201
|
Kiyuna LA, Albuquerque RPE, Chen CH, Mochly-Rosen D, Ferreira JCB. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free Radic Biol Med 2018; 129:155-168. [PMID: 30227272 PMCID: PMC6309415 DOI: 10.1016/j.freeradbiomed.2018.09.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction characterized by impaired bioenergetics, oxidative stress and aldehydic load is a hallmark of heart failure. Recently, different research groups have provided evidence that selective activation of mitochondrial detoxifying systems that counteract excessive accumulation of ROS, RNS and reactive aldehydes is sufficient to stop cardiac degeneration upon chronic stress, such as heart failure. Therefore, pharmacological and non-pharmacological approaches targeting mitochondria detoxification may play a critical role in the prevention or treatment of heart failure. In this review we discuss the most recent findings on the central role of mitochondrial dysfunction, oxidative stress and aldehydic load in heart failure, highlighting the most recent preclinical and clinical studies using mitochondria-targeted molecules and exercise training as effective tools against heart failure.
Collapse
Affiliation(s)
- Ligia Akemi Kiyuna
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, USA
| | | |
Collapse
|
202
|
Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, Busanello ENB. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med 2018; 129:1-24. [PMID: 30172747 DOI: 10.1016/j.freeradbiomed.2018.08.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.
Collapse
Affiliation(s)
- Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helena C F de Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tiago R Figueira
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Estela N B Busanello
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
203
|
Francisco A, Ronchi JA, Navarro CDC, Figueira TR, Castilho RF. Nicotinamide nucleotide transhydrogenase is required for brain mitochondrial redox balance under hampered energy substrate metabolism and high-fat diet. J Neurochem 2018; 147:663-677. [PMID: 30281804 DOI: 10.1111/jnc.14602] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Among mitochondrial NADP-reducing enzymes, nicotinamide nucleotide transhydrogenase (NNT) establishes an elevated matrix NADPH/NADP+ by catalyzing the reduction of NADP+ at the expense of NADH oxidation coupled to inward proton translocation across the inner mitochondrial membrane. Here, we characterize NNT activity and mitochondrial redox balance in the brain using a congenic mouse model carrying the mutated Nnt gene from the C57BL/6J strain. The absence of NNT activity resulted in lower total NADPH sources activity in the brain mitochondria of young mice, an effect that was partially compensated in aged mice. Nonsynaptic mitochondria showed higher NNT activity than synaptic mitochondria. In the absence of NNT, an increased release of H2 O2 from mitochondria was observed when the metabolism of respiratory substrates occurred with restricted flux through relevant mitochondrial NADPH sources or when respiratory complex I was inhibited. In accordance, mitochondria from Nnt-/- brains were unable to sustain NADP in its reduced state when energized in the absence of carbon substrates, an effect aggravated after H2 O2 bolus metabolism. These data indicate that the lack of NNT in brain mitochondria impairs peroxide detoxification, but peroxide detoxification can be partially counterbalanced by concurrent NADPH sources depending on substrate availability. Notably, only brain mitochondria from Nnt-/- mice chronically fed a high-fat diet exhibited lower activity of the redox-sensitive aconitase, suggesting that brain mitochondrial redox balance requires NNT under the metabolic stress of a high-fat diet. Overall, the role of NNT in the brain mitochondria redox balance especially comes into play under mitochondrial respiratory defects or high-fat diet.
Collapse
Affiliation(s)
- Annelise Francisco
- Faculty of Medical Sciences, Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Juliana A Ronchi
- Faculty of Medical Sciences, Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Claudia D C Navarro
- Faculty of Medical Sciences, Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tiago R Figueira
- Faculty of Medical Sciences, Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roger F Castilho
- Faculty of Medical Sciences, Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
204
|
Kim KS, Seibert JT, Edea Z, Graves KL, Kim ES, Keating AF, Baumgard LH, Ross JW, Rothschild MF. Characterization of the acute heat stress response in gilts: III. Genome-wide association studies of thermotolerance traits in pigs. J Anim Sci 2018; 96:2074-2085. [PMID: 29669012 DOI: 10.1093/jas/sky131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/12/2018] [Indexed: 01/09/2023] Open
Abstract
Heat stress is one of the limiting factors negatively affecting pig production, health, and fertility. Characterizing genomic regions responsible for variation in HS tolerance would be useful in identifying important genetic factor(s) regulating physiological responses to HS. In the present study, we performed genome-wide association analyses for respiration rate (RR), rectal temperature (TR), and skin temperature (TS) during HS in 214 crossbred gilts genotyped for 68,549 single nucleotide polymorphisms (SNP) using the Porcine SNP 70K BeadChip. Considering the top 0.1% smoothed phenotypic variances explained by SNP windows, we detected 26, 26, 21, and 14 genes that reside within SNPs explaining the largest proportion of variance (top 25 SNP windows) and associated with change in RR (ΔRR) from thermoneutral (TN) conditions to HS environment, as well as the change in prepubertal TR (ΔTR), change in postpubertal ΔTR, and change in TS (ΔTS), respectively. The region between 28.85 Mb and 29.10 Mb on chromosome 16 explained about 0.05% of the observed variation for ΔRR. The growth hormone receptor (GHR) gene resides in this region and is associated with the HS response. The other important candidate genes associated with ΔRR (PAIP1, NNT, and TEAD4), ΔTR (LIMS2, TTR, and TEAD4), and ΔTS (ERBB4, FKBP1B, NFATC2, and ATP9A) have reported roles in the cellular stress response. The SNP explaining the largest proportion of variance and located within and in the vicinity of genes were related to apoptosis or cellular stress and are potential candidates that underlie the physiological response to HS in pigs.
Collapse
Affiliation(s)
- Kwan-Suk Kim
- Department of Animal Science, Iowa State University, Ames, IA.,Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - Zewde Edea
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Kody L Graves
- Department of Animal Science, Iowa State University, Ames, IA
| | - Eui-Soo Kim
- Department of Animal Science, Iowa State University, Ames, IA.,Recombinetics, St. Paul, MN
| | | | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | |
Collapse
|
205
|
Piceatannol pretreatment alleviates acute cardiac injury via regulating PI3K-Akt-eNOS signaling in H9c2 cells. Biomed Pharmacother 2018; 109:886-891. [PMID: 30551542 DOI: 10.1016/j.biopha.2018.10.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
Abstract
Piceatannol (3,3',4,5'-trans-trihydroxystilbene) is a natural polyphenols compound that occurs hydroxylated analogue of resveratrol showing widely biological activities. Previous studies have demonstrated its functions on anti-cancer, neuroprotection and cardioprotection. However, few studies have clarified the benefits of piceatannol on cardiomyocytes except its anti-oxidative effect based on the original property of polyphenols. Here we apply H9c2 cardiomyocytes to study the cardioprotective mechanisms of piceatannol in vitro. We firstly verify its anti-peroxidation effect by using H2O2-induced in vitro model. Then, flow cytometry results show piceatannol reduce cellular apoptosis by enhancing Bcl-2 expressions in immunoblot analysis. Meantime, piceatannol decreases H2O2-induced excessive ROS and calcium overloading, and prevents mitochondrial depolarization. Most importantly, piceatannol pretreatment can regulate PI3K-Akt-eNOS signaling pathway to alleviate peroxidative injury. Immunoblot analysis of PI3K, Akt, p-Akt and eNOS shows H2O2 significantly reduces expressions of these proteins. Pretreatment of piceatannol evidently increases their expressions and decreases iNOS expression, implying piceatannol can upregulate PI3K-Akt-eNOS signaling to protect cardiomyocytes from peroxidative injury.
Collapse
|
206
|
Kazakov A, Hall RA, Werner C, Meier T, Trouvain A, Rodionycheva S, Nickel A, Lammert F, Maack C, Böhm M, Laufs U. Raf kinase inhibitor protein mediates myocardial fibrosis under conditions of enhanced myocardial oxidative stress. Basic Res Cardiol 2018; 113:42. [PMID: 30191336 PMCID: PMC6133069 DOI: 10.1007/s00395-018-0700-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
Fibrosis is a hallmark of maladaptive cardiac remodelling. Here we report that genome-wide quantitative trait locus (QTL) analyses in recombinant inbred mouse lines of C57BL/6 J and DBA2/J strains identified Raf Kinase Inhibitor Protein (RKIP) as genetic marker of fibrosis progression. C57BL/6 N-RKIP−/− mice demonstrated diminished fibrosis induced by transverse aortic constriction (TAC) or CCl4 (carbon tetrachloride) treatment compared with wild-type controls. TAC-induced expression of collagen Iα2 mRNA, Ki67+ fibroblasts and marker of oxidative stress 8-hydroxyguanosine (8-dOHG)+ fibroblasts as well as the number of fibrocytes in the peripheral blood and bone marrow were markedly reduced in C57BL/6 N-RKIP−/− mice. RKIP-deficient cardiac fibroblasts demonstrated decreased migration and fibronectin production. This was accompanied by a two-fold increase of the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), the main transcriptional activator of antioxidative proteins, and reduced expression of its inactivators. To test the importance of oxidative stress for this signaling, C57BL/6 J mice were studied. C57BL/6 J, but not the C57BL/6 N-strain, is protected from TAC-induced oxidative stress due to mutation of the nicotinamide nucleotide transhydrogenase gene (Nnt). After TAC surgery, the hearts of Nnt-deficient C57BL/6 J-RKIP−/− mice revealed diminished oxidative stress, increased left ventricular (LV) fibrosis and collagen Iα2 as well as enhanced basal nuclear expression of Nrf2. In human LV myocardium from both non-failing and failing hearts, RKIP-protein correlated negatively with the nuclear accumulation of Nrf2. In summary, under conditions of Nnt-dependent enhanced myocardial oxidative stress induced by TAC, RKIP plays a maladaptive role for fibrotic myocardial remodeling by suppressing the Nrf2-related beneficial effects.
Collapse
Affiliation(s)
- Andrey Kazakov
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany.
| | - Rabea A Hall
- Klinik für Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie, Diabetologie und Ernährungsmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 77, 66421, Homburg, Germany
| | - Christian Werner
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Timo Meier
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - André Trouvain
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Svetlana Rodionycheva
- Klinik für Thorax- und Herz-Gefäßchirurgie, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 57, 66421, Homburg, Germany
| | - Alexander Nickel
- Deutsches Zentrum für Herzinsuffizienz, Universitätsklinikum Würzburg, am Schwarzenberg 15, A15, 97078, Würzburg, Germany
| | - Frank Lammert
- Klinik für Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie, Diabetologie und Ernährungsmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 77, 66421, Homburg, Germany
| | - Christoph Maack
- Deutsches Zentrum für Herzinsuffizienz, Universitätsklinikum Würzburg, am Schwarzenberg 15, A15, 97078, Würzburg, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| |
Collapse
|
207
|
McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1031-1039. [PMID: 31007174 DOI: 10.1016/j.bbadis.2018.08.037] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Drug-induced liver injury (DILI) presents unique challenges for consumers, clinicians, and regulators. It is the most common cause of acute liver failure in the US. It is also one of the most common reasons for termination of new drugs during pre-clinical testing and withdrawal of new drugs post-marketing. DILI is generally divided into two forms: intrinsic and idiosyncratic. Many of the challenges with DILI are due in large part to poor understanding of the mechanisms of toxicity. Although useful models of intrinsic DILI are available, they are frequently misused. Modeling idiosyncratic DILI presents greater challenges, but promising new models have recently been developed. The purpose of this manuscript is to provide a critical review of the most popular animal models of DILI, and to discuss the future of DILI research.
