
|
Hu L, Tian M, Feng W, He H, Wang Y, Yang L. Sensitive detection of benzophenone-type ultraviolet filters in plastic food packaging materials by sheathless capillary electrophoresis–electrospray ionization–tandem mass spectrometry. J Chromatogr A 2019; 1604:460469. [DOI: 10.1016/j.chroma.2019.460469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
|
241
|
Papadopoulou E, Haug LS, Sakhi AK, Andrusaityte S, Basagaña X, Brantsaeter AL, Casas M, Fernández-Barrés S, Grazuleviciene R, Knutsen HK, Maitre L, Meltzer HM, McEachan RRC, Roumeliotaki T, Slama R, Vafeiadi M, Wright J, Vrijheid M, Thomsen C, Chatzi L. Diet as a Source of Exposure to Environmental Contaminants for Pregnant Women and Children from Six European Countries. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107005. [PMID: 31617753 PMCID: PMC6867312 DOI: 10.1289/ehp5324] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Pregnant women and children are especially vulnerable to exposures to food contaminants, and a balanced diet during these periods is critical for optimal nutritional status. OBJECTIVES Our objective was to study the association between diet and measured blood and urinary levels of environmental contaminants in mother-child pairs from six European birth cohorts (n = 818 mothers and 1,288 children). METHODS We assessed the consumption of seven food groups and the blood levels of organochlorine pesticides, polybrominated diphenyl ethers, polychlorinated biphenyls (PCBs), per- and polyfluoroalkyl substances (PFAS), and heavy metals and urinary levels of phthalate metabolites, phenolic compounds, and organophosphate pesticide (OP) metabolites. Organic food consumption during childhood was also studied. We applied multivariable linear regressions and targeted maximum likelihood based estimation (TMLE). RESULTS Maternal high (≥ 4 times / week ) versus low (< 2 times / week ) fish consumption was associated with 15% higher PCBs [geometric mean (GM) ratio = 1.15 ; 95% confidence interval (CI): 1.02, 1.29], 42% higher perfluoroundecanoate (PFUnDA) (GM ratio = 1.42 ; 95% CI: 1.20, 1.68), 89% higher mercury (Hg) (GM ratio = 1.89 ; 95% CI: 1.47, 2.41) and a 487% increase in arsenic (As) (GM ratio = 4.87 ; 95% CI: 2.57, 9.23) levels. In children, high (≥ 3 times / week ) versus low (< 1.5 times / week ) fish consumption was associated with 23% higher perfluorononanoate (PFNA) (GM ratio = 1.23 ; 95% CI: 1.08, 1.40), 36% higher PFUnDA (GM ratio = 1.36 ; 95% CI: 1.12, 1.64), 37% higher perfluorooctane sulfonate (PFOS) (GM ratio = 1.37 ; 95% CI: 1.22, 1.54), and > 200 % higher Hg and As [GM ratio = 3.87 (95% CI: 1.91, 4.31) and GM ratio = 2.68 (95% CI: 2.23, 3.21)] concentrations. Using TMLE analysis, we estimated that fish consumption within the recommended 2-3 times/week resulted in lower PFAS, Hg, and As compared with higher consumption. Fruit consumption was positively associated with OP metabolites. Organic food consumption was negatively associated with OP metabolites. DISCUSSION Fish consumption is related to higher PFAS, Hg, and As exposures. In addition, fruit consumption is a source of exposure to OPs. https://doi.org/10.1289/EHP5324.
Collapse
Affiliation(s)
- Eleni Papadopoulou
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Line Småstuen Haug
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anne Lise Brantsaeter
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Sílvia Fernández-Barrés
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Helle Katrine Knutsen
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Lea Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Helle Margrete Meltzer
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Rosemary R. C. McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford, UK
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Remy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institut national de la santé et de la recherche médicale (Inserm), Centre national de la recherche scientifique (CNRS), University Grenoble Alpes, Institute for Advanced Biosciences, Joint Research Center (U1209), La Tronche, Grenoble, France
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Cathrine Thomsen
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
242
|
Faraone N, MacPherson S, Hillier NK. Behavioral responses of Ixodes scapularis tick to natural products: development of novel repellents. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:195-207. [PMID: 31564009 DOI: 10.1007/s10493-019-00421-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The spread of blacklegged ticks (Ixodes scapularis) and growing threat of Lyme disease transmission has increased demand for effective, safe and environmentally friendly repellent products. Plant-derived essential oils are natural products that exhibit insecticidal and repellant activities and represent a promising alternative to synthetic repellants. However, mechanisms by which ticks detect odor stimuli and how such stimuli may function as repellents are not well understood. We examined the repellent activity of selected essential oil components towards I. scapularis in short- and long-term dose-response trials. To determine the specific olfactory organs involved in detection of chemical stimuli, we tested tick behavioral response in repellency bioassays after removing appendages that house chemosensory sensilla (e.g., foretarsi or pedipalps). New prototype formulae were tested in longevity trials repelling up to 95% of tested ticks after 1 h post-application. This study provides new insight regarding tick olfaction and behavior, and innovative methods for selecting appropriate chemicals for development of novel plant-based repellent products for protection from ticks.
