201
|
Shen-Orr SS, Furman D, Kidd BA, Hadad F, Lovelace P, Huang YW, Rosenberg-Hasson Y, Mackey S, Grisar FAG, Pickman Y, Maecker HT, Chien YH, Dekker CL, Wu JC, Butte AJ, Davis MM. Defective Signaling in the JAK-STAT Pathway Tracks with Chronic Inflammation and Cardiovascular Risk in Aging Humans. Cell Syst 2016; 3:374-384.e4. [PMID: 27746093 DOI: 10.1016/j.cels.2016.09.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/15/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
Abstract
Chronic inflammation, a decline in immune responsiveness, and reduced cardiovascular function are all associated with aging, but the relationships among these phenomena remain unclear. Here, we longitudinally profiled a total of 84 signaling conditions in 91 young and older adults and observed an age-related reduction in cytokine responsiveness within four immune cell lineages, most prominently T cells. The phenotype can be partially explained by elevated baseline levels of phosphorylated STAT (pSTAT) proteins and a different response capacity of naive versus memory T cell subsets to interleukin 6 (IL-6), interferon α (IFN-α), and, to a lesser extent, IL-21 and IFN-γ. Baseline pSTAT levels tracked with circulating levels of C-reactive protein (CRP), and we derived a cytokine response score that negatively correlates with measures of cardiovascular disease, specifically diastolic dysfunction and atherosclerotic burden, outperforming CRP. Thus, we identified an immunological link between inflammation, decreased cell responsiveness in the JAK-STAT pathway, and cardiovascular aging. Targeting chronic inflammation may ameliorate this deficiency in cellular responsiveness and improve cardiovascular function.
Collapse
Affiliation(s)
- Shai S Shen-Orr
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David Furman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian A Kidd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francois Hadad
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patricia Lovelace
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ying-Wen Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yael Rosenberg-Hasson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sally Mackey
- Division of Pediatric Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fatemeh A Gomari Grisar
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yishai Pickman
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Holden T Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yueh-Hsiu Chien
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia L Dekker
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Pediatric Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Atul J Butte
- Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
202
|
Luan HH, Medzhitov R. Food Fight: Role of Itaconate and Other Metabolites in Antimicrobial Defense. Cell Metab 2016; 24:379-387. [PMID: 27626199 PMCID: PMC5024735 DOI: 10.1016/j.cmet.2016.08.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022]
Abstract
Itaconate is a newly discovered mammalian metabolite bearing significant implications for our understanding of cellular immunometabolism and antimicrobial defense. Here, we explore recent findings regarding the role of itaconate in the innate immune response and highlight the emerging principle that metabolites can have distinct immunological functions independent of bioenergetics.
Collapse
Affiliation(s)
- Harding H Luan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
203
|
Adams MS, Adams RB, Wessman CA, Demmig-Adams B. Nutritional Cues Tie Living Organisms to Their Environment and Its Sustainability. Front Nutr 2016; 3:28. [PMID: 27570764 PMCID: PMC4981599 DOI: 10.3389/fnut.2016.00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
We connect modern, intensive agriculture's role in environmental degradation to its role in producing nutritionally unbalanced foods, and delineate specific approaches to reduce agriculture's environmental impact, while producing healthful foods. We call attention to recently discovered genetic programs used by all living organisms to respond to their environment, and present a model of how these programs change body composition and function (of humans and their crop plants and livestock alike) in response to environmental cues. We propose that production of nutritionally balanced crops and livestock requires careful consideration of how these plants and animals are grown; the composition of plant food is modulated by growing conditions, body composition of livestock reflects their feed; composition and function of human body and brain are strongly affected by how food plants and animals are produced. We selected four nutritional features not only involved in (i) governing human health by modulating these genetic programs, but (ii) also affected by agricultural practices. These nutritional features are fat composition (especially saturated fat and the ratio of polyunsaturated omega-6 oils to omega-3 oils), carbohydrate composition (especially the proportion of carbohydrates with a high glycemic index, such as sugars and quick-burning starches) and the level of antioxidant micronutrients. We not only outline threats to human health presented by the current environment, but also potential gains in quality-of-life in a future environment designed to optimize human wellness using insights into the gene-programing effect of diet- and other lifestyle-related factors. These gains could extend beyond optimal human physical and mental health to gains in workforce productivity. The same changes in agricultural practices required to achieve these gains in human health are also needed to support environmental health and sustainable food production. The resulting vision of optimal human health and environmental health, supported by sustainable practices, is intended as an inspiring image of what sustainability has to offer to individuals and society. Our goal is to provide a transparent overview and illustrations intelligible not only to non-experts in each of the other respective areas involved but also to policy makers and the public.
Collapse
Affiliation(s)
- Melanie S. Adams
- Department of Anthropology, University of Colorado, Boulder, CO, USA
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Carol A. Wessman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
204
|
Allemand A, Leonardi BF, Zimmer AR, Moreno S, Romão PRT, Gosmann G. Red Pepper (Capsicum baccatum) Extracts Present Anti-Inflammatory Effects In Vivo and Inhibit the Production of TNF-α and NO In Vitro. J Med Food 2016; 19:759-67. [DOI: 10.1089/jmf.2015.0101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Alexandra Allemand
- Laboratory of Phytochemistry and Organic Synthesis, Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratory of Cell and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Bianca Franco Leonardi
- Laboratory of Phytochemistry and Organic Synthesis, Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Rigon Zimmer
- Laboratory of Phytochemistry and Organic Synthesis, Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Susana Moreno
- Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, MS, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cell and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Grace Gosmann
- Laboratory of Phytochemistry and Organic Synthesis, Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
205
|
Jarrell J, Arendt-Nielsen L. Evolutionary considerations in the development of chronic pelvic pain. Am J Obstet Gynecol 2016; 215:201.e1-4. [PMID: 27269450 DOI: 10.1016/j.ajog.2016.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022]
Abstract
Chronic pelvic pain is common among women of reproductive age and is associated with significant morbidity and comorbidities. In this Viewpoint, we explore the evolutionary cause of pelvic pain and summarize evidence that supports a menstruation-related evolutionary cause of chronic visceral pelvic pain: (1) lifetime menstruation has increased; (2) severe dysmenorrhea is common in the chronic pelvic pain population, particularly among those with pain sensitization; and (3) a potential biological mechanism can be identified. Thus, chronic pelvic pain may arise from the mismatch between the slow pace of biological evolution in our bodies and the relatively rapid pace of cultural changes that have resulted in increased menstrual frequency due to earlier menarche, later mortality, and lower fecundity. One possible mechanism that explains the development of persistent pain from repeated episodes of intermittent pain is hyperalgesic priming, a physiological process defined as a long-lasting latent hyperresponsiveness of nociceptors to inflammatory mediators after an inflammatory or neuropathic insult. The repetitive severely painful menstrual episodes may play such a role. From an evolutionary perspective the relatively rapid increase in lifetime menstruation experience in contemporary society may contribute to a mismatch between lifetime menstruation and the physiological pain processes, leading to a maladaptive state of chronic visceral pelvic pain. Our current physiology does not conform to current human needs.
Collapse
Affiliation(s)
- John Jarrell
- Department of Obstetrics and Gynecology, University of Calgary, Calgary, Alberta, Canada.
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction, School of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
206
|
Hypothalamus proteomics from mouse models with obesity and anorexia reveals therapeutic targets of appetite regulation. Nutr Diabetes 2016; 6:e204. [PMID: 27110685 PMCID: PMC4855256 DOI: 10.1038/nutd.2016.10] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/25/2016] [Accepted: 03/01/2016] [Indexed: 12/27/2022] Open
Abstract
Objective: This study examined the proteomic profile of the hypothalamus in mice exposed to a high-fat diet (HFD) or with the anorexia of acute illness. This comparison could provide insight on the effects of these two opposite states of energy balance on appetite regulation. Methods: Four to six-week-old male C56BL/6J mice were fed a normal (control 1 group; n=7) or a HFD (HFD group; n=10) for 8 weeks. The control 2 (n=7) and lipopolysaccharide (LPS) groups (n=10) were fed a normal diet for 8 weeks before receiving an injection of saline and LPS, respectively. Hypothalamic regions were analysed using a quantitative proteomics method based on a combination of techniques including iTRAQ stable isotope labeling, orthogonal two-dimensional liquid chromatography hyphenated with nanospray ionization and high-resolution mass spectrometry. Key proteins were validated with quantitative PCR. Results: Quantitative proteomics of the hypothalamous regions profiled a total of 9249 protein groups (q<0.05). Of these, 7718 protein groups were profiled with a minimum of two unique peptides for each. Hierachical clustering of the differentiated proteome revealed distinct proteomic signatures for the hypothalamus under the HFD and LPS nutritional conditions. Literature research with in silico bioinformatics interpretation of the differentiated proteome identified key biological relevant proteins and implicated pathways. Furthermore, the study identified potential pharmacologic targets. In the LPS groups, the anorexigen pro-opiomelanocortin was downregulated. In mice with obesity, nuclear factor-κB, glycine receptor subunit alpha-4 (GlyR) and neuropeptide Y levels were elevated, whereas serotonin receptor 1B levels decreased. Conclusions: High-precision quantitative proteomics revealed that under acute systemic inflammation in the hypothalamus as a response to LPS, homeostatic mechanisms mediating loss of appetite take effect. Conversely, under chronic inflammation in the hypothalamus as a response to HFD, mechanisms mediating a sustained ‘perpetual cycle' of appetite enhancement were observed. The GlyR protein may constitute a novel treatment target for the reduction of central orexigenic signals in obesity.
Collapse
|
207
|
Coll RC, O’Neill LAJ, Schroder K. Questions and controversies in innate immune research: what is the physiological role of NLRP3? Cell Death Discov 2016; 2:16019. [PMID: 27551512 PMCID: PMC4979470 DOI: 10.1038/cddiscovery.2016.19] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/25/2022] Open
Abstract
The NLRP3 inflammasome is a key component of the innate immune system that induces pro-inflammatory cytokine production and cell death. Although NLRP3 is activated by many pathogens, it only appears to be critical for host defense for a limited number of specific infections. NLRP3 is however strongly associated with the initiation and pathology of many inflammatory diseases. If NLRP3 function is largely redundant for host defense, but drives a number of inflammatory diseases, this raises the important question of why evolution has elected to maintain NLRP3 function. We propose that the primary physiological functions of NLRP3 in health are to engage pathways to clear noxious substances (e.g. protein aggregates and crystals), and to regulate metabolism. We discuss the newly identified functions for NLRP3 in metabolic homeostasis, and how NLRP3 beneficial functions in homeostasis may become detrimental during the onset of inflammatory and metabolic diseases. A common feature of most NLRP3-driven diseases is that they are associated with ageing or metabolic excess, and indeed, Nlrp3 deficiency promotes 'healthspan' in ageing mice. This suggests that beneficial functions of NLRP3 in youth may become increasingly countered by NLRP3-dependent pathology as an individual ages, and we propose a general model by which ageing or nutrient excess may provide a tipping point to switch NLRP3 function from beneficial to pathological. The physiological role of NLRP3 in healthy individuals remains incompletely understood and future research will need to address this if NLRP3 is to become a successful therapeutic target for the clinical management of inflammatory diseases.
Collapse
Affiliation(s)
- RC Coll
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, St Lucia 4072, Australia
| | - LAJ O’Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - K Schroder
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, St Lucia 4072, Australia
| |
Collapse
|
208
|
Abstract
The immune system is essential for host defense against pathogen infections; however dysregulated immune response may lead to inflammatory or autoimmune diseases. Elevated activation of both innate immune cells and T cells such as Th17 cells are linked to many autoimmune diseases, including Multiple Sclerosis (MS), arthritis and inflammatory bowel disease (IBD). To keep immune homeostasis, the immune system develops a number of negative feedback mechanisms, such as the production of anti-inflammatory cytokine IL-10, to dampen excessive production of inflammatory cytokines and uncontrolled activation of immune cells. Our recent studies uncover a novel immunoregulatory function of interferon (IFN) pathways on the innate and antigen-specific immune response. Our results show that IFNα/β induced IL-10 production from macrophages and Th17 cells, which in turn negatively regulated Th17 function in autoimmune diseases such as Experimental Allergic Encephalomyelitis (EAE), an animal model of human MS. In a chronic colitis model resembling human IBD, we also found that IL-10 inhibited inflammasome/IL-1 pathway, and the pathogenicity of Th17 cells, leading to reduced chronic intestinal inflammation. Results from our and other studies further suggest that IL-10 produced by both macrophages and regulatory T cells may shift Th17 into more regulatory phenotypes, leading to reduced inflammatory response.
Collapse
Affiliation(s)
- Beichu Guo
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040, USA; Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040, USA
| |
Collapse
|
209
|
Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy. Sci Rep 2016; 6:23342. [PMID: 26987580 PMCID: PMC4796911 DOI: 10.1038/srep23342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
In inflammatory bowel disease (IBD), compromised restitution of the epithelial barrier contributes to disease severity. Owing to the complexity in the pathogenesis of IBD, a variety of factors have been implicated in its progress. In this study, we report a functional interaction between macroautophagy and Corticotropin Releasing Hormone (Crh) in the gut. For this purpose we used DSS colitis model on Crh -/- or wild-type (wt) with pharmacological inhibition of autophagy. We uncovered sustained basal autophagy in the gut of Crh -/- mice, which persisted over the course of DSS administration. Autophagy inhibition resulted in partial rescue of Crh -/- mice, while it increased the expression of Crh in the wt gut. Similarly, Crh deficiency was associated with sustained activation of base line autophagy. In vitro models of amino acid deprivation- and LPS-induced autophagy confirmed the in vivo findings. Our results indicate a novel role for Crh in the intestinal epithelium that involves regulation of autophagy, while suggesting the complementary action of the two pathways. These data suggest the intriguing possibility that targeting Crh stimulation in the intestine may provide a novel therapeutic approach to support the integrity of the epithelial barrier and to protect from chronic colitis.
Collapse
|
210
|
Okin D, Medzhitov R. The Effect of Sustained Inflammation on Hepatic Mevalonate Pathway Results in Hyperglycemia. Cell 2016; 165:343-56. [PMID: 26997483 DOI: 10.1016/j.cell.2016.02.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 02/08/2023]
Abstract
Control of plasma glucose level is essential to organismal survival. Sustained inflammation has been implicated in control of glucose homeostasis in cases of infection, obesity, and type 2 diabetes; however, the precise role of inflammation in these complex disease states remains poorly understood. Here, we find that sustained inflammation results in elevated plasma glucose due to increased hepatic glucose production. We find that sustained inflammation suppresses CYP7A1, leading to accumulation of intermediate metabolites at the branch point of the mevalonate pathway. This results in prenylation of RHOC, which is concomitantly induced by inflammatory cytokines. Subsequent activation of RHO-associated protein kinase results in elevated plasma glucose. These findings uncover an unexpected mechanism by which sustained inflammation alters glucose homeostasis.
Collapse
Affiliation(s)
- Daniel Okin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
211
|
Metabolomic Analysis of Biochemical Changes in the Plasma of High-Fat Diet and Streptozotocin-Induced Diabetic Rats after Treatment with Isoflavones Extract of Radix Puerariae. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4701890. [PMID: 27042190 PMCID: PMC4794592 DOI: 10.1155/2016/4701890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/10/2016] [Accepted: 01/31/2016] [Indexed: 12/14/2022]
Abstract
The main purpose of this study was to investigate the protective effects of total isoflavones from Radix Puerariae (PTIF) in diabetic rats. Diabetes was induced by a high-fat diet and intraperitoneal injection of low-dose streptozotocin (STZ; 40 mg/kg). At 26 weeks onwards, PTIF 421 mg/kg was administrated to the rats once daily consecutively for 10 weeks. Metabolic profiling changes were analyzed by Ultraperformance Liquid Chromatography-Quadrupole-Exactive Orbitrap-Mass Spectrometry (UPLC-Q-Exactive Orbitrap-MS). The principal component discriminant analysis (PCA-DA), partial least-squares discriminant analysis (PLS-DA), and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used for multivariate analysis. Moreover, free amino acids in serum were determined by high-performance liquid chromatography with fluorescence detector (HPLC-FLD). Additionally, oxidative stress and inflammatory cytokines were evaluated. Eleven potential metabolite biomarkers, which are mainly related to the coagulation, lipid metabolism, and amino acid metabolism, have been identified. PCA-DA scores plots indicated that biochemical changes in diabetic rats were gradually restored to normal after administration of PTIF. Furthermore, the levels of BCAAs, glutamate, arginine, and tyrosine were significantly increased in diabetic rats. Treatment with PTIF could regulate the disturbed amino acid metabolism. Consequently, PTIF has great therapeutic potential in the treatment of DM by improving metabolism disorders and inhibiting oxidative damage.
Collapse
|
212
|
Dai Y, Zhang X, Zhang R, Zhao X, Duan H, Niu Y, Huang C, Meng T, Ye M, Bin P, Shen M, Jia X, Wang H, Yu S, Zheng Y. Long-term exposure to diesel engine exhaust affects cytokine expression among occupational population. Toxicol Res (Camb) 2016; 5:674-681. [PMID: 30090380 PMCID: PMC6060680 DOI: 10.1039/c5tx00462d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/31/2016] [Indexed: 11/21/2022] Open
Abstract
Diesel engine exhaust (DEE) is a predominant contributor to urban air pollution. The International Agency for Research on Cancer classified DEE as a group I carcinogen. Inflammatory response is considered to be associated with various health outcomes including carcinogenesis. However, human data linking inflammation with long-term DEE exposure are still lacking. In this study, a total of 137 diesel engine testing workers with an average exposure of 8.2 years and 108 unexposed controls were enrolled. Peripheral blood samples were collected from all subjects, and the association of DEE exposure with inflammatory biomarkers was analyzed. Overall, DEE exposed workers had a significant increase in the C-reactive protein (CRP) and a significant decrease in cytokines including interleukin (IL)-1β, IL-6, IL-8, and macrophage inflammatory protein (MIP)-1β compared to controls after adjusting for age, BMI, smoking status, and alcohol use, and findings were highly consistent when stratified by smoking status. In addition, exposure time dependent patterns for IL-6 and CRP were also found (Ptrend = 0.006 and 0.026, respectively); however, the levels of IL-1β and MIP-1β were significantly lower in subjects with a DEE working time of less than 10 years compared with the controls and then recovered to control levels in workers exposed for >10 years. There were no significant differences in blood cell counts and major lymphocyte subsets between exposed workers and the controls. Our results provide epidemiological evidence for the relationship between DEE exposure and immunotoxicity considering the important roles of cytokines in immunological processes.
Collapse
Affiliation(s)
- Yufei Dai
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Xiao Zhang
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Rong Zhang
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
- Department of Toxicology , School of Public Health , Hebei Medical University , Shijiazhuang , 050017 , China
| | - Xuezheng Zhao
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
- Beijing Xicheng District Tianqiao Community Health Service Center , Beijing , 100050 , China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Chuanfeng Huang
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Tao Meng
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Meng Ye
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Ping Bin
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Meili Shen
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| | - Xiaowei Jia
- School and Hospital of Stomatology , Peking University , Beijing , 100081 , China
| | - Haisheng Wang
- Luoyang Center for Disease Control and Prevention , Luoyang , Henan Province 471000 , China
| | - Shanfa Yu
- Henan Provincial Institute for Occupational Health , Zhengzhou , 450052 , China
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , 10050 , China . ; ; Tel: +86-10-83132593
| |
Collapse
|
213
|
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs) modulate gene transcription in response to environmental stressors and other stimuli. A role for miRNAs in inflammation and immunity has been demonstrated and further evidence suggests that miRNAs also play a role in allergic asthma. RECENT FINDINGS Studies investigating the differential expression of miRNAs in biological fluids between asthma patients and controls have been published, as have their role in immune cell subsets. Further development of miRNAs in therapy has been addressed. miRNA-146a has been implicated in autoimmunity and allergic inflammation and miRNA-155 in the development of atopy. Targeting of miRNA-1 and miRNA-145 has been used to inhibit lung inflammation in mouse models of asthma. Although these recent findings need to be confirmed, miRNAs may prove to be useful as potential biomarkers of disease. However, their use as therapeutic targets in the lung remains unclear. SUMMARY There may be a potential role for using circulating miRNAs as biomarkers of disease status or response to therapy. The use of miRNAs as asthma therapy remains to be determined.
Collapse
|
214
|
Romero R, Chaemsaithong P, Docheva N, Korzeniewski SJ, Tarca AL, Bhatti G, Xu Z, Kusanovic JP, Dong Z, Yoon BH, Hassan SS, Chaiworapongsa T, Yeo L, Kim YM, Kim YM. Clinical chorioamnionitis at term V: umbilical cord plasma cytokine profile in the context of a systemic maternal inflammatory response. J Perinat Med 2016; 44:53-76. [PMID: 26360486 PMCID: PMC5625297 DOI: 10.1515/jpm-2015-0121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Microbial invasion of the fetus due to intra-amniotic infection can lead to a systemic inflammatory response characterized by elevated concentrations of cytokines in the umbilical cord plasma/serum. Clinical chorioamnionitis represents the maternal syndrome often associated with intra-amniotic infection, although other causes of this syndrome have been recently described. The objective of this study was to characterize the umbilical cord plasma cytokine profile in neonates born to mothers with clinical chorioamnionitis at term, according to the presence or absence of bacteria and/or intra-amniotic inflammation. MATERIALS AND METHODS A cross-sectional study was conducted, including patients with clinical chorioamnionitis at term (n=38; cases) and those with spontaneous term labor without clinical chorioamnionitis (n=77; controls). Women with clinical chorioamnionitis were classified according to the results of amniotic fluid culture, broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) and amniotic fluid interleukin (IL)-6 concentration into three groups: 1) no intra-amniotic inflammation; 2) intra-amniotic inflammation without detectable microorganisms; or 3) microbial-associated intra-amniotic inflammation. A fetal inflammatory response syndrome (FIRS) was defined as an umbilical cord plasma IL-6 concentration >11 pg/mL. The umbilical cord plasma concentrations of 29 cytokines were determined with sensitive and specific V-PLEX immunoassays. Nonparametric statistical methods were used for analysis, adjusting for a false discovery rate of 5%. RESULTS 1) Neonates born to mothers with clinical chorioamnionitis at term (considered in toto) had significantly higher median umbilical cord plasma concentrations of IL-6, IL-12p70, IL-16, IL-13, IL-4, IL-10 and IL-8, but significantly lower interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF)-α concentrations than neonates born to mothers with spontaneous term labor without clinical chorioamnionitis; 2) neonates born to mothers with clinical chorioamnionitis at term but without intra-amniotic inflammation had higher concentrations of IL-6, IL-12p70, IL-13, IL-4, IL-5, and IL-8, but lower IFN-γ, than neonates not exposed to clinical chorioamnionitis, suggesting that maternal fever in the absence of intra-amniotic inflammation leads to a change in the fetal cytokine network; 3) there were significant, positive correlations between maternal and umbilical cord plasma IL-6 and IL-8 concentrations (IL-6: Spearman correlation=0.53; P<0.001; IL-8: Spearman correlation=0.42; P<0.001), consistent with placental transfer of cytokines; 4) an elevated fetal plasma IL-6 (>11 pg/mL), the diagnostic criterion for FIRS, was present in 21% of cases (8/38), and all these neonates were born to mothers with proven intra-amniotic infection; and 5) FIRS was associated with a high concentration of umbilical cord plasma IL-8, IL-10 and monocyte chemoattractant protein (MCP)-1. CONCLUSIONS Neonates born to mothers with clinical chorioamnionitis at term had higher concentrations of umbilical cord plasma cytokines than those born to mothers without clinical chorioamnionitis. Even neonates exposed to clinical chorioamnionitis but not to intra-amniotic inflammation had elevated concentrations of multiple cytokines, suggesting that intrapartum fever alters the fetal immune response.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA,Department of Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikolina Docheva
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven J. Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhonghui Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juan P. Kusanovic
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF). Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile,Department of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yeon Mee Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA,Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan Korea
| | | |
Collapse
|
215
|
Henry CJ, Casás-Selves M, Kim J, Zaberezhnyy V, Aghili L, Daniel AE, Jimenez L, Azam T, McNamee EN, Clambey ET, Klawitter J, Serkova NJ, Tan AC, Dinarello CA, DeGregori J. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors. J Clin Invest 2015; 125:4666-80. [PMID: 26551682 DOI: 10.1172/jci83024] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022] Open
Abstract
The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.