Collapse
Affiliation(s)
- Mitchell R McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hartmut Jaeschke
- Dept. of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
208
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
209
|
Abstract
Mitochondrial dysfunction has been implicated in the development of heart failure. Oxidative metabolism in mitochondria is the main energy source of the heart, and the inability to generate and transfer energy has long been considered the primary mechanism linking mitochondrial dysfunction and contractile failure. However, the role of mitochondria in heart failure is now increasingly recognized to be beyond that of a failed power plant. In this Review, we summarize recent evidence demonstrating vicious cycles of pathophysiological mechanisms during the pathological remodeling of the heart that drive mitochondrial contributions from being compensatory to being a suicide mission. These mechanisms include bottlenecks of metabolic flux, redox imbalance, protein modification, ROS-induced ROS generation, impaired mitochondrial Ca2+ homeostasis, and inflammation. The interpretation of these findings will lead us to novel avenues for disease mechanisms and therapy.
Collapse
|
210
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
211
|
Li S, Zhuang Z, Wu T, Lin JC, Liu ZX, Zhou LF, Dai T, Lu L, Ju HQ. Nicotinamide nucleotide transhydrogenase-mediated redox homeostasis promotes tumor growth and metastasis in gastric cancer. Redox Biol 2018; 18:246-255. [PMID: 30059901 PMCID: PMC6079569 DOI: 10.1016/j.redox.2018.07.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022] Open
Abstract
Overcoming oxidative stress is a critical step for tumor growth and metastasis, however the underlying mechanisms in gastric cancer remain unclear. In this study, we found that overexpression of nicotinamide nucleotide transhydrogenase (NNT) was associated with shorter overall and disease free survival in gastric cancer. The NNT is considered a key antioxidative enzyme based on its ability to regenerate NADPH from NADH. Knockdown of NNT caused significantly NADPH reduction, induced high levels of ROS and significant cell apoptosis under oxidative stress conditions such as glucose deprival and anoikis. In vivo experiments showed that NNT promoted tumor growth, lung metastasis and peritoneal dissemination of gastric cancer. Moreover, intratumoral injection of NNT siRNA significantly suppressed gastric tumor growth in patient-derived xenograft (PDX) models. Overall, our study highlights the crucial functional roles of NNT in redox regulation and tumor progression and thus raises an important therapeutic hypothesis in gastric cancer.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Zhuonan Zhuang
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, Beijing 102218, China
| | - Teng Wu
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Jie-Chun Lin
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Ze-Xian Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Li-Fen Zhou
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Ting Dai
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Lei Lu
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
212
|
Different roles of myocardial ROCK1 and ROCK2 in cardiac dysfunction and postcapillary pulmonary hypertension in mice. Proc Natl Acad Sci U S A 2018; 115:E7129-E7138. [PMID: 29987023 DOI: 10.1073/pnas.1721298115] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although postcapillary pulmonary hypertension (PH) is an important prognostic factor for patients with heart failure (HF), its pathogenesis remains to be fully elucidated. To elucidate the different roles of Rho-kinase isoforms, ROCK1 and ROCK2, in cardiomyocytes in response to chronic pressure overload, we performed transverse aortic constriction (TAC) in cardiac-specific ROCK1-deficient (cROCK1-/-) and ROCK2-deficient (cROCK2-/-) mice. Cardiomyocyte-specific ROCK1 deficiency promoted pressure-overload-induced cardiac dysfunction and postcapillary PH, whereas cardiomyocyte-specific ROCK2 deficiency showed opposite results. Histological analysis showed that pressure-overload-induced cardiac hypertrophy and fibrosis were enhanced in cROCK1-/- mice compared with controls, whereas cardiac hypertrophy was attenuated in cROCK2-/- mice after TAC. Consistently, the levels of oxidative stress were up-regulated in cROCK1-/- hearts and down-regulated in cROCK2-/- hearts compared with controls after TAC. Furthermore, cyclophilin A (CyPA) and basigin (Bsg), both of which augment oxidative stress, enhanced cardiac dysfunction and postcapillary PH in cROCK1-/- mice, whereas their expressions were significantly lower in cROCK2-/- mice. In clinical studies, plasma levels of CyPA were significantly increased in HF patients and were higher in patients with postcapillary PH compared with those without it. Finally, high-throughput screening demonstrated that celastrol, an antioxidant and antiinflammatory agent, reduced the expressions of CyPA and Bsg in the heart and the lung, ameliorating cardiac dysfunction and postcapillary PH induced by TAC. Thus, by differentially affecting CyPA and Bsg expressions, ROCK1 protects and ROCK2 jeopardizes the heart from pressure-overload HF with postcapillary PH, for which celastrol may be a promising agent.
Collapse
|
213
|
Mitochondrial Antioxidants and the Maintenance of Cellular Hydrogen Peroxide Levels. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7857251. [PMID: 30057684 PMCID: PMC6051038 DOI: 10.1155/2018/7857251] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022]
Abstract
For over 40 years, mitochondrial reactive oxygen species (ROS) production and balance has been studied in the context of oxidative distress and tissue damage. However, research over the past decade has demonstrated that the mitochondria have a more complicated relationship with ROS. Superoxide (O2•-) and hydrogen peroxide (H2O2) are the proximal ROS formed by the mitochondria, and the latter molecule is used as a secondary messenger to coordinate oxidative metabolism with changes in cell physiology. Like any other secondary messenger, H2O2 levels need to be regulated through its production and degradation and the mitochondria are enriched with the antioxidant defenses required to degrade ROS formed by nutrient oxidation and respiration. Recent work has also demonstrated that these antioxidant systems also carry the capacity to clear H2O2 formed outside of mitochondria. These observations led to the development of the postulate that the mitochondria serve as "ROS stabilizing devices" that buffer cellular H2O2 levels. Here, I provide an updated view on mitochondrial ROS homeostasis and discuss the "ROS stabilizing" function of the mitochondria in mammalian cells. This will be followed by a hypothetical discussion on the potential function of the mitochondria and proton motive force in degrading cellular H2O2 signals emanating from cytosolic enzymes.
Collapse
|
214
|
Stapel B, Kohlhaas M, Ricke-Hoch M, Haghikia A, Erschow S, Knuuti J, Silvola JMU, Roivainen A, Saraste A, Nickel AG, Saar JA, Sieve I, Pietzsch S, Müller M, Bogeski I, Kappl R, Jauhiainen M, Thackeray JT, Scherr M, Bengel FM, Hagl C, Tudorache I, Bauersachs J, Maack C, Hilfiker-Kleiner D. Low STAT3 expression sensitizes to toxic effects of β-adrenergic receptor stimulation in peripartum cardiomyopathy. Eur Heart J 2018; 38:349-361. [PMID: 28201733 PMCID: PMC5381590 DOI: 10.1093/eurheartj/ehw086] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/01/2015] [Accepted: 12/13/2015] [Indexed: 12/19/2022] Open
Abstract
Aims The benefit of the β1-adrenergic receptor (β1-AR) agonist dobutamine for treatment of acute heart failure in peripartum cardiomyopathy (PPCM) is controversial. Cardiac STAT3 expression is reduced in PPCM patients. Mice carrying a cardiomyocyte-restricted deletion of STAT3 (CKO) develop PPCM. We hypothesized that STAT3-dependent signalling networks may influence the response to β-AR agonist treatment in PPCM patients and analysed this hypothesis in CKO mice. Methods and Results Follow-up analyses in 27 patients with severe PPCM (left ventricular ejection fraction ≤25%) revealed that 19 of 20 patients not obtaining dobutamine improved cardiac function. All seven patients obtaining dobutamine received heart transplantation (n = 4) or left ventricular assist devices (n = 3). They displayed diminished myocardial triglyceride, pyruvate, and lactate content compared with non-failing controls. The β-AR agonist isoproterenol (Iso) induced heart failure with high mortality in postpartum female, in non-pregnant female and in male CKO, but not in wild-type mice. Iso induced heart failure and high mortality in CKO mice by impairing fatty acid and glucose uptake, thereby generating a metabolic deficit. The latter was governed by disturbed STAT3-dependent signalling networks, microRNA-199a-5p, microRNA-7a-5p, insulin/glucose transporter-4, and neuregulin/ErbB signalling. The resulting cardiac energy depletion and oxidative stress promoted dysfunction and cardiomyocyte loss inducing irreversible heart failure, which could be attenuated by the β1-AR blocker metoprolol or glucose-uptake-promoting drugs perhexiline and etomoxir. Conclusions Iso impairs glucose uptake, induces energy depletion, oxidative stress, dysfunction, and death in STAT3-deficient cardiomyocytes mainly via β1-AR stimulation. These cellular alterations may underlie the dobutamine-induced irreversible heart failure progression in PPCM patients who frequently display reduced cardiac STAT3 expression.
Collapse
Affiliation(s)
- Britta Stapel
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Michael Kohlhaas
- Clinic for Internal Medicine III, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Arash Haghikia
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Sergej Erschow
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Juhani Knuuti
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Johanna M U Silvola
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Alexander G Nickel
- Clinic for Internal Medicine III, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Jasmin A Saar
- Clinic for Internal Medicine III, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Irina Sieve
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Stefan Pietzsch
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Mirco Müller
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Reinhard Kappl
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Matti Jauhiainen
- Public Health Genomics Unit, National Institute for Health and Welfare, Genomics and Biomarkers Unit, Helsinki, Finland
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Medical School Hannover, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | | | - Igor Tudorache
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, MHH, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Christoph Maack
- Clinic for Internal Medicine III, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| |
Collapse
|
215
|
Schafer C, Moore V, Dasgupta N, Javadov S, James JF, Glukhov AI, Strauss AW, Khuchua Z. The Effects of PPAR Stimulation on Cardiac Metabolic Pathways in Barth Syndrome Mice. Front Pharmacol 2018; 9:318. [PMID: 29695963 PMCID: PMC5904206 DOI: 10.3389/fphar.2018.00318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Aim: Tafazzin knockdown (TazKD) in mice is widely used to create an experimental model of Barth syndrome (BTHS) that exhibits dilated cardiomyopathy and impaired exercise capacity. Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that play essential roles as transcription factors in the regulation of carbohydrate, lipid, and protein metabolism. We hypothesized that the activation of PPAR signaling with PPAR agonist bezafibrate (BF) may ameliorate impaired cardiac and skeletal muscle function in TazKD mice. This study examined the effects of BF on cardiac function, exercise capacity, and metabolic status in the heart of TazKD mice. Additionally, we elucidated the impact of PPAR activation on molecular pathways in TazKD hearts. Methods: BF (0.05% w/w) was given to TazKD mice with rodent chow. Cardiac function in wild type-, TazKD-, and BF-treated TazKD mice was evaluated by echocardiography. Exercise capacity was evaluated by exercising mice on the treadmill until exhaustion. The impact of BF on metabolic pathways was evaluated by analyzing the total transcriptome of the heart by RNA sequencing. Results: The uptake of BF during a 4-month period at a clinically relevant dose effectively protected the cardiac left ventricular systolic function in TazKD mice. BF alone did not improve the exercise capacity however, in combination with everyday voluntary running on the running wheel BF significantly ameliorated the impaired exercise capacity in TazKD mice. Analysis of cardiac transcriptome revealed that BF upregulated PPAR downstream target genes involved in a wide spectrum of metabolic (energy and protein) pathways as well as chromatin modification and RNA processing. In addition, the Ostn gene, which encodes the metabolic hormone musclin, is highly induced in TazKD myocardium and human failing hearts, likely as a compensatory response to diminished bioenergetic homeostasis in cardiomyocytes. Conclusion: The PPAR agonist BF at a clinically relevant dose has the therapeutic potential to attenuate cardiac dysfunction, and possibly exercise intolerance in BTHS. The role of musclin in the failing heart should be further investigated.