Collapse
Affiliation(s)
| | | | - N Kirk Hillier
- Biology Department, Acadia University, Wolfville, NS, Canada
| |
Collapse
|
243
|
Trujillo-Rodríguez MJ, Anderson JL, Dunham SJB, Noad VL, Cardin DB. Vacuum-assisted sorbent extraction: An analytical methodology for the determination of ultraviolet filters in environmental samples. Talanta 2019; 208:120390. [PMID: 31816753 DOI: 10.1016/j.talanta.2019.120390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022]
Abstract
Vacuum-assisted sorbent extraction (VASE) has been applied in combination with gas chromatography-mass spectrometry for the determination of UV filters in water samples. VASE is a variant of headspace extraction which was developed in conjunction with the sorbent pen (SP) technology. This technique combines the advantages of both stir-bar assisted extraction and headspace solid-phase microextraction. The SP traps allowed both reduced pressure in-vial extraction and direct thermal desorption via a unique gas chromatographic injection port. The main parameters that affect the performance of VASE, including both extraction and desorption conditions, were extensively optimized. Under optimum conditions, extraction required 10 mL of sample within 40 mL vials, pH 3.5, ~30 s of air-evacuation, 14 h incubation at 70 °C, stirring at 200 rpm, and a final water management step conducted at ~ -17 °C for 15 min. Optimal thermal desorption required preheating at 260 °C for 2 min followed by desorption at 300 °C for 2 min. The beneficial effect of reduced-pressure extraction was demonstrated by comparing the UV filter extraction time profiles collected using VASE to an analogous atmospheric pressure procedure, resulting in up to a 3-fold improvement under optimized conditions. The VASE methodology enabled simultaneous extractions using different SPs without compromising the method reproducibility, which increases the overall sample throughput. The method was characterized by low limits of detection, from 0.5 to 80 ng L-1, and adequate reproducibility, with inter-SP and inter-day relative standard deviation lower than 14%. Tap and lake water was successfully analyzed with the proposed methodology, resulting in relative recoveries of spiked samples ranging between 70.0 and 120%.
Collapse
Affiliation(s)
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| | | | | | | |
Collapse
|
244
|
Proctor K, Petrie B, Barden R, Arnot T, Kasprzyk-Hordern B. Multi-residue ultra-performance liquid chromatography coupled with tandem mass spectrometry method for comprehensive multi-class anthropogenic compounds of emerging concern analysis in a catchment-based exposure-driven study. Anal Bioanal Chem 2019; 411:7061-7086. [PMID: 31494686 PMCID: PMC6838033 DOI: 10.1007/s00216-019-02091-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023]
Abstract
This paper presents a new multi-residue method for the quantification of more than 142 anthropogenic compounds of emerging concern (CECs) in various environmental matrices. These CECs are from a wide range of major classes including pharmaceuticals, household, industrial and agricultural. This method utilises ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) for analysis of five matrices (three liquid and two solid) from wastewater treatment processes and the surrounding environment. Relative recoveries were predominantly between 80 and 120%; however, due to the complexity of the matrices used in this work, not all compounds were recovered in all matrices, from 138/142 analytes in surface water to 96/142 analytes in digested solids. Method quantification limits (MQLs) ranged from 0.004 ng L-1 (bisoprolol in surface water) to 3118 ng L-1 (creatinine in wastewater treatment work (WwTW) influent). The overall method accuracy was 107.0%, and precision was 13.4%. To test its performance, the method was applied to the range of environmental matrices at WwTWs in South West England. Overall, this method was found to be suitable for application in catchment-based exposure-driven studies, as, of the total number of analytes quantifiable in each matrix, 61% on average was found to be above their corresponding MQL. The results confirm the need for analysing both the liquid and solid compartments within a WwTW to prevent under-reporting of concentrations.
Collapse
Affiliation(s)
- Kathryn Proctor
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,Water Innovation & Research Centre, Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Bruce Petrie
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7JG, UK
| | - Ruth Barden
- Wessex Water Services Ltd., Claverton Down, Bath, BA2 7WW, UK
| | - Tom Arnot
- Water Innovation & Research Centre, Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. .,Water Innovation & Research Centre, Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
245
|
Fang TH, Lin CW, Kao CH. Occurrence and distribution of pharmaceutical compounds in the Danshuei River Estuary and the Northern Taiwan Strait. MARINE POLLUTION BULLETIN 2019; 146:509-520. [PMID: 31426188 DOI: 10.1016/j.marpolbul.2019.06.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Ten pharmaceutically active compounds (PhACs) were determined in northern Taiwan estuarine waters and Taiwan Strait (TS) seawater. The ecological risk of these PhACs was assessed using risk quotient (RQ), which is the ratio of the measured maximum concentration to the predicted no-effect concentration. Six PhACs were detected within the estuarine waters. Caffeine concentration (130-718 ng l-1) was the highest among the analyzed PhACs. The distribution of PhACs in the Danshuei River Estuary generally exhibited addition behavior, except that caffeine showed conservative behavior. Carbamazepine, gemfibrozil, caffeine, and ketoprofen were detected in TS seawaters. Their concentrations follow the sequence: gemfibrozil > ketoprofen > caffeine > carbamazepine. The caffeine concentrations in TS seawaters were 2-3 orders of magnitude lower than those in Danshuei estuarine waters. With few exceptions for caffeine, erythromycin, and sulfadiazine posing low risk in some estuarine waters, most of the RQ values were <0.01, suggesting no adverse effects on aquatic organisms.
Collapse
Affiliation(s)
- Tien-Hsi Fang
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Chen-Wei Lin
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Chih-Hsiang Kao
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan
| |
Collapse
|
246
|
Vimalkumar K, Seethappan S, Pugazhendhi A. Fate of Triclocarban (TCC) in aquatic and terrestrial systems and human exposure. CHEMOSPHERE 2019; 230:201-209. [PMID: 31103866 DOI: 10.1016/j.chemosphere.2019.04.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/05/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Triclocarban (TCC) is considered as contaminant of emerging concern (CEC), and ranked in the top 10 CEC occurrence. TCC is a high production volume synthetic chemical used extensively in various personal care products. This chemical will be released into the environment via incomplete wastewater treatment and untreated wastewater discharge. TCC and its transformation products (4,4'-dichlorocarbilide (DCC),1-(3-chlorophenyl)-3-phenylurea (MCC) and carbanilide (NCC),2'OH-TCC, 3'OH-TCC) were detected in the environmental matrices. Sediment organic carbon will influence TCC concentrations in suspended and bed sediments. TCC is an antimicrobial agent and also emerging endocrine disruptor that can cause immune dysfunction and affect human reproductive outcomes. Furthermore, TCC alters the expression of proteins related to binding and metabolism, skeletal muscle development and function, nervous system development and immune response. TCC has potential health risks in wildlife and humans. Several animal studies illustrate that it can cause various adverse effects, which can be monitored by antioxidant biomarkers (CAT, GST and LPO). Accumulation of TCC in organisms depends on the lipophilicity and bioavailability of TCC in sediment and water. TCC was continuously detected in aquatic system. TCC is a lipophilic compound, which can efficiently bind with lipid content. Women are more vulnerable to TCC due to substantially higher frequency and extended exposure to TCC. This review provides basic information of occurrence of TCC and the exposure levels in aquatic organisms. Several literature have shown the higher usage and human exposure levels of TCC, which provides useful information for the chemical management approaches.
Collapse
Affiliation(s)
- Krishnamoorthi Vimalkumar
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Sangeetha Seethappan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
247
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh AOO. Distribution and Chemical Analysis of Pharmaceuticals and Personal Care Products (PPCPs) in the Environmental Systems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3026. [PMID: 31438569 PMCID: PMC6747491 DOI: 10.3390/ijerph16173026] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/21/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
Abstract
PPCPs are found almost everywhere in the environment especially at an alarming rate and at very low concentration in the aquatic systems. Many methods-including pressurized hot water extraction (PHWE), pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE), and micro-assisted extraction (MAE)-have been employed for their extraction from both surface waters and biota. Solid-phase extraction (SPE) proved to be the best extraction method for these polar, non-volatile, and thermally unstable compounds in water. However, ultrasonic extraction works better for their isolation from sediment because it is cheap and consumes less solvent, even though SPE is preferred as a clean-up method for sediment samples. PPCPs are in groups of-acidic (e.g., diclofenac, ibuprofen, naproxen), neutral (e.g., caffeine, carbamazepine, fluoxetine), and basic pharmaceuticals, as well as antibiotics and estrogens amongst others. PPCPs which are present in trace levels (ng/L) are more often determined by liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and high-performance liquid chromatography-ultraviolent (HPLC-UV). Of these, LC-MS and LC-MS-MS are mostly employed for the analysis of this class of compounds, though not without a draw-back of matrix effect. GC-MS and GC-MS-MS are considered as alternative cost-effective methods that can also give better results after derivatization.
Collapse
Affiliation(s)
- C R Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa.
| | - A O Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa
| | - A I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - And O O Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
248
|
Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals — A new bioactive approach. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101541] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
249
|
Mihaich E, Capdevielle M, Urbach-Ross D, Gallagher S, Wolf J. Medaka (Oryzias latipes) Multigeneration Test with Triclosan. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1770-1783. [PMID: 31017693 DOI: 10.1002/etc.4451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/04/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
The medaka extended one-generation reproduction test (MEOGRT) is a tier-2 study in the US Environmental Protection Agency's Endocrine Disruptor Screening Program and a level-5 study in the Organisation for Economic Co-operation and Development's conceptual framework. Integrating nonspecific apical and endocrine-specific mechanistic endpoints, results of a MEOGRT can be used, with other data, in a weight-of-evidence evaluation to establish a dose-response relationship for risk assessment and identify potential causal relationships between an endocrine mode of action and adverse effects. The MEOGRT test design was used to evaluate the multigenerational effects of the antimicrobial agent triclosan. Japanese medaka were exposed to nominal concentrations of 1.4, 2.8, 5.6, 11, and 23 μg/L triclosan and a dilution water control starting with adult medaka (F0) through hatch in the second generation (F2). No consistent or concentration-related responses occurred in the 182-d test that suggested an endocrine-mediated effect. There were no impacts on hepatic vitellogenin, secondary sex characteristics, or sex ratio that were linked to an adverse reproductive outcome. Histopathological responses were consistent with a toxic or stress effect, particularly when considered in context with observed reductions in growth. The overall population-relevant no-observed-effect concentration was 11 µg/L based on effects on growth. The results of the present study support a previously conducted weight-of-evidence evaluation concluding that triclosan does not act as an agonist or antagonist within estrogen, androgen, thyroid, or steroidogenic pathways. Environ Toxicol Chem 2019;38:1770-1783. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Ellen Mihaich
- Environmental and Regulatory Resources, Durham, North Carolina, USA
| | | | | | | | - Jeffrey Wolf
- Experimental Pathology Laboratories, Sterling, Virginia, USA
| |
Collapse
|
250
|
Luo J, Liu T, Zhang D, Yin K, Wang D, Zhang W, Liu C, Yang C, Wei Y, Wang L, Luo S, Crittenden JC. The individual and Co-exposure degradation of benzophenone derivatives by UV/H 2O 2 and UV/PDS in different water matrices. WATER RESEARCH 2019; 159:102-110. [PMID: 31082641 DOI: 10.1016/j.watres.2019.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
Benzophenone derivatives, including benzophenone-1 (C13H10O3, BP1), benzophenone-3 (C14H12O3, BP3) and benzophenone-8 (C14H12O4, BP8), that used as UV filters are currently viewed as emerging contaminants. Degradation behaviors on co-exposure benzophenone derivatives using UV-driven advanced oxidation processes under different aqueous environments are still unknown. In this study, the degradation behavior of mixed benzophenone derivatives via UV/H2O2 and UV/peroxydisulfate (PDS), in different water matrices (surface water, hydrolyzed urine and seawater) were systematically examined. In surface water, the attack of BP3 by hydroxyl radicals (HO∙) or carbonate radicals (CO3∙-) in UV/H2O2 can generate BP8, which was responsible for the relatively high degradation rate of BP3. Intermediates from BP3 and BP8 in UV/PDS were susceptible to CO3∙-, bringing inhibition of BP1 degradation. In hydrolyzed urine, Cl- was shown the negligible effect for benzophenone derivatives degradation due to low concentration of reactive chlorine species (RCS). Meanwhile, BP3 abatement was excessively inhibited during co-exposure pattern. In seawater, non-first-order kinetic behavior for BP3 and BP8 was found during UV/PDS treatment. Based on modeling, Br- was the sink for HO∙, and the co-existence of Br- and Cl- was the sink for SO4∙-. The cost-effective treatment toward target compounds removal in different water matrices was further evaluated using EE/O. In most cases, UV/H2O2 process is more economically competitive than UV/PDS process.
Collapse
Affiliation(s)
- Jinming Luo
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| | - Tongcai Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| | - Danyu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| | - Kai Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Dong Wang
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| | - Weiqiu Zhang
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Yuanfeng Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| | - Longlu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| |
Collapse
|