201
|
Perrone F, Cacace R, van der Zee J, Van Broeckhoven C. Emerging genetic complexity and rare genetic variants in neurodegenerative brain diseases. Genome Med 2021; 13:59. [PMID: 33853652 PMCID: PMC8048219 DOI: 10.1186/s13073-021-00878-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the molecular etiology of neurodegenerative brain diseases (NBD) has substantially increased over the past three decades. Early genetic studies of NBD families identified rare and highly penetrant deleterious mutations in causal genes that segregate with disease. Large genome-wide association studies uncovered common genetic variants that influenced disease risk. Major developments in next-generation sequencing (NGS) technologies accelerated gene discoveries at an unprecedented rate and revealed novel pathways underlying NBD pathogenesis. NGS technology exposed large numbers of rare genetic variants of uncertain significance (VUS) in coding regions, highlighting the genetic complexity of NBD. Since experimental studies of these coding rare VUS are largely lacking, the potential contributions of VUS to NBD etiology remain unknown. In this review, we summarize novel findings in NBD genetic etiology driven by NGS and the impact of rare VUS on NBD etiology. We consider different mechanisms by which rare VUS can act and influence NBD pathophysiology and discuss why a better understanding of rare VUS is instrumental for deriving novel insights into the molecular complexity and heterogeneity of NBD. New knowledge might open avenues for effective personalized therapies.
Collapse
Affiliation(s)
- Federica Perrone
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| |
Collapse
|
202
|
Slater C, Wang Q. Alzheimer's disease: An evolving understanding of noradrenergic involvement and the promising future of electroceutical therapies. Clin Transl Med 2021; 11:e397. [PMID: 33931975 PMCID: PMC8087948 DOI: 10.1002/ctm2.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) poses a significant global health concern over the next several decades. Multiple hypotheses have been put forth that attempt to explain the underlying pathophysiology of AD. Many of these are briefly reviewed here, but to-date no disease-altering therapy has been achieved. Despite this, recent work expanding on the role of noradrenergic system dysfunction in both the pathogenesis and symptomatic exacerbation of AD has shown promise. The role norepinephrine (NE) plays in AD remains complicated but pre-tangle tau has consistently been shown to arise in the locus coeruleus (LC) of patients with AD decades before symptom onset. The current research reviewed here indicates NE can facilitate neuroprotective and memory-enhancing effects through β adrenergic receptors, while α2A adrenergic receptors may exacerbate amyloid toxicity through a contribution to tau hyperphosphorylation. AD appears to involve a disruption in the balance between these two receptors and their various subtypes. There is also a poorly characterized interplay between the noradrenergic and cholinergic systems. LC deterioration leads to maladaptation in the remaining LC-NE system and subsequently inhibits cholinergic neuron function, eventually leading to the classic cholinergic disruption seen in AD. Understanding AD as a dysfunctional noradrenergic system, provides new avenues for the use of advanced neural stimulation techniques to both study and therapeutically target the earliest stages of neuropathology. Direct LC stimulation and non-invasive vagus nerve stimulation (VNS) have both demonstrated potential use as AD therapeutics. Significant work remains, though, to better understand the role of the noradrenergic system in AD and how electroceuticals can provide disease-altering treatments.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Qi Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
203
|
Domingues R, Pereira C, Cruz MT, Silva A. Therapies for Alzheimer's disease: a metabolic perspective. Mol Genet Metab 2021; 132:162-172. [PMID: 33549409 DOI: 10.1016/j.ymgme.2021.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia in the elderly. Currently, there are over 50 million cases of dementia worldwide and it is expected that it will reach 136 million by 2050. AD is described as a neurodegenerative disease that gradually compromises memory and learning capacity. Patients often exhibit brain glucose hypometabolism and are more susceptible to develop type 2 diabetes or insulin resistance in comparison with age-matched controls. This suggests that there is a link between both pathologies. Glucose metabolism and the tricarboxylic acid cycle are tightly related to mitochondrial performance and energy production. Impairment of both these pathways can evoke oxidative damage on mitochondria and key proteins linked to several hallmarks of AD. Glycation is also another type of post-translational modification often reported in AD, which might impair the function of proteins that participate in metabolic pathways thought to be involved in this illness. Despite needing further research, therapies based on insulin treatment, usage of anti-diabetes drugs or some form of dietary intervention, have shown to be promising therapeutic approaches for AD in its early stages of progression and will be unveiled in this paper.
Collapse
Affiliation(s)
- Raquel Domingues
- Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal
| | - Claúdia Pereira
- Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
204
|
Sathe G, Albert M, Darrow J, Saito A, Troncoso J, Pandey A, Moghekar A. Quantitative proteomic analysis of the frontal cortex in Alzheimer's disease. J Neurochem 2021; 156:988-1002. [PMID: 32614981 PMCID: PMC7775912 DOI: 10.1111/jnc.15116] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by intracellular formation of neurofibrillary tangles and extracellular deposition of β-amyloid protein (Aβ) in the extracellular matrix. The pathogenesis of AD has not yet been fully elucidated and little is known about global alterations in the brain proteome that are related to AD. To identify and quantify such AD-related changes in the brain, we employed a tandem mass tags approach coupled to high-resolution mass spectrometry. We compared the proteomes of frontal cortex from AD patients with corresponding age-matched brain samples. Liquid chromatography-mass spectrometry/MS analysis carried out on an Orbitrap Fusion Lumos Tribrid mass spectrometer led to identification of 8,066 proteins. Of these, 432 proteins were observed to be significantly altered (>1.5 fold) in their expression in AD brains. Proteins whose abundance was previously known to be altered in AD were identified including secreted phosphoprotein 1 (SPP1), somatostatin (SST), SPARC-related modular calcium binding 1 (SMOC1), dual specificity phosphatase 26 (DUSP26), and neuronal pentraxin 2 (NPTX2). In addition, we identified several novel candidates whose association with AD has not been previously described. Of the novel molecules, we validated chromogranin A (CHGA), inner membrane mitochondrial protein (IMMT) and RAS like proto-oncogene A (RALA) in an additional set of 20 independent brain samples using targeted parallel reaction monitoring mass spectrometry assays. The differentially expressed proteins discovered in our study, once validated in larger cohorts, should help discern the pathogenesis of AD.
Collapse
Affiliation(s)
- Gajanan Sathe
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Marilyn Albert
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Jacqueline Darrow
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Atsushi Saito
- Department of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Juan Troncoso
- Department of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
- Current address: Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Abhay Moghekar
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| |
Collapse
|
205
|
Krokidis MG, Exarchos TP, Vlamos P. Data-driven biomarker analysis using computational omics approaches to assess neurodegenerative disease progression. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1813-1832. [PMID: 33757212 DOI: 10.3934/mbe.2021094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The complexity of biological systems suggests that current definitions of molecular dysfunctions are essential distinctions of a complex phenotype. This is well seen in neurodegenerative diseases (ND), such as Alzheimer's disease (AD) and Parkinson's disease (PD), multi-factorial pathologies characterized by high heterogeneity. These challenges make it necessary to understand the effectiveness of candidate biomarkers for early diagnosis, as well as to obtain a comprehensive mapping of how selective treatment alters the progression of the disorder. A large number of computational methods have been developed to explain network-based approaches by integrating individual components for modeling a complex system. In this review, high-throughput omics methodologies are presented for the identification of potent biomarkers associated with AD and PD pathogenesis as well as for monitoring the response of dysfunctional molecular pathways incorporating multilevel clinical information. In addition, principles for efficient data analysis pipelines are being discussed that can help address current limitations during the experimental process by increasing the reproducibility of benchmarking studies.