Collapse
Affiliation(s)
- Caitlin Schafer
- The Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Vicky Moore
- The Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Nupur Dasgupta
- The Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Jeanne F James
- The Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, United States.,Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexander I Glukhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arnold W Strauss
- The Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Zaza Khuchua
- The Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, United States.,Department of Biochemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
216
|
Cecatto C, Amaral AU, da Silva JC, Wajner A, Schimit MDOV, da Silva LHR, Wajner SM, Zanatta Â, Castilho RF, Wajner M. Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca 2+ homeostasis in the heart. FEBS J 2018; 285:1437-1455. [PMID: 29476646 DOI: 10.1111/febs.14419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/19/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
We studied the effects of the major long-chain fatty acids accumulating in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency, namely cis-5-tetradecenoic acid (Cis-5) and myristic acid (Myr), on important mitochondrial functions in isolated mitochondria from cardiac fibers and cardiomyocytes of juvenile rats. Cis-5 and Myr at pathological concentrations markedly reduced mitochondrial membrane potential (ΔΨm ), matrix NAD(P)H pool, Ca2+ retention capacity, ADP- (state 3) and carbonyl cyanide 3-chlorophenyl hydrazine-stimulated (uncoupled) respiration, and ATP generation. By contrast, these fatty acids increased resting (state 4) respiration (uncoupling effect) with the involvement of the adenine nucleotide translocator because carboxyatractyloside significantly attenuated the increased state 4 respiration provoked by Cis-5 and Myr. Furthermore, the classical inhibitors of mitochondrial permeability transition (MPT) pore cyclosporin A plus ADP, as well as the Ca2+ uptake blocker ruthenium red, fully prevented the Cis-5- and Myr-induced decrease in ΔΨm in Ca2+ -loaded mitochondria, suggesting, respectively, the induction of MPT pore opening and the contribution of Ca2+ toward these effects. The findings of the present study indicate that the major long-chain fatty acids that accumulate in VLCAD deficiency disrupt mitochondrial bioenergetics and Ca2+ homeostasis, acting as uncouplers and metabolic inhibitors of oxidative phosphorylation, as well as inducers of MPT pore opening, in the heart at pathological relevant concentrations. It is therefore presumed that a disturbance of bioenergetics and Ca2+ homeostasis may contribute to the cardiac manifestations observed in VLCAD deficiency.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil
| | - Janaína Camacho da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana de Oliveira Vargas Schimit
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Henrique Rodrigues da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ângela Zanatta
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roger Frigério Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Brazil
| |
Collapse
|
217
|
Vozenilek AE, Vetkoetter M, Green JM, Shen X, Traylor JG, Klein RL, Orr AW, Woolard MD, Krzywanski DM. Absence of Nicotinamide Nucleotide Transhydrogenase in C57BL/6J Mice Exacerbates Experimental Atherosclerosis. J Vasc Res 2018; 55:98-110. [PMID: 29455203 DOI: 10.1159/000486337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mitochondrial reactive oxygen species (ROS) contribute to inflammation and vascular remodeling during atherosclerotic plaque formation. C57BL/6N (6N) and C57BL/6J (6J) mice display distinct mitochondrial redox balance due to the absence of nicotinamide nucleotide transhydrogenase (NNT) in 6J mice. We hypothesize that differential NNT expression between these animals alters plaque development. METHODS 6N and 6J mice were treated with AAV8-PCSK9 (adeno-associated virus serotype 8/proprotein convertase subtilisin/kexin type 9) virus leading to hypercholesterolemia, increased low-density lipoprotein, and atherosclerosis in mice fed a high-fat diet (HFD). Mice were co-treated with the mitochondria-targeted superoxide dismutase mimetic MitoTEMPO to assess the contribution of mitochondrial ROS to atherosclerosis. RESULTS Baseline and HFD-induced vascular superoxide is increased in 6J compared to 6N mice. MitoTEMPO diminished superoxide in both groups demonstrating differential production of mitochondrial ROS among these strains. PCSK9 treatment and HFD led to similar increases in plasma lipids in both 6N and 6J mice. However, 6J animals displayed significantly higher levels of plaque formation. MitoTEMPO reduced plasma lipids but did not affect plaque formation in 6N mice. In contrast, MitoTEMPO surprisingly increased plaque formation in 6J mice. CONCLUSION These data indicate that loss of NNT increases vascular ROS production and exacerbates atherosclerotic plaque development.
Collapse
Affiliation(s)
- Aimee E Vozenilek
- Department of Microbiology and Immunology, School of Medicine, Shreveport, Louisiana, USA.,Center for Cardiovascular Disease and Sciences, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - Matthew Vetkoetter
- Department of Cellular Biology and Anatomy, School of Medicine, Shreveport, Louisiana, USA.,Center for Cardiovascular Disease and Sciences, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - Jonette M Green
- Department of Pathology and Translational Pathobiology, School of Medicine, Shreveport, Louisiana, USA.,Center for Cardiovascular Disease and Sciences, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - Xinggui Shen
- Department of Pathology and Translational Pathobiology, School of Medicine, Shreveport, Louisiana, USA.,Center for Cardiovascular Disease and Sciences, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - James G Traylor
- Department of Pathology and Translational Pathobiology, School of Medicine, Shreveport, Louisiana, USA
| | - Ronald L Klein
- Department of Pharmacology, Toxicology and Neuroscience, School of Medicine, Shreveport, Louisiana, USA.,Center for Cardiovascular Disease and Sciences, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - A Wayne Orr
- Department of Cellular Biology and Anatomy, School of Medicine, Shreveport, Louisiana, USA.,Department of Pathology and Translational Pathobiology, School of Medicine, Shreveport, Louisiana, USA.,Center for Cardiovascular Disease and Sciences, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - Matthew D Woolard
- Department of Microbiology and Immunology, School of Medicine, Shreveport, Louisiana, USA.,Center for Cardiovascular Disease and Sciences, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - David M Krzywanski
- Department of Cellular Biology and Anatomy, School of Medicine, Shreveport, Louisiana, USA.,Center for Cardiovascular Disease and Sciences, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
218
|
Cong P, Liu Y, Liu N, Zhang Y, Tong C, Shi L, Liu X, Shi X, Liu Y, Tong Z, Hou M. Cold exposure induced oxidative stress and apoptosis in the myocardium by inhibiting the Nrf2-Keap1 signaling pathway. BMC Cardiovasc Disord 2018; 18:36. [PMID: 29448942 PMCID: PMC5815212 DOI: 10.1186/s12872-018-0748-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exposure to cold weather is associated with infaust cardiovascular responses, including myocardial infarction and arrhythmias. However, the exact mechanisms of these adverse changes in the myocardium under cold stress are unknown. This study was designed to investigate the mechanisms of cardiac injury induced by cold stress in mice. METHODS The mice were randomly divided into three groups, normal control (no handling), 1-week cold stress and 2-week cold stress. We observed physiological changes of the mice and morphological changes of myocardium tissues, and we measured the changes of 3'-nitrotyrosine and 4-hydroxynonenal, the expression levels of superoxide dismutase-1, superoxide dismutase-2, Bax, Bad, Bcl-2, Nuclear factor erythroid-derived 2-like 2 (Nrf2) and Kelch like-ECH-associated protein 1 (Keap1) in myocardium by western blot. Besides, we detected mRNA of superoxide dismutase-1, superoxide dismutase-2, Bax, Bad, Bcl-2, Nrf2 and Keap1 by real-time PCR. One-way analysis of variance, followed by LSD-t test, was used to compare each variable for differences among the groups. RESULTS Echocardiography analyses demonstrated left ventricle dysfunction in the groups receiving cold stress. Histological analyses witnessed inflammation, vacuolar and eosinophilic degeneration occurred in left ventricle tissues. Western blotting results showed increased 3'-nitrotyrosine and 4-hydroxynonenal and decreased antioxidant enzymes (superoxide dismutase-1 and superoxide dismutase-2) in the myocardium. Expression of Nrf2 and Keap1 followed a downward trend under cold exposure, as indicated by western blotting and real-time PCR. Expression of anti-apoptotic protein Bcl-2 also showed the same trend. In contrast, expression of pro-apoptotic proteins Bax and Bad followed an upward trend under cold exposure. The results of real-time PCR were consistent with those of western blotting. CONCLUSIONS These findings were very significant, showing that cold exposure induced cardiac injury by inhibiting the Nrf2-Keap1 signaling pathway.
Collapse
Affiliation(s)
- Peifang Cong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Yunen Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Nannan Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Yubiao Zhang
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Changci Tong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Lin Shi
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Xuelei Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Xiuyun Shi
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Ying Liu
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Zhou Tong
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Mingxiao Hou
- Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China.
| |
Collapse
|
219
|
Abstract
SIGNIFICANCE The nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and NADP+/reduced NADP+ (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD+-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. CRITICAL ISSUES The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. FUTURE DIRECTIONS Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD+ precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Rui-Sheng Wang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
220
|
Report on the Ion Channel Symposium : Organized by the German Cardiac Society Working Group on Cellular Electrophysiology (AG 18). Herzschrittmacherther Elektrophysiol 2018; 29:4-13. [PMID: 29313139 DOI: 10.1007/s00399-017-0549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
To support scientific exchange and activity in the field of cardiac cellular electrophysiology, the German Cardiac Society Working Group on Cellular Electrophysiology (AG 18) established a two-day symposium to be held every 2 years. The second Ion Channel Symposium entitled "Göttingen Channels 2017-Of Benches and Beds" took place in Göttingen from September 22nd to 23rd under the auspices of the German Cardiac Society. A group of national and international experts presented scientific advances in cardiac electrophysiology and rhythmology. The symposium's primary focus was the significance of cellular electrophysiology findings for the optimization of diagnostic and therapeutic strategies against cardiac arrhythmias. To this end, speakers, chairpersons and attendees discussed the contribution of specific molecular alterations to the initiation and perpetuation of atrial and ventricular arrhythmias. Furthermore, the meeting highlighted how discoveries in electrophysiological research may lead to novel therapeutic targets. The interdisciplinary assessment of mechanisms and therapeutic strategies of cardiac arrhythmias represented a key feature of the meeting. A unique combination of topics and speakers representing both basic science and clinical electrophysiology ensured the scientific success of the "Göttingen Channels 2017" symposium. The next Ion Channel Symposium is planned to be hosted by the incoming co-chair of the German Cardiac Society Working Group on Cellular Electrophysiology in fall 2019.
Collapse
|
221
|
Meimaridou E, Goldsworthy M, Chortis V, Fragouli E, Foster PA, Arlt W, Cox R, Metherell LA. NNT is a key regulator of adrenal redox homeostasis and steroidogenesis in male mice. J Endocrinol 2018; 236:13-28. [PMID: 29046340 PMCID: PMC5744559 DOI: 10.1530/joe-16-0638] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/18/2017] [Indexed: 01/10/2023]
Abstract
Nicotinamide nucleotide transhydrogenase, NNT, is a ubiquitous protein of the inner mitochondrial membrane with a key role in mitochondrial redox balance. NNT produces high concentrations of NADPH for detoxification of reactive oxygen species by glutathione and thioredoxin pathways. In humans, NNT dysfunction leads to an adrenal-specific disorder, glucocorticoid deficiency. Certain substrains of C57BL/6 mice contain a spontaneously occurring inactivating Nnt mutation and display glucocorticoid deficiency along with glucose intolerance and reduced insulin secretion. To understand the underlying mechanism(s) behind the glucocorticoid deficiency, we performed comprehensive RNA-seq on adrenals from wild-type (C57BL/6N), mutant (C57BL/6J) and BAC transgenic mice overexpressing Nnt (C57BL/6JBAC). The following results were obtained. Our data suggest that Nnt deletion (or overexpression) reduces adrenal steroidogenic output by decreasing the expression of crucial, mitochondrial antioxidant (Prdx3 and Txnrd2) and steroidogenic (Cyp11a1) enzymes. Pathway analysis also revealed upregulation of heat shock protein machinery and haemoglobins possibly in response to the oxidative stress initiated by NNT ablation. In conclusion, using transcriptomic profiling in adrenals from three mouse models, we showed that disturbances in adrenal redox homeostasis are mediated not only by under expression of NNT but also by its overexpression. Further, we demonstrated that both under expression or overexpression of NNT reduced corticosterone output implying a central role for it in the control of steroidogenesis. This is likely due to a reduction in the expression of a key steroidogenic enzyme, Cyp11a1, which mirrored the reduction in corticosterone output.
Collapse
Affiliation(s)
- E Meimaridou
- Centre for EndocrinologyWilliam Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, London, UK
| | - M Goldsworthy
- MRC Harwell InstituteGenetics of Type 2 Diabetes, Mammalian Genetics Unit, Oxfordshire, UK
| | - V Chortis
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - E Fragouli
- Centre for EndocrinologyWilliam Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, London, UK
| | - P A Foster
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - W Arlt
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - R Cox
- MRC Harwell InstituteGenetics of Type 2 Diabetes, Mammalian Genetics Unit, Oxfordshire, UK
| | - L A Metherell
- Centre for EndocrinologyWilliam Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, London, UK
| |
Collapse
|
222
|
Cardiovascular Risk Factors and Markers. BIOMATHEMATICAL AND BIOMECHANICAL MODELING OF THE CIRCULATORY AND VENTILATORY SYSTEMS 2018. [PMCID: PMC7123062 DOI: 10.1007/978-3-319-89315-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiovascular risk is assessed for the prediction and appropriate management of patients using collections of identified risk markers obtained from clinical questionnaire information, concentrations of certain blood molecules (e.g., N-terminal proB-type natriuretic peptide fragment and soluble receptors of tumor-necrosis factor-α and interleukin-2), imaging data using various modalities, and electrocardiographic variables, in addition to traditional risk factors.
Collapse
|
223
|
Dietl A, Maack C. Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure. Curr Heart Fail Rep 2017; 14:338-349. [PMID: 28656516 DOI: 10.1007/s11897-017-0347-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In highly prevalent cardiac diseases, new therapeutic approaches are needed. Since the first description of oxidative stress in heart failure, reactive oxygen species (ROS) have been considered as attractive drug targets. Though clinical trials evaluating antioxidant vitamins as ROS-scavenging agents yielded neutral results in patients at cardiovascular risk, the knowledge of ROS as pathophysiological factors has considerably advanced in the past few years and led to novel treatment approaches. Here, we review recent new insights and current strategies in targeting mitochondrial calcium handling and ROS in heart failure. RECENT FINDINGS Mitochondria are an important ROS source, and more recently, drug development focused on targeting mitochondria (e.g. by SS-31 or MitoQ). Important advancement has also been made to decipher how the matching of energy supply and demand through calcium (Ca2+) handling impacts on mitochondrial ROS production and elimination. This opens novel opportunities to ameliorate mitochondrial dysfunction in heart failure by targeting cytosolic and mitochondrial ion transporters to improve this matching process. According to this approach, highly specific substances as the preclinical CGP-37157, as well as the clinically used ranolazine and empagliflozin, provide promising results on different levels of evidence. Furthermore, the understanding of redox signalling relays, resembled by catalyst-mediated protein oxidation, is about to change former paradigms of ROS signalling. Novel methods, as redox proteomics, allow to precisely analyse key regulatory thiol switches, which may induce adaptive or maladaptive signalling. Additionally, the generation of genetically encoded probes increased the spatial and temporal resolution of ROS imaging and opened a new methodological window to subtle, formerly obscured processes. These novel insights may broaden our understanding of why previous attempts to target oxidative stress have failed, and at the same time provide us with new targets for drug development.
Collapse
Affiliation(s)
- Alexander Dietl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany.
| |
Collapse
|
224
|
Zhang Q, Padayatti PS, Leung JH. Proton-Translocating Nicotinamide Nucleotide Transhydrogenase: A Structural Perspective. Front Physiol 2017; 8:1089. [PMID: 29312000 PMCID: PMC5742237 DOI: 10.3389/fphys.2017.01089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
Nicotinamide nucleotide transhydrogenase (TH) is an enzyme complex in animal mitochondria and bacteria that utilizes the electrochemical proton gradient across membranes to drive the production of NADPH. The enzyme plays an important role in maintaining the redox balance of cells with implications in aging and a number of human diseases. TH exists as a homodimer with each protomer containing a proton-translocating transmembrane domain and two soluble nucleotide binding domains that mediate hydride transfer between NAD(H) and NADP(H). The three-domain architecture of TH is conserved across species but polypeptide composition differs substantially. The complex domain coupling mechanism of TH is not fully understood despite extensive biochemical and structural characterizations. Herein the progress is reviewed, focusing mainly on structural findings from 3D crystallization of isolated soluble domains and more recently of the transmembrane domain and the holo-enzyme from Thermus thermophilus. A structural perspective and impeding challenges in further elucidating the mechanism of TH are discussed.
Collapse
Affiliation(s)
- Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Pius S Padayatti
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Josephine H Leung
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
225
|
Tschöpe C, Van Linthout S, Kherad B. Heart Failure with Preserved Ejection Fraction and Future Pharmacological Strategies: a Glance in the Crystal Ball. Curr Cardiol Rep 2017; 19:70. [PMID: 28656481 DOI: 10.1007/s11886-017-0874-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The current definition of heart failure is mainly based on an inappropriate measure of cardiac function, i.e., left ventricular ejection fraction (LVEF). The initial sole entity, heart failure with reduced ejection fraction (HFrEF, LVEF <40%), was complemented by the addition of heart failure with preserved ejection fraction (HFpEF, LVEF ≥50%) and most recently, heart failure with mid-range ejection fraction (HFmrEF, LVEF 40-49%). Initially, HFpEF was believed to be a purely left ventricular diastolic dysfunction. Pathophysiological concepts of HFpEF have changed considerably during the last years. In addition to intrinsic cardiac mechanisms, the heart failure pathogenesis is increasingly considered as driven by non-cardiac systemic processes including metabolic disorders, ischemic conditions, and pro-inflammatory/pro-fibrotic or immunological alterations. Presentation and pathophysiology of HFpEF is heterogeneous, and its management remains a challenge since evidence of therapeutic benefits is scarce. Up to now, there are no therapies improving survival in patients with HFpEF. RECENT FINDINGS Several results from clinical and preclinical interventions targeting non-cardiac mechanisms or non-pharmacological interventions including new anti-diabetic or anti-inflammatory drugs, mitochondrial-targeted anti-oxidants, anti-fibrotic strategies, microRNases incl. antagomirs, cell therapeutic options, and high-density lipoprotein-raising strategies are promising and under further investigation. This review addresses mechanisms and available data of current best clinical practice and novel approaches towards HFpEF.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Department of Cardiology, Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany. .,Berliner Zentrum für Regenerative Therapien (BCRT), Campus Virchow Klinikum (CVK), Berlin, Germany. .,Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Berlin, Germany. .,Campus Virchow Clinic, Department of Cardiology, Charité - Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany.
| | - Sophie Van Linthout
- Berliner Zentrum für Regenerative Therapien (BCRT), Campus Virchow Klinikum (CVK), Berlin, Germany.,Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Berlin, Germany.,Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Föhrerstrasse 15, 13353, Berlin, Germany
| | - Behrouz Kherad
- Department of Cardiology, Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,Campus Virchow Clinic, Department of Cardiology, Charité - Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany.,Privatpraxis Dr. Kherad, Große Hamburger Strasse 5-11, 10115, Berlin, Germany
| |
Collapse
|
226
|
Navarro CDC, Figueira TR, Francisco A, Dal'Bó GA, Ronchi JA, Rovani JC, Escanhoela CAF, Oliveira HCF, Castilho RF, Vercesi AE. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice. Free Radic Biol Med 2017; 113:190-202. [PMID: 28964917 DOI: 10.1016/j.freeradbiomed.2017.09.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
The mechanisms by which a high fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunctions and redox imbalance. We hypothesized that a HFD would increase mitochondrial reliance on NAD(P)-transhydrogenase (NNT) as the source of NADPH for antioxidant systems that counteract NAFLD development. Therefore, we studied HFD-induced liver mitochondrial dysfunctions and NAFLD in C57Unib.B6 congenic mice with (Nnt+/+) or without (Nnt-/-) NNT activity; the spontaneously mutated allele (Nnt-/-) was inherited from the C57BL/6J mouse substrain. After 20 weeks on a HFD, Nnt-/- mice exhibited a higher prevalence of steatohepatitis and content of liver triglycerides compared to Nnt+/+ mice on an identical diet. Under a HFD, the aggravated NAFLD phenotype in the Nnt-/- mice was accompanied by an increased H2O2 release rate from mitochondria, decreased aconitase activity (a redox-sensitive mitochondrial enzyme) and higher susceptibility to Ca2+-induced mitochondrial permeability transition. In addition, HFD led to the phosphorylation (inhibition) of pyruvate dehydrogenase (PDH) and markedly reduced the ability of liver mitochondria to remove peroxide in Nnt-/- mice. Bypass or pharmacological reactivation of PDH by dichloroacetate restored the peroxide removal capability of mitochondria from Nnt-/- mice on a HFD. Noteworthy, compared to mice that were chow-fed, the HFD did not impair peroxide removal nor elicit redox imbalance in mitochondria from Nnt+/+ mice. Therefore, HFD interacted with Nnt mutation to generate PDH inhibition and further suppression of peroxide removal. We conclude that NNT plays a critical role in counteracting mitochondrial redox imbalance, PDH inhibition and advancement of NAFLD in mice fed a HFD. The present study provide seminal experimental evidence that redox imbalance in liver mitochondria potentiates the progression from simple steatosis to steatohepatitis following a HFD.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Tiago R Figueira
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Annelise Francisco
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Genoefa A Dal'Bó
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana A Ronchi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana C Rovani
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Cecilia A F Escanhoela
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Helena C F Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| |
Collapse
|
227
|
Sakellariou GK, Lightfoot AP, Earl KE, Stofanko M, McDonagh B. Redox homeostasis and age-related deficits in neuromuscular integrity and function. J Cachexia Sarcopenia Muscle 2017; 8:881-906. [PMID: 28744984 PMCID: PMC5700439 DOI: 10.1002/jcsm.12223] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/06/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this 'epidemic' problem, the primary biochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age-associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age-related muscle atrophy and weakness.