Collapse
|
216
|
Perretti M, Leroy X, Bland EJ, Montero-Melendez T. Resolution Pharmacology: Opportunities for Therapeutic Innovation in Inflammation. Trends Pharmacol Sci 2015; 36:737-755. [PMID: 26478210 DOI: 10.1016/j.tips.2015.07.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/31/2022]
Abstract
Current medicines for the clinical management of inflammatory diseases act by inhibiting specific enzymes or antagonising specific receptors or blocking their ligands. In the past decade, a new paradigm in our understanding of the inflammatory process has emerged with the appreciation of genetic, molecular, and cellular mechanisms that are engaged to actively resolve inflammation. The 'resolution of acute inflammation' is enabled by counter-regulatory checkpoints to terminate the inflammatory reaction, promoting healing and repair. It may be possible to harness this knowledge for innovative approaches to the treatment of inflammatory pathologies. Here we discuss current translational attempts to develop agonists at proresolving targets as a strategy to rectify chronic inflammatory status. We reason this new approach will lead to the identification of better drugs that will establish a new branch of pharmacology, 'resolution pharmacology'.
Collapse
Affiliation(s)
- Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Xavier Leroy
- Drug Discovery Biology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | |
Collapse
|
217
|
Ramos PS, Shedlock AM, Langefeld CD. Genetics of autoimmune diseases: insights from population genetics. J Hum Genet 2015; 60:657-64. [PMID: 26223182 PMCID: PMC4660050 DOI: 10.1038/jhg.2015.94] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 12/14/2022]
Abstract
Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Autoimmune diseases (ADs) are a family of complex heterogeneous disorders with similar underlying mechanisms characterized by immune responses against self. Collectively, ADs are common, exhibit gender and ethnic disparities, and increasing incidence. As natural selection is an important influence on human genetic variation, and immune function genes are enriched for signals of positive selection, it is thought that the prevalence of AD risk alleles seen in different population is partially the result of differing selective pressures (for example, due to pathogens). With the advent of high-throughput technologies, new analytical methodologies and large-scale projects, evidence for the role of natural selection in contributing to the heritable component of ADs keeps growing. This review summarizes the genetic regions associated with susceptibility to different ADs and concomitant evidence for selection, including known agents of selection exerting selective pressure in these regions. Examples of specific adaptive variants with phenotypic effects are included as an evidence of natural selection increasing AD susceptibility. Many of the complexities of gene effects in different ADs can be explained by population genetics phenomena. Integrating AD susceptibility studies with population genetics to investigate how natural selection has contributed to genetic variation that influences disease risk will help to identify functional variants and elucidate biological mechanisms. As such, the study of population genetics in human population holds untapped potential for elucidating the genetic causes of human disease and more rapidly focusing to personalized medicine.
Collapse
Affiliation(s)
- Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew M Shedlock
- Department of Biology, College of Charleston, Charleston, SC, USA
- Hollings Marine Laboratory Center for Marine Biomedicine and College of Graduate Studies, Medical University of South Carolina, Charleston, SC, USA
| | - Carl D Langefeld
- Division of Public Health Sciences, Department of Biostatistical Sciences; and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
218
|
Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, Browning JL, Goossens N, Nakagawa S, Gunasekaran G, Schwartz ME, Kobayashi M, Kumada H, Berger M, Pappo O, Rajewsky K, Hoshida Y, Karin M, Heikenwalder M, Ben-Neriah Y, Pikarsky E. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol 2015. [PMID: 26502405 DOI: 10.1038/ni.3290.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ectopic lymphoid-like structures (ELSs) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicated poor prognosis for hepatocellular carcinoma (HCC). We studied an HCC mouse model that displayed abundant ELSs and found that they constituted immunopathological microniches wherein malignant hepatocyte progenitor cells appeared and thrived in a complex cellular and cytokine milieu until gaining self-sufficiency. The egress of progenitor cells and tumor formation were associated with the autocrine production of cytokines previously provided by the niche. ELSs developed via cooperation between the innate immune system and adaptive immune system, an event facilitated by activation of the transcription factor NF-κB and abolished by depletion of T cells. Such aberrant immunological foci might represent new targets for cancer therapy.
Collapse
Affiliation(s)
- Shlomi Finkin
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Detian Yuan
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany
| | - Ilan Stein
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Achim Weber
- Institute of Surgical Pathology, University and University-Hospital Zurich, Zurich, Switzerland
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz-Zentrum München, Ingolstädter-Landstrasse, Neuherberg, Germany
| | - Jeffrey L Browning
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA.,Division of Gastroenterology &Hepatology Geneva University Hospital, Geneva, Switzerland
| | - Shigeki Nakagawa
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ganesh Gunasekaran
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Myron E Schwartz
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Michael Berger
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Orit Pappo
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany.,Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Yinon Ben-Neriah
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
219
|
Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol 2015; 16:1235-44. [PMID: 26502405 PMCID: PMC4653079 DOI: 10.1038/ni.3290] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/07/2015] [Indexed: 12/25/2022]
Abstract
Ectopic lymphoid-like structures (ELS) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicate poor prognosis in hepatocellular carcinoma (HCC). We studied an HCC mouse model, displaying abundant ELSs and found that they constitute immunopathological microniches, wherein progenitor malignant hepatocytes appear and thrive in a complex cellular and cytokine milieu until gaining self-sufficiency. Progenitor egression and tumor formation is associated with autocrine production of cytokines previously provided by the niche. ELSs develop upon cooperation between the innate and adaptive immune system which is facilitated by NF-κB activation and abolished by T cell depletion. These aberrant immune foci could be new targets for cancer therapy.
Collapse
|
220
|
Bakkebø MK, Mouillet-Richard S, Espenes A, Goldmann W, Tatzelt J, Tranulis MA. The Cellular Prion Protein: A Player in Immunological Quiescence. Front Immunol 2015; 6:450. [PMID: 26388873 PMCID: PMC4557099 DOI: 10.3389/fimmu.2015.00450] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023] Open
Abstract
Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrP(C)) remains elusive. Here, we present a novel concept suggesting that PrP(C) contributes to immunological quiescence in addition to cell protection. PrP(C) is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus, and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrP(C) serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here, we review studies of PrP(C) physiology in view of this concept.
Collapse
Affiliation(s)
- Maren K. Bakkebø
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Wilfred Goldmann
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jörg Tatzelt
- Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael A. Tranulis
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway,*Correspondence: Michael A. Tranulis, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Campus Adamstuen, Oslo 0033, Norway,
| |
Collapse
|
221
|
Leong PK, Ko KM. Schisandrin B induces an Nrf2-mediated thioredoxin expression and suppresses the activation of inflammasome in vitro and in vivo. Biofactors 2015; 41:314-23. [PMID: 26307448 DOI: 10.1002/biof.1224] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS)-mediated activation of inflammasome is involved in the development of a wide spectrum of diseases. We aimed to investigate whether (-)schisandrin B [(-)Sch B], a phytochemical that can induce cellular antioxidant response, can suppress the inflammasome activation. Results showed that (-)Sch B can induce an nuclear factor erythroid 2-related factor 2-driven thioredoxin expression in primary peritoneal macrophages and cultured RAW264.7 macrophages. A 4-h priming of peritoneal macrophages with LPS followed by a 30-min incubation with ATP caused the activation of caspase 1 and the release of IL-1β, indicative of inflammasome activation. Although LPS/ATP did not activate inflammasome in RAW264.7 macrophages, it caused the ROS-dependent c-Jun N-terminal kinase1/2 (JNK1/2) activation and an associated lactate dehydrogenase (LDH) release in RAW264.7 macrophages, an indication of cytotoxicity. (-)Sch B suppressed the LPS/ATP-induced activation of caspase 1 and release of IL-1β in peritoneal macrophages. (-)Sch B also attenuated the LPS/ATP-induced ROS production, JNK1/2 activation and LDH release in RAW264.7 macrophages. The ability of (-)Sch B to suppress LPS/ATP-mediated inflammation in vitro was further confirmed by an animal study, in which schisandrin B treatment (2 mmol/kg p.o.) ameliorated the Imject Alum-induced peritonitis, as indicated by suppressions of caspase1 activation and plasma IL-1β level. The ensemble of results suggests that (-)Sch B may offer a promising prospect for preventing the inflammasome-mediated disorders.
Collapse
Affiliation(s)
- Pou Kuan Leong
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | - Kam Ming Ko
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
222
|
Havixbeck JJ, Rieger AM, Wong ME, Hodgkinson JW, Barreda DR. Neutrophil contributions to the induction and regulation of the acute inflammatory response in teleost fish. J Leukoc Biol 2015; 99:241-52. [PMID: 26292979 DOI: 10.1189/jlb.3hi0215-064r] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are essential to the acute inflammatory response, where they serve as the first line of defense against infiltrating pathogens. We report that, on receiving the necessary signals, teleost (Carassius auratus) neutrophils leave the hematopoietic kidney, enter into the circulation, and dominate the initial influx of cells into a site of inflammation. Unlike mammals, teleost neutrophils represent <5% of circulating leukocytes during periods of homeostasis. However, this increases to nearly 50% immediately after intraperitoneal challenge with zymosan, identifying a period of neutrophilia that precedes the peak influx of neutrophils into the challenge site at 18 h after injection). We demonstrate that neutrophils at the site of inflammation alter their phenotype throughout the acute inflammatory response, and contribute to both the induction and the resolution of inflammation. However, neutrophils isolated during the proinflammatory phase (18 h after injection) produced robust respiratory burst responses, released inflammation-associated leukotriene B(4), and induced macrophages to increase reactive oxygen species production. In contrast, neutrophils isolated at 48 h after infection (proresolving phase) displayed low levels of reactive oxygen species, released the proresolving lipid mediator lipoxin A(4), and downregulated reactive oxygen species production in macrophages before the initiation of apoptosis. Lipoxin A(4) was a significant contributor to the uptake of apoptotic cells by teleost macrophages and also played a role, at least in part, in the downregulation of macrophage reactive oxygen species production. Our results highlight the contributions of neutrophils to both the promotion and the regulation of teleost fish inflammation and provide added context for the evolution of this hematopoietic lineage.
Collapse
Affiliation(s)
- Jeffrey J Havixbeck
- Departments of *Biological Sciences and Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Aja M Rieger
- Departments of *Biological Sciences and Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Michael E Wong
- Departments of *Biological Sciences and Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan W Hodgkinson
- Departments of *Biological Sciences and Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel R Barreda
- Departments of *Biological Sciences and Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
223
|
Mello AS, de Oliveira DC, Bizzarro B, Sá-Nunes A, Hastreiter AA, Beltran JSDO, Xavier JG, Borelli P, Fock RA. Protein malnutrition alters spleen cell proliferation and IL-2 and IL-10 production by affecting the STAT-1 and STAT-3 balance. Inflammation 2015; 37:2125-38. [PMID: 24986442 DOI: 10.1007/s10753-014-9947-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein malnutrition (PM) is an important public health problem that affects resistance to infection by impairing a number of physiological processes. PM induces structural changes in the lymphoid organs that affect the roles of the immune and inflammatory responses in a crucial way. The activation of different transcription factors, including signal transducer and activator of transcription (STAT) family members, leads to the production of different cytokines, which are mediators essential to mounting adequate immune and inflammatory responses. In this study, malnourished animals presented anemia, leukopenia, and a severe reduction in spleen cellularity, with reduced numbers of most cell populations, as well as increased percentages of CD3(+) and CD4(+) cells. The proliferation rates were reduced, and cells were increasingly observed in the G0/G1 cell cycle phase; further, IL-2 production was reduced, while IL-10 production was increased. In spleen cells from malnourished animals, STAT-3 protein expression was increased, with a concomitant reduction in STAT-1 expression. Knowing that STAT-1 and STAT-3 are key transcription factors in both immunity and inflammatory pathways, these results infer, at least in part, a mechanistic pathway that affects the manner or intensity of the immune response in malnourished individuals, increasing susceptibility to infection.
Collapse
Affiliation(s)
- Alexandra Siqueira Mello
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Zhang Y. Why do we study animal toxins? DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:183-222. [PMID: 26228472 PMCID: PMC4790257 DOI: 10.13918/j.issn.2095-8137.2015.4.183] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/25/2015] [Indexed: 12/31/2022]
Abstract
Venom (toxins) is an important trait evolved along the evolutionary tree of animals. Our knowledges on venoms, such as their origins and loss, the biological relevance and the coevolutionary patterns with other organisms are greatly helpful in understanding many fundamental biological questions, i.e., the environmental adaptation and survival competition, the evolution shaped development and balance of venoms, and the sophisticated correlations among venom, immunity, body power, intelligence, their genetic basis, inherent association, as well as the cost-benefit and trade-offs of biological economy. Lethal animal envenomation can be found worldwide. However, from foe to friend, toxin studies have led lots of important discoveries and exciting avenues in deciphering and fighting human diseases, including the works awarded the Nobel Prize and lots of key clinic therapeutics. According to our survey, so far, only less than 0.1% of the toxins of the venomous animals in China have been explored. We emphasize on the similarities shared by venom and immune systems, as well as the studies of toxin knowledge-based physiological toxin-like proteins/peptides (TLPs). We propose the natural pairing hypothesis. Evolution links toxins with humans. Our mission is to find out the right natural pairings and interactions of our body elements with toxins, and with endogenous toxin-like molecules. Although, in nature, toxins may endanger human lives, but from a philosophical point of view, knowing them well is an effective way to better understand ourselves. So, this is why we study toxins.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223,
| |
Collapse
|
225
|
Brough D, Rothwell NJ, Allan SM. Interleukin-1 as a pharmacological target in acute brain injury. Exp Physiol 2015; 100:1488-94. [PMID: 26096539 DOI: 10.1113/ep085135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/04/2015] [Accepted: 06/05/2015] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses the latest findings on the contribution of inflammation to brain injury, how inflammation is a therapeutic target, and details of recent and forthcoming clinical studies. What advances does it highlight? Here we highlight recent advances on the role and regulation of inflammasomes, and the latest clinical progress in targeting inflammation. Acute brain injury is one of the leading causes of mortality and disability worldwide. Despite this, treatments for acute brain injuries are limited, and there remains a massive unmet clinical need. Inflammation has emerged as a major contributor to non-communicable diseases, and there is now substantial and growing evidence that inflammation, driven by the cytokine interleukin-1 (IL-1), worsens acute brain injury. Interleukin-1 is regulated by large, multimolecular complexes called inflammasomes. Here, we discuss the latest research on the regulation of inflammasomes and IL-1 in the brain, preclinical efforts to establish the IL-1 system as a therapeutic target, and the promise of recent and future clinical studies on blocking the action of IL-1 for the treatment of brain injury.
Collapse
Affiliation(s)
- David Brough
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Nancy J Rothwell
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
226
|
Souza PR, Norling LV. Implications for eicosapentaenoic acid- and docosahexaenoic acid-derived resolvins as therapeutics for arthritis. Eur J Pharmacol 2015; 785:165-173. [PMID: 26165764 DOI: 10.1016/j.ejphar.2015.05.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 02/08/2023]
Abstract
Omega-3 polyunsaturated fatty acids are essential for health and are known to possess anti-inflammatory properties, improving cardiovascular health as well as benefiting inflammatory diseases. Indeed, dietary supplementation with omega-3 polyunsaturated fatty acids has proved efficacious in reducing joint pain, morning stiffness and nonsteroidal anti-inflammatory drugs usage in rheumatoid arthritis patients. However, the mechanisms by which omega-3 polyunsaturated fatty acids exert their beneficial effects have not been fully explored. Seminal discoveries by Serhan and colleagues have unveiled a novel class of bioactive lipid mediators that are enzymatically biosynthesized in vivo from omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), termed resolvins, protectins and maresins. These bioactive pro-resolving lipid mediators provide further rationale for the beneficial effects of fish-oil enriched diets. These endogenous lipid mediators are spatiotemporally biosynthesized to actively regulate resolution by acting on specific G protein-coupled receptors (GPCRs) to initiate anti-inflammatory and pro-resolving signals that terminate inflammation. In this review, we will discuss the mechanism of actions of these molecules, including their analgesic and bone-sparing properties making them ideal therapeutic agonists for the treatment of inflammatory diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Patricia R Souza
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Lucy V Norling
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| |
Collapse
|
227
|
Abstract
Aging is the greatest risk factor for the development of chronic diseases such as arthritis, type 2 diabetes, cardiovascular disease, kidney disease, Alzheimer's disease, macular degeneration, frailty, and certain forms of cancers. It is widely regarded that chronic inflammation may be a common link in all these age-related diseases. This raises the question, can one alter the course of aging and potentially slow the development of all chronic diseases by manipulating the mechanisms that cause age-related inflammation? Emerging evidence suggests that pro-inflammatory cytokines interleukin-1 (IL-1) and IL-18 show an age-dependent regulation implicating inflammasome-mediated caspase-1 activation in the aging process. The Nod-like receptor (NLR) family of innate immune cell sensors, such as the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome controls the caspase-1 activation in myeloid-lineage cells in several organs during aging. The NLRP3 inflammasome is especially relevant to aging as it can get activated in response to structurally diverse damage-associated molecular patterns (DAMPs) such as extracellular ATP, excess glucose, ceramides, amyloids, urate, and cholesterol crystals, all of which increase with age. Interestingly, reduction in NLRP3-mediated inflammation prevents age-related insulin resistance, bone loss, cognitive decline, and frailty. NLRP3 is a major driver of age-related inflammation and therefore dietary or pharmacological approaches to lower aberrant inflammasome activation holds promise in reducing multiple chronic diseases of age and may enhance healthspan.