Collapse
Affiliation(s)
- Marios G Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Greece
| | - Themis P Exarchos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Greece
| | - Panagiotis Vlamos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Greece
| |
Collapse
|
206
|
Lefèvre-Arbogast S, Hejblum BP, Helmer C, Klose C, Manach C, Low DY, Urpi-Sarda M, Andres-Lacueva C, González-Domínguez R, Aigner L, Altendorfer B, Lucassen PJ, Ruigrok SR, De Lucia C, Du Preez A, Proust-Lima C, Thuret S, Korosi A, Samieri C. Early signature in the blood lipidome associated with subsequent cognitive decline in the elderly: A case-control analysis nested within the Three-City cohort study. EBioMedicine 2021; 64:103216. [PMID: 33508744 PMCID: PMC7841305 DOI: 10.1016/j.ebiom.2021.103216] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Brain lipid metabolism appears critical for cognitive aging, but whether alterations in the lipidome relate to cognitive decline remains unclear at the system level. METHODS We studied participants from the Three-City study, a multicentric cohort of older persons, free of dementia at time of blood sampling, and who provided repeated measures of cognition over 12 subsequent years. We measured 189 serum lipids from 13 lipid classes using shotgun lipidomics in a case-control sample on cognitive decline (matched on age, sex and level of education) nested within the Bordeaux study center (discovery, n = 418). Associations with cognitive decline were investigated using bootstrapped penalized regression, and tested for validation in the Dijon study center (validation, n = 314). FINDINGS Among 17 lipids identified in the discovery stage, lower levels of the triglyceride TAG50:5, and of four membrane lipids (sphingomyelin SM40:2,2, phosphatidylethanolamine PE38:5(18:1/20:4), ether-phosphatidylethanolamine PEO34:3(16:1/18:2), and ether-phosphatidylcholine PCO34:1(16:1/18:0)), and higher levels of PCO32:0(16:0/16:0), were associated with greater odds of cognitive decline, and replicated in our validation sample. INTERPRETATION These findings indicate that in the blood lipidome of non-demented older persons, a specific profile of lipids involved in membrane fluidity, myelination, and lipid rafts, is associated with subsequent cognitive decline. FUNDING The complete list of funders is available at the end of the manuscript, in the Acknowledgement section.
Collapse
Affiliation(s)
- Sophie Lefèvre-Arbogast
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, 146 rue Léo-Saignat, Bordeaux 33076, France
| | - Boris P Hejblum
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, 146 rue Léo-Saignat, Bordeaux 33076, France; Inria SISTM, Bordeaux Sud-Ouest, Bordeaux 33000, France
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, 146 rue Léo-Saignat, Bordeaux 33076, France
| | | | - Claudine Manach
- University of Clermont Auvergne, INRA, UMR1019, Human Nutrition Unit, Clermont Ferrand 63000, France
| | - Dorrain Y Low
- University of Clermont Auvergne, INRA, UMR1019, Human Nutrition Unit, Clermont Ferrand 63000, France
| | - Mireia Urpi-Sarda
- Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, University of Barcelona, Barcelona 08028, Spain
| | - Cristina Andres-Lacueva
- Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, University of Barcelona, Barcelona 08028, Spain
| | - Raúl González-Domínguez
- Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, University of Barcelona, Barcelona 08028, Spain
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg 5020, Austria
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg 5020, Austria
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam 1098 XH, Netherlands
| | - Silvie R Ruigrok
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam 1098 XH, Netherlands
| | - Chiara De Lucia
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Cécile Proust-Lima
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, 146 rue Léo-Saignat, Bordeaux 33076, France
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam 1098 XH, Netherlands
| | - Cécilia Samieri
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, 146 rue Léo-Saignat, Bordeaux 33076, France.
| |
Collapse
|
207
|
Natarajan K, Ullgren A, Khoshnood B, Johansson C, Laffita-Mesa JM, Pannee J, Zetterberg H, Blennow K, Graff C. Plasma metabolomics of presymptomatic PSEN1-H163Y mutation carriers: a pilot study. Ann Clin Transl Neurol 2021; 8:579-591. [PMID: 33476461 PMCID: PMC7951103 DOI: 10.1002/acn3.51296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE PSEN1-H163Y carriers, at the presymptomatic stage, have reduced 18 FDG-PET binding in the cerebrum of the brain (Scholl et al., Neurobiol Aging 32:1388-1399, 2011). This could imply dysfunctional energy metabolism in the brain. In this study, plasma of presymptomatic PSEN1 mutation carriers was analyzed to understand associated metabolic changes. METHODS We analyzed plasma from noncarriers (NC, n = 8) and presymptomatic PSEN1-H163Y mutation carriers (MC, n = 6) via untargeted metabolomics using gas and liquid chromatography coupled with mass spectrometry, which identified 1199 metabolites. All the metabolites were compared between MC and NC using univariate analysis, as well as correlated with the ratio of Aβ1-42/A β 1-40 , using Spearman's correlation. Altered metabolites were subjected to Ingenuity Pathway Analysis (IPA). RESULTS Based on principal component analysis the plasma metabolite profiles were divided into dataset A and dataset B. In dataset A, when comparing between presymptomatic MC and NC, the levels of 79 different metabolites were altered. Out of 79, only 14 were annotated metabolites. In dataset B, 37 metabolites were significantly altered between presymptomatic MC and NC and nine metabolites were annotated. In both datasets, annotated metabolites represent amino acids, fatty acyls, bile acids, hexoses, purine nucleosides, carboxylic acids, and glycerophosphatidylcholine species. 1-docosapentaenoyl-GPC was positively correlated, uric acid and glucose were negatively correlated with the ratio of plasma Aβ1-42 /Aβ1-40 (P < 0.05). INTERPRETATION This study finds dysregulated metabolite classes, which are changed before the disease symptom onset. Also, it provides an opportunity to compare with sporadic Alzheimer's Disease. Observed findings in this study need to be validated in a larger and independent Familial Alzheimer's Disease (FAD) cohort.