Collapse
Affiliation(s)
| | - Adam P. Lightfoot
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterM1 5GDUK
| | - Kate E. Earl
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
| | - Martin Stofanko
- Microvisk Technologies LtdThe Quorum7600 Oxford Business ParkOxfordOX4 2JZUK
| | - Brian McDonagh
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
- Department of Physiology, School of MedicineNational University of IrelandGalwayIreland
| |
Collapse
|
228
|
Abstract
SIGNIFICANCE Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (EGSH) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. CRITICAL ISSUES In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H2O2), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. FUTURE DIRECTIONS We postulate that the application of genetically encoded sensors for glutathione in combination with novel H2O2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.
Collapse
Affiliation(s)
- Gaetano Calabrese
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 2 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| |
Collapse
|
229
|
Kloner RA, Brown DA, Csete M, Dai W, Downey JM, Gottlieb RA, Hale SL, Shi J. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 2017; 14:679-693. [PMID: 28748958 PMCID: PMC5991096 DOI: 10.1038/nrcardio.2017.102] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early coronary artery reperfusion improves outcomes for patients with ST-segment elevation myocardial infarction (STEMI), but morbidity and mortality after STEMI remain unacceptably high. The primary deficits seen in these patients include inadequate pump function, owing to rapid infarction of muscle in the first few hours of treatment, and adverse remodelling of the heart in the months that follow. Given that attempts to further reduce myocardial infarct size beyond early reperfusion in clinical trials have so far been disappointing, effective therapies are still needed to protect the reperfused myocardium. In this Review, we discuss several approaches to preserving the reperfused heart, such as therapies that target the mechanisms involved in mitochondrial bioenergetics, pyroptosis, and autophagy, as well as treatments that harness the cardioprotective properties of inhaled anaesthetic agents. We also discuss potential therapies focused on correcting the no-reflow phenomenon and its effect on healing and adverse left ventricular remodelling.
Collapse
Affiliation(s)
- Robert A Kloner
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Marie Csete
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90017, USA
| | - Wangde Dai
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, USA
| | - Roberta A Gottlieb
- Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, California 90048, USA
| | - Sharon L Hale
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
| | - Jianru Shi
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| |
Collapse
|
230
|
Tschöpe C, Birner C, Böhm M, Bruder O, Frantz S, Luchner A, Maier L, Störk S, Kherad B, Laufs U. Heart failure with preserved ejection fraction: current management and future strategies : Expert opinion on the behalf of the Nucleus of the "Heart Failure Working Group" of the German Society of Cardiology (DKG). Clin Res Cardiol 2017; 107:1-19. [PMID: 29018938 DOI: 10.1007/s00392-017-1170-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022]
Abstract
About 50% of all patients suffering from heart failure (HF) exhibit a reduced ejection fraction (EF ≤ 40%), termed HFrEF. The others may be classified into HF with midrange EF (HFmrEF 40-50%) or preserved ejection fraction (HFpEF, EF ≥ 50%). Presentation and pathophysiology of HFpEF is heterogeneous and its management remains a challenge since evidence of therapeutic benefits on outcome is scarce. Up to now, there are no therapies improving survival in patients with HFpEF. Thus, the treatment targets symptom relief, quality of life and reduction of cardiac decompensations by controlling fluid retention and managing risk factors and comorbidities. As such, renin-angiotensin-aldosterone inhibitors, diuretics, calcium channel blockers (CBB) and beta-blockers, diet and exercise recommendations are still important in HFpEF, although these interventions are not proven to reduce mortality in large randomized controlled trials. Recently, numerous new treatment targets have been identified, which are further investigated in studies using, e.g. soluble guanylate cyclase stimulators, inorganic nitrates, the angiotensin receptor neprilysin inhibitor LCZ 696, and SGLT2 inhibitors. In addition, several devices such as the CardioMEMS, interatrial septal devices (IASD), cardiac contractility modulation (CCM), renal denervation, and baroreflex activation therapy (BAT) were investigated in different forms of HFpEF populations and some of them have the potency to offer new hopes for patients suffering from HFpEF. On the basic research field side, lot of new disease-modifying strategies are under development including anti-inflammatory drugs, mitochondrial-targeted antioxidants, new anti-fibrotic and microRNA-guided interventions are under investigation and showed already promising results. This review addresses available data of current best clinical practice and management approaches based on expert experiences and summarizes novel approaches towards HFpEF.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Department of Cardiology, Universitätsmedizin Berlin, Charite, Campus Rudolf Virchow Clinic (CVK), Augustenburger Platz 1, 13353, Berlin, Germany. .,Berliner Zentrum für Regenerative Therapien (BCRT), Charite, Campus Virchow Clinic (CVK), Berlin, Germany. .,Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Berlin, Germany.
| | - Christoph Birner
- Germany Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Böhm
- Innere Medizin III-Kardiologie, Angiologie und internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany
| | - Oliver Bruder
- Department of Cardiology and Angiology, Elisabeth Hospital, Essen, Germany
| | - Stefan Frantz
- Department of Internal Medicine III, University Halle, Halle, Germany
| | - Andreas Luchner
- Department of Internal Medicine I, Clinic St. Marien, Amberg, Germany
| | - Lars Maier
- Germany Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Störk
- Deutsches Zentrum für Herzinsuffizienz, Universitätsklinikum und Universität Würzburg, Würzburg, Germany
| | - Behrouz Kherad
- Department of Cardiology, Universitätsmedizin Berlin, Charite, Campus Rudolf Virchow Clinic (CVK), Augustenburger Platz 1, 13353, Berlin, Germany.,Privatpraxis Dr. Kherad, Berlin, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie im Department für Innere Medizin, Neurologie und Dermatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| |
Collapse
|
231
|
Perez-Ternero C, Werner CM, Nickel AG, Herrera MD, Motilva MJ, Böhm M, Alvarez de Sotomayor M, Laufs U. Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice and in human mononuclear cells. J Nutr Biochem 2017; 48:51-61. [DOI: 10.1016/j.jnutbio.2017.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
232
|
Dudek J. Role of Cardiolipin in Mitochondrial Signaling Pathways. Front Cell Dev Biol 2017; 5:90. [PMID: 29034233 PMCID: PMC5626828 DOI: 10.3389/fcell.2017.00090] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
The phospholipid cardiolipin (CL) is an essential constituent of mitochondrial membranes and plays a role in many mitochondrial processes, including respiration and energy conversion. Pathological changes in CL amount or species composition can have deleterious consequences for mitochondrial function and trigger the production of reactive oxygen species. Signaling networks monitor mitochondrial function and trigger an adequate cellular response. Here, we summarize the role of CL in cellular signaling pathways and focus on tissues with high-energy demand, like the heart. CL itself was recently identified as a precursor for the formation of lipid mediators. We highlight the concept of CL as a signaling platform. CL is exposed to the outer mitochondrial membrane upon mitochondrial stress and CL domains serve as a binding site in many cellular signaling events. During mitophagy, CL interacts with essential players of mitophagy like Beclin 1 and recruits the autophagic machinery by its interaction with LC3. Apoptotic signaling pathways require CL as a binding platform to recruit apoptotic factors such as tBid, Bax, caspase-8. CL required for the activation of the inflammasome and plays a role in inflammatory signaling. As changes in CL species composition has been observed in many diseases, the signaling pathways described here may play a general role in pathology.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
233
|
Chronic administration of mitochondrion-targeted peptide SS-31 prevents atherosclerotic development in ApoE knockout mice fed Western diet. PLoS One 2017; 12:e0185688. [PMID: 28961281 PMCID: PMC5621700 DOI: 10.1371/journal.pone.0185688] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/18/2017] [Indexed: 12/23/2022] Open
Abstract
Background Oxidative stress and inflammatory factors are deeply involved in progression of atherosclerosis. Mitochondrion-targeted peptide SS-31, selectively targeting to mitochondrial inner membrane reacting with cardiolipin, has been reported to inhibit ROS generation and mitigate inflammation. The present study was designed to investigate whether SS-31 could suppress the development of atherosclerosis in vivo. Methods Male ApoE-/- mice (8 weeks old) fed with Western diet were treated with normal saline or SS-31 (1 mg/kg/d or 3 mg/kg/d) through subcutaneous injection for 12 weeks. Oil Red O staining was performed to evaluate area and sizes of the plaques. DHE staining and immunohistochemical staining of 8-OHDG was performed to assess the oxidative stress. The aorta ATP contents were assessed by the ATP bioluminescence assay kit. Immunohistochemical staining of CD68 and α-SMA and Masson’s trichrome staining were performed to evaluate the composition of atherosclerotic plaque. Biochemical assays were performed to determine the protein level and activity of superoxide dismutase (SOD). The levels of CD36, LOX-1 and ABCA1 were immunohistochemically and biochemically determined to evaluate the cholesterol transport in aorta and peritoneal macrophages. Inflammatory factors, including ICAM-1, MCP-1, IL-6 and CRP in serum, were detected through ELISA. Results SS-31 administration reduced the area and sizes of western diet-induced atherosclerotic plaques and changed the composition of the plaques in ApoE-/- mice. Oxidative stress was suppressed, as evidenced by the reduced DHE stain, down-regulated 8-OHDG expression, and increased SOD activity after chronic SS-31 administration. Moreover, systemic inflammation was ameliorated as seen by decreasing serum ICAM-1, MCP-1, and IL-6 levels. Most importantly, SS-31 administration inhibited cholesterol influx by down-regulating expression of CD36 and LOX-1 to prevent lipid accumulation to further suppress the foam cell formation and atherosclerotic progression. Conclusion Administration of SS-31 prevents against atherosclerotic formation in ApoE-/- mice suggesting that SS-31 might be considered to be a potential drug to prevent atherosclerotic progression.
Collapse
|
234
|
Zhao H, Li H, Hao S, Chen J, Wu J, Song C, Zhang M, Qiao T, Li K. Peptide SS-31 upregulates frataxin expression and improves the quality of mitochondria: implications in the treatment of Friedreich ataxia. Sci Rep 2017; 7:9840. [PMID: 28852135 PMCID: PMC5575096 DOI: 10.1038/s41598-017-10320-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Friedreich ataxia is a progressive neurodegenerative disease caused by the expansion of GAA trinucleotide repeats within the first intron of the FXN gene, which encodes frataxin. The pathophysiology of the disease is thought to be derived from the decrease of Fe-S cluster biogenesis due to frataxin deficiency. There is currently no effective treatment for the disease. In our study, we demonstrated that treatment with the mitochondrion-targeted peptide SS-31 reduced frataxin deficiency-induced oxidative stress in lymphoblasts and fibroblasts derived from patients. Interestingly, SS-31 treatment translationally upregulated the protein level of frataxin in a dose-dependent manner. Furthermore, SS-31 treatment increased the enzymatic activities of the iron-sulphur enzymes, including aconitase and complex II and III of the respiratory chain. Further evaluation of the quality of mitochondria showed that mitochondrial membrane potential, ATP content, NAD+/NADH, and the morphology of mitochondria all improved. Our results suggest that SS-31 might potentially be a new drug for the early treatment of Friedreich ataxia.
Collapse
Affiliation(s)
- Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 210093, Nanjing, P. R. China
| | - Huihui Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 210093, Nanjing, P. R. China
| | - Shuangying Hao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 210093, Nanjing, P. R. China
- Medical School of Henan Polytechnic University, 454000, Jiaozuo, P. R. China
| | - Jiping Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 210093, Nanjing, P. R. China
| | - Jing Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 210093, Nanjing, P. R. China
| | - Chuanhui Song
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 210093, Nanjing, P. R. China
| | - Meng Zhang
- Department of Vascular Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P. R. China
| | - Tong Qiao
- Department of Vascular Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, P. R. China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 210093, Nanjing, P. R. China.
| |
Collapse
|
235
|
Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series. J Am Coll Cardiol 2017; 70:212-229. [PMID: 28683969 DOI: 10.1016/j.jacc.2017.05.035] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
Vascular disease and heart failure impart an enormous burden in terms of global morbidity and mortality. Although there are many different causes of cardiac and vascular disease, most causes share an important pathological mechanism: oxidative stress. In the failing heart, oxidative stress occurs in the myocardium and correlates with left ventricular dysfunction. Reactive oxygen species (ROS) negatively affect myocardial calcium handling, cause arrhythmia, and contribute to cardiac remodeling by inducing hypertrophic signaling, apoptosis, and necrosis. Similarly, oxidative balance in the vasculature is tightly regulated by a wealth of pro- and antioxidant systems that orchestrate region-specific ROS production and removal. Reactive oxygen species also regulate multiple vascular cell functions, including endothelial and smooth muscle cell growth, proliferation, and migration; angiogenesis; apoptosis; vascular tone; host defenses; and genomic stability. However, excessive levels of ROS promote vascular disease through direct and irreversible oxidative damage to macromolecules, as well as disruption of redox-dependent vascular wall signaling processes.
Collapse
Affiliation(s)
- Thomas Münzel
- Center for Cardiology Mainz, Cardiology I, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany.
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Nicole R Bonetti
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
236
|
Ho HY, Lin YT, Lin G, Wu PR, Cheng ML. Nicotinamide nucleotide transhydrogenase (NNT) deficiency dysregulates mitochondrial retrograde signaling and impedes proliferation. Redox Biol 2017; 12:916-928. [PMID: 28478381 PMCID: PMC5426036 DOI: 10.1016/j.redox.2017.04.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
To study the physiological roles of NADH and NADPH homeostasis in cancer, we studied the effect of NNT knockdown on physiology of SK-Hep1 cells. NNT knockdown cells show limited abilities to maintain NAD+ and NADPH levels and have reduced proliferation and tumorigenicity. There is an increased dependence of energy production on oxidative phosphorylation. Studies with stable isotope tracers have revealed that under the new steady-state metabolic condition, the fluxes of TCA and glycolysis decrease while that of reductive carboxylation increases. Increased [α-ketoglutarate]/[succinate] ratio in NNT-deficient cells results in decrease in HIF-1α level and expression of HIF-1α regulated genes. Reduction in NADPH level leads to repression of HDAC1 activity and an increase in p53 acetylation. These findings suggest that NNT is essential to homeostasis of NADH and NADPH pools, anomalies of which affect HIF-1α- and HDAC1-dependent pathways, and hence retrograde response of mitochondria.
Collapse
Affiliation(s)
- Hung-Yao Ho
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Metabolomics Core Laboratory, Chang Gung University, Taoyuan 33302, Taiwan; Clinical Phenome Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yu-Ting Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Gigin Lin
- Clinical Phenome Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan; Department of Medical Imaging and Intervention, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 33302, Taoyuan, Taiwan
| | - Pei-Ru Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mei-Ling Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Metabolomics Core Laboratory, Chang Gung University, Taoyuan 33302, Taiwan; Clinical Phenome Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan
| |
Collapse
|
237
|
Padayatti PS, Leung JH, Mahinthichaichan P, Tajkhorshid E, Ishchenko A, Cherezov V, Soltis SM, Jackson JB, Stout CD, Gennis RB, Zhang Q. Critical Role of Water Molecules in Proton Translocation by the Membrane-Bound Transhydrogenase. Structure 2017. [PMID: 28648609 DOI: 10.1016/j.str.2017.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The nicotinamide nucleotide transhydrogenase (TH) is an integral membrane enzyme that uses the proton-motive force to drive hydride transfer from NADH to NADP+ in bacteria and eukaryotes. Here we solved a 2.2-Å crystal structure of the TH transmembrane domain (Thermus thermophilus) at pH 6.5. This structure exhibits conformational changes of helix positions from a previous structure solved at pH 8.5, and reveals internal water molecules interacting with residues implicated in proton translocation. Together with molecular dynamics simulations, we show that transient water flows across a narrow pore and a hydrophobic "dry" region in the middle of the membrane channel, with key residues His42α2 (chain A) being protonated and Thr214β (chain B) displaying a conformational change, respectively, to gate the channel access to both cytoplasmic and periplasmic chambers. Mutation of Thr214β to Ala deactivated the enzyme. These data provide new insights into the gating mechanism of proton translocation in TH.
Collapse
Affiliation(s)
- Pius S Padayatti
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Josephine H Leung
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paween Mahinthichaichan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; Laboratory for Structural Biology of GPCRs, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - S Michael Soltis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - J Baz Jackson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - C David Stout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
238
|
Güçlü A, Knaapen P, Harms HJ, Parbhudayal RY, Michels M, Lammertsma AA, van Rossum AC, Germans T, van der Velden J. Disease Stage-Dependent Changes in Cardiac Contractile Performance and Oxygen Utilization Underlie Reduced Myocardial Efficiency in Human Inherited Hypertrophic Cardiomyopathy. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.116.005604. [PMID: 28476777 DOI: 10.1161/circimaging.116.005604] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Reduced myocardial efficiency represents a target for therapy in hypertrophic cardiomyopathy although therapeutic benefit may depend on disease stage. Here, we determined disease stage-dependent changes in myocardial efficiency and effects of myectomy surgery. METHODS AND RESULTS Myocardial external efficiency (MEE) was determined in 27 asymptomatic mutation carriers (genotype positive/phenotype negative), 10 patients with hypertrophic obstructive cardiomyopathy (HOCM), 10 patients with aortic valve stenosis, and 14 healthy individuals using [11C]-acetate positron emission tomography and cardiovascular magnetic resonance imaging. Follow-up measurements were performed in HOCM and aortic valve stenosis patients 4 months after surgery. External work did not differ in HOCM compared with controls, whereas myocardial oxygen consumption was lower in HOCM. Because of a higher cardiac mass, total cardiac oxygen consumption was significantly higher in HOCM than in controls and genotype positive/phenotype negative. MEE was significantly lower in genotype positive/phenotype negative than in controls (28±6% versus 42±6%) and was further decreased in HOCM (22±5%). In contrast to patients with aortic valve stenosis, MEE was not improved in patients with HOCM after surgery, which was explained by opposite changes in the septum (decrease) and lateral (increase) wall. CONCLUSIONS Different mechanisms underlie reduced MEE at the early and advanced stage of hypertrophic cardiomyopathy. The initial increase and subsequent reduction in myocardial oxygen consumption during disease progression indicates that energy deficiency is a primary mutation-related event, whereas mechanisms secondary to disease remodeling underlie low MEE in HOCM. Our data highlight that the benefit of therapies to improve energetic status of the heart may vary depending on the disease stage and that treatment should be initiated before cardiac remodeling.
Collapse
Affiliation(s)
- Ahmet Güçlü
- From the Department of Cardiology (A.G., P.K., R.Y.P., A.C.v.R., T.G.), Department of Physiology (A.G., R.Y.P., J.v.d.V.), Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU) (H.J.H., A.A.L.), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiology, Erasmus Medical Center Rotterdam, The Netherlands (M.M.); Department of Cardiology, Medical Center Alkmaar, The Netherlands (T.G.); and ICIN-The Netherlands Heart Institute, Utrecht (A.G., J.v.d.V.).
| | - Paul Knaapen
- From the Department of Cardiology (A.G., P.K., R.Y.P., A.C.v.R., T.G.), Department of Physiology (A.G., R.Y.P., J.v.d.V.), Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU) (H.J.H., A.A.L.), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiology, Erasmus Medical Center Rotterdam, The Netherlands (M.M.); Department of Cardiology, Medical Center Alkmaar, The Netherlands (T.G.); and ICIN-The Netherlands Heart Institute, Utrecht (A.G., J.v.d.V.)
| | - Hendrik J Harms
- From the Department of Cardiology (A.G., P.K., R.Y.P., A.C.v.R., T.G.), Department of Physiology (A.G., R.Y.P., J.v.d.V.), Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU) (H.J.H., A.A.L.), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiology, Erasmus Medical Center Rotterdam, The Netherlands (M.M.); Department of Cardiology, Medical Center Alkmaar, The Netherlands (T.G.); and ICIN-The Netherlands Heart Institute, Utrecht (A.G., J.v.d.V.)
| | - Rahana Y Parbhudayal
- From the Department of Cardiology (A.G., P.K., R.Y.P., A.C.v.R., T.G.), Department of Physiology (A.G., R.Y.P., J.v.d.V.), Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU) (H.J.H., A.A.L.), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiology, Erasmus Medical Center Rotterdam, The Netherlands (M.M.); Department of Cardiology, Medical Center Alkmaar, The Netherlands (T.G.); and ICIN-The Netherlands Heart Institute, Utrecht (A.G., J.v.d.V.)