Collapse
Affiliation(s)
- Emily L. Goldberg
- Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Vishwa Deep Dixit
- Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
228
|
Currais A. Ageing and inflammation - A central role for mitochondria in brain health and disease. Ageing Res Rev 2015; 21:30-42. [PMID: 25684584 DOI: 10.1016/j.arr.2015.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 02/08/2023]
Abstract
To develop successful therapies that prevent or treat neurodegenerative diseases requires an understanding of the upstream events. Ageing is by far the greatest risk factor for most of these diseases, and to clarify their causes will require an understanding of the process of ageing itself. Starting with the question Why do we age as individual organisms, but the line of pluripotent embryonic stem cells and germ cells carried by individuals and transmitted to descendants is immortal? this review discusses how the process of cellular differentiation leads to the accumulation of biological imperfections with ageing, and how these imperfections may be the cause of chronic inflammatory responses to stress that undermine cellular function. Both differentiation and inflammation involve drastic metabolic changes associated with alterations in mitochondrial dynamics that shift the balance between aerobic glycolysis and oxidative phosphorylation. With ageing, mitochondrial dysfunction can be both the cause and consequence of inflammatory processes and elicit metabolic adaptations that might be either protective or become progressively detrimental. It is argued here that an understanding of the relationship between metabolism, differentiation and inflammation is essential to understand the pathological mechanisms governing brain health and disease during ageing.
Collapse
|
229
|
Cram DL, Blount JD, York JE, Young AJ. Immune response in a wild bird is predicted by oxidative status, but does not cause oxidative stress. PLoS One 2015; 10:e0122421. [PMID: 25815888 PMCID: PMC4376632 DOI: 10.1371/journal.pone.0122421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/20/2015] [Indexed: 12/26/2022] Open
Abstract
The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to biomedical evidence that baseline oxidative status can impact the scale of immune responses; a possibility not yet recognised in ecological studies of immunity.
Collapse
Affiliation(s)
- Dominic L. Cram
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan D. Blount
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| | - Jennifer E. York
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Andrew J. Young
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| |
Collapse
|
230
|
Zhuang Y, Lyga J. Inflammaging in skin and other tissues - the roles of complement system and macrophage. ACTA ACUST UNITED AC 2015; 13:153-61. [PMID: 24853681 PMCID: PMC4082166 DOI: 10.2174/1871528113666140522112003] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/07/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
Inflammaging refers to a continuous, low-grade inflammation associated with aging. Such chronic inflammatory response could build up with time and gradually causes tissue damage. It is considered as one of the driving forces for many age-related diseases such as diabetes, atherosclerosis, age-related macular degeneration (AMD), and skin aging. There is mounting evidence that indicates aging is driven by the pro-inflammatory cytokines and substances produced by our body’s innate immune system. The macrophage and complement system, two important components of innate immune system, have attracted more and more attention since they appear to be involved in the pathogenesis of several inflammaging-associated diseases, such as AMD and atherosclerosis. This paper will review what we know about these two innate immune systems in the pathogenesis of AMD, atherosclerosis and skin aging.
Collapse
Affiliation(s)
| | - John Lyga
- Avon Global R&D, 1 Avon Place, Suffern, NY, 10901, USA.
| |
Collapse
|
231
|
Modis Y. An Inheritable variant of the innate immune receptor melanoma differentiation-associated gene 5 promotes clearance of hepatitis C virus. Hepatology 2015; 61:418-20. [PMID: 25212845 PMCID: PMC4475752 DOI: 10.1002/hep.27439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yorgo Modis
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT
| |
Collapse
|
232
|
Aoshiba K, Tsuji T, Itoh M, Yamaguchi K, Nakamura H. An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease. Respiration 2015; 89:243-52. [PMID: 25677028 DOI: 10.1159/000369861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023] Open
Abstract
Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.
Collapse
Affiliation(s)
- Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Japan
| | | | | | | | | |
Collapse
|
233
|
Abstract
Glucocorticoids (GCs) are steroid hormones with widespread effects. They control intermediate metabolism by stimulating gluconeogenesis in the liver, mobilize amino acids from extra hepatic tissues, inhibit glucose uptake in muscle and adipose tissue, and stimulate fat breakdown in adipose tissue. They also mediate stress response. They exert potent immune-suppressive and anti-inflammatory effects particularly when administered pharmacologically. Understanding these diverse effects of glucocorticoids requires a detailed knowledge of their mode of action. Research over the years has uncovered several details on the molecular action of this hormone, especially in immune cells. In this chapter, we have summarized the latest findings on the action of glucocorticoids in immune cells with a view of identifying important control points that may be relevant in glucocorticoid therapy.
Collapse
|
234
|
Luna–López A, González-Puertos VY, López-Diazguerrero NE, Königsberg M. New considerations on hormetic response against oxidative stress. J Cell Commun Signal 2014; 8:323-31. [PMID: 25284448 PMCID: PMC4390794 DOI: 10.1007/s12079-014-0248-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/30/2014] [Indexed: 01/06/2023] Open
Abstract
In order to survive living organisms have developed multiple mechanisms to deal with tough environmental conditions. Hormesis is defined as a process in which exposure to a low dose of a chemical agent or environmental factor that is damaging at higher doses induces an adaptive beneficial effect on the cell or organism. In this paper, we examine several ideas that might be taken into consideration before using hormesis as a therapeutic tool to improve health and life span, and hopefully will open the discussion for new and interesting debates regard hormesis. The first one is to understand that the same stressor or inductor can activate different pathways in a parallel or dual response, which might lead to diverse outcomes. Another idea is related to the mechanisms involved in activating Nrf2, which might be different and have diverse hormetic effects.Last, we discuss mild oxidative stress in association to low-grade chronic inflammation as a stimulating avenue to be explored and the unexpected effects proposed by the obesity paradox theory. All the previous might help to clarify the reasons why centenarians are able to reach the extreme limits of human life span, which could probably be related to the way they deal with homeostasis maintenance, providing an opportunity for hormesis to intervene significantly.
Collapse
Affiliation(s)
| | - Viridiana Y. González-Puertos
- />Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340 México, D.F Mexico
| | - Norma E. López-Diazguerrero
- />Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340 México, D.F Mexico
| | - Mina Königsberg
- />Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340 México, D.F Mexico
| |
Collapse
|
235
|
Abstract
Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems.
Collapse
Affiliation(s)
- Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854 ; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 ; Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
236
|
Tae HJ, Petrashevskaya N, Ahmet I, Park S, Talan MI, Lakatta EG, Lin L. Vessel ultrasound sonographic assessment of soluble receptor for advanced glycation end products efficacy in a rat balloon injury model. CURRENT THERAPEUTIC RESEARCH 2014; 76:110-5. [PMID: 25408789 PMCID: PMC4229510 DOI: 10.1016/j.curtheres.2014.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/04/2014] [Indexed: 11/25/2022]
Abstract
Objective We aimed to assess the therapeutic efficacy of differentially modified soluble receptor for advanced glycation end products (sRAGE) in vivo using vessel ultrasound sonography and to compare the sonography data with those from postmortem histomorphologic analyses to have a practical reference for future clinical applications. Methods Vessel ultrasound sonography was performed in a sRAGE-treated rat carotid artery balloon injury model at different time points after the surgery, and therapeutic efficacy of different doses of sRAGE produced in Chinese hamster ovary cells and with different N-glycoform modifications were assessed. Results Vessel ultrasound sonography found that sRAGE produced in Chinese hamster ovary cells with complex N-glycoform modifications is highly effective, and is consistent with our recent findings in the same model assessed with histology. We also found that sonography is less sensitive than histology when a higher dose of sRAGE is administered. Conclusions Sonograph results are consistent with those obtained from histology; that is, sRAGE produced in Chinese hamster ovary cells has significantly higher efficacy than insect cell-originated sRAGE cells.