Collapse
Affiliation(s)
- Karthick Natarajan
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Abbe Ullgren
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Behzad Khoshnood
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Charlotte Johansson
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - José M Laffita-Mesa
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Josef Pannee
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, England
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Caroline Graff
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| |
Collapse
|
208
|
Wörheide MA, Krumsiek J, Kastenmüller G, Arnold M. Multi-omics integration in biomedical research - A metabolomics-centric review. Anal Chim Acta 2021; 1141:144-162. [PMID: 33248648 PMCID: PMC7701361 DOI: 10.1016/j.aca.2020.10.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Recent advances in high-throughput technologies have enabled the profiling of multiple layers of a biological system, including DNA sequence data (genomics), RNA expression levels (transcriptomics), and metabolite levels (metabolomics). This has led to the generation of vast amounts of biological data that can be integrated in so-called multi-omics studies to examine the complex molecular underpinnings of health and disease. Integrative analysis of such datasets is not straightforward and is particularly complicated by the high dimensionality and heterogeneity of the data and by the lack of universal analysis protocols. Previous reviews have discussed various strategies to address the challenges of data integration, elaborating on specific aspects, such as network inference or feature selection techniques. Thereby, the main focus has been on the integration of two omics layers in their relation to a phenotype of interest. In this review we provide an overview over a typical multi-omics workflow, focusing on integration methods that have the potential to combine metabolomics data with two or more omics. We discuss multiple integration concepts including data-driven, knowledge-based, simultaneous and step-wise approaches. We highlight the application of these methods in recent multi-omics studies, including large-scale integration efforts aiming at a global depiction of the complex relationships within and between different biological layers without focusing on a particular phenotype.
Collapse
Affiliation(s)
- Maria A Wörheide
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
209
|
Zafarullah M, Durbin-Johnson B, Fourie ES, Hessl DR, Rivera SM, Tassone F. Metabolomic Biomarkers Are Associated With Area of the Pons in Fragile X Premutation Carriers at Risk for Developing FXTAS. Front Psychiatry 2021; 12:691717. [PMID: 34483988 PMCID: PMC8415564 DOI: 10.3389/fpsyt.2021.691717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late adult-onset neurodegenerative disorder that affects movement and cognition in male and female carriers of a premutation allele (55-200 CGG repeats; PM) in the fragile X mental retardation (FMR1) gene. It is currently unknown how the observed brain changes are associated with metabolic signatures in individuals who develop the disorder over time. The primary objective of this study was to investigate the correlation between longitudinal changes in the brain (area of the pons, midbrain, and MCP width) and the changes in the expression level of metabolic biomarkers of early diagnosis and progression of FXTAS in PM who, as part of an ongoing longitudinal study, emerged into two distinct categories. These included those who developed symptoms of FXTAS (converters, CON) at subsequent visits and those who did not meet the criteria of diagnosis (non-converters, NCON) and were compared to age-matched healthy controls (HC). We assessed CGG repeat allele size by Southern Blot and PCR analysis. Magnetic Resonance Imaging (MRIs) acquisition was obtained on a 3T Siemens Trio scanner and metabolomic profile was obtained by ultra-performance liquid chromatography, accurate mass spectrometer, and an Orbitrap mass analyzer. Our findings indicate that differential metabolite levels are linked with the area of the pons between healthy control and premutation groups. More specifically, we observed a significant association of ceramides and mannonate metabolites with a decreased area of the pons, both at visit 1 (V1) and visit 2 (V2) only in the CON as compared to the NCON group suggesting their potential role in the development of the disorder. In addition, we found a significant correlation of these metabolic signatures with the FXTAS stage at V2 indicating their contribution to the progression and pathogenesis of FXTAS. Interestingly, these metabolites, as part of lipid and sphingolipid lipids pathways, provide evidence of the role that their dysregulation plays in the development of FXTAS and inform us as potential targets for personalized therapeutic development.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Blythe Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Emily S Fourie
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States.,Department of Psychology, University of California, Davis, Davis, CA, United States
| | - David R Hessl
- MIND Institute, University of California, Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center, Sacramento, CA, United States
| | - Susan M Rivera
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States.,Department of Psychology, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis Medical Center, Sacramento, CA, United States
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, United States.,MIND Institute, University of California, Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
210
|
Cisbani G, Bazinet RP. The role of peripheral fatty acids as biomarkers for Alzheimer's disease and brain inflammation. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102205. [PMID: 33271431 DOI: 10.1016/j.plefa.2020.102205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a complex and heterogeneous neurodegenerative disease. A wide range of techniques have been proposed to facilitate early diagnosis of AD, including biomarkers from the cerebrospinal fluid and blood. Although phosphorylated tau and amyloid beta are amongst the most promising biomarkers of AD, other peripheral biomarkers have been identified and in this review we synthesize the current knowledge on circulating fatty acids. Fatty acids are involved in different biological process including neurotransmission and inflammation. Interestingly, some fatty acids appear to be modulated during disease progression, including long chain saturated fatty acids, and polyunsaturated fatty acids, such as docosahexaenoic acid . However, discrepant results have been reported in the literature and there is the need for further validation and method standardization. Nonetheless, our literature review suggests that fatty acid analyses could potentially provide a valuable source of data to further inform the pathology and progression of AD.
Collapse
Affiliation(s)
- Giulia Cisbani
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Canada.
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
211
|
Fote G, Wu J, Mapstone M, Macciardi F, Fiandaca MS, Federoff HJ. Plasma Sphingomyelins in Late-Onset Alzheimer's Disease. J Alzheimers Dis 2021; 83:1161-1171. [PMID: 34397408 PMCID: PMC9788856 DOI: 10.3233/jad-200871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Altered plasma levels of sphingolipids, including sphingomyelins (SM), have been found in mouse models of Alzheimer's disease (AD) and in AD patient plasma samples. OBJECTIVE This study assesses fourteen plasma SM species in a late-onset AD (LOAD) patient cohort (n = 138). METHODS Specimens from control, preclinical, and symptomatic subjects were analyzed using targeted mass-spectrometry-based metabolomic methods. RESULTS Total plasma SM levels were not significantly affected by age or cognitive status. However, one metabolite that has been elevated in manifest AD in several recent studies, SM OHC14:1, was reduced significantly in pre-clinical AD and MCI relative to normal controls. CONCLUSION We recommend additional comprehensive plasma lipidomics in experimental and clinical biospecimens related to LOAD that might advance the utility of plasma sphingomyelin levels in molecular phenotyping and interpretations of pathobiological mechanisms.