| | - Michelle Michels
- From the Department of Cardiology (A.G., P.K., R.Y.P., A.C.v.R., T.G.), Department of Physiology (A.G., R.Y.P., J.v.d.V.), Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU) (H.J.H., A.A.L.), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiology, Erasmus Medical Center Rotterdam, The Netherlands (M.M.); Department of Cardiology, Medical Center Alkmaar, The Netherlands (T.G.); and ICIN-The Netherlands Heart Institute, Utrecht (A.G., J.v.d.V.)
| | - Adriaan A Lammertsma
- From the Department of Cardiology (A.G., P.K., R.Y.P., A.C.v.R., T.G.), Department of Physiology (A.G., R.Y.P., J.v.d.V.), Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU) (H.J.H., A.A.L.), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiology, Erasmus Medical Center Rotterdam, The Netherlands (M.M.); Department of Cardiology, Medical Center Alkmaar, The Netherlands (T.G.); and ICIN-The Netherlands Heart Institute, Utrecht (A.G., J.v.d.V.)
| | - Albert C van Rossum
- From the Department of Cardiology (A.G., P.K., R.Y.P., A.C.v.R., T.G.), Department of Physiology (A.G., R.Y.P., J.v.d.V.), Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU) (H.J.H., A.A.L.), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiology, Erasmus Medical Center Rotterdam, The Netherlands (M.M.); Department of Cardiology, Medical Center Alkmaar, The Netherlands (T.G.); and ICIN-The Netherlands Heart Institute, Utrecht (A.G., J.v.d.V.)
| | - Tjeerd Germans
- From the Department of Cardiology (A.G., P.K., R.Y.P., A.C.v.R., T.G.), Department of Physiology (A.G., R.Y.P., J.v.d.V.), Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU) (H.J.H., A.A.L.), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiology, Erasmus Medical Center Rotterdam, The Netherlands (M.M.); Department of Cardiology, Medical Center Alkmaar, The Netherlands (T.G.); and ICIN-The Netherlands Heart Institute, Utrecht (A.G., J.v.d.V.)
| | - Jolanda van der Velden
- From the Department of Cardiology (A.G., P.K., R.Y.P., A.C.v.R., T.G.), Department of Physiology (A.G., R.Y.P., J.v.d.V.), Department of Radiology and Nuclear Medicine, Institute for Cardiovascular Research (ICaR-VU) (H.J.H., A.A.L.), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiology, Erasmus Medical Center Rotterdam, The Netherlands (M.M.); Department of Cardiology, Medical Center Alkmaar, The Netherlands (T.G.); and ICIN-The Netherlands Heart Institute, Utrecht (A.G., J.v.d.V.)
| |
Collapse
|
239
|
Abstract
Reactive oxygen species (ROS) are important signaling molecules that act through the oxidation of nucleic acids, proteins, and lipids. Several hallmarks of cancer, including uncontrolled proliferation, angiogenesis, and genomic instability, are promoted by the increased ROS levels commonly found in tumor cells. To counteract excessive ROS accumulation, oxidative stress, and death, cancer cells tightly regulate ROS levels by enhancing scavenging enzymes, which are dependent on the reducing cofactor nicotinamide adenine dinucleotide phosphate (NADPH). This review focuses on mitochondrial ROS homeostasis with a description of six pathways of NADPH production in mitochondria and a discussion of the possible strategies of pharmacological intervention to selectively eliminate cancer cells by increasing their ROS levels.
Collapse
Affiliation(s)
- Francesco Ciccarese
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.,Veneto Institute of Oncology - IRCCS, Padua, Italy
| |
Collapse
|
240
|
Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 2017; 8:349-369. [PMID: 28432755 PMCID: PMC5476857 DOI: 10.1002/jcsm.12178] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/23/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best-known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high-energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Maik Kosiol
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| |
Collapse
|
241
|
Kohlhaas M, Nickel AG, Bergem S, Casadei B, Laufs U, Maack C. Endogenous nitric oxide formation in cardiac myocytes does not control respiration during β-adrenergic stimulation. J Physiol 2017; 595:3781-3798. [PMID: 28229450 DOI: 10.1113/jp273750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/16/2017] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS In the heart, endothelial nitric oxide (NO) controls oxygen consumption in the working heart through paracrine mechanisms. While cardiac myocytes contain several isoforms of NO synthases, it is unclear whether these can control respiration in an intracrine fashion. A long-standing controversy is whether a NOS exists within mitochondria. By combining fluorescence technologies with electrical field stimulation or the patch-clamp technique in beating cardiac myocytes, we identified a neuronal NO synthase (nNOS) as the most relevant source of intracellular NO during β-adrenergic stimulation, while no evidence for a mitochondria-located NOS was obtained. The amounts of NO produced by non-mitochondrial nNOS were insufficient to regulate respiration during β-adrenergic stimulation, arguing against intracrine control of respiration by NO within cardiac myocytes. ABSTRACT Endothelial nitric oxide (NO) controls cardiac oxygen (O2 ) consumption in a paracrine way by slowing respiration at the mitochondrial electron transport chain. While NO synthases (NOSs) are also expressed in cardiac myocytes, it is unclear whether they control respiration in an intracrine way. Furthermore, the existence of a mitochondrial NOS is controversial. Here, by combining fluorescence imaging with electrical field stimulation, the patch-clamp method and knock-out technology, we determined the sources and consequences of intracellular NO formation during workload transitions in isolated murine and guinea pig cardiac myocytes and mitochondria. Using 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF) as a fluorescent NO-sensor that locates to the cytosol and mitochondria, we observed that NO increased by ∼12% within 3 min of β-adrenergic stimulation in beating cardiac myocytes. This NO stems from neuronal NOS (nNOS), but not endothelial (eNOS). After patch clamp-mediated dialysis of cytosolic DAF, the remaining NO signals (mostly mitochondrial) were blocked by nNOS deletion, but not by inhibiting the mitochondrial Ca2+ uniporter with Ru360. While in isolated mitochondria exogenous NO inhibited respiration and reduced the NAD(P)H redox state, pyridine nucleotide redox states were unaffected by pharmacological or genetic disruption of endogenous nNOS or eNOS during workload transitions in cardiac myoctyes. We conclude that under physiological conditions, nNOS is the most relevant source for NO in cardiac myocytes, but this nNOS is not located in mitochondria and does not control respiration. Therefore, cardiac O2 consumption is controlled by endothelial NO in a paracrine, but not intracrine, fashion.
Collapse
Affiliation(s)
- Michael Kohlhaas
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Alexander G Nickel
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Stefanie Bergem
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Barbara Casadei
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ulrich Laufs
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| |
Collapse
|
242
|
Trial J, Heredia CP, Taffet GE, Entman ML, Cieslik KA. Dissecting the role of myeloid and mesenchymal fibroblasts in age-dependent cardiac fibrosis. Basic Res Cardiol 2017; 112:34. [PMID: 28478479 DOI: 10.1007/s00395-017-0623-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/27/2017] [Indexed: 12/24/2022]
Abstract
Aging is associated with increased cardiac interstitial fibrosis and diastolic dysfunction. Our previous study has shown that mesenchymal fibroblasts in the C57BL/6J (B6J) aging mouse heart acquire an inflammatory phenotype and produce higher levels of chemokines. Monocyte chemoattractant protein-1 (MCP-1) secreted by these aged fibroblasts promotes leukocyte uptake into the heart. Some of the monocytes that migrate into the heart polarize into M2a macrophages/myeloid fibroblasts. The number of activated mesenchymal fibroblasts also increases with age, and consequently, both sources of fibroblasts contribute to fibrosis. Here, we further investigate mechanisms by which inflammation influences activation of myeloid and mesenchymal fibroblasts and their collagen synthesis. We examined cardiac fibrosis and heart function in three aged mouse strains; we compared C57BL/6J (B6J) with two other strains that have reduced inflammation via different mechanisms. Aged C57BL/6N (B6N) hearts are protected from oxidative stress and fibroblasts derived from them do not develop an inflammatory phenotype. Likewise, these mice have preserved diastolic function. Aged MCP-1 null mice on the B6J background (MCP-1KO) are protected from elevated leukocyte infiltration; they develop moderate but reduced fibrosis and diastolic dysfunction. Based on these studies, we further delineated the role of resident versus monocyte-derived M2a macrophages in myeloid-dependent fibrosis and found that the number of monocyte-derived M2a (but not resident) macrophages correlates with age-related fibrosis and diastolic dysfunction. In conclusion, we have found that ROS and inflammatory mediators are necessary for activation of fibroblasts of both developmental origins, and prevention of either led to better functional outcomes.
Collapse
Affiliation(s)
- JoAnn Trial
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA
| | - Celia Pena Heredia
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA
| | - George E Taffet
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA
| | - Mark L Entman
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA.,Houston Methodist, Houston, TX, USA
| | - Katarzyna A Cieslik
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA.
| |
Collapse
|
243
|
Abstract
Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (H2O2) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of H2O2 as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University, Düsseldorf, University, D-40225, Düsseldorf, Germany; .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich Heine University, D-40225, Düsseldorf, Germany;
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, Georgia 30322;
| |
Collapse
|
244
|
Santos LR, Muller C, de Souza AH, Takahashi HK, Spégel P, Sweet IR, Chae H, Mulder H, Jonas JC. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells. Mol Metab 2017; 6:535-547. [PMID: 28580284 PMCID: PMC5444111 DOI: 10.1016/j.molmet.2017.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 11/17/2022] Open
Abstract
Objective The glucose stimulation of insulin secretion (GSIS) by pancreatic β-cells critically depends on increased production of metabolic coupling factors, including NADPH. Nicotinamide nucleotide transhydrogenase (NNT) typically produces NADPH at the expense of NADH and ΔpH in energized mitochondria. Its spontaneous inactivation in C57BL/6J mice was previously shown to alter ATP production, Ca2+ influx, and GSIS, thereby leading to glucose intolerance. Here, we tested the role of NNT in the glucose regulation of mitochondrial NADPH and glutathione redox state and reinvestigated its role in GSIS coupling events in mouse pancreatic islets. Methods Islets were isolated from female C57BL/6J mice (J-islets), which lack functional NNT, and genetically close C57BL/6N mice (N-islets). Wild-type mouse NNT was expressed in J-islets by adenoviral infection. Mitochondrial and cytosolic glutathione oxidation was measured with glutaredoxin 1-fused roGFP2 probes targeted or not to the mitochondrial matrix. NADPH and NADH redox state was measured biochemically. Insulin secretion and upstream coupling events were measured under dynamic or static conditions by standard procedures. Results NNT is largely responsible for the acute glucose-induced rise in islet NADPH/NADP+ ratio and decrease in mitochondrial glutathione oxidation, with a small impact on cytosolic glutathione. However, contrary to current views on NNT in β-cells, these effects resulted from a glucose-dependent reduction in NADPH consumption by NNT reverse mode of operation, rather than from a stimulation of its forward mode of operation. Accordingly, the lack of NNT in J-islets decreased their sensitivity to exogenous H2O2 at non-stimulating glucose. Surprisingly, the lack of NNT did not alter the glucose-stimulation of Ca2+ influx and upstream mitochondrial events, but it markedly reduced both phases of GSIS by altering Ca2+-induced exocytosis and its metabolic amplification. Conclusion These results drastically modify current views on NNT operation and mitochondrial function in pancreatic β-cells.