Collapse
Affiliation(s)
- Hyun-Jin Tae
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland ; Current affiliation: Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon, Korea
| | - Natalia Petrashevskaya
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Sungha Park
- Division of Cardiology, Cardiovascular Center, Yonsei University College of Medicine, Seoul, Korea
| | - Mark I Talan
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Li Lin
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
237
|
TSG-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo. Proc Natl Acad Sci U S A 2014; 111:16766-71. [PMID: 25385603 DOI: 10.1073/pnas.1416121111] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem/progenitor cells (hMSCs) from bone marrow and other tissues are currently being administered to large numbers of patients even though there are no biomarkers that accurately predict their efficacy in vivo. Using a mouse model of chemical injury of the cornea, we found that bone-marrow-derived hMSCs isolated from different donors varied widely in their efficacy in modulating sterile inflammation. Importantly, RT-PCR assays of hMSCs for the inflammation-modulating protein TSG-6 expressed by the TNFα-stimulated gene 6 (TSG-6 or TNFAIP6) predicted their efficacy in sterile inflammation models for corneal injury, sterile peritonitis, and bleomycin-induced lung injury. In contrast, the levels of TSG-6 mRNA were negatively correlated with their potential for osteogenic differentiation in vitro and poorly correlated with other criteria for evaluating hMSCs. Also, a survey of a small cohort suggested that hMSCs from female donors compared with male donors more effectively suppressed sterile inflammation, expressed higher levels of TSG-6, and had slightly less osteogenic potential.
Collapse
|
238
|
Pimentel GD, Ganeshan K, Carvalheira JBC. Hypothalamic inflammation and the central nervous system control of energy homeostasis. Mol Cell Endocrinol 2014; 397:15-22. [PMID: 24952114 DOI: 10.1016/j.mce.2014.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/07/2014] [Accepted: 06/08/2014] [Indexed: 02/07/2023]
Abstract
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Collapse
Affiliation(s)
- Gustavo D Pimentel
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Kirthana Ganeshan
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001, United States
| | - José B C Carvalheira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
239
|
Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem 2014; 395:203-30. [PMID: 24127541 DOI: 10.1515/hsz-2013-0241] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022]
Abstract
Abstract The production of various reactive oxidant species in excess of endogenous antioxidant defense mechanisms promotes the development of a state of oxidative stress, with significant biological consequences. In recent years, evidence has emerged that oxidative stress plays a crucial role in the development and perpetuation of inflammation, and thus contributes to the pathophysiology of a number of debilitating illnesses, such as cardiovascular diseases, diabetes, cancer, or neurodegenerative processes. Oxidants affect all stages of the inflammatory response, including the release by damaged tissues of molecules acting as endogenous danger signals, their sensing by innate immune receptors from the Toll-like (TLRs) and the NOD-like (NLRs) families, and the activation of signaling pathways initiating the adaptive cellular response to such signals. In this article, after summarizing the basic aspects of redox biology and inflammation, we review in detail the current knowledge on the fundamental connections between oxidative stress and inflammatory processes, with a special emphasis on the danger molecule high-mobility group box-1, the TLRs, the NLRP-3 receptor, and the inflammasome, as well as the transcription factor nuclear factor-κB.
Collapse
|
240
|
Diabetes and the brain: oxidative stress, inflammation, and autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:102158. [PMID: 25215171 PMCID: PMC4158559 DOI: 10.1155/2014/102158] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation.
Collapse
|
241
|
Lu B, Kwan K, Levine YA, Olofsson PS, Yang H, Li J, Joshi S, Wang H, Andersson U, Chavan SS, Tracey KJ. α7 nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release. Mol Med 2014; 20:350-8. [PMID: 24849809 DOI: 10.2119/molmed.2013.00117] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 05/13/2014] [Indexed: 12/17/2022] Open
Abstract
The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide-induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release.
Collapse
Affiliation(s)
- Ben Lu
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin Kwan
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yaakov A Levine
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America Setpoint Medical, Manhasset, New York, United States of America
| | - Peder S Olofsson
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huan Yang
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jianhua Li
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Sonia Joshi
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J Tracey
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
242
|
Reikine S, Nguyen JB, Modis Y. Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5. Front Immunol 2014; 5:342. [PMID: 25101084 PMCID: PMC4107945 DOI: 10.3389/fimmu.2014.00342] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/05/2014] [Indexed: 12/25/2022] Open
Abstract
Most organisms rely on innate immune receptors to recognize conserved molecular structures from invading microbes. Two essential innate immune receptors, RIG-I and MDA5, detect viral double-stranded RNA in the cytoplasm. The inflammatory response triggered by these RIG-I-like receptors (RLRs) is one of the first and most important lines of defense against infection. RIG-I recognizes short RNA ligands with 5′-triphosphate caps. MDA5 recognizes long kilobase-scale genomic RNA and replication intermediates. Ligand binding induces conformational changes and oligomerization of RLRs that activate the signaling partner MAVS on the mitochondrial and peroxisomal membranes. This signaling process is under tight regulation, dependent on post-translational modifications of RIG-I and MDA5, and on regulatory proteins including unanchored ubiquitin chains and a third RLR, LGP2. Here, we review recent advances that have shifted the paradigm of RLR signaling away from the conventional linear signaling cascade. In the emerging RLR signaling model, large multimeric signaling platforms generate a highly cooperative, self-propagating, and context-dependent signal, which varies with the subcellular localization of the signaling platform.
Collapse
Affiliation(s)
- Stephanie Reikine
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, CT , USA
| | - Jennifer B Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, CT , USA
| | - Yorgo Modis
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, CT , USA
| |
Collapse
|
243
|
Baffy G, Loscalzo J. Complexity and network dynamics in physiological adaptation: An integrated view. Physiol Behav 2014; 131:49-56. [DOI: 10.1016/j.physbeh.2014.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
|
244
|
Anders HJ. Immune system modulation of kidney regeneration--mechanisms and implications. Nat Rev Nephrol 2014; 10:347-58. [PMID: 24776845 DOI: 10.1038/nrneph.2014.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system is an important guardian of tissue homeostasis. In response to injury, resident and infiltrating immune cells orchestrate all phases of danger control, resolution of inflammation and tissue regeneration or scar formation. As mammalian postnatal kidneys are not capable of de novo nephrogenesis, recovery is limited to the regeneration or repair of existing nephrons. The regenerative capacity of the nephron varies between compartments; the epithelial cells of the tubule regenerate more efficiently than the structurally highly organized podocytes. Cells of the surrounding environment modulate nephron regeneration by secreting paracrine mediators. This Review discusses immune mediators and pathways that regulate the intrinsic regenerative capacity of the nephron. Eliminating injurious triggers, modulating renal inflammation and specifically enhancing the regenerative capacity of nephrons might be a promising strategy to improve long-term outcomes in patients with acute kidney injury and/or chronic kidney disease.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München-Innenstadt, Ziemssenstrasse 1, 80336 Munich, Germany
| |
Collapse
|
245
|
Xie LW, Atanasov AG, Guo DA, Malainer C, Zhang JX, Zehl M, Guan SH, Heiss EH, Urban E, Dirsch VM, Kopp B. Activity-guided isolation of NF-κB inhibitors and PPARγ agonists from the root bark of Lycium chinense Miller. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:470-477. [PMID: 24512737 DOI: 10.1016/j.jep.2014.01.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/20/2014] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root bark of Lycium chinense Miller, Lycii radicis cortex, has been used in traditional Chinese medicine (TCM) to treat different inflammation-related symptoms, such as diabetes mellitus. The pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) is a key regulator of inflammation, while the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) is a key modulator of genes involved in diabetes development. To identify putative active compound(s) from Lycii radicis cortex inhibiting NF-κB or activating PPARγ. MATERIAL AND METHODS Using activity-guided fractionation, six extracts with different polarity, isolated fractions, and purified compounds from Lycii radicis cortex were tested for NF-κB inhibition and PPARγ activation in vitro. The structure of the purified compounds was elucidated by NMR and MS techniques. RESULTS The ethyl acetate extract and the methanol extract of Lycii radicis cortex suppressed tumor necrosis factor alpha (TNF-α)-induced activation of NF-κB, while the dichloromethane extract activated PPARγ. Nine phenolic amide analogues, including trans-N-(p-coumaroyl)tyramine (1), trans-N-feruloyltyramine (2), trans-N-caffeoyltyramine (3), dihydro-N-caffeoyltyramine (4), three neolignanamides (5-7), and two lignanamide (8, 9), were isolated and their inhibitory potential on NF-κB was determined (1-4 were also contained in water decoction). Two of the nine isolated phenolic amides inhibited TNF-α-induced NF-κB activation. Trans-N-caffeoyltyramine was verified as the key component responsible for the NF-κB inhibition with an IC50 of 18.4μM in our cell-based test system. Activation of PPARγ was attributed to a palmitic-acid enriched fraction which displayed concentration-dependent effect ablated upon co-treatment with the PPARγ antagonist T0070907. CONCLUSIONS Phenolic amides were confirmed as main components from Lycii radicis cortex responsible for NF-κB inhibition. Fatty acids were identified as the major plant constituent responsible for the PPARγ activation. Structure-activity relationship analysis suggests that the NF-κB inhibitory activity of trans-N-caffeoyltyramine may be attributed to its Michael acceptor-type structure (α,β-unsaturated carbonyl group). The data of this study contribute to a better understanding of the molecular mechanism of action of Lycii radicis cortex extracts in the context of inflammation.