Collapse
Affiliation(s)
- Gianna Fote
- UC Irvine Department of Biological Chemistry, Irvine, CA, USA,Correspondence to: Gianna M. Fote, UC Irvine School of Medicine, 385 S. Manchester Ave, Unit 2096, Orange, CA 92686, USA. Tel.: +1 310 924 4415; . and Howard Federoff, MD, PhD, Distinguished Professor, Neurology, UC Irvine School of Medicine, Orange, CA 92686, USA. Tel.: +1 240 281 2598;
| | - Jie Wu
- UC Irvine Department of Biological Chemistry, Irvine, CA, USA,UC Irvine Center for Complex Biological Systems, Irvine, CA, USA
| | | | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Massimo S. Fiandaca
- Translational Laboratory and Biorepository, Department of Neurology, University of California Irvine School of Medicine, Irvine, CA, USA,Department of Neurological Surgery, University of California Irvine School of Medicine, Irvine, CA, USA,Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Howard J. Federoff
- UC Irvine Department of Neurology, Irvine, CA, USA,Correspondence to: Gianna M. Fote, UC Irvine School of Medicine, 385 S. Manchester Ave, Unit 2096, Orange, CA 92686, USA. Tel.: +1 310 924 4415; . and Howard Federoff, MD, PhD, Distinguished Professor, Neurology, UC Irvine School of Medicine, Orange, CA 92686, USA. Tel.: +1 240 281 2598;
| |
Collapse
|
212
|
Lu Y, Pike JR, Selvin E, Mosley T, Palta P, Sharrett AR, Thomas A, Loehr L, Barritt AS, Hoogeveen RC, Heiss G. Low Liver Enzymes and Risk of Dementia: The Atherosclerosis Risk in Communities (ARIC) Study. J Alzheimers Dis 2021; 79:1775-1784. [PMID: 33459646 PMCID: PMC8679120 DOI: 10.3233/jad-201241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Low levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the low physiologic range, surrogate markers for reduced liver metabolic function, are associated with cerebral hypometabolism, impairment in neurotransmitter production and synaptic maintenance, and a higher prevalence of dementia. It is unknown whether a prospective association exists between low liver enzyme levels and incident dementia. OBJECTIVE To determine whether low levels of ALT and AST are associated with higher risk of incident dementia. METHODS Plasma ALT and AST were measured on 10,100 study participants (mean age 63.2 years, 55% female, 22% black) in 1996-1998. Dementia was ascertained from comprehensive neuropsychological assessments, annual contact, and medical record surveillance. Cox proportional hazards regression was used to estimate the association. RESULTS During a median follow-up of 18.3 years (maximum 21.9 years), 1,857 individuals developed dementia. Adjusted for demographic factors, incidence rates of dementia were higher at the lower levels of ALT and AST. Compared to the second quintile, ALT values <10th percentile were associated with a higher risk of dementia (hazard ratio [HR] 1.34, 95% CI 1.08-1.65). The corresponding HR was 1.22 (0.99-1.51) for AST. CONCLUSION Plasma aminotransferases <10th percentile of the physiologic range at mid-life, particularly ALT, were associated with greater long-term risk of dementia, advocating for attention to the putative role of hepatic function in the pathogenesis of dementia.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, US
| | - James R. Pike
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, US
| | - Elizabeth Selvin
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, US
| | - Thomas Mosley
- The MIND Center, University of Mississippi Medical Center, Jackson, MS, US
| | - Priya Palta
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, US
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - A. Richey Sharrett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, US
| | - Alvin Thomas
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, US
| | - Laura Loehr
- Division of General Medicine and Clinical Epidemiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, US
| | - A. Sidney Barritt
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, US
| | - Ron C. Hoogeveen
- Department of Medicine, Baylor College of Medicine, Houston, TX, US
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, US
| |
Collapse
|
213
|
Toljan K, Homolak J. Circadian changes in Alzheimer's disease: Neurobiology, clinical problems, and therapeutic opportunities. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:285-300. [PMID: 34225969 DOI: 10.1016/b978-0-12-819975-6.00018-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The understanding of Alzheimer's disease (AD) pathophysiology is an active area of research, and the traditional focus on hippocampus, amyloid and tau protein, and memory impairment has been expanded with components like neuroinflammation, insulin resistance, and circadian rhythm alterations. The bidirectional vicious cycle of neuroinflammation and neurodegeneration on a molecular level may cause functional deficits already long before the appearance of overt clinical symptoms. Located at the crossroads of metabolic, circadian, and hormonal signaling, the hypothalamus has been identified as another brain region affected by AD pathophysiology. Current findings on hypothalamic dysfunction open a broader horizon for studying AD pathogenesis and offer new opportunities for diagnosis and therapy. While treatments with cholinomimetics and memantine form a first line of pharmacological treatment, additional innovative research is pursued toward the development of antiinflammatory, growth factor, or antidiabetic types of medication. Following recent epidemiological data showing associations of AD incidence with modern societal and "life-style"-related risk factors, also nonpharmacological interventions, including sleep optimization, are being developed and some have been shown to be beneficial. Circadian aspects in AD are relevant from a pathophysiological standpoint, but they can also have an important role in pharmacologic and nonpharmacologic interventions, and appropriate timing of sleep, meals, and medication may boost therapeutic efficacy.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States.
| | - Jan Homolak
- Department of Pharmacology, and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
214
|
Carcamo-Orive I, Henrion MYR, Zhu K, Beckmann ND, Cundiff P, Moein S, Zhang Z, Alamprese M, D’Souza SL, Wabitsch M, Schadt EE, Quertermous T, Knowles JW, Chang R. Predictive network modeling in human induced pluripotent stem cells identifies key driver genes for insulin responsiveness. PLoS Comput Biol 2020; 16:e1008491. [PMID: 33362275 PMCID: PMC7790417 DOI: 10.1371/journal.pcbi.1008491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2021] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance (IR) precedes the development of type 2 diabetes (T2D) and increases cardiovascular disease risk. Although genome wide association studies (GWAS) have uncovered new loci associated with T2D, their contribution to explain the mechanisms leading to decreased insulin sensitivity has been very limited. Thus, new approaches are necessary to explore the genetic architecture of insulin resistance. To that end, we generated an iPSC library across the spectrum of insulin sensitivity in humans. RNA-seq based analysis of 310 induced pluripotent stem cell (iPSC) clones derived from 100 individuals allowed us to identify differentially expressed genes between insulin resistant and sensitive iPSC lines. Analysis of the co-expression architecture uncovered several insulin sensitivity-relevant gene sub-networks, and predictive network modeling identified a set of key driver genes that regulate these co-expression modules. Functional validation in human adipocytes and skeletal muscle cells (SKMCs) confirmed the relevance of the key driver candidate genes for insulin responsiveness. Insulin resistance is characterized by a defective response (“resistance”) to normal insulin concentrations to uptake the glucose present in the blood, and is the underlying condition that leads to type 2 diabetes (T2D) and increases the risk of cardiovascular disease. It is estimated that 25–33% of the US population are insulin resistant enough to be at risk of serious clinical consequences. For more than a decade, large population studies have tried to discover the genes that participate in the development of insulin resistance, but without much success. It is now increasingly clear that the complex genetic nature of insulin resistance requires novel approaches centered in patient specific cellular models. To fill this gap, we have generated an induced pluripotent stem cell (iPSC) library from individuals with accurate measurements of insulin sensitivity, and performed gene expression and key driver analyses. Our work demonstrates that iPSCs can be used as a revolutionary technology to model insulin resistance and to discover key genetic drivers. Moreover, they can develop our basic knowledge of the disease, and are ultimately expected to increase the therapeutic targets to treat insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Ivan Carcamo-Orive
- Stanford University School of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, and Diabetes Research Center, Stanford, California, United States of America
- * E-mail: (ICO); (JWK); (RC)
| | - Marc Y. R. Henrion
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Malawi—Liverpool—Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Kuixi Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
- The Center for Innovations in Brain Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Paige Cundiff
- Vertex Pharmaceuticals, Boston, Massachusetts, United States of America
| | - Sara Moein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
- The Center for Innovations in Brain Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Zenan Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Melissa Alamprese
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
- The Center for Innovations in Brain Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Sunita L. D’Souza
- Department of Cellular, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology, Ulm University, Ulm, Germany
| | - Eric E. Schadt
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Thomas Quertermous
- Stanford University School of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, and Diabetes Research Center, Stanford, California, United States of America
| | - Joshua W. Knowles
- Stanford University School of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, and Diabetes Research Center, Stanford, California, United States of America
- * E-mail: (ICO); (JWK); (RC)
| | - Rui Chang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
- The Center for Innovations in Brain Sciences, University of Arizona, Tucson, Arizona, United States of America
- INTelico Therapeutics LLC, Tucson, Arizona, United States of America
- * E-mail: (ICO); (JWK); (RC)
| |
Collapse
|
215
|
Manzine PR, Vatanabe IP, Peron R, Grigoli MM, Pedroso RV, Nascimento CMC, Cominetti MR. Blood-based Biomarkers of Alzheimer's Disease: The Long and Winding Road. Curr Pharm Des 2020; 26:1300-1315. [PMID: 31942855 DOI: 10.2174/1381612826666200114105515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Blood-based biomarkers can be very useful in formulating new diagnostic and treatment proposals in the field of dementia, especially in Alzheimer's disease (AD). However, due to the influence of several factors on the reproducibility and reliability of these markers, their clinical use is still very uncertain. Thus, up-to-date knowledge about the main blood biomarkers that are currently being studied is extremely important in order to discover clinically useful and applicable tools, which could also be used as novel pharmacological strategies for the AD treatment. METHODS A narrative review was performed based on the current candidates of blood-based biomarkers for AD to show the main results from different studies, focusing on their clinical applicability and association with AD pathogenesis. OBJECTIVE The aim of this paper was to carry out a literature review on the major blood-based biomarkers for AD, connecting them with the pathophysiology of the disease. RESULTS Recent advances in the search of blood-based AD biomarkers were summarized in this review. The biomarkers were classified according to the topics related to the main hallmarks of the disease such as inflammation, amyloid, and tau deposition, synaptic degeneration and oxidative stress. Moreover, molecules involved in the regulation of proteins related to these hallmarks were described, such as non-coding RNAs, neurotrophins, growth factors and metabolites. Cells or cellular components with the potential to be considered as blood-based AD biomarkers were described in a separate topic. CONCLUSION A series of limitations undermine new discoveries on blood-based AD biomarkers. The lack of reproducibility of findings due to the small size and heterogeneity of the study population, different analytical methods and other assay conditions make longitudinal studies necessary in this field to validate these structures, especially when considering a clinical evaluation that includes a broad panel of these potential and promising blood-based biomarkers.
Collapse
Affiliation(s)
- Patricia R Manzine
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Izabela P Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marina M Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Renata V Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Carla M C Nascimento
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| |
Collapse
|
216
|
Zhao Y, Chen H, Iqbal J, Liu X, Zhang H, Xiao S, Jin N, Yao F, Shen L. Targeted metabolomics study of early pathological features in hippocampus of triple transgenic Alzheimer's disease male mice. J Neurosci Res 2020; 99:927-946. [PMID: 33197957 DOI: 10.1002/jnr.24750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease in people of age 65 or above. The detailed etiology and pathogenesis of AD have not been elucidated yet. In this study, the hippocampi of 2- and 6-month-old triple transgenic Alzheimer's disease male mice and age-sex-matched wild-type (WT) mice were analyzed by using targeted metabolomics approach. Compared with WT mice, 24 and 60 metabolites were found with significant differences in 2- and 6-month-old AD mice. Among these, 14 metabolites were found common while 10 metabolites showed consistent variable trends in both groups. These differential metabolites are found associated with amino acid, lipid, vitamin, nucleotide-related base, neurotransmitter and energy metabolisms, and oxidative stress. The results suggest that these differential metabolites might play a critical role in AD pathophysiology, and may serve as potential biomarkers for AD. Moreover, the results highlight the involvement of abnormal purine, pyrimidine, arginine, and proline metabolism, along with glycerophospholipid metabolism in early pathology of AD. For the first time, several differential metabolites are found to be associated with AD in this study. Targeted metabolomics can be used for rapid and accurate quantitative analysis of specific target metabolites associated with AD.
Collapse
Affiliation(s)
- Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Haiquan Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Javed Iqbal
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China.,Shenzhen Bay Laboratory, Shenzhen, P.R. China
| | - Shifeng Xiao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Na Jin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China.,Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, P.R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
217
|
Cuomo P, Papaianni M, Sansone C, Iannelli A, Iannelli D, Medaglia C, Paris D, Motta A, Capparelli R. An In Vitro Model to Investigate the Role of Helicobacter pylori in Type 2 Diabetes, Obesity, Alzheimer's Disease and Cardiometabolic Disease. Int J Mol Sci 2020; 21:ijms21218369. [PMID: 33171588 PMCID: PMC7664682 DOI: 10.3390/ijms21218369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (Hp) is a Gram-negative bacterium colonizing the human stomach. Nuclear Magnetic Resonance (NMR) analysis of intracellular human gastric carcinoma cells (MKN-28) incubated with the Hp cell filtrate (Hpcf) displays high levels of amino acids, including the branched chain amino acids (BCAA) isoleucine, leucine, and valine. Polymerase chain reaction (PCR) Array Technology shows upregulation of mammalian Target Of Rapamycin Complex 1 (mTORC1), inflammation, and mitochondrial dysfunction. The review of literature indicates that these traits are common to type 2 diabetes, obesity, Alzheimer’s diseases, and cardiometabolic disease. Here, we demonstrate how Hp may modulate these traits. Hp induces high levels of amino acids, which, in turn, activate mTORC1, which is the complex regulating the metabolism of the host. A high level of BCAA and upregulation of mTORC1 are, thus, directly regulated by Hp. Furthermore, Hp modulates inflammation, which is functional to the persistence of chronic infection and the asymptomatic state of the host. Finally, in order to induce autophagy and sustain bacterial colonization of gastric mucosa, the Hp toxin VacA localizes within mitochondria, causing fragmentation of these organelles, depletion of ATP, and oxidative stress. In conclusion, our in vitro disease model replicates the main traits common to the above four diseases and shows how Hp may potentially manipulate them.
Collapse
Affiliation(s)
- Paola Cuomo
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
| | - Marina Papaianni
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Antonio Iannelli
- Department of Digestive Surgery, Université Côte d’Azur, Campus Valrose, Batiment L, Avenue de Valrose, 28-CEDEX 2, 06108 Nice, France;
- Inserm, U1065, Team 8 “Hepatic Complications of Obesity and Alcohol”, Route Saint Antoine de Ginestière 151, BP 2 3194, CEDEX 3, 06204 Nice, France
| | - Domenico Iannelli
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
- Correspondence: (D.I.); (R.C.)
| | - Chiara Medaglia
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, rue du Général-Dufour, 1211 Genève, Switzerland;
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, via Campi Flegrei, 34-Pozzuoli, 80078 Naples, Italy; (D.P.); (A.M.)
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, via Campi Flegrei, 34-Pozzuoli, 80078 Naples, Italy; (D.P.); (A.M.)
| | - Rosanna Capparelli
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
- Correspondence: (D.I.); (R.C.)
| |
Collapse
|
218
|
Proceedings from the Fourth International Symposium on σ-2 Receptors: Role in Health and Disease. eNeuro 2020; 7:ENEURO.0317-20.2020. [PMID: 33028631 PMCID: PMC7643771 DOI: 10.1523/eneuro.0317-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/04/2023] Open
Abstract
The σ-2 receptor (S2R) complex has been implicated in CNS disorders ranging from anxiety and depression to neurodegenerative disorders such as Alzheimer's disease (AD). The proteins comprising the S2R complex impact processes including autophagy, cholesterol synthesis, progesterone signaling, lipid membrane-bound protein trafficking, and receptor stabilization at the cell surface. While there has been much progress in understanding the role of S2R in cellular processes and its potential therapeutic value, a great deal remains unknown. The International Symposium on Sigma-2 Receptors is held in conjunction with the annual Society for Neuroscience (SfN) conference to promote collaboration and advance the field of S2R research. This review summarizes updates presented at the Fourth International Symposium on Sigma-2 Receptors: Role in Health and Disease, a Satellite Symposium held at the 2019 SfN conference. Interdisciplinary members of the S2R research community presented both previously published and preliminary results from ongoing studies of the role of S2R in cellular metabolism, the anatomic and cellular expression patterns of S2R, the relationship between S2R and amyloid β (Aβ) in AD, the role of S2R complex protein PGRMC1 in health and disease, and the efforts to design new S2R ligands for the purposes of research and drug development. The proceedings from this symposium are reported here as an update on the field of S2R research, as well as to highlight the value of the symposia that occur yearly in conjunction with the SfN conference.
Collapse
|
219
|
Dorninger F, Forss-Petter S, Wimmer I, Berger J. Plasmalogens, platelet-activating factor and beyond - Ether lipids in signaling and neurodegeneration. Neurobiol Dis 2020; 145:105061. [PMID: 32861763 PMCID: PMC7116601 DOI: 10.1016/j.nbd.2020.105061] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycerol-based ether lipids including ether phospholipids form a specialized branch of lipids that in mammals require peroxisomes for their biosynthesis. They are major components of biological membranes and one particular subgroup, the plasmalogens, is widely regarded as a cellular antioxidant. Their vast potential to influence signal transduction pathways is less well known. Here, we summarize the literature showing associations with essential signaling cascades for a wide variety of ether lipids, including platelet-activating factor, alkylglycerols, ether-linked lysophosphatidic acid and plasmalogen-derived polyunsaturated fatty acids. The available experimental evidence demonstrates links to several common players like protein kinase C, peroxisome proliferator-activated receptors or mitogen-activated protein kinases. Furthermore, ether lipid levels have repeatedly been connected to some of the most abundant neurological diseases, particularly Alzheimer's disease and more recently also neurodevelopmental disorders like autism. Thus, we critically discuss the potential role of these compounds in the etiology and pathophysiology of these diseases with an emphasis on signaling processes. Finally, we review the emerging interest in plasmalogens as treatment target in neurological diseases, assessing available data and highlighting future perspectives. Although many aspects of ether lipid involvement in cellular signaling identified in vitro still have to be confirmed in vivo, the compiled data show many intriguing properties and contributions of these lipids to health and disease that will trigger further research.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| |
Collapse
|
220
|
Rajula HSR, Manchia M, Carpiniello B, Fanos V. Big data in severe mental illness: the role of electronic monitoring tools and metabolomics. Per Med 2020; 18:75-90. [PMID: 33124507 DOI: 10.2217/pme-2020-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is an increasing interest in the development of effective early detection and intervention strategies in severe mental illness (SMI). Ideally, these efforts should lead to the delineation of accurate staging models of SMI enabling personalized interventions. It is plausible that big data approaches will be instrumental in describing the developmental trajectories of SMI by facilitating the incorporation of data from multiple sources, including those pertaining to the biological make-up of affected subjects. In this review, we first aimed to offer a perspective on how big data are helping the delineation of personalized approaches in SMI, and, second, to offer a quantitative synthesis of big data approaches in metabolomics of SMI. We finally described future directions of this research area.
Collapse
Affiliation(s)
- Hema Sekhar Reddy Rajula
- Department of Surgical Sciences, Neonatal Intensive Care Unit, Neonatal Pathology & Neonatal Section, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Department of Medical Science & Public Health, Section of Psychiatry, University of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H4R2, Canada.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Bernardo Carpiniello
- Department of Medical Science & Public Health, Section of Psychiatry, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, Neonatal Intensive Care Unit, Neonatal Pathology & Neonatal Section, University of Cagliari, Cagliari, Italy
| |
Collapse
|
221
|
Blank M, Hopf C. Spatially resolved mass spectrometry analysis of amyloid plaque-associated lipids. J Neurochem 2020; 159:330-342. [PMID: 33048341 DOI: 10.1111/jnc.15216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022]
Abstract
Over the last 10 years, considerable technical advances in mass spectrometry (MS)-based bioanalysis have enabled the investigation of lipid signatures in neuropathological structures. In Alzheimer´s Disease (AD) research, it is now well accepted that lipid dysregulation plays a key role in AD pathogenesis and progression. This review summarizes current MS-based strategies, notably MALDI and ToF-SIMS imaging as well as laser capture microdissection combined with LC-ESI-MS. It also presents recent advances to assess lipid alterations associated with Amyloid-β plaques, one of the hallmarks of AD. Collectively, these methodologies offer new opportunities for the study of lipids, thus pushing forward our understanding of their role in such a complex and still untreatable disease as AD.
Collapse
Affiliation(s)
- Martina Blank
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.,Center for Structural Molecular Biology (CEBIME/PROPESQ), Federal University of Santa Catarina, Florianópolis, Brazil
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
222
|
Vezzani B, Carinci M, Patergnani S, Pasquin MP, Guarino A, Aziz N, Pinton P, Simonato M, Giorgi C. The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules 2020; 10:E1437. [PMID: 33066071 PMCID: PMC7600410 DOI: 10.3390/biom10101437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, as well as in acute brain damage, such in ischemic stroke and epileptic seizures. In this review, we will describe the role of mitochondria molecular signaling in regulating neuroinflammation in central nervous system (CNS) diseases, by focusing on pattern recognition receptors (PRRs) signaling, reactive oxygen species (ROS) production, and mitophagy, giving a hint on the possible therapeutic approaches targeting mitochondrial pathways involved in inflammation.
Collapse
Affiliation(s)
- Bianca Vezzani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Marianna Carinci
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Matteo P. Pasquin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Annunziata Guarino
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Nimra Aziz
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy
| | - Michele Simonato
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
- School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| |
Collapse
|
223
|
Brain Branched-Chain Amino Acids in Maple Syrup Urine Disease: Implications for Neurological Disorders. Int J Mol Sci 2020; 21:ijms21207490. [PMID: 33050626 PMCID: PMC7590055 DOI: 10.3390/ijms21207490] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive disorder caused by decreased activity of the branched-chain α-ketoacid dehydrogenase complex (BCKDC), which catalyzes the irreversible catabolism of branched-chain amino acids (BCAAs). Current management of this BCAA dyshomeostasis consists of dietary restriction of BCAAs and liver transplantation, which aims to partially restore functional BCKDC activity in the periphery. These treatments improve the circulating levels of BCAAs and significantly increase survival rates in MSUD patients. However, significant cognitive and psychiatric morbidities remain. Specifically, patients are at a higher lifetime risk for cognitive impairments, mood and anxiety disorders (depression, anxiety, and panic disorder), and attention deficit disorder. Recent literature suggests that the neurological sequelae may be due to the brain-specific roles of BCAAs. This review will focus on the derangements of BCAAs observed in the brain of MSUD patients and will explore the potential mechanisms driving neurologic dysfunction. Finally, we will discuss recent evidence that implicates the relevance of BCAA metabolism in other neurological disorders. An understanding of the role of BCAAs in the central nervous system may facilitate future identification of novel therapeutic approaches in MSUD and a broad range of neurological disorders.
Collapse
|
224
|
Diniz Pereira J, Gomes Fraga V, Morais Santos AL, Carvalho MDG, Caramelli P, Braga Gomes K. Alzheimer's disease and type 2 diabetes mellitus: A systematic review of proteomic studies. J Neurochem 2020; 156:753-776. [PMID: 32909269 DOI: 10.1111/jnc.15166] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/15/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Similar to dementia, the risk for developing type 2 diabetes mellitus (T2DM) increases with age, and T2DM also increases the risk for dementia, particularly Alzheimer's disease (AD). Although T2DM is primarily a peripheral disorder and AD is a central nervous system disease, both share some common features as they are chronic and complex diseases, and both show involvement of oxidative stress and inflammation in their progression. These characteristics suggest that T2DM may be associated with AD, which gave rise to a new term, type 3 diabetes (T3DM). In this study, we searched for matching peripheral proteomic biomarkers of AD and T2DM based in a systematic review of the available literature. We identified 17 common biomarkers that were differentially expressed in both patients with AD or T2DM when compared with healthy controls. These biomarkers could provide a useful workflow for screening T2DM patients at risk to develop AD.
Collapse
Affiliation(s)
- Jessica Diniz Pereira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Gomes Fraga
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Luiza Morais Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Caramelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
225
|
Yuan X, Wang L, Tandon N, Sun H, Tian J, Du H, Pascual JM, Guo L. Triheptanoin Mitigates Brain ATP Depletion and Mitochondrial Dysfunction in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 78:425-437. [PMID: 33016909 PMCID: PMC8502101 DOI: 10.3233/jad-200594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Brain energy failure is an early pathological event associated with synaptic dysfunction in Alzheimer's disease (AD). Thus, mitigation or enhancement of brain energy metabolism may offer a therapeutic avenue. However, there is uncertainty as to what metabolic process(es) may be more appropriate to support or augment since metabolism is a multiform process such that each of the various metabolic precursors available is utilized via a specific metabolic pathway. In the brain, these pathways sustain not only a robust rate of energy production but also of carbon replenishment. OBJECTIVE Triheptanoin, an edible odd-chain fatty acid triglyceride, is uncommon in that it replenishes metabolites in the tricarboxylic acid cycle (TCA) cycle via anaplerosis in addition to fueling the cycle via oxidation, thus potentially leading to both carbon replenishment and enhanced mitochondrial ATP production. METHODS To test the hypothesis that triheptanoin is protective in AD, we supplied mice with severe brain amyloidosis (5×FAD mice) with dietary triheptanoin for four and a half months, followed by biological and biochemical experiments to examine mice metabolic as well as synaptic function. RESULTS Triheptanoin treatment had minimal impact on systemic metabolism and brain amyloidosis as well as tauopathy while attenuating brain ATP deficiency and mitochondrial dysfunction including respiration and redox balance in 5×FAD mice. Synaptic density, a disease hallmark, was also preserved in hippocampus and neocortex despite profound amyloid deposition. None of these effects took place in treated control mice. CONCLUSION These findings support the energy failure hypothesis of AD and justify investigating the mechanisms in greater depth with ultimate therapeutic intent.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Health Management Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Wang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Neha Tandon
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Huili Sun
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jing Tian
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA.,Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA
| | - Juan M Pascual
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA.,Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA
| |
Collapse
|
226
|
Xu J, Bankov G, Kim M, Wretlind A, Lord J, Green R, Hodges A, Hye A, Aarsland D, Velayudhan L, Dobson RJB, Proitsi P, Legido-Quigley C. Integrated lipidomics and proteomics network analysis highlights lipid and immunity pathways associated with Alzheimer's disease. Transl Neurodegener 2020; 9:36. [PMID: 32951606 PMCID: PMC7504646 DOI: 10.1186/s40035-020-00215-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND There is an urgent need to understand the pathways and processes underlying Alzheimer's disease (AD) for early diagnosis and development of effective treatments. This study was aimed to investigate Alzheimer's dementia using an unsupervised lipid, protein and gene multi-omics integrative approach. METHODS A lipidomics dataset comprising 185 AD patients, 40 mild cognitive impairment (MCI) individuals and 185 controls, and two proteomics datasets (295 AD, 159 MCI and 197 controls) were used for weighted gene co-expression network analyses (WGCNA). Correlations of modules created within each modality with clinical AD diagnosis, brain atrophy measures and disease progression, as well as their correlations with each other, were analyzed. Gene ontology enrichment analysis was employed to examine the biological processes and molecular and cellular functions of protein modules associated with AD phenotypes. Lipid species were annotated in the lipid modules associated with AD phenotypes. The associations between established AD risk loci and the lipid/protein modules that showed high correlation with AD phenotypes were also explored. RESULTS Five of the 20 identified lipid modules and five of the 17 identified protein modules were correlated with clinical AD diagnosis, brain atrophy measures and disease progression. The lipid modules comprising phospholipids, triglycerides, sphingolipids and cholesterol esters were correlated with AD risk loci involved in immune response and lipid metabolism. The five protein modules involved in positive regulation of cytokine production, neutrophil-mediated immunity, and humoral immune responses were correlated with AD risk loci involved in immune and complement systems and in lipid metabolism (the APOE ε4 genotype). CONCLUSIONS Modules of tightly regulated lipids and proteins, drivers in lipid homeostasis and innate immunity, are strongly associated with AD phenotypes.
Collapse
Affiliation(s)
- Jin Xu
- Institute of Pharmaceutical Science, King's College London, London, UK
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Giulia Bankov
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Min Kim
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | - Jodie Lord
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Green
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Angela Hodges
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Abdul Hye
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dag Aarsland
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Latha Velayudhan
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Richard J B Dobson
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Petroula Proitsi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Cristina Legido-Quigley
- Institute of Pharmaceutical Science, King's College London, London, UK.
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
227
|
Butterfield DA, Boyd-Kimball D. Mitochondrial Oxidative and Nitrosative Stress and Alzheimer Disease. Antioxidants (Basel) 2020; 9:E818. [PMID: 32887505 PMCID: PMC7554713 DOI: 10.3390/antiox9090818] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022] Open
Abstract
Oxidative and nitrosative stress are widely recognized as critical factors in the pathogenesis and progression of Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI). A major source of free radicals that lead to oxidative and nitrosative damage is mitochondria. This review paper discusses oxidative and nitrosative stress and markers thereof in the brain, along with redox proteomics, which are techniques that have been pioneered in the Butterfield laboratory. Selected biological alterations in-and oxidative and nitrosative modifications of-mitochondria in AD and MCI and systems of relevance thereof also are presented. The review article concludes with a section on the implications of mitochondrial oxidative and nitrosative stress in MCI and AD with respect to imaging studies in and targeted therapies toward these disorders. Taken together, this review provides support for the notion that brain mitochondrial alterations in AD and MCI are key components of oxidative and nitrosative stress observed in these two disorders, and as such, they provide potentially promising therapeutic targets to slow-and hopefully one day stop-the progression of AD, which is a devastating dementing disorder.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601, USA;
| |
Collapse
|
228
|
Wang X, Xu Y, Jia Q, Song X, Zhang L, Zhang W, Qian Y, Qiu J. Perturbations in glycerophospholipid levels of PC12 cells after exposure to PCB95 based on targeted lipidomics analysis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 235:108788. [PMID: 32376495 DOI: 10.1016/j.cbpc.2020.108788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a group of organic chlorine chemicals that can induce various adverse health effects in animals and humans. The toxicology of PCBs is a significant public health concern because of their long-term presence in the environment. Among the 209 PCB congeners, PCB95 has been reported to be neurotoxic, however, there has been limited researches on evaluating whether and how PCB95 affects cellular lipids, the most abundant components of the brain. In this study, PCB95 was found to inhibit cell proliferation at concentrations of 0.1 μM, 2 μM and 10 μM for 120 h. Additionally, there may be a shift in apoptosis to necrosis at 2 μM PCB95 exposure for 24 h. However, lipid peroxidation was found not dominant for PCB95 exposure, especially at the concentrations of 0.1 μM and 2 μM. Because of playing vital roles in cell metabolism, 20 glycerophospholipids in PC12 cells were investigated after exposure to PCB95 for 120 h. The distinctions in the orthogonal projection to latent structures-discriminant analysis (OPLS-DA) models indicated that different concentrations of PCB95 leaded to aberrant glycerophospholipid metabolism. Based on the principles of t-test P-value < 0.05, variable importance at projection (VIP) value >1 and fold change >1, PC (14:0/14:0) and PC (16:0/14:0) were screened as potential biomarkers from all the target glycerophospholipids. This study is the first time that identifies the effects of PCB95 on specific glycerophospholipids in PC12 cells, and the observed changes in glycerophospholipids provides the basis for further evaluation of PCB95-induced neurotoxicity mechanisms.
Collapse
Affiliation(s)
- Xinlu Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yanyang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiao Song
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lin Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
229
|
Wang J, Wei R, Xie G, Arnold M, Kueider-Paisley A, Louie G, Mahmoudian Dehkordi S, Blach C, Baillie R, Han X, De Jager PL, Bennett DA, Kaddurah-Daouk R, Jia W. Peripheral serum metabolomic profiles inform central cognitive impairment. Sci Rep 2020; 10:14059. [PMID: 32820198 PMCID: PMC7441317 DOI: 10.1038/s41598-020-70703-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
The incidence of Alzheimer's disease (AD) increases with age and is becoming a significant cause of worldwide morbidity and mortality. However, the metabolic perturbation behind the onset of AD remains unclear. In this study, we performed metabolite profiling in both brain (n = 109) and matching serum samples (n = 566) to identify differentially expressed metabolites and metabolic pathways associated with neuropathology and cognitive performance and to identify individuals at high risk of developing cognitive impairment. The abundances of 6 metabolites, glycolithocholate (GLCA), petroselinic acid, linoleic acid, myristic acid, palmitic acid, palmitoleic acid and the deoxycholate/cholate (DCA/CA) ratio, along with the dysregulation scores of 3 metabolic pathways, primary bile acid biosynthesis, fatty acid biosynthesis, and biosynthesis of unsaturated fatty acids showed significant differences across both brain and serum diagnostic groups (P-value < 0.05). Significant associations were observed between the levels of differential metabolites/pathways and cognitive performance, neurofibrillary tangles, and neuritic plaque burden. Metabolites abundances and personalized metabolic pathways scores were used to derive machine learning models, respectively, that could be used to differentiate cognitively impaired persons from those without cognitive impairment (median area under the receiver operating characteristic curve (AUC) = 0.772 for the metabolite level model; median AUC = 0.731 for the pathway level model). Utilizing these two models on the entire baseline control group, we identified those who experienced cognitive decline in the later years (AUC = 0.804, sensitivity = 0.722, specificity = 0.749 for the metabolite level model; AUC = 0.778, sensitivity = 0.633, specificity = 0.825 for the pathway level model) and demonstrated their pre-AD onset prediction potentials. Our study provides a proof-of-concept that it is possible to discriminate antecedent cognitive impairment in older adults before the onset of overt clinical symptoms using metabolomics. Our findings, if validated in future studies, could enable the earlier detection and intervention of cognitive impairment that may halt its progression.
Collapse
Affiliation(s)
- Jingye Wang
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Runmin Wei
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Guoxiang Xie
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Gregory Louie
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | | | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Columbia University College of Physicians and Surgeons Department of Neurology, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| | - Wei Jia
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| |
Collapse
|
230
|
Hajjar I, Liu C, Jones DP, Uppal K. Untargeted metabolomics reveal dysregulations in sugar, methionine, and tyrosine pathways in the prodromal state of AD. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12064. [PMID: 32793799 PMCID: PMC7418891 DOI: 10.1002/dad2.12064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Altered metabolism may occur years before clinical manifestations of Alzheimer's disease (AD). We used untargeted metabolomics on the cerebrospinal fluid of patients with mild cognitive impairment (MCI) to uncover metabolomic derangements. METHODS CSF from 92 normal controls and 93 MCI underwent untargeted metabolomics using high-resolution mass spectrometry with liquid chromatography. Partial least squares discriminant analysis was used followed by metabolite annotation and pathway enrichment analysis (PES). Significant features were correlated with disease phenotypes. RESULTS We identified 294 features differentially expressed between the two groups and 94 were annotated. PES showed that sugar regulation (N-glycan, P = .0007; sialic acid, P = .0014; aminosugars, P = .0042; galactose, P = .0054), methionine regulation (P = .0081), and tyrosine metabolism (P = .019) pathways were differentially activated and significant features within these pathways correlated with multiple disease phenotypes. CONCLUSION There is a metabolic signature characterized by impairments in sugars, methionine, and tyrosine regulation in MCI. Targeting these pathways may offer new therapeutic approaches to AD.
Collapse
Affiliation(s)
- Ihab Hajjar
- Medicine and NeurologyDepartment of NeurologyEmory UniversityAtlantaGeorgiaUSA
| | - Chang Liu
- Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Dean P. Jones
- Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Karan Uppal
- Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
231
|
Chatterjee P, Cheong Y, Bhatnagar A, Goozee K, Wu Y, McKay M, Martins IJ, Lim WLF, Pedrini S, Tegg M, Villemagne VL, Asih PR, Dave P, Shah TM, Dias CB, Fuller SJ, Hillebrandt H, Gupta S, Hone E, Taddei K, Zetterberg H, Blennow K, Sohrabi HR, Martins RN. Plasma metabolites associated with biomarker evidence of neