201
|
Abstract
Targeting cytokines in inflammatory bowel disease (IBD) is a useful clinical approach. Potential therapies for IBD include regulatory T cell transfer to restore cytokine balance, blocking proinflammatory cytokines (e.g., IL-12 and IL-23) or their receptors (sIL-6R and IL-36R), or inhibiting signaling kinases (e.g., JAK). An emerging trend in IBD therapy is to combine several anti-cytokine agents simultaneously.
Collapse
Affiliation(s)
- Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nürnberg, Kussmaul Campus for Medical Research, and Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
202
|
Jacques C, Floris I. Special Focus on the Cellular Anti-Inflammatory Effects of Several Micro-Immunotherapy Formulations: Considerations Regarding Intestinal-, Immune-Axis-Related- and Neuronal-Inflammation Contexts. J Inflamm Res 2022; 15:6695-6717. [PMID: 36536643 PMCID: PMC9759027 DOI: 10.2147/jir.s389614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/24/2022] [Indexed: 04/11/2024] Open
Abstract
INTRODUCTION Chronic inflammation is a pernicious underlying status, well-known for its contribution to the progressive development of various diseases. In this regard, Micro-immunotherapy (MI) might be a promising therapeutic strategy. MI employs low doses (LD) and ultra-low doses (ULD) of immune regulators in their formulations. In particular, as both IL-1β and TNF-α are often used at ULD in MI medicines (MIM), a special emphasis has been made on formulations that include these factors in their compositions. METHODS Several in vitro models have been employed in order to assess the effects of two unitary MIM consisting of ULD of IL-1β and TNF-α (u-MIM-1 and u-MIM-2, respectively), and four complex MIM (c-MIM-1, -2, -3 and -4) characterized by the presence of ULD of IL-1β and TNF-α amongst other factors. Thus, we first investigated the anti-inflammatory effects of u-MIM-1 and u-MIM-2 in a model of inflamed colon carcinoma cells. In addition, the anti-inflammatory potential of c-MIM-1, -2, -3 and -4, was assessed in in vitro models of intestinal and neuronal inflammation. RESULTS The results revealed that u-MIM-1 and u-MIM-2 both induced a slight decrease in the levels of IL-1β and TNF-α transcripts. Regarding the c-MIMs' effects, c-MIM-1 displayed the capability to restore the altered transepithelial electrical resistance in inflamed-HCoEpiC cells. Moreover, c-MIM-1 also slightly increased the expression of the junction-related protein claudin-1, both at the mRNA and protein levels. In addition, our in vitro investigations on c-MIM-2 and c-MIM-3 revealed their immune-modulatory effects in LPS-inflamed human monocytes, macrophages, and granulocytes, on the secretion of cytokines such as TNF-α, PGE2, and IL-6. Finally, c-MIM-4 restored the cell viability of LPS/IFN-γ-inflamed rat cortical neurons, while reducing the secretion of TNF-α in rat glial cells. DISCUSSION Our results shed the light on the potential role of these MIM formulations in managing several chronic inflammation-related conditions.
Collapse
Affiliation(s)
- Camille Jacques
- Preclinical Research Department, Labo’Life France, Nantes, France
| | - Ilaria Floris
- Preclinical Research Department, Labo’Life France, Nantes, France
| |
Collapse
|
203
|
The CGRP/macrophage axis signal facilitates inflammation recovery in the intestine. Clin Immunol 2022; 245:109154. [DOI: 10.1016/j.clim.2022.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022]
|
204
|
Ghelani H, Adrian TE, Ho SB, Akhras J, Azar AJ, Jan RK. Study protocol for a pilot randomized, double-blind, placebo-controlled trial to investigate the anti-inflammatory effects of Frondanol in adults with inflammatory bowel disease. Contemp Clin Trials Commun 2022; 31:101046. [PMID: 36544548 PMCID: PMC9760652 DOI: 10.1016/j.conctc.2022.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis, is a debilitating condition with a rising incidence globally over recent years. Frondanol, a widely available nutraceutical extract of the edible sea cucumber Cucumaria frondosa has been reported to possess potent anti-inflammatory effects, likely mediated by the inhibition of 5-lipoxygenase and 12-lipoxygenase pathways, whilst showing no signs of toxicity. The potent anti-inflammatory effects of Frondanol in a mouse model of IBD provide encouragement for investigating its effects in human IBD patients. Here we describe the study protocol of a pilot randomized, double-blinded, placebo-controlled trial of Frondanol in patients with mild to moderate IBD who are on standard therapy. Material and methods One hundred patients will be randomized (1:1) to receive Frondanol or placebo as an adjunct to their standard therapy for the period of six months. Blood and stool samples will be obtained during routine visits at baseline, and after three months and six months of treatment, and tissue samples from colon biopsies will be obtained during clinically indicated colonoscopies at baseline and after six months of treatment. The levels of inflammatory markers will be compared in serum and tissue samples between patients treated with Frondanol and those treated with placebo, and findings will be correlated with clinical and histological parameters. Discussion If proven beneficial, treatment with Frondanol may increase the likelihood of patients remaining in remission and potentially provide an effective, natural and safe addition/alternative for treatment-naive patients in the future.(Clinical trial registration number: NCT05194007).
Collapse
Affiliation(s)
- Hardik Ghelani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Thomas Edward Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Samuel B. Ho
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Gastroenterology Department, Mediclinic City Hospital, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Jamil Akhras
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Gastroenterology Department, Mediclinic City Hospital, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Aida J. Azar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Corresponding author. College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Healthcare City, P.O Box, 505055, Dubai, United Arab Emirates.
| |
Collapse
|
205
|
Chen Y, Wang P, Zhang Y, Du XY, Zhang YJ. Comparison of effects of aminosalicylic acid, glucocorticoids and immunosuppressive agents on the expression of multidrug-resistant genes in ulcerative colitis. Sci Rep 2022; 12:20656. [PMID: 36450761 PMCID: PMC9712546 DOI: 10.1038/s41598-022-19612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022] Open
Abstract
To compare the effects of aminosalicylic acid, glucocorticoids and immunosuppressants on the expression levels of multidrug resistance genes in patients with ulcerative colitis (UC), with the aim of providing a theoretical and therapeutic basis for the diagnosis, treatment, and prevention of UC. Fresh colonic mucosal tissues or postoperative pathological biopsies from 148 UC patients were collected, and the distribution sites and morphology of P-glycoprotein (P-gp) were detected using immunohistochemical staining. RT-PCR was used to quantify the expression levels of multidrug resistance gene (MDR1) mRNA before and after the corresponding treatment, and the effects of aminosalicylic acid, glucocorticoids and immunosuppressive drugs on P-gp were compared. In addition, the effects of the three drugs on MDR1 mRNA were analyzed. Administration of 5-aminosalicylic acid (5-ASA) drugs did not correlate with MDR1 expression in UC, whereas administration of glucocorticoids and immunosuppressive drugs was positively correlated with MDR1 expression profile. The expression levels of MDR1 mRNA and its product P-gp were significantly upregulated in patients who did not respond to glucocorticoids and immunosuppressive drugs. 5-ASA had no effect on the expression levels of MDR1 and its product P-gp in patients with a confirmed diagnosis of UC. However, the use of glucocorticoids and immunosuppressants can increase the expression level of MDR1.
Collapse
Affiliation(s)
- Yan Chen
- grid.453074.10000 0000 9797 0900Department of Gastroenterology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, 471003 Henan China
| | - Ping Wang
- grid.453074.10000 0000 9797 0900Department of Public Health, School of Medicine, Henan University of Science and Technology, Luoyang, 471003 Henan China
| | - Yin Zhang
- grid.453074.10000 0000 9797 0900Department of Gastroenterology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, 471003 Henan China
| | - Xiao-Yu Du
- grid.453074.10000 0000 9797 0900Department of Gastroenterology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, 471003 Henan China
| | - Ying-Jian Zhang
- grid.453074.10000 0000 9797 0900Department of Gastroenterology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, 471003 Henan China
| |
Collapse
|
206
|
Li D, Liu L, Du X, Ma W, Zhang J, Piao W. MiRNA-374b-5p and miRNA-106a-5p are related to inflammatory bowel disease via regulating IL-10 and STAT3 signaling pathways. BMC Gastroenterol 2022; 22:492. [DOI: 10.1186/s12876-022-02533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is one of the most frequent gastrointestinal disorders worldwide. Although the actual etiology of IBD remains unclear, growing evidence suggests that CD4+ T cells-associated cytokines, including interferon (IFN)-γ, interleukin (IL)-10 and IL-17A, are crucial for the occurrence of IBD. It has been reported that there is a positive association between miRNAs and IBD development. In this study, we investigated the roles of hsa-miRNA-374b-5p(miRNA-374b-5p) and hsa-miRNA-106a-5p(miRNA-106a-5p) in regulating IBD development.
Methods
Serum was obtained from vein blood of IBD patients and healthy controls, qRT-PCR was performed to study the expression of miRNA-374b-5p and miRNA-106a-5p. Furthermore, we investigate the effects of overexpression or inhibition of miRNA-374b-5p on naïve CD4 + T cell subsets differentiation from vein blood of healthy controls by RT-qPCR, flow cytometry and western blot. And more the prediction and confirmation of the targeting genes of miRNA-374b-5p and miRNA-106a-5p were performed by bioinformatics softwares and dual-luciferase reporter assay.
Results
The results showed that miRNA-106a-5p and miRNA-374b-5p were significantly overexpressed in IBD patients. MiRNA-374b-5p could enhance Th1/Th17 cell differentiation and was related to IBD pathogenesis. MiRNA-374b-5p overexpression induced the mRNA expression of IL-17A and IFN-γ, and suppressed that of IL-10 in T cells. MiRNA-374b-5p inhibition decreased the mRNA expression of IL-17A and IFN-γ, while upregulated that of IL-10 in T cells. These qPCR data were further verified at protein level by western blotting and flow cytometry. In addition, dual-luciferase reporter (DLR) assay indicated that miRNA-374b-5p was directly targeted by IL-10, a key anti-inflammatory cytokine for preventing the occurrence of IBD. Meanwhile, STAT3 was identified as a target gene of miRNA-106a-5p by DLR assays. Further analysis revealed that miRNA-374b-5p regulated JAK1 and STAT3 pathways in CD4+ T cells via IL-10/STAT3 axis. MiRNA-374b-5p overexpression remarkably decreased the mRNA expression and phosphorylated (ser-727) protein levels of STAT3, while miRNA-374b-5p inhibition had the opposite effects.
Conclusion
MiRNA-374b-5p and miRNA-106a-5p may contribute to IBD development by regulating IL-10/STAT3 signal transduction.