Collapse
Affiliation(s)
- Lian-Wu Xie
- School of Sciences, Central South University of Forestry and Technology, 498 South Shaoshan Road, 410004 Changsha, Hunan, PR China; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Hunan University of Chinese Medicine, Hanpu S&E District, 410208 Changsha, Hunan, PR China
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203 Shanghai, PR China
| | - Clemens Malainer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Jing-Xian Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203 Shanghai, PR China
| | - Martin Zehl
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Shu-Hong Guan
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203 Shanghai, PR China
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ernst Urban
- Department of Medicinal Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
246
|
Cognitive and motor perturbations in elderly with longstanding diabetes mellitus. Nutrition 2013; 30:628-35. [PMID: 24800665 DOI: 10.1016/j.nut.2013.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/11/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023]
Abstract
Type 2 diabetes mellitus is a chronic disease characterized by insulin resistance; inflammation; oxidative stress; vascular damage; and dysfunction of glucose, protein, and lipid metabolisms. However, comparatively less attention has been paid to neurologic alterations seen in elderly individuals with type 2 diabetes. We review clinical, metabolic, and biochemical aspects of diabetic encephalopathy (DE) and propose that quality of dietary lipids is closely linked to DE. This implies that preventive nutritional interventions may be designed to improve DE.
Collapse
|
247
|
Konstantinov SR, Kuipers EJ, Peppelenbosch MP. Functional genomic analyses of the gut microbiota for CRC screening. Nat Rev Gastroenterol Hepatol 2013; 10:741-5. [PMID: 24042452 DOI: 10.1038/nrgastro.2013.178] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The evidence for a strong correlation between the gut microbiota and colorectal carcinogenesis is quickly gathering pace. This correlation raises important questions, such as whether analysis of the microbiota can be used for screening purposes, and whether targeted intervention can influence the risk of development and progression of neoplasia. The recovery of several pathobionts-such as members of the different bacterial phyla Proteobacteria, Bacteroidetes and Fusobacteria-from the tumour microenvironment of patients with colorectal cancer (CRC) now provides a link between specific microbial colonization and cancer. However, other intestinal bacteria belonging to another major intestinal phylum, Firmicutes, might be effective in the treatment of pathogenic inflammation related to CRC. Future approaches based on the analysis of the gut microbiota of patients with CRC combined with large human cohort studies might open up new possibilities for further prophylactic, screening and treatment strategies.
Collapse
Affiliation(s)
- Sergey R Konstantinov
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Gravendijkwal 230, NL3015 CE Rotterdam, Netherlands
| | | | | |
Collapse
|
248
|
Price JV, Haddon DJ, Kemmer D, Delepine G, Mandelbaum G, Jarrell JA, Gupta R, Balboni I, Chakravarty EF, Sokolove J, Shum AK, Anderson MS, Cheng MH, Robinson WH, Browne SK, Holland SM, Baechler EC, Utz PJ. Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus. J Clin Invest 2013; 123:5135-45. [PMID: 24270423 DOI: 10.1172/jci70231] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022] Open
Abstract
Autoantibodies against cytokines, chemokines, and growth factors inhibit normal immunity and are implicated in inflammatory autoimmune disease and diseases of immune deficiency. In an effort to evaluate serum from autoimmune and immunodeficient patients for Abs against cytokines, chemokines, and growth factors in a high-throughput and unbiased manner, we constructed a multiplex protein microarray for detection of serum factor-binding Abs and used the microarray to detect autoantibody targets in SLE. We designed a nitrocellulose-surface microarray containing human cytokines, chemokines, and other circulating proteins and demonstrated that the array permitted specific detection of serum factor-binding probes. We used the arrays to detect previously described autoantibodies against cytokines in samples from individuals with autoimmune polyendocrine syndrome type 1 and chronic mycobacterial infection. Serum profiling from individuals with SLE revealed that among several targets, elevated IgG autoantibody reactivity to B cell-activating factor (BAFF) was associated with SLE compared with control samples. BAFF reactivity correlated with the severity of disease-associated features, including IFN-α-driven SLE pathology. Our results showed that serum factor protein microarrays facilitate detection of autoantibody reactivity to serum factors in human samples and that BAFF-reactive autoantibodies may be associated with an elevated inflammatory disease state within the spectrum of SLE.
Collapse
|
249
|
Youm YH, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, Pistell P, Newman S, Carter R, Laque A, Münzberg H, Rosen CJ, Ingram DK, Salbaum JM, Dixit VD. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 2013; 18:519-32. [PMID: 24093676 PMCID: PMC4017327 DOI: 10.1016/j.cmet.2013.09.010] [Citation(s) in RCA: 461] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/07/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Despite a wealth of clinical data showing an association between inflammation and degenerative disorders in the elderly, the immune sensors that causally link systemic inflammation to aging remain unclear. Here we detail a mechanism by which the Nlrp3 inflammasome controls systemic low-grade age-related "sterile" inflammation in both periphery and brain independently of the noncanonical caspase-11 inflammasome. Ablation of Nlrp3 inflammasome protected mice from age-related increases in the innate immune activation, alterations in CNS transcriptome, and astrogliosis. Consistent with the hypothesis that systemic low-grade inflammation promotes age-related degenerative changes, the deficient Nlrp3 inflammasome-mediated caspase-1 activity improved glycemic control and attenuated bone loss and thymic demise. Notably, IL-1 mediated only Nlrp3 inflammasome-dependent improvement in cognitive function and motor performance in aged mice. These studies reveal Nlrp3 inflammasome as an upstream target that controls age-related inflammation and offer an innovative therapeutic strategy to lower Nlrp3 activity to delay multiple age-related chronic diseases.
Collapse
Affiliation(s)
- Yun-Hee Youm
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Ryan W. Grant
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, MI48824, USA
| | - Diana C. Albarado
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Kim Yen Nguyen
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Anthony Ravussin
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Paul Pistell
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Susan Newman
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Renee Carter
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, LSU, Baton Rouge, LA70803, USA
| | - Amanda Laque
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Donald K. Ingram
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - J. Michael Salbaum
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
| | - Vishwa Deep Dixit
- Pennington Biomedical Research Center, LSU System, Baton Rouge LA70808, USA
- Section of Comparative Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520, USA
| |
Collapse
|
250
|
Davis C. From passive overeating to "food addiction": a spectrum of compulsion and severity. ISRN OBESITY 2013; 2013:435027. [PMID: 24555143 PMCID: PMC3901973 DOI: 10.1155/2013/435027] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 01/17/2023]
Abstract
A psychobiological dimension of eating behaviour is proposed, which is anchored at the low end by energy intake that is relatively well matched to energy output and is reflected by a stable body mass index (BMI) in the healthy range. Further along the continuum are increasing degrees of overeating (and BMI) characterized by more severe and more compulsive ingestive behaviours. In light of the many similarities between chronic binge eating and drug abuse, several authorities have adopted the perspective that an apparent dependence on highly palatable food-accompanied by emotional and social distress-can be best conceptualized as an addiction disorder. Therefore, this review also considers the overlapping symptoms and characteristics of binge eating disorder (BED) and models of food addiction, both in preclinical animal studies and in human research. It also presents this work in the context of the modern and "toxic" food environment and therein the ubiquitous triggers for over-consumption. We complete the review by providing evidence that what we have come to call "food addiction" may simply be a more acute and pathologically dense form of BED.
Collapse
Affiliation(s)
- Caroline Davis
- Kinesiology & Health Sciences, Faculty of Health, York University, 343 Bethune College, 4700 Keele Street, Toronto, ON, Canada M3J 1P3
| |
Collapse
|