Collapse
Key Words
- AT2, aldrithiol
- C57BL/6J mice
- C57BL/6N mice
- CMV, cytomegalovirus
- DTT, dithiotreitol
- Dz, diazoxide
- FCCP, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone
- GRX1, glutaredoxin 1
- GRX1-roGFP2
- GSIS, glucose stimulation of insulin secretion
- Glucose metabolism
- IDH, isocitrate dehydrogenase
- Insulin secretion
- KRB, Krebs solution
- ME, malic enzyme
- Mitochondrial shuttles
- NNT, nicotinamide nucleotide transhydrogenase
- OCR, oxygen consumption rate
- Pancreatic islet
- Redox-sensitive GFP
- Stimulus-secretion coupling
- WT, wild-type
- [Ca2+]i, intracellular Ca2+ concentration
Collapse
Affiliation(s)
- Laila R.B. Santos
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Carole Muller
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Arnaldo H. de Souza
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Hilton K. Takahashi
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Peter Spégel
- Lund University, Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Malmö, 205 02, Sweden
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis, Lund, 221 00, Sweden
| | - Ian R. Sweet
- University of Washington Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Heeyoung Chae
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
| | - Hindrik Mulder
- Lund University, Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Malmö, 205 02, Sweden
| | - Jean-Christophe Jonas
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, B-1200, Belgium
- Corresponding author. Université catholique de Louvain, UCL/SSS/IREC/EDIN, Avenue Hippocrate 55, B1.55.06, B-1200, Brussels, Belgium.Université catholique de LouvainUCL/SSS/IREC/EDINAvenue Hippocrate 55B1.55.06BrusselsB-1200Belgium
| |
Collapse
|
245
|
Srivastava S, Singh D, Patel S, Singh MR. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. Int J Biol Macromol 2017; 101:502-517. [PMID: 28342757 DOI: 10.1016/j.ijbiomac.2017.03.100] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 02/03/2023]
Abstract
Autoimmune disorders are distinct with over production and accumulation of free radicals due to its undisclosed genesis. The cause of numerous disorders as cancer, arthritis, psoriasis, diabetes, alzheimer's, cardiovascular disease, Parkinson's, respiratory distress syndrome, colitis, crohn's, pulmonary fibrosis, obesity and ageing have been associated with immune dysfunction and oxidative stress. In an oxidative stress, reactive oxygen species generally provoke the series of oxidation at cellular level. The buildup of free radicals in turn triggers various inflammatory cells causing release of various inflammatory interleukins, cytokines, chemokines, and tumor necrosis factors which mediate signal transduction and transcription pathways as nuclear factor- kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1 (HIF-1α) and nuclear factor-erythroid 2-related factor (Nrf2). The imbalance could only be combat by supplementing natural defensive antioxidant enzymes such as superoxide dismutase and catalase. The efficiency of these enzymes is enhanced by use of colloidal carriers which include cellular carriers, vesicular and particulate systems like erythrocytes, leukocytes, platelets, liposomes, transferosomes, solid lipid nanoparticles, microspheres, emulsions. Thus this review provides a platform for understanding importance of antioxidant enzymes and its therapeutic applications in treatment of various autoimmune disorders.
Collapse
Affiliation(s)
- Shikha Srivastava
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India
| | - Satish Patel
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India
| | - Manju R Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India.
| |
Collapse
|
246
|
Huke S. Linking myofilaments to sudden cardiac death: recent advances. J Physiol 2017; 595:3939-3947. [PMID: 28205229 DOI: 10.1113/jp273047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/06/2017] [Indexed: 12/11/2022] Open
Abstract
The major goal of this focused review is to highlight some of the recent advances and remaining open questions about how a mutation in a myofilament protein leads to an increased risk for sudden cardiac death (SCD). The link between myofilaments and SCD has been known for over 25 years, but identifying mutation carriers at risk for SCD is still a challenge and currently the only effective prevention is implantation of a defibrillator (ICD). In addition to recognized risk factors, other contributing factors need to be considered and assessed, e.g. 'microvascular dysfunction', to calibrate individual risk more accurately. Similarly, improving our understanding about the underlying mechanisms of SCD in patients with sarcomeric mutations will also allow us to design new and less invasive treatment options that will minimize risk and hopefully make implantation of an ICD unnecessary.
Collapse
Affiliation(s)
- Sabine Huke
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
247
|
Maack C, Murphy E. Metabolic cardiomyopathies - fighting the next epidemic. Cardiovasc Res 2017; 113:367-369. [PMID: 28203832 PMCID: PMC5852643 DOI: 10.1093/cvr/cvx022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg 66421, Germany
| | | |
Collapse
|
248
|
Kohlhaas M, Nickel AG, Maack C. Mitochondrial energetics and calcium coupling in the heart. J Physiol 2017; 595:3753-3763. [PMID: 28105746 DOI: 10.1113/jp273609] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Contraction and relaxation of the heart consume large amounts of energy that need to be replenished by oxidative phosphorylation in mitochondria, and matching energy supply to demand involves the complimentary control of respiration through ADP and Ca2+ . In heart failure, an imbalance between ADP and Ca2+ leads to oxidation of mitochondrial pyridine nucleotides, where NADH oxidation may limit ATP production and contractile function, while NADPH oxidation can induce oxidative stress with consecutive maladaptive remodelling. Understanding the complex mechanisms that disturb this finely tuned equilibrium may aid the development of drugs that could ameliorate the progression of heart failure beyond the classical neuroendocrine inhibition.
Collapse
Affiliation(s)
- Michael Kohlhaas
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Alexander G Nickel
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| |
Collapse
|
249
|
Fazal L, Laudette M, Paula-Gomes S, Pons S, Conte C, Tortosa F, Sicard P, Sainte-Marie Y, Bisserier M, Lairez O, Lucas A, Roy J, Ghaleh B, Fauconnier J, Mialet-Perez J, Lezoualc’h F. Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death. Circ Res 2017; 120:645-657. [DOI: 10.1161/circresaha.116.309859] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 12/16/2022]
Abstract
Rationale:
Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood.
Objective:
To investigate the role of MitEpac1 (mitochondrial exchange protein directly activated by cAMP 1) in ischemia/reperfusion injury.
Methods and Results:
We show that
Epac1
(exchange protein directly activated by cAMP 1) genetic ablation (
Epac1
−/−
) protects against experimental myocardial ischemia/reperfusion injury with reduced infarct size and cardiomyocyte apoptosis. As observed in vivo, Epac1 inhibition prevents hypoxia/reoxygenation–induced adult cardiomyocyte apoptosis. Interestingly, a deleted form of
Epac1
in its mitochondrial-targeting sequence protects against hypoxia/reoxygenation–induced cell death. Mechanistically, Epac1 favors Ca
2+
exchange between the endoplasmic reticulum and the mitochondrion, by increasing interaction with a macromolecular complex composed of the VDAC1 (voltage-dependent anion channel 1), the GRP75 (chaperone glucose-regulated protein 75), and the IP3R1 (inositol-1,4,5-triphosphate receptor 1), leading to mitochondrial Ca
2+
overload and opening of the mitochondrial permeability transition pore. In addition, our findings demonstrate that MitEpac1 inhibits isocitrate dehydrogenase 2 via the mitochondrial recruitment of CaMKII (Ca
2+
/calmodulin-dependent protein kinase II), which decreases nicotinamide adenine dinucleotide phosphate hydrogen synthesis, thereby, reducing the antioxidant capabilities of the cardiomyocyte.
Conclusions:
Our results reveal the existence, within mitochondria, of different cAMP–Epac1 microdomains that control myocardial cell death. In addition, our findings suggest Epac1 as a promising target for the treatment of ischemia-induced myocardial damage.
Collapse
Affiliation(s)
- Loubina Fazal
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Marion Laudette
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Sílvia Paula-Gomes
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Sandrine Pons
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Caroline Conte
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Florence Tortosa
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Pierre Sicard
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Yannis Sainte-Marie
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Malik Bisserier
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Olivier Lairez
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Alexandre Lucas
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Jérôme Roy
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Bijan Ghaleh
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Jérémy Fauconnier
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Jeanne Mialet-Perez
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| | - Frank Lezoualc’h
- From the Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Université de Toulouse, France (L.F., M.L., S.P.-G., C.C., F.T., P.S., Y.S.-M., M.B., O.L., A.L., J.M.-P., F.L.); Inserm, U955, Equipe 03, F-94000, Créteil, France (S.P., B.G.), and Inserm, UMR-1046 (J.R., J.F.); and UMR CNRS-9214, PHYMEDEX, Université de Montpellier, France (J.R., J.F.)
| |
Collapse
|
250
|
Wu L, Guo X, Hartson SD, Davis MA, He H, Medeiros DM, Wang W, Clarke SL, Lucas EA, Smith BJ, von Lintig J, Lin D. Lack of β, β-carotene-9', 10'-oxygenase 2 leads to hepatic mitochondrial dysfunction and cellular oxidative stress in mice. Mol Nutr Food Res 2017; 61. [PMID: 27991717 DOI: 10.1002/mnfr.201600576] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/27/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
SCOPE β,β-Carotene-9',10'-dioxygenase 2 (BCO2) is a carotenoid cleavage enzyme localized to the inner mitochondrial membrane in mammals. This study was aimed to assess the impact of genetic ablation of BCO2 on hepatic oxidative stress through mitochondrial function in mice. METHODS AND RESULTS Liver samples from 6-wk-old male BCO2-/- knockout (KO) and isogenic wild-type (WT) mice were subjected to proteomics and functional activity assays. Compared to the WT, KO mice consumed more food (by 18%) yet displayed significantly lower body weight (by 12%). Mitochondrial proteomic results demonstrated that loss of BCO2 was associated with quantitative changes of the mitochondrial proteome mainly shown by suppressed expression of enzymes and/or proteins involved in fatty acid β-oxidation, the tricarboxylic acid cycle, and the electron transport chain. The mitochondrial basal respiratory rate, proton leak, and electron transport chain complex II capacity were significantly elevated in the livers of KO compared to WT mice. Moreover, elevated reactive oxygen species and increased mitochondrial protein carbonylation were also demonstrated in liver of KO mice. CONCLUSIONS Loss of BCO2 induces mitochondrial hyperactivation, mitochondrial stress, and changes of the mitochondrial proteome, leading to mitochondrial energy insufficiency. BCO2 appears to be critical for proper hepatic mitochondrial function.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Mary Abby Davis
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Hui He
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Denis M Medeiros
- Graduate School, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|