Collapse
|
207
|
Al Qteishat A, Kirov K, Bokov D. The profile of the key pro-inflammatory cytokines in the serum of patients with CD and their association with the disease severity and activity. BMC Gastroenterol 2022; 22:477. [PMID: 36404304 PMCID: PMC9677650 DOI: 10.1186/s12876-022-02562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The epidemiology of Crohn's disease (CD) has changed over the past decades, demonstrating a trend toward increased prevalence in developing countries, while in developed countries, its incidence has stabilized. The study aimed to examine the profile of the key pro-inflammatory cytokines in the serum of patients with CD and establish their association with the severity and activity of the disease. METHODS A total of 61 patients (29 women (47.5%), 32 men (52.5%) aged from 18 to 40 years (mean age (30.42 ± 2.51) years) with the verified diagnosis of CD in the active phase were examined. The control group consisted of 30 healthy people of corresponding age. RESULTS CD is characterized by a reliable increase of pro-inflammatory cytokines in blood compared to healthy people: tumor necrosis factor-α (TNF-α) - by 4.45 times (137.46 ± 9.72 vs. 30.88 ± 2.08 pg/ml in healthy people, p < 0,001), interleukin-1α (IL-1α) - by 5.08 times (51.55 ± 4.36 vs. 10.14 ± 0.93 pg/ml, p < 0.001), interleukin-6 (IL-6) - by 2.16 times (20.03 ± 1.81 vs. 9.27 ± 0.52 pg/ml, p < 0.001), interleukin-8 (IL-8) - by 2.04 times (25.74 ± 2.05 vs. 12.62 ± 1.16 pg/ml, p < 0.001), and interferon-γ (IFN-γ) - by 5.30 times (208.63 ± 14.29 vs. 39.35 ± 2.40 pg/ml, p < 0.001). The authors have established direct correlations between the Crohn's disease activity index and blood content of TNF-α (r = 0.84, p < 0.013), INF-γ (r = 0.61, p < 0.028); between TNF-α and INF-γ content (r = 0.67, p < 0.023), IL-1α (r = 0.49, p < 0.042), IL-6 (r = 0.40, p < 0.045), and IL-8 (r = 0.51, p < 0.033); INF-γ and IL-1α (r = 0.53, p < 0.040), IL-6 (r = 0.37, p < 0.039), IL-8 (r = 0.44, p < 0.040). CONCLUSIONS Patients with CD were found to have multiple cytokines (TNF-α, IL-1α, IL-6, IL-8, and IFN-γ,). The content of cytokines correlated positively with the CD activity index.
Collapse
Affiliation(s)
- Ahmed Al Qteishat
- Department of Biological Sciences and Chemistry, University of Nizwa, PC 616, Birkat Al-Mouz, 33, Nizwa, Sultanate of Oman.
| | - Kiril Kirov
- grid.411711.30000 0000 9212 7703Research Institute, Medical University Pleven, Sv. Kliment Ohridski Str., 1, Pleven, 5800 Bulgaria
| | - Dmitry Bokov
- grid.448878.f0000 0001 2288 8774Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya Str., 8/2, Moscow, 119991 Russian Federation ,grid.466474.3Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| |
Collapse
|
208
|
Subki AH, Bokhary MI, Alandijani SA, Aljehani MA, Alharbi AW, Alzahrani M, Almuhammadi SS, Albeirouti BT, Abduljabar MA, Danese S. Resolved Hypereosinophilic Syndrome and Immune Thrombocytopenic Purpura in Ulcerative Colitis Patients Post Colectomy: A Case Series and Literature Review. J Inflamm Res 2022; 15:6373-6380. [PMID: 36439947 PMCID: PMC9697402 DOI: 10.2147/jir.s365094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/03/2022] [Indexed: 09/10/2024] Open
Abstract
Introduction Hypereosinophilic syndrome (HES) and immune thrombocytopenic purpura (ITP) have been reported to co-occur with ulcerative colitis (UC). However, the exact pathogenic mechanisms of their occurrence remain elusive. In this article, we aim to describe two cases of UC patients who developed refractory HES and ITP and elaborate on their potential pathogenesis. Case Study We report two middle-aged patients diagnosed with UC. The first patient developed HES that was refractory to conventional medical therapy of idiopathic HES, and the second developed refractory ITP that failed steroid and immunosuppressive therapy. Both conditions improved considerably following colectomy, suggesting they are of a reactive rather than idiopathic nature. Conclusion In patients with UC and refractory comorbid HES or ITP, the reactive nature of these comorbidities should be taken into consideration, and colectomy, therefore, should be considered if clinically indicated.
Collapse
Affiliation(s)
- Ahmed Hussein Subki
- Department of Internal Medicine, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Manal Ismail Bokhary
- Department of Internal Medicine, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | | | | | - Ahmed Wasel Alharbi
- Department of Internal Medicine, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - May Alzahrani
- Department of Internal Medicine, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | | | - Bassim Tahseen Albeirouti
- Adult Hematology/Bone Marrow Transplant (BMT) Section, Department of Oncology, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | | | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
209
|
Yang C, Feng Z, Deng H, Dai L, He L, Yin L, Zhao J. CXCL1/CXCR2 is involved in white matter injury in neonatal rats via the gut–brain axis. BMC Neurosci 2022; 23:67. [PMCID: PMC9675237 DOI: 10.1186/s12868-022-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
Background This study aimed to investigate whether CXCL1/CXCR2 mediates intestinal injury or white matter injury by delivering inflammatory mediators through the gut–brain regulation axis. Methods Neonatal SD rats, regardless of sex, were administered 3% dextran sulfate sodium via intragastric administration at different time points to construct necrotizing enterocolitis (NEC) models. Meanwhile, hypoxia and ischemia were induced in 3 day-old SD rats to construct hypoxic–ischemic brain injury (HIBI) and NEC + HIBI models, without gender discrimination. Hematoxylin–eosin staining was used to observe pathological changes in neonatal rat intestinal and brain tissues. Western blotting detected CXCL1 and CXCR2 expression in NEC, HIBI, and NEC + HIBI rat intestinal and brain tissues. Results Compared with normal rats, pathological damage to periventricular white matter was observed in the NEC group. In addition to the increased mortality, the histopathological scores also indicated significant increases in brain and intestinal tissue damage in both HIBI and NEC + HIBI rats. Western blotting results suggested that CXCL1 and CXCR2 expression levels were upregulated to varying degrees in the intestinal and brain tissues of NEC, HIBI, and NEC + HIBI neonatal rats compared to that in the normal group. Compared with the HIBI group, the expression of CXCL1 and CXCR2 continued to increase in NEC + HIBI rats at different time points. Conclusions CXCL1/CXCR2 may be involved in white matter injury in neonatal rats by delivering intestinal inflammatory mediators through the gut–brain axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00749-1. Pathologically impaired periventricular white matter was observed in NEC neonatal rats. Hypoxic-ischemic brain injury can also lead to intestinal inflammation. CXCL1 and CXCR2 were significantly upregulated in intestinal and brain tissues in NEC, HIBI, and NEC+HIBI rats compared to the normal group. Compared with the HIBI group, CXCL1 and CXCR2 expression continued to increase in NEC+HIBI rats.
Collapse
Affiliation(s)
- Can Yang
- grid.413387.a0000 0004 1758 177XDepartment of Neonatology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000 Sichuan China
| | - Zhiyuan Feng
- grid.413387.a0000 0004 1758 177XDepartment of Neonatology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000 Sichuan China
| | - Hong Deng
- grid.413387.a0000 0004 1758 177XDepartment of Neonatology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000 Sichuan China
| | - Lu Dai
- grid.413387.a0000 0004 1758 177XDepartment of Neonatology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000 Sichuan China
| | - Ling He
- grid.413387.a0000 0004 1758 177XDepartment of Neonatology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000 Sichuan China
| | - Linlin Yin
- grid.413387.a0000 0004 1758 177XDepartment of Neonatology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000 Sichuan China
| | - Jing Zhao
- grid.413387.a0000 0004 1758 177XDepartment of Neonatology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000 Sichuan China
| |
Collapse
|
210
|
Kori M, Zamir Y, Yermiyahu SO, Ainbinder I, Daichman S, Pinto GD, Loewenberg Weisband Y, Greenfeld S, Kariv R, Lederman N, Matz E, Shamir R, Dotan I, Turner D. The association of Inflammatory Bowel Disease with Celiac Disease and Celiac Autoimmunity in children and adults: A nationwide study from the epi-IIRN. J Crohns Colitis 2022; 17:700-705. [PMID: 36394548 DOI: 10.1093/ecco-jcc/jjac176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Given the paucity of population-based data on the association between inflammatory bowel diseases (IBD), celiac disease (CeD) and celiac autoimmunity (CeA) we aimed to study the associations in a nationwide study. METHODS Utilizing health administrative data for all four health maintenance organizations in Israel, covering 98% of the population, we explored the prevalence of CeD in children and adults with IBD versus non-IBD matched controls. CeD was defined by three ICD-9 codes and CeA by positivity for tissue transglutaminase antibodies. RESULTS In total, 34,375 IBD patients (56% Crohn's disease [CD] and 44% ulcerative colitis [UC]) were compared with 93,603 non-IBD controls. Among IBD patients, 319 (0.93%) had CeD versus 294 (0.31%) non-IBD controls (odds ratio [OR]=2.97 [95%CI 2.54-3.48]; p<0.001). CeA was identified in 575 (1.67%) IBD patients vs. 158 (0.17%) controls (OR=10.06 [95%CI 8.43-12], p<0.001). The prevalence of CeD was higher in pediatric-onset IBD (87/5,243 [1.66%]) than adult-onset IBD (232/29,132 [0.79%]; p<0.001). CD patients had a higher prevalence of CeD (229/19,264 [1.19%]) than UC patients (90/15,111 [0.56%]; OR=2.01 [95%CI 1.57-2.56]; p<0.001). The diagnosis of CeD preceded the diagnosis of IBD in 241/319 cases (76%). The time to treatment escalation was shorter in patients with both IBD and CeD than in patients with IBD without CeD (p=0.017). CONCLUSION CeD and CeA are more prevalent in IBD patients, especially in pediatric-onset IBD and in CD. The diagnosis of CeD usually precedes that of IBD. Having CeD is associated with more intensified treatment for IBD.
Collapse
Affiliation(s)
- Michal Kori
- Pediatric Gastroenterology, Kaplan Medical Center, Rehovot, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan Zamir
- Dept. of Industrial Engineering & Management, Azrieli College of Engineering Jerusalem (JCE), P.O. Box 3566, Jerusalem 91035, Israel
| | - Sami Or Yermiyahu
- Dept. of Industrial Engineering & Management, Azrieli College of Engineering Jerusalem (JCE), P.O. Box 3566, Jerusalem 91035, Israel
| | - Inessa Ainbinder
- Dept. of Industrial Engineering & Management, Azrieli College of Engineering Jerusalem (JCE), P.O. Box 3566, Jerusalem 91035, Israel
| | | | - Gavriel David Pinto
- Dept. of Industrial Engineering & Management, Azrieli College of Engineering Jerusalem (JCE), P.O. Box 3566, Jerusalem 91035, Israel
| | | | - Shira Greenfeld
- Clalit Health Services, Clalit Research Institute, Tel-Aviv, Israel.,Maccabi Health Services, Tel-Aviv, Israel and the Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | - Eran Matz
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Raanan Shamir
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Dan Turner
- Juliet Keidan Institute of Pediatric Gastroenterology, the Hebrew university of Jerusalem
| |
Collapse
|
211
|
Zeng X, Li X, Yue Y, Wang X, Chen H, Gu Y, Jia H, He Y, Yuan Y, Yue T. Ameliorative Effect of Saccharomyces cerevisiae JKSP39 on Fusobacterium nucleatum and Dextran Sulfate Sodium-Induced Colitis Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14179-14192. [PMID: 36260319 DOI: 10.1021/acs.jafc.2c05338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate the ability of the Saccharomyces cerevisiae strain with probiotic properties isolated from Tibetan kefir grains to ameliorate Fusobacterium nucleatum (Fn) infection and dextran sulfate sodium (DSS) treatment-induced murine model of colitis. The tolerance to simulated gastrointestinal conditions, hydrophobicity test, autoaggregation assay, and the antioxidant effect of strains was used to screen one strain with colonization and probiotic potential. The murine model of colitis was established by giving 109 cfu Fn 3 weeks by intragastric administration and 3% DSS in water 1 week before sacrifice. The results indicated that S. cerevisiae JKSP39 (SC) possessed optimal probiotic characteristics in vitro. Supplementation with SC increased the body weight and the expression of anti-inflammatory cytokines (IL-4 and IL-10), while decreasing the disease activity index score and expression of proinflammatory cytokines (TNF-α, IL-6, and IL-17F) in mice undergoing experimental colitis as compared with the colitis model group. Additionally, tight junction proteins and the number of goblet cells per crypt were significantly increased in the SC group, which indicated that the gut barrier was well repaired. The mechanism of SC ameliorating Fn-DSS-induced colitis could be related to the decreased levels of reactive oxygen species (myeloperoxidase, total superoxide dismutase, catalase, H2O2, and malondialdehyde) in the colon, the inhibition of endoplasmic reticulum stress, and the regulation of gut microbiota.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xi'an710065, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yuanyuan Gu
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yining He
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
- College of Food Science and Technology, Northwest University, Xi'an710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
- College of Food Science and Technology, Northwest University, Xi'an710069, China
| |
Collapse
|
212
|
Development of novel oridonin analogs as specifically targeted NLRP3 inflammasome inhibitors for the treatment of dextran sulfate sodium-induced colitis. Eur J Med Chem 2022; 245:114919. [DOI: 10.1016/j.ejmech.2022.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
213
|
Vuyyuru SK, Kedia S, Ahuja V. Considerations when starting patients on multiple biologics and small molecules. Curr Opin Gastroenterol 2022; 38:562-569. [PMID: 36165042 DOI: 10.1097/mog.0000000000000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Inflammatory bowel disease (IBD) is complex disease that poses significant economic, and psychological burden on patients. Despite advent of newer biologics and small molecules targeting different aspects of immunopathogenesis, there appears to be a plateau in clinical outcomes. In this review we discuss the role of multiple biologics, existing evidence and various considerations when prescribing multiple biologics. RECENT FINDINGS Recent scientific advances helped to unravel the pathophysiology of inflammatory bowel disease and newer cytokines have been identified which can be potential targets in the management of IBD. Targeting more than one cytokine appears to be logical solution to break the therapeutic ceiling to improve clinical outcomes in IBD. The combination biologics appear safe and effective; however, the available evidence is limited. Refractory IBD, presence of other immune mediated inflammatory diseases and extra intestinal manifestations are currently the common considerations of combination biologics in IBD. SUMMARY Inflammatory bowel disease is a complex immune mediated disease with diverse clinical presentation and often has a complicated clinical course requiring multidisciplinary management. As the number of targeted therapies increases so does the concern on their safety and efficacy. Combination biologics though may appear to be safe, we need well designed prospective studies for firm conclusions.
Collapse
Affiliation(s)
- Sudheer K Vuyyuru
- Department of Gastroenterology and Human nutrition, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
214
|
Jiang H, Shi GF, Fang YX, Liu YQ, Wang Q, Zheng X, Zhang DJ, Zhang J, Yin ZQ. Aloin A prevents ulcerative colitis in mice by enhancing the intestinal barrier function via suppressing the Notch signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154403. [PMID: 36075180 DOI: 10.1016/j.phymed.2022.154403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/24/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies reported that Aloe vera ameliorated DSS-induced colitis and promoted mucus secretion. However, the effect of Aloin A (AA), a major compound of Aloe vera, on colitis and its exact mechanism remains uncovered. METHODS C57BL/6 mice were successively subjected to 3% DSS solution for 5 days and distilled water for 2 days. Concurrently, AA (25, 50 mg/kg) and 5-aminosalicylic (500 mg/kg) were administrated intragastrically from day 1 to day 7. Colitis was evaluated by disease active index (DAI), colon length, inflammation response, and intestinal barrier function. In vitro LS174T cells challenged with 50 ng/ml of lipopolysaccharides (LPS) were used to validate the modulatory action of AA on the Notch signaling pathway. RESULTS Our results showed that oral administration with AA prominently prevented DSS-induced colitis symptoms in terms of decreased DAI, prevention of colon shortening, and reduced pathological damage. AA mitigated the inflammatory response evidenced by the decreased proinflammatory cytokines (TNF-α, IL-1β, IL-6) and increased anti-inflammatory cytokine (IL-10). Besides, AA inhibited apoptosis and facilitated proliferation in colons. Moreover, AA treatment up-regulated the expression of tight junction (TJ) proteins (ZO-1, Occludin) and promoted the secretion of MUC2 to decrease colon permeability. Mechanistically, AA inhibited the Notch pathway to promote the secretion of MUC2, which was consistent with LPS-challenged LS174 cells. CONCLUSION These results suggested that AA could prevent colitis by enhancing the intestinal barrier function via suppressing the Notch signaling pathway. Thus, AA might be a prospective remedy for ulcerative colitis.
Collapse
Affiliation(s)
- Hui Jiang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Gao-Feng Shi
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Yu-Xi Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - You-Qian Liu
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Qi Wang
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Xian Zheng
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Dong-Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Jian Zhang
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China.
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
215
|
Lin SN, Musso A, Wang J, Mukherjee PK, West GA, Mao R, Lyu R, Li J, Zhao S, Elias M, Haberman Y, Denson LA, Kugathasan S, Chen MH, Czarnecki D, Dejanovic D, Le HT, Chandra J, Lipman J, Steele SR, Nguyen QT, Fiocchi C, Rieder F. Human intestinal myofibroblasts deposited collagen VI enhances adhesiveness for T cells - A novel mechanism for maintenance of intestinal inflammation. Matrix Biol 2022; 113:1-21. [PMID: 36108990 PMCID: PMC10043923 DOI: 10.1016/j.matbio.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Inflammatory bowel diseases (IBD) cause chronic intestinal damage and extracellular matrix (ECM) remodeling. The ECM may play an active role in inflammation by modulating immune cell functions, including cell adhesion, but this hypothesis has not been tested in IBD. DESIGN Primary human intestinal myofibroblast (HIMF)-derived ECM from IBD and controls, 3D decellularized colon or ECM molecule-coated scaffolds were tested for their adhesiveness for T cells. Matrisome was analysed via proteomics. Functional integrin blockade was used to investigate the underlying mechanism. Analysis of the pediatric Crohn's disease (CD) RISK inception cohort was used to explore an altered ECM gene expression as a potential predictor for a future complicated disease course. RESULTS HIMF-derived ECM and 3D decellularized colonic ECM from IBD bound more T cells compared to control. Control HIMFs exposed to the pro-inflammatory cytokines Iinterleukin-1β (IL-1β) and tumor necrosis factor (TNF) increased, and to transforming growth factor-β1 (TGF-β1) decreased ECM adhesiveness to T cells. Matrisome analysis of the HIMF-derived ECM revealed collagen VI as a major culprit for differences in T cell adhesion. Collagen VI knockdown in HIMF reduced adhesion T cell as did the blockage of integrin αvβ1. Elevated gene expression of collagen VI in biopsies of pediatric CD patients was linked to risk for future stricturing disease. CONCLUSION HIMF-derived ECM in IBD binds a remarkably enhanced number of T cells, which is dependent on Collagen VI and integrin αvβ1. Collagen VI expression is a risk factor for a future complicated CD course. Blocking immune cells retention may represent a novel approach to treatment in IBD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alessandro Musso
- Division of Gastroenterology, Città della Salute e della Scienza di Torino, Molinette Hospital, Turin, Italy
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A West
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ruishen Lyu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yael Haberman
- Sheba Medical Center, Tel Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Min-Hu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Doug Czarnecki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dina Dejanovic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy Lipman
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Scott R Steele
- Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA.
| |
Collapse
|
216
|
Karpiński TM, Ożarowski M, Stasiewicz M. Carcinogenic microbiota and its role in colorectal cancer development. Semin Cancer Biol 2022; 86:420-430. [PMID: 35090978 DOI: 10.1016/j.semcancer.2022.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. The main risk factors for CRC are family history of colon or rectal cancer, familial polyposis syndrome or hereditary nonpolyposis, and chronic inflammatory bowel diseases (ulcerative colitis and Crohn's disease). Recent studies show that the gastrointestinal microbiota play a significant role in colorectal carcinogenesis. In this review we present the microorganisms, whose influence on the development of CRC has been proven: Bacteroides fragilis, Clostridioides and Clostridium spp., Enterococcus faecalis, Escherichia coli, Fusobacterium nucleatum, Helicobacter pylori, Peptostreptococcus anaerobius, Streptococcus bovis group, and sulfate-reducing bacteria. Moreover, the carcinogenic mechanisms of action mediated by the above bacteria are laid out.
Collapse
Affiliation(s)
- Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants - National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland.
| | - Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| |
Collapse
|
217
|
Zhang W, Lyu M, Bessman NJ, Xie Z, Arifuzzaman M, Yano H, Parkhurst CN, Chu C, Zhou L, Putzel GG, Li TT, Jin WB, Zhou J, Hu H, Tsou AM, Guo CJ, Artis D. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 2022; 185:4170-4189.e20. [PMID: 36240781 PMCID: PMC9617796 DOI: 10.1016/j.cell.2022.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.
Collapse
Affiliation(s)
- Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Lei Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jordan Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medical College, New York, NY, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
218
|
Kaliyamoorthy V, Jacop JP, Thirugnanasambantham K, Ibrahim HIM, Kandhasamy S. The synergic impact of lignin and Lactobacillus plantarum on DSS-induced colitis model via regulating CD44 and miR 199a alliance. World J Microbiol Biotechnol 2022; 38:233. [PMID: 36222901 DOI: 10.1007/s11274-022-03424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Chronic or recurrent immune system activation and inflammation inside the gastrointestinal tract is characterized by inflammatory bowel disease (IBD). Due to the lack of safety and efficacy of traditional medications, the use of food supplements for IBD management is on the rise. Numerous studies reported that, certain food supplements have a variety of therapeutic benefits for IBD. In the present study, a mouse model of IBD was used to the anti-colitis effects of lignin supplementation with Lactobacillus plantarum (L. plantarum) on intestinal inflammation. The animal model was treated with dextran sodium sulphate (DSS), the illness index increased, and colon length and body weight declined, but these effects were reversed when lignin and L. plantarum treated groups. In addition, lignin and L. plantarum supplementation inhibited the DSS induced increase in levels of cytokines TNF-α (250 pg/mL), INF-γ (180 pg/mL), IL-1β (70 pg/mL) and TGF- β (72 pg/mL). Gene and protein expression study revealed that Lignin and L. plantarum supplementation restored the expression of E-cad and suppressed the expression of STAT3 in DSS induced colitis model. Lignin and L. plantarum supplementation also suppressed CD44 expression (1.2 fold) by up regulating the expression of miR199a (1 fold) over DSS induced colitis. Our study suggests that Lactobacillus, lignin, and their synergistic treatments have protective roles against inflammatory bowel disease through changes in inflammatory cytokines, and miR 199a expression in DSS-induced colitis.
Collapse
Affiliation(s)
- Venugopal Kaliyamoorthy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Padalam, Chengalpattu, Tamilnadu, 603308, India
| | - Justin Packia Jacop
- Department of Biotechnology, St. Josephs' College of Engineering, Sholinganallur, Chennai, Tamilnadu, 600119, India
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry, 605004, India.,Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Hairul Islam Mohamed Ibrahim
- Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry, 605004, India.,Biology Department, College of Science, King Faisal University, Hofouf, Al Ahsa, Saudi Arabia
| | - Sivakumar Kandhasamy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Padalam, Chengalpattu, Tamilnadu, 603308, India.
| |
Collapse
|
219
|
Xiao Y, Lian H, Zhong XS, Krishnachaitanya SS, Cong Y, Dashwood RH, Savidge TC, Powell DW, Liu X, Li Q. Matrix metalloproteinase 7 contributes to intestinal barrier dysfunction by degrading tight junction protein Claudin-7. Front Immunol 2022; 13:1020902. [PMID: 36275703 PMCID: PMC9581388 DOI: 10.3389/fimmu.2022.1020902] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPrevious studies implicated matrix metalloproteinases (MMPs), such as MMP-7, in inflammatory bowel diseases (IBD) by showing increased activity during inflammation of the gut. However, the pathophysiological roles of MMP-7 have not been clearly elucidated.MethodsThe expression of MMP-7 was assessed in colonic biopsies of patients with ulcerative colitis (UC), in rodents with experimental colitis, and in cell-based assays with cytokines. Wild-type and MMP-7-null mice treated with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid were used for determining the pro-inflammatory function(s) of MMP-7 in vivo.ResultsMMP-7 was highly expressed in patients with UC and in rodents with experimental colitis. IL-1β, IL-4, IL-13, TNFα, or lipopolysaccharide enhanced MMP-7 expression in human colonic epithelial cells, rat colonic smooth muscle cells, and THP-1-derived macrophages. Active MMP-7 degraded tight junction protein Claudin-7 in epithelial cells, cleaved recombinant Claudin-7 in cell-free system, and increased Caco-2 monolayer permeability. Immunostaining of colon biopsies revealed up-regulation of MMP-7 and reduction of Claudin-7 in UC patients. Compared to wild-type mice, Mmp7-/- mice had significantly less inflammation in the colon upon DSS insult. DSS-induced alterations in junction proteins were mitigated in Mmp7-/- mice, suggesting that MMP-7 disrupts the intestinal barrier. MMP-7 antibody significantly ameliorated colonic inflammation and Claudin-7 reduction in 2 different rodent models of colitis.SummaryMMP-7 impairs intestinal epithelial barrier by cleavage of Claudin-7, and thus aggravating inflammation. These studies uncovered Claudin-7 as a novel substrate of MMP-7 in the intestinal epithelium and reinforced MMP-7 as a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Haifeng Lian
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xiaoying S. Zhong
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Srikruthi S. Krishnachaitanya
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, TX, United States
| | - Tor C. Savidge
- Texas Children’s Microbiome Center, Baylor College of Medicine, Houston, TX, United States
| | - Don W. Powell
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaowei Liu, ; Qingjie Li,
| | - Qingjie Li
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- *Correspondence: Xiaowei Liu, ; Qingjie Li,
| |
Collapse
|
220
|
Irie E, Ishihara R, Mizushima I, Hatai S, Hagihara Y, Takada Y, Tsunoda J, Iwata K, Matsubara Y, Yoshimatsu Y, Kiyohara H, Taniki N, Sujino T, Takabayashi K, Hosoe N, Ogata H, Teratani T, Nakamoto N, Mikami Y, Kanai T. Enrichment of type I interferon signaling in colonic group 2 innate lymphoid cells in experimental colitis. Front Immunol 2022; 13:982827. [PMID: 36268010 PMCID: PMC9578145 DOI: 10.3389/fimmu.2022.982827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) serve as frontline defenses against parasites. However, excluding helminth infections, it is poorly understood how ILC2s function in intestinal inflammation, including inflammatory bowel disease. Here, we analyzed the global gene expression of ILC2s in healthy and colitic conditions and revealed that type I interferon (T1IFN)-stimulated genes were up-regulated in ILC2s in dextran sodium sulfate (DSS)-induced colitis. The enhancement of T1IFN signaling in ILC2s in DSS-induced colitis was correlated with the downregulation of cytokine production by ILC2s, such as interleukin-5. Blocking T1IFN signaling during colitis resulted in exaggeration of colitis in both wild-type and Rag2-deficient mice. The exacerbation of colitis induced by neutralization of T1IFN signaling was accompanied by reduction of amphiregulin (AREG) in ILC2s and was partially rescued by exogenous AREG treatment. Collectively, these findings show the potential roles of T1IFN in ILC2s that contribute to colitis manifestation.
Collapse
Affiliation(s)
- Emi Irie
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Rino Ishihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Ichiro Mizushima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shunya Hatai
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Hagihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiaki Takada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Junya Tsunoda
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kentaro Iwata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yuta Matsubara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
- *Correspondence: Yohei Mikami, ; Takanori Kanai,
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- *Correspondence: Yohei Mikami, ; Takanori Kanai,
| |
Collapse
|
221
|
Pavlidis P, Tsakmaki A, Pantazi E, Li K, Cozzetto D, Digby-Bell J, Yang F, Lo JW, Alberts E, Sa ACC, Niazi U, Friedman J, Long AK, Ding Y, Carey CD, Lamb C, Saqi M, Madgwick M, Gul L, Treveil A, Korcsmaros T, Macdonald TT, Lord GM, Bewick G, Powell N. Interleukin-22 regulates neutrophil recruitment in ulcerative colitis and is associated with resistance to ustekinumab therapy. Nat Commun 2022; 13:5820. [PMID: 36192482 PMCID: PMC9530232 DOI: 10.1038/s41467-022-33331-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
The function of interleukin-22 (IL-22) in intestinal barrier homeostasis remains controversial. Here, we map the transcriptional landscape regulated by IL-22 in human colonic epithelial organoids and evaluate the biological, functional and clinical significance of the IL-22 mediated pathways in ulcerative colitis (UC). We show that IL-22 regulated pro-inflammatory pathways are involved in microbial recognition, cancer and immune cell chemotaxis; most prominently those involving CXCR2+ neutrophils. IL-22-mediated transcriptional regulation of CXC-family neutrophil-active chemokine expression is highly conserved across species, is dependent on STAT3 signaling, and is functionally and pathologically important in the recruitment of CXCR2+ neutrophils into colonic tissue. In UC patients, the magnitude of enrichment of the IL-22 regulated transcripts in colonic biopsies correlates with colonic neutrophil infiltration and is enriched in non-responders to ustekinumab therapy. Our data provide further insights into the biology of IL-22 in human disease and highlight its function in the regulation of pathogenic immune pathways, including neutrophil chemotaxis. The transcriptional networks regulated by IL-22 are functionally and clinically important in UC, impacting patient trajectories and responsiveness to biological intervention.
Collapse
Affiliation(s)
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Eirini Pantazi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Katherine Li
- Janssen Research & Development, 1400 McKean Rd, Spring House, PA, 19477, USA
| | - Domenico Cozzetto
- Translational Bioinformatics, National Institute for Health Research Biomedical Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Jonathan Digby-Bell
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Feifei Yang
- Janssen Research & Development, 1400 McKean Rd, Spring House, PA, 19477, USA
| | - Jonathan W Lo
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Elena Alberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | - Umar Niazi
- Translational Bioinformatics, National Institute for Health Research Biomedical Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Joshua Friedman
- Janssen Research & Development, 1400 McKean Rd, Spring House, PA, 19477, USA
| | - Anna K Long
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Yuchun Ding
- Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Christopher D Carey
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Christopher Lamb
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Mansoor Saqi
- Translational Bioinformatics, National Institute for Health Research Biomedical Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Matthew Madgwick
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Leila Gul
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Agatha Treveil
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Thomas T Macdonald
- Centre for Immunobiology, Barts and the London School of Medicine and Dentistry, QMUL, London, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gavin Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Nick Powell
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
222
|
Lei XY, Zhang DM, Wang QJ, Wang GQ, Li YH, Zhang YR, Yu MN, Yao Q, Chen YK, Guo ZX. Dietary supplementation of two indigenous Bacillus spp on the intestinal morphology, intestinal immune barrier and intestinal microbial diversity of Rhynchocypris lagowskii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1315-1332. [PMID: 36103020 DOI: 10.1007/s10695-022-01121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the effects of dietary administration of two indigenous Bacillus (A: basal control diet; B: 0.15 g/kg of Bacillus subtilis; C: 0.1 g/kg of Bacillus subtilis and 0.05 g/kg of Bacillus licheniformis; D: 0.05 g/kg of Bacillus subtilis and 0.1 g/kg of Bacillus licheniformis; E: 0.15 g/kg of Bacillus licheniformis) on the digestive enzyme activities, intestinal morphology, intestinal immune and barrier-related genes relative expression levels, and intestinal flora of Rhynchocypris lagowskii. The results showed that the fold height, lamina propria width, and muscle layer thickness of midgut and hindgut in group C were significantly higher than that of group A (P < 0.05). The activities of protease, amylase, and lipase in group C were significantly higher than those of group A (P < 0.05). The relative expression levels of IL-1β and IL-8 in the intestine of group C were significantly downregulated, and the relative expression levels of IL-10 and TGF-β were significantly upregulated (P < 0.05). The relative expression levels of Claudin-2 in group A significantly increased and the relative expression levels of Claudin-4 in group A significantly reduced compared with other groups (P < 0.05). The relative expression levels of ZO-1 in groups C and D were significantly higher than those of other groups (P < 0.05). The Bacillus in the intestine of group C has the highest relative abundance among all groups. Overall, it can generally be concluded that dietary supplementation of indigenous Bacillus subtilis and Bacillus licheniformis (group C) can improve the intestinal morphology, digestion, and absorption enzyme activities, enhance intestinal mucosal immunity and barrier function, and maintain the intestinal microbial balance of R. lagowskii.
Collapse
Affiliation(s)
- Xin-Yu Lei
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Ming Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Qiu-Ju Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Qin Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Yue-Hong Li
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Rou Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Men-Nan Yu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Qi Yao
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Ke Chen
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhi-Xin Guo
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China.
- College of Life Science, Tonghua Normal University, Tonghua, 134001, Jilin, China.
| |
Collapse
|
223
|
Macrophage immunometabolism in inflammatory bowel diseases: From pathogenesis to therapy. Pharmacol Ther 2022; 238:108176. [DOI: 10.1016/j.pharmthera.2022.108176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022]
|
224
|
Lyu M, Suzuki H, Kang L, Gaspal F, Zhou W, Goc J, Zhou L, Zhou J, Zhang W, Shen Z, Fox JG, Sockolow RE, Laufer TM, Fan Y, Eberl G, Withers DR, Sonnenberg GF. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 2022; 610:744-751. [PMID: 36071169 PMCID: PMC9613541 DOI: 10.1038/s41586-022-05141-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
Microbial colonization of the mammalian intestine elicits inflammatory or tolerogenic T cell responses, but the mechanisms controlling these distinct outcomes remain poorly understood, and accumulating evidence indicates that aberrant immunity to intestinal microbiota is causally associated with infectious, inflammatory and malignant diseases1-8. Here we define a critical pathway controlling the fate of inflammatory versus tolerogenic T cells that respond to the microbiota and express the transcription factor RORγt. We profiled all RORγt+ immune cells at single-cell resolution from the intestine-draining lymph nodes of mice and reveal a dominant presence of T regulatory (Treg) cells and lymphoid tissue inducer-like group 3 innate lymphoid cells (ILC3s), which co-localize at interfollicular regions. These ILC3s are distinct from extrathymic AIRE-expressing cells, abundantly express major histocompatibility complex class II, and are necessary and sufficient to promote microbiota-specific RORγt+ Treg cells and prevent their expansion as inflammatory T helper 17 cells. This occurs through ILC3-mediated antigen presentation, αV integrin and competition for interleukin-2. Finally, single-cell analyses suggest that interactions between ILC3s and RORγt+ Treg cells are impaired in inflammatory bowel disease. Our results define a paradigm whereby ILC3s select for antigen-specific RORγt+ Treg cells, and against T helper 17 cells, to establish immune tolerance to the microbiota and intestinal health.
Collapse
Affiliation(s)
- Mengze Lyu
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hiroaki Suzuki
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- EA Pharma, Kanagawa, Japan
| | - Lan Kang
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Fabrina Gaspal
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Wenqing Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Goc
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lei Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jordan Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wen Zhang
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robbyn E Sockolow
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Terri M Laufer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| | - Gerard Eberl
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
225
|
Vitali R, Prioreschi C, Lorenzo Rebenaque L, Colantoni E, Giovannini D, Frusciante S, Diretto G, Marco-Jiménez F, Mancuso M, Casciati A, Pazzaglia S. Gut–Brain Axis: Insights from Hippocampal Neurogenesis and Brain Tumor Development in a Mouse Model of Experimental Colitis Induced by Dextran Sodium Sulfate. Int J Mol Sci 2022; 23:ijms231911495. [PMID: 36232813 PMCID: PMC9569494 DOI: 10.3390/ijms231911495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1β, S-100, Tgf-β and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/−/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.
Collapse
Affiliation(s)
- Roberta Vitali
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Clara Prioreschi
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Laura Lorenzo Rebenaque
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Universidad CEU-Cardenal Herrera, 46115 Valencia, Spain
| | - Eleonora Colantoni
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Daniela Giovannini
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Sarah Frusciante
- Biotechnology Laboratory, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Gianfranco Diretto
- Biotechnology Laboratory, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Francisco Marco-Jiménez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Mariateresa Mancuso
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Arianna Casciati
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
- Correspondence: (A.C.); (S.P.)
| | - Simonetta Pazzaglia
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
- Correspondence: (A.C.); (S.P.)
| |
Collapse
|
226
|
Cao H, Diao J, Liu H, Liu S, Liu J, Yuan J, Lin J. The Pathogenicity and Synergistic Action of Th1 and Th17 Cells in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2022; 29:818-829. [PMID: 36166586 DOI: 10.1093/ibd/izac199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/09/2022]
Abstract
Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn's disease, are characterized by chronic idiopathic inflammation of gastrointestinal tract. Although the pathogenesis of IBD remains unknown, intestinal immune dysfunction has been considered as the core pathogenesis. In the intestinal immune system, T helper 1 (Th1) and Th17 cells are indispensable for intestine homeostasis via preventing pathogenic bacteria invasion, regulating metabolism and functions of intestinal epithelial cells (IECs), and promoting IEC self-renewal. However, during the development of IBD, Th1 and Th17 cells acquire the pathogenicity and change from the maintainer of intestinal homeostasis to the destroyer of intestinal mucosa. Because of coexpressing interferon-γ and interleukin-17A, Th17 cells with pathogenicity are named as pathogenic Th17 cells. In disease states, Th1 cells impair IEC programs by inducing IEC apoptosis, recruiting immune cells, promoting adhesion molecules expression of IECs, and differentiating to epithelial cell adhesion molecule-specific interferon γ-positive Th1 cells. Pathogenic Th17 cells induce IEC injury by triggering IBD susceptibility genes expression of IECs and specifically killing IECs. In addition, Th1 and pathogenic Th17 cells could cooperate to induce colitis. The evidences from IBD patients and animal models demonstrate that synergistic action of Th1 and pathogenic Th17 cells occurs in the diseases development and aggravates the mucosal inflammation. In this review, we focused on Th1 and Th17 cell programs in homeostasis and intestine inflammation and specifically discussed the impact of Th1 and Th17 cell pathogenicity and their synergistic action on the onset and the development of IBD. We hoped to provide some clues for treating IBD.
Collapse
Affiliation(s)
- Hui Cao
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Diao
- Department of Pediatrics, Yueyang Hospital of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huosheng Liu
- Department of Acupuncture and Moxibustion, Shanghai Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Suxian Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
227
|
Kwon Y, Kim ES, Kim YZ, Choe YH, Kim MJ. Cytokine Profile at Diagnosis Affecting Trough Concentration of Infliximab in Pediatric Crohn’s Disease. Biomedicines 2022; 10:biomedicines10102372. [PMID: 36289634 PMCID: PMC9598182 DOI: 10.3390/biomedicines10102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background: This study aims to measure the concentration of cytokines produced during the inflammation process to investigate if there are any differences in response to treatment of pediatric Crohn’s disease and to determine if the initial tumor necrosis factor-alpha (TNF-α) level affected the trough concentration of infliximab (IFX). Methods: This study included 30 pediatric patients with moderate-to-severe Crohn’s disease. At the time of diagnosis, blood samples were collected for the measurement of cytokines (IL-6, TNF-α, IL-17A, and IL-10). Blood samples were extracted from patients who had begun IFX treatment to measure the IFX trough concentration immediately before the fourth dose administration. Results: All cytokines (TNF-α, IL-6, IL-10, and IL-17A) were significantly higher in patients who did not achieve clinical or biochemical remission than in those who did (p = 0.027, 0.006, 0.017, 0.032, respectively). TNF-α had a negative correlation with the IFX trough concentration (Pearson coefficient = −0.425, p = 0.034). The diagnostic capability of the initial TNF-α concentration to predict under the therapeutic IFX trough concentration, defined as less than 3 µg/mL, had an area under the receiver operating characteristic of 0.730 (p = 0.049). The TNF-α concentration was set at 27.6 pg/mL as the cutoff value. Conclusions: Measuring cytokines at the time of diagnosis can be used to predict the treatment response. Measuring the initial TNF-α concentration may help to predict the treatment response to IFX. When the initial TNF-α concentration is greater than 27.6 pg/mL, a higher dose of IFX may be more appropriate than routinely administering 5 mg/kg of IFX to maintain the therapeutic concentration.
Collapse
Affiliation(s)
- Yiyoung Kwon
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Eun-Sil Kim
- Department of Pediatrics, Kangbuk Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Yoon-Zi Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Yon-Ho Choe
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (Y.-H.C.); (M.-J.K.); Tel.: +82-2-3410-0951 (M.-J.K.)
| | - Mi-Jin Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (Y.-H.C.); (M.-J.K.); Tel.: +82-2-3410-0951 (M.-J.K.)
| |
Collapse
|
228
|
Fcα Receptor-1-Activated Monocytes Promote B Lymphocyte Migration and IgA Isotype Switching. Int J Mol Sci 2022; 23:ijms231911132. [PMID: 36232432 PMCID: PMC9569671 DOI: 10.3390/ijms231911132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) produce enhanced immunoglobulin A (IgA) against the microbiota compared to healthy individuals, which has been correlated with disease severity. Since IgA complexes can potently activate myeloid cells via the IgA receptor FcαRI (CD89), excessive IgA production may contribute to IBD pathology. However, the cellular mechanisms that contribute to dysregulated IgA production in IBD are poorly understood. Here, we demonstrate that intestinal FcαRI-expressing myeloid cells (i.e., monocytes and neutrophils) are in close contact with B lymphocytes in the lamina propria of IBD patients. Furthermore, stimulation of FcαRI-on monocytes triggered production of cytokines and chemokines that regulate B-cell differentiation and migration, including interleukin-6 (IL6), interleukin-10 (IL10), tumour necrosis factor-α (TNFα), a proliferation-inducing ligand (APRIL), and chemokine ligand-20 (CCL20). In vitro, these cytokines promoted IgA isotype switching in human B cells. Moreover, when naïve B lymphocytes were cultured in vitro in the presence of FcαRI-stimulated monocytes, enhanced IgA isotype switching was observed compared to B cells that were cultured with non-stimulated monocytes. Taken together, FcαRI-activated monocytes produced a cocktail of cytokines, as well as chemokines, that stimulated IgA switching in B cells, and close contact between B cells and myeloid cells was observed in the colons of IBD patients. As such, we hypothesize that, in IBD, IgA complexes activate myeloid cells, which in turn can result in excessive IgA production, likely contributing to disease pathology. Interrupting this loop may, therefore, represent a novel therapeutic strategy.
Collapse
|
229
|
Wang Z, Wang X, Zhao X, Hu Z, Sun D, Wu D, Xing Y. Causal relationship between bipolar disorder and inflammatory bowel disease: A bidirectional two-sample mendelian randomization study. Front Genet 2022; 13:970933. [PMID: 36204313 PMCID: PMC9531165 DOI: 10.3389/fgene.2022.970933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Growing evidence suggests a bidirectional association between bipolar disorder (BD) and inflammatory bowel disease (IBD); however, observational studies are prone to confounding, making causal inference and directional determination of these associations difficult.Methods: We performed bidirectional two-sample Mendelian randomization (MR) and selected single nucleotide polymorphisms (SNPs) associated with BD and IBD as instrumental variables (IV). SNPs and genetic associations with BD and IBD were obtained from the latest genome-wide association studies (GWAS) in Europeans (BD: cases/controls: 20352/31358; IBD: 12882/21770; Crohn’s disease (CD): 5,956/14927; ulcerative colitis (UC): 6968/20464). The inverse-variance-weighted method was the major method used in MR analyses. MR-Egger, weight mode, simple mode, and weighted median were used for quality control.Results: Genetically predicted BD (per log-odds ratio increase) was significantly positively associated with risk of IBD (OR: 1.18, 95% CI: 1.04–1.33), and UC (OR = 1.19, 95% CI: 1.05–1.35), but not CD (OR = 1.18, 95% CI: 0.95–1.48). The validation analysis found that combined OR of IBD, CD, and UC increased per log-OR of BD were 1.16(95% CI: 1.02–1.31), 1.20(95% CI: 0.98–1.48) 1.17(95% CI: 1.02–1.35), respectively. In contrast, no causal relationship was identified between genetically influenced IBD and BD.Conclusion: Our results confirm a causal relationship between BD and IBD, which may influence clinical decisions on the management of BD patients with intestinal symptoms. Although the reverse MR results did not support a causal effect of IBD on BD, the effect of the IBD active period on BD remains to be further investigated.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinyu Wang
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xushi Zhao
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhaoliang Hu
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Dongwei Sun
- Department of International Special Medical Center, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Donglei Wu
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yanan Xing
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
- *Correspondence: Yanan Xing, , orcid.org/0000-0002-9944-7675
| |
Collapse
|
230
|
Jatrorrhizine Alleviates DSS-Induced Ulcerative Colitis by Regulating the Intestinal Barrier Function and Inhibiting TLR4/MyD88/NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3498310. [PMID: 36193153 PMCID: PMC9526656 DOI: 10.1155/2022/3498310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Background Ulcerative colitis (UC), a kind of autoimmune disease with unknown etiology, has been troubling human physical and mental health. Jatrorrhizine (Jat) is a natural isoquinoline alkaloid isolated from Coptis Chinensis, which has been proved to have antibacterial, anti-inflammatory, and antitumor effects. Purpose The purpose is to explore the therapeutic effect of Jat on DSS-induced UC and the mechanism of action. Study Design. The UC mice model was induced by 3% DSS in drinking water. The mice were orally administered with Jat (40, 80, 160 mg/kg) for 10 days. Methods The changes in body weight, colon length, spleen wet weight index, disease activity index (DAI), colonic histopathology, and inflammatory factors of serum and colon tissue were analyzed to evaluate the severity of colitis mice. The colon mucus secretion capacity was analyzed by Alcian blue periodic acid Schiff (AB-PAS) staining. Furthermore, protein expressions such as TLR4, MyD88, p–NF–κB-p65, NF-κB-p65, COX-2, ZO-1, and Occludin were detected to elucidate the molecular mechanism of Jat on DSS-induced colitis model. Results The results showed that Jat could significantly alleviate the symptoms, colon shortening, spleen index, and histological damage and restore the body weight in DSS-induced colitis mice. Jat also suppressed the levels of inflammatory cytokines and upregulated the levels of anti-inflammatory cytokines. In addition, Jat repaired the intestinal barrier function by upregulating the level of colonic tight junction (TJ) proteins and enhancing the secretion of mucin produced by goblet cells. Furthermore, Jat could significantly suppress the expression of TLR4, MyD88, p–NF–κB-p65/NF-κB-p65, and COX-2 in colon tissue. Conclusion The results suggested that Jat plays a protective role in DSS-induced colitis by regulating the intestinal barrier function and inhibiting the TLR4/MyD88/NF-κB signaling pathway. This study, for the first time, demonstrates the therapeutic and protective effects of Jat on UC.
Collapse
|
231
|
Zhang C, Wang H, Yang X, Fu Z, Ji X, Shi Y, Zhong J, Hu W, Ye Y, Wang Z, Ni D. Oral zero-valent-molybdenum nanodots for inflammatory bowel disease therapy. SCIENCE ADVANCES 2022; 8:eabp9882. [PMID: 36112678 PMCID: PMC9481133 DOI: 10.1126/sciadv.abp9882] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Inflammatory bowel disease (IBD) affects millions of people each year. The overproduction of reactive oxygen species (ROS) plays a critical role in the progress of IBD and will be a potential therapeutic target. Here, we synthesize a kind of oral zero-valent-molybdenum nanodots (ZVMNs) for the treatment of IBD by scavenging ROS. These ultrasmall ZVMNs can successfully pass through the gastric acid and then be absorbed by the intestine. It has been verified that ZVMNs can down-regulate the quantity of ROS and reduce colitis in a mouse IBD model without distinct side effects. In addition, RNA sequencing reveals a further mechanism that the ZVMNs can protect colon tissues from oxidative stress by inhibiting the nuclear factor κB signaling pathway and reducing the production of excessive pro-inflammatory factors. Together, the ZVMNs will offer a promising alternative treatment option for patients suffering from IBD.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xinhui Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Zi Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiuru Ji
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yifan Shi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Weiguo Hu
- Department of Surgery, Medical Center on Aging of Ruijin Hospital, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
232
|
Thenet S, Carrière V. Special Issue on the "Regulation and Physiopathology of the Gut Barrier". Int J Mol Sci 2022; 23:10638. [PMID: 36142548 PMCID: PMC9502765 DOI: 10.3390/ijms231810638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of gut barrier integrity in intestinal homeostasis and the consequences of its alteration in the etiology of human pathologies have been subjects of exponentially growing interest during the last decade [...].
Collapse
Affiliation(s)
- Sophie Thenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, F-75012 Paris, France
- EPHE, PSL University, F-75014 Paris, France
| | - Véronique Carrière
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, F-75012 Paris, France
| |
Collapse
|
233
|
Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, Shi G, Ji Y, Chen S, Shi P, Dai L, Su X, Deng H. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther 2022; 13:465. [PMID: 36076306 PMCID: PMC9461110 DOI: 10.1186/s13287-022-03157-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are chronic relapsing-remitting inflammatory diseases of the gastrointestinal tract that are typically categorized into two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). Although MSCs therapy has achieved encouraging outcomes in IBD therapy, objective responses are limited in colon fibrosis stenosis owing to the complicated microenvironment of CD and MSCs heterogeneity of quality. Here, we chose IFN-γ and kynurenic acid (KYNA) to overcome the low response and heterogeneity of human adipose-derived MSCs (hADSCs) to treat IBD and expand the therapeutic effects based on the excellent ability of IFN-γ and KYNA to promote indoleamine 2,3-dioxygenase-1 (IDO-1) signaling, providing a potential protocol to treat IBD and fibrosis disease. METHODS hADSCs were isolated, cultured, and identified from human abdominal adipose tissue. The CD pathology-like acute colitis and chronic colon fibrosis rat model was induced by 2,4,6-trinitrobenzen sulfonic acid (TNBS). hADSCs were pretreated in vitro with IFN-γ and KYNA and then were transplanted intravenously at day 1 and 3 of TNBS administration in colitis along with at day 1, 15, and 29 of TNBS administration in chronic colonic fibrosis. Therapeutic efficacy was evaluated by body weights, disease activity index, pathological staining, real-time PCR, Western blot, and flow cytometry. For knockout of IDO-1, hADSCs were transfected with IDO-1-targeting small gRNA carried on a CRISPR-Cas9-lentivirus vector. RESULTS hADSCs treated with IFN-γ and KYNA significantly upregulated the expression and secretion of IDO-1, which has effectively ameliorated CD pathology-like colitis injury and fibrosis. Notably, the ability of hADSCs with IDO-1 knockout to treat colitis was significantly impaired and diminished the protective effects of the primed hADSCs with IFN-γ and KYNA. CONCLUSION Inflammatory cytokines IFN-γ- and KYNA-treated hADSCs more effectively alleviate TNBS-induced colitis and colonic fibrosis through an IDO-1-dependent manner. Primed hADSCs are a promising new strategy to improve the therapeutic efficacy of MSCs and worth further research.
Collapse
Affiliation(s)
- Yixin Ye
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaomei Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dongsheng Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yushuang Ren
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yunqi Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yanhong Ji
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Shuang Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Pengyi Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
234
|
Seo HI, Kwon SC, Kwak JY. Protective effects of sigma 1 receptor agonist PRE084 on 2,4,6-trinitrobenzene sulfonic acid-induced experimental colitis in mice. Ann Surg Treat Res 2022; 103:160-168. [PMID: 36128036 PMCID: PMC9478428 DOI: 10.4174/astr.2022.103.3.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose We aimed to investigate the protective effect of sigma 1 receptor agonist and antagonist, PRE084 and BD1047, respectively, on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Methods Thirty male ICR mice were randomly divided into 5 groups: control, 50% ethanol, colitis, PRE084 + colitis, and combined (PRE084 + BD1047 + colitis). Colitis was induced by intrarectal administration of TNBS. PRE084 and BD1047 were injected daily, starting 3 days before colitis induction. Distal colon tissue was excised for histopathological evaluation, and levels of glutathione (GSH), superoxide dismutase (SOD), myeloperoxidase (MPO), and lipid peroxidation were determined. Results Colitis caused weight loss, mucosal damage, upregulation of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, MPO, and thiobarbituric acid reactive substance activities, and downregulation of GSH and SOD activities. These changes caused by TNBS-induced colitis were significantly ameliorated by PRE084 pretreatment. However, the combined pretreatment with BD1047 significantly attenuated the protective effect of PRE084, thereby reverting to the colitis-induced state. Conclusion We conclude that the sigma 1 receptor agonist PRE084 exhibits significant protective effects against TNBS-induced colitis, which appears to be at least partly mediated by the inhibition of inflammation and oxidative stress, and enhancement of antioxidant properties. Collectively, these results suggest that PRE084 might be an effective drug for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Hyun Il Seo
- Department of Internal Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Seong Chun Kwon
- Department of Physiology, Catholic Kwandong University College of Medicine, Gangneung, Korea
| | - Jae Young Kwak
- Department of Surgery, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| |
Collapse
|
235
|
Duodu P, Sosa G, Canar J, Chhugani O, Gamero AM. Exposing the Two Contrasting Faces of STAT2 in Inflammation. J Interferon Cytokine Res 2022; 42:467-481. [PMID: 35877097 PMCID: PMC9527059 DOI: 10.1089/jir.2022.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation is a natural immune defense mechanism of the body's response to injury, infection, and other damaging triggers. Uncontrolled inflammation may become chronic and contribute to a range of chronic inflammatory diseases. Signal transducer and activator of transcription 2 (STAT2) is an essential transcription factor exclusive to type I and type III interferon (IFN) signaling pathways. Both pathways are involved in multiple biological processes, including powering the immune system as a means of controlling infection that must be tightly regulated to offset the development of persistent inflammation. While studies depict STAT2 as protective in promoting host defense, new evidence is accumulating that exposes the deleterious side of STAT2 when inappropriately regulated, thus prompting its reevaluation as a signaling molecule with detrimental effects in human disease. This review aims to provide a comprehensive summary of the findings based on literature regarding the inflammatory behavior of STAT2 in microbial infections, cancer, autoimmune, and inflammatory diseases. In conveying the extent of our knowledge of STAT2 as a proinflammatory mediator, the aim of this review is to stimulate further investigations into the role of STAT2 in diseases characterized by deregulated inflammation and the mechanisms responsible for triggering severe responses.
Collapse
Affiliation(s)
- Philip Duodu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Geohaira Sosa
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jorge Canar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Olivia Chhugani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Ana M. Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
236
|
Genetzakis E, Gilchrist J, Kassiou M, Figtree GA. Development and clinical translation of P2X7 receptor antagonists: A potential therapeutic target in coronary artery disease? Pharmacol Ther 2022; 237:108228. [DOI: 10.1016/j.pharmthera.2022.108228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
|
237
|
Wang Z, Sun X, Wang W, Zheng M, Zhang D, Yin H. NF-κB-coupled IL17 mediates inflammatory signaling and intestinal inflammation in Artemia sinica. FISH & SHELLFISH IMMUNOLOGY 2022; 128:38-49. [PMID: 35917889 DOI: 10.1016/j.fsi.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Nuclear factor-κB (NF-κB) plays a role as a rheostatic transcription factor in regulating intestinal inflammation, and its disruption or constitutive activation leads to inflammation and injury. However, the molecular mechanisms of NF-κB regulation remain largely unknown. In this study, the NF-κB-regulated host defenses against pathogen infections and facilitation of IL17 expression during stimulation with different bacteria were investigated. Intestinal inflammation was induced by dextran sulfate sodium, and NF-κB activity was inhibited in an intestinal injury model. Mannose receptor C type, ABF1/2, serpin B13, lysozyme, and β-arrestin were significantly controlled by NF-κB in the inflamed intestinal tissue. High levels of NF-κB activation resulted in less pervasive intestinal damage and the maintenance of intestinal barrier integrity. Intestinal injury robustly increased the expression of IL17. NF-κB activation was enhanced by IL17 deficiency in the intestinal injury model. IL17 inhibition aggravated intestinal inflammation, leading to loss of epithelial architecture and the infiltration of inflammatory cells. These data suggest that NF-κB and IL17 play key mediator roles in the maintenance of gut epithelial integrity and immune homeostasis.
Collapse
Affiliation(s)
- Zhangping Wang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, PR China
| | - Xiaoyue Sun
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, PR China
| | - Wenbo Wang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, PR China
| | - Mingjuan Zheng
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, PR China
| | - Daochuan Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, PR China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, PR China.
| | - Hong Yin
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, PR China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, PR China.
| |
Collapse
|
238
|
Xu L, Liu B, Huang L, Li Z, Cheng Y, Tian Y, Pan G, Li H, Xu Y, Wu W, Cui Z, Xie L. Probiotic Consortia and Their Metabolites Ameliorate the Symptoms of Inflammatory Bowel Diseases in a Colitis Mouse Model. Microbiol Spectr 2022; 10:e0065722. [PMID: 35730951 PMCID: PMC9430814 DOI: 10.1128/spectrum.00657-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) has become a global public health problem. Although the pathogenesis of the disease is unknown, a potential association between the gut microbiota and inflammatory signatures has been established. Probiotics, especially Lactobacillus or Bifidobacterium, are orally taken as food supplements or microbial drugs by patients with IBD or gastrointestinal disorders due to their safety, efficacy, and power to restore the gut microenvironment. In the current study, we investigated the comprehensive effects of probiotic bacterial consortia consisting of Lactobacillus reuteri, Lactobacillus gasseri, Lactobacillus acidophilus (Lactobacillus spp.), and Bifidobacterium lactis (Bifidobacterium spp.) or their metabolites in a dextran sodium sulfate (DSS)-induced colitis mouse model. Our data demonstrate that probiotic consortia not only ameliorate the disease phenotype but also restore the composition and structure of the gut microbiota. Moreover, the effect of probiotic consortia is better than that of any single probiotic strain. The results also demonstrate that mixed fermentation metabolites are capable of ameliorating the symptoms of gut inflammation. However, the administration of metabolites is not as effective as probiotic consortia with respect to phenotypic characteristics, such as body weight, disease activity index (DAI), and histological score. In addition, mixed metabolites led only to changes in intestinal flora composition. In summary, probiotic consortia and metabolites could exert protective roles in the DSS-induced colitis mouse model by reducing inflammation and regulating microbial dysbiosis. These findings from the current study provide support for the development of probiotic-based microbial products as an alternative therapeutic strategy for IBD. IMPORTANCE IBD is a chronic nonspecific inflammatory disease. IBD is characterized by a wide range of lesions, often involving the entire colon, and is characterized mainly by ulcers and erosions of the colonic mucosa. In the present study, we investigated the efficacy of probiotics on the recovery of gut inflammation and the restoration of gut microecology. We demonstrate that probiotic consortia have a superior effect in inhibiting inflammation and accelerating recovery compared with the effects observed in the control group or groups administered with a single strain. These results support the utilization of probiotic consortia as an alternative therapeutic approach to treat IBD.
Collapse
Affiliation(s)
- Limin Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Bingdong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liujing Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ze Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanbo Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ye Tian
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guihua Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yinlan Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zongbin Cui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liwei Xie
- School of Public Health, Xinxiang Medical University, Xinxiang, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
239
|
Anti-inflammatory properties of novel galloyl glucosides isolated from the Australian tropical plant Uromyrtus metrosideros. Chem Biol Interact 2022; 368:110124. [PMID: 36007634 DOI: 10.1016/j.cbi.2022.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Two new galloyl glucosides, galloyl-lawsoniaside A (4) and uromyrtoside (6), were isolated from the polar fraction of Uromyrtus metrosideros leaf extract along with another four previously identified phytochemicals (1, 2, 3, and 5). The structures of these six compounds were characterised using low and high-resolution mass spectrometry (L/HRMS) and 1D and 2D Nuclear Magnetic Resonance (NMR) spectroscopy. These compounds were not toxic to human peripheral blood mononuclear cells (PBMCs) at 10 μg/mL over 24 h, yet showed significant in vitro suppression of proinflammatory cytokines involved in the pathogenesis of inflammatory bowel disease (IBD). Specifically, the release of interferon γ (IFN-γ), interleukin (IL)-17A, and IL-8 from phorbol myristate acetate/ionomycin (P/I) and anti-CD3/anti-CD28-activated cells were significantly suppressed by compounds 4 and 5. Interestingly, no effect on tumour necrosis factor (TNF) release was observed. These results show that the newly characterised compound 4 has promising cytokine suppressive properties, which could be further investigated as a candidate for IBD treatment.
Collapse
|
240
|
Amatullah H, Fraschilla I, Digumarthi S, Huang J, Adiliaghdam F, Bonilla G, Wong LP, Rivard ME, Beauchamp C, Mercier V, Goyette P, Sadreyev RI, Anthony RM, Rioux JD, Jeffrey KL. Epigenetic reader SP140 loss of function drives Crohn's disease due to uncontrolled macrophage topoisomerases. Cell 2022; 185:3232-3247.e18. [PMID: 35952671 PMCID: PMC9442451 DOI: 10.1016/j.cell.2022.06.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/07/2022] [Accepted: 06/27/2022] [Indexed: 01/19/2023]
Abstract
How mis-regulated chromatin directly impacts human immune disorders is poorly understood. Speckled Protein 140 (SP140) is an immune-restricted PHD and bromodomain-containing epigenetic "reader," and SP140 loss-of-function mutations associate with Crohn's disease (CD), multiple sclerosis (MS), and chronic lymphocytic leukemia (CLL). However, the relevance of these mutations and mechanisms underlying SP140-driven pathogenicity remains unexplored. Using a global proteomic strategy, we identified SP140 as a repressor of topoisomerases (TOPs) that maintains heterochromatin and macrophage fate. In humans and mice, SP140 loss resulted in unleashed TOP activity, de-repression of developmentally silenced genes, and ultimately defective microbe-inducible macrophage transcriptional programs and bacterial killing that drive intestinal pathology. Pharmacological inhibition of TOP1/2 rescued these defects. Furthermore, exacerbated colitis was restored with TOP1/2 inhibitors in Sp140-/- mice, but not wild-type mice, in vivo. Collectively, we identify SP140 as a TOP repressor and reveal repurposing of TOP inhibition to reverse immune diseases driven by SP140 loss.
Collapse
Affiliation(s)
- Hajera Amatullah
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Isabella Fraschilla
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Sreehaas Digumarthi
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Julie Huang
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Fatemeh Adiliaghdam
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Gracia Bonilla
- Department of Molecular Biology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | - Ruslan I Sadreyev
- Department of Molecular Biology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Rioux
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Kate L Jeffrey
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
241
|
Differential Effects of Anti-TNFα and Anti-α4β7 Drugs on Circulating Dendritic Cells Migratory Capacity in Inflammatory Bowel Disease. Biomedicines 2022; 10:biomedicines10081885. [PMID: 36009431 PMCID: PMC9405461 DOI: 10.3390/biomedicines10081885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic and chronic disorder that includes ulcerative colitis (UC) and Crohn’s disease (CD). Both diseases show an uncontrolled intestinal immune response that generates tissue inflammation. Dendritic cells (DCs) are antigen-presenting cells that play a key role in tolerance maintenance in the gastrointestinal mucosa. Although it has been reported that DC recruitment by the intestinal mucosa is more prominent in IBD patients, the specific mechanisms governing this migration are currently unknown. In this study, the expression of several homing markers and the migratory profile of circulating DC subsets towards intestinal chemo-attractants were evaluated and the effect of biological drugs with different mechanisms of action, such as anti-TNFα or anti-integrin α4β7 (vedolizumab), on this mechanism in healthy controls (HCs) and IBD patients was also assessed. Our results revealed that type 2 conventional DCs (cDC2) express differential homing marker profiles in UC and CD patients compared to HCs. Indeed, integrin β7 was differentially modulated by vedolizumab in CD and UC. Additionally, although CCL2 displayed a chemo-attractant effect over cDC2, while biological therapies did not modulate the expression of the homing markers, we paradoxically found that anti-TNF-treated cDC2 increased their migratory capacity towards CCL2 in HCs and IBD. Our results therefore suggest a key role for cDC2 migration towards the intestinal mucosa in IBD, something that could be explored in order to develop novel diagnostic biomarkers or to unravel new immunomodulatory targets in IBD.
Collapse
|
242
|
Dibekoğlu C, Erbaş O. Histone deacetylase inhibitor givinostat has ameliorative effect in the colitis model. Acta Cir Bras 2022; 37:e370503. [PMID: 35894303 PMCID: PMC9323301 DOI: 10.1590/acb370503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: To investigate the effect of givinostat treatment in acetic acid-induced ulcerative colitis model in rats. Methods: Thirty male Wistar albino rats were used. Rats were randomly divided into three equal groups, and colitis was induced on 20 rats by rectal administration of %4 solutions of acetic acid. Twenty rats with colitis were randomly divided into two groups. %0.9 NaCl (saline) solution was administered intraperitoneally to the first group of rats (saline group, n=10) at the dose of 1 mL/kg/day. Givinostat was administered intraperitoneally to the second group rats (Givinostat group, n=10) at the dose of 5 mg/kg/day. Samples were collected for biochemical analysis. Colon was removed for histopathological and biochemical examinations. Results: Plasma tumor necrosis factor-α (TNF-α), pentraxin-3 (PTX-3), and malondialdehyde levels were significantly decreased in the givinostat group compared to the saline group (p<0.05, p<0.001, and p<0.001 respectively; p<0.001, p<0.001, and p<0.001, respectively). Colon TNF-α and prostaglandin F2 alpha (PGF-2) levels were significantly decreased (p<0.05, and p<0.001, respectively). The givinostat group had a significantly lower histologic score than saline group (p<0.001, and p<0.001, respectively). Conclusions: Givinostat, a good protector and regenerator of tissue and an anti-inflammatory agent, may be involved in the treatment of colitis in the future.
Collapse
Affiliation(s)
- Cengiz Dibekoğlu
- MD. İstanbul Florence Nightingale Hospital - Department of General Surgery - İstanbul, Turkey
| | - Oytun Erbaş
- MD. Demiroğlu Bilim University - Faculty of Medicine - Department of Physiology - İstanbul, Turkey
| |
Collapse
|
243
|
Lin Z, Xie X, Gu M, Chen Q, Lu G, Jia X, Xiao W, Zhang J, Yu D, Gong W. microRNA-144/451 decreases dendritic cell bioactivity via targeting interferon-regulatory factor 5 to limit DSS-induced colitis. Front Immunol 2022; 13:928593. [PMID: 35967345 PMCID: PMC9372465 DOI: 10.3389/fimmu.2022.928593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
The microRNAs miR-144/451 are highly conserved miRNA that is strongly induced during erythropoiesis. Despite the biological functions of miR-144/451 have been extensively studied in erythropoiesis and tumorigenesis, few studies have been conducted in immune responses. In this study, we showed that miR-144/451-/- DCs exhibit increased activation. Mechanistically, the miR-144 directly targets the 3`-UTR of IRF5 and represses the expression of IRF5 in DCs. Ectopic expression of miR-144/451 by lentiviruses downregulates the levels of IRF5 and suppresses DCs function. In addition, knockdown of IRF5 by shRNA significantly inhibits activities of the miR-144/451-/- DCs. Expression of miR144/451 was decreased in DCs from both patients with IBD and mice with DSS-colitis compared with controls. Human PBMC derived DCs were downregulated expression of miR144/451 after LPS stimulation. In the DSS-induced colitis mice model, we showed that ablation of the miR-144/451 gene causes severe colitis, and their DCs from both periphery and MLN expressed higher co-stimulatory molecules and pro-inflammatory cytokines than wild-type mice. In addition, DCs isolated from miR-144/451-/- mice transfusion exacerbates mice colitis. In the bone marrow transplanted chimeric mice model, we show that miR-144/451-/- bone marrow transplantation deteriorated DSS-induced colitis. At last, we treat the mice with miR-144/451 delivered by chitosan nanoparticles revealing protective effects in DSS-induced colitis mice. Thus, our results reveal a novel miR144/451-IRF5 pathway in DCs that protects experimental colitis. The manipulation of miR-144/451 expression and DCs activation in IBD patients may be a novel therapeutic approach for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhijie Lin
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Xiaoyan Xie
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Min Gu
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Qian Chen
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoqin Jia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jun Zhang
- Department of Blood Transfusion, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Duonan Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- *Correspondence: Weijuan Gong, ; Duonan Yu,
| | - Weijuan Gong
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Weijuan Gong, ; Duonan Yu,
| |
Collapse
|
244
|
Kautzman AM, Mobulakani JMF, Marrero Cofino G, Quenum AJI, Cayarga AA, Asselin C, Fortier LC, Ilangumaran S, Menendez A, Ramanathan S. Interleukin 15 in murine models of colitis. Anat Rec (Hoboken) 2022; 306:1111-1130. [PMID: 35899872 DOI: 10.1002/ar.25044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by abnormal, non-antigen specific chronic inflammation of unknown etiology. Genome-wide association studies show that many IBD genetic susceptibility loci map to immune function genes and compelling evidence indicate that environmental factors play a critical role in IBD pathogenesis. Clinical and experimental evidence implicate the pro-inflammatory cytokine IL-15 in the pathogenesis of IBD. IL-15 and IL-15α expression is increased in the inflamed mucosa of IBD patients. IL-15 contributes to the maintenance of different cell subsets in the intestinal mucosa. However, very few studies have addressed the role of IL-15 in pre-clinical models of colitis. In this study, we use three well-characterized models of experimental colitis to determine the contribution of IL-15 to pathological intestinal inflammation.
Collapse
Affiliation(s)
- Alicia Molina Kautzman
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Gisela Marrero Cofino
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Anny Armas Cayarga
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claude Asselin
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
245
|
Hong ZS, Xie J, Wang XF, Dai JJ, Mao JY, Bai YY, Sheng J, Tian Y. Moringa oleifera Lam. Peptide Remodels Intestinal Mucosal Barrier by Inhibiting JAK-STAT Activation and Modulating Gut Microbiota in Colitis. Front Immunol 2022; 13:924178. [PMID: 35911761 PMCID: PMC9336532 DOI: 10.3389/fimmu.2022.924178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis is a chronic inflammatory bowel disease (IBD), but progress in exploring its pathogenesis and finding effective drugs for its prevention and treatment has stalled in recent years. The seeds of Moringa oleifera Lam. are rich in proteins known to have multiple physiological activities. In our earlier work, we had isolated and purified a peptide (MOP) having the sequence KETTTIVR, from M. oleifera seeds; however, its anti-inflammatory activity and mechanism in vivo were unclear. Here we used the dextran sulfate sodium (DSS)-induced colitis model to study the anti-inflammatory activity and mechanism of this MOP. Our results are the first to show that MOP can ameliorate the pathological phenotype, inflammation, and intestinal barrier disruption in mice with colitis. Furthermore, RNA sequencing revealed that MOP inhibits the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway activation. Next, by using 16s rRNA gene sequencing, we found that MOP can ameliorate DSS-induced gut microbiota dysbiosis. In addition, an untargeted metabolomics analysis suggested that MOP is able to modulate the level of lipid and amino acid metabolites in IBD-stricken mice. Altogether, these results indicate that MOP ameliorates colitis by remodeling intestinal mucosal barrier by inhibiting JAK-STAT pathway’s activation and regulating gut microbiota and its metabolites, thus providing a basis for further processing and design of bioactive foods from M. oleifera seeds.
Collapse
Affiliation(s)
- Zi-Shan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xue-Feng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Jing-Jing Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jia-Ying Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Yu-Ying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Jun Sheng, ; Yang Tian,
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Jun Sheng, ; Yang Tian,
| |
Collapse
|
246
|
Gao J, Cao S, Xiao H, Hu S, Yao K, Huang K, Jiang Z, Wang L. Lactobacillus reuteri 1 Enhances Intestinal Epithelial Barrier Function and Alleviates the Inflammatory Response Induced by Enterotoxigenic Escherichia coli K88 via Suppressing the MLCK Signaling Pathway in IPEC-J2 Cells. Front Immunol 2022; 13:897395. [PMID: 35911699 PMCID: PMC9331657 DOI: 10.3389/fimmu.2022.897395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal epithelial barrier injury disrupts immune homeostasis and leads to many intestinal disorders. Lactobacillus reuteri (L. reuteri) strains can influence immune system development and intestinal function. However, the underlying mechanisms of L. reuteri LR1 that regulate inflammatory response and intestinal integrity are still unknown. The present study aimed to determine the effects of LR1 on the ETEC K88-induced intestinal epithelial injury on the inflammatory response, intestinal epithelial barrier function, and the MLCK signal pathway and its underlying mechanism. Here, we showed that the 1 × 109 cfu/ml LR1 treatment for 4 h dramatically decreased interleukin-8 (IL-8) and IL-6 expression. Then, the data indicated that the 1 × 108 cfu/ml ETEC K88 treatment for 4 h dramatically enhanced IL-8, IL-6, and tumor necrosis factor-α (TNF-α) expression. Furthermore, scanning electron microscope (SEM) data indicated that pretreatment with LR1 inhibited the ETEC K88 that adhered on IPEC-J2 and alleviated the scratch injury of IPEC J2 cells. Moreover, LR1 pretreatment significantly reversed the declined transepithelial electrical resistance (TER) and tight junction protein level, and enhanced the induction by ETEC K88 treatment. Additionally, LR1 pretreatment dramatically declined IL-8, IL-17A, IL-6, and TNF-α levels compared with the ETEC K88 group. Then, ETEC K88-treated IPEC-J2 cells had a higher level of myosin light-chain kinase (MLCK), higher MLC levels, and a lower Rho-associated kinase (ROCK) level than the control group, while LR1 pretreatment significantly declined the MLCK and MLC expression and enhanced ROCK level in the ETEC K88-challenged IPEC-J2 cells. Mechanistically, depletion of MLCK significantly declined MLC expression in IPEC-J2 challenged with ETEC K88 compared to the si NC+ETEC K88 group. On the other hand, the TER of the si MLCK+ETEC K88 group was higher and the FD4 flux in the si MLCK+ETEC K88 group was lower compared with the si NC+ETEC K88 group. In addition, depletion of MLCK significantly enhanced Claudin-1 level and declined IL-8 and TNF-α levels in IPEC-J2 pretreated with LR1 followed by challenging with ETEC K88. In conclusion, our work indicated that L. reuteri LR1 can decline inflammatory response and improve intestinal epithelial barrier function through suppressing the MLCK signal pathway in the ETEC K88-challenged IPEC-J2.
Collapse
Affiliation(s)
- Jingchun Gao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kang Yao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaiyong Huang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Li Wang,
| |
Collapse
|
247
|
Peek CT, Ford CA, Eichelberger KR, Jacobse J, Torres TP, Maseda D, Latour YL, Piazuelo MB, Johnson JR, Byndloss MX, Wilson KT, Rathmell JC, Goettel JA, Cassat JE. Intestinal Inflammation Promotes MDL-1 + Osteoclast Precursor Expansion to Trigger Osteoclastogenesis and Bone Loss. Cell Mol Gastroenterol Hepatol 2022; 14:731-750. [PMID: 35835390 PMCID: PMC9420375 DOI: 10.1016/j.jcmgh.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) is characterized by severe gastrointestinal inflammation, but many patients experience extra-intestinal disease. Bone loss is one common extra-intestinal manifestation of IBD that occurs through dysregulated interactions between osteoclasts and osteoblasts. Systemic inflammation has been postulated to contribute to bone loss, but the specific pathologic mechanisms have not yet been fully elucidated. We hypothesized that intestinal inflammation leads to bone loss through increased abundance and altered function of osteoclast progenitors. METHODS We used chemical, T cell driven, and infectious models of intestinal inflammation to determine the impact of intestinal inflammation on bone volume, the skeletal cytokine environment, and the cellular changes to pre-osteoclast populations within bone marrow. Additionally, we evaluated the potential for monoclonal antibody treatment against an inflammation-induced osteoclast co-receptor, myeloid DNAX activation protein 12-associating lectin-1 (MDL-1) to reduce bone loss during colitis. RESULTS We observed significant bone loss across all models of intestinal inflammation. Bone loss was associated with an increase in pro-osteoclastogenic cytokines within the bone and an expansion of a specific Cd11b-/loLy6Chi osteoclast precursor (OCP) population. Intestinal inflammation led to altered OCP expression of surface receptors involved in osteoclast differentiation and function, including the pro-osteoclastogenic co-receptor MDL-1. OCPs isolated from mice with intestinal inflammation demonstrated enhanced osteoclast differentiation ex vivo compared to controls, which was abrogated by anti-MDL-1 antibody treatment. Importantly, in vivo anti-MDL-1 antibody treatment ameliorated bone loss during intestinal inflammation. CONCLUSIONS Collectively, these data implicate the pathologic expansion and altered function of OCPs expressing MDL-1 in bone loss during IBD.
Collapse
Affiliation(s)
- Christopher T Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Caleb A Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Kara R Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Justin Jacobse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Teresa P Torres
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Damian Maseda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yvonne L Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joshua R Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keith T Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy A Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
248
|
Huang Y, Wu M, Xiao H, Liu H, Yang G. Mesalamine-Mediated Amelioration of Experimental Colitis in Piglets Involves Gut Microbiota Modulation and Intestinal Immune Cell Infiltration. Front Immunol 2022; 13:883682. [PMID: 35898495 PMCID: PMC9309220 DOI: 10.3389/fimmu.2022.883682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Mesalamine (MES), also known as 5-aminosalicylic acid, is effective in treating mild to moderate ulcerative colitis (UC). The mechanisms of its actions are not fully elucidated. The aim of this study was to investigate the effects of MES treatment on intestinal microbiota and immune system in an dextran sulfate sodium (DSS)-induced UC model in postweaning piglets. Eighteen weaned piglets were assigned randomly to the following treatments: control group (CON, distilled water), DSS group (DSS, 3% DSS), and MES group (MES, 3% DSS + 2 g/day MES). Our results showed that MES treatment alleviates DSS-induced colitis in piglets, as evidenced by a reduced diarrhea index score and increased average daily gain (P < 0.05). This is accompanied by decreased diamine oxidase activity, D-lactate level (P < 0.05), and attenuated mucosal damage. MES treatment also decreased the abundance of Methanogens and reduced colon CD11b+ macrophage and CD3+ T-cell infiltrations in piglets with DSS-induced colitis (P < 0.05). Collectively, these data indicate that MES treatment-mediated colitis protection may involve microbiota and immune cell alterations.
Collapse
Affiliation(s)
- Yonggang Huang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongnan Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Guan Yang,
| |
Collapse
|
249
|
Hypo-osmotic stress induces the epithelial alarmin IL-33 in the colonic barrier of ulcerative colitis. Sci Rep 2022; 12:11550. [PMID: 35798804 PMCID: PMC9263100 DOI: 10.1038/s41598-022-15573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Epithelial alarmins are gaining interest as therapeutic targets for chronic inflammation. The nuclear alarmin interleukin-33 (IL-33) is upregulated in the colonic mucosa of acute ulcerative colitis (UC) and may represent an early instigator of the inflammatory cascade. However, it is not clear what signals drive the expression of IL-33 in the colonic mucosa, nor is the exact role of IL-33 elucidated. We established an ex vivo model using endoscopic colonic biopsies from healthy controls and UC patients. Colonic biopsies exposed to hypo-osmotic medium induced a strong nuclear IL-33 expression in colonic crypts in both healthy controls and UC biopsies. Mucosal IL33 mRNA was also significantly increased following hypo-osmotic stress in healthy controls compared to non-stimulated biopsies (fold change 3.9, p-value < 0.02). We observed a modest induction of IL-33 in response to TGF-beta-1 stimulation, whereas responsiveness to inflammatory cytokines TNF and IFN-gamma was negligible. In conclusion our findings indicate that epithelial IL-33 is induced by hypo-osmotic stress, rather than prototypic proinflammatory cytokines in colonic ex vivo biopsies. This is a novel finding, linking a potent cytokine and alarmin of the innate immune system with cellular stress mechanisms and mucosal inflammation.
Collapse
|
250
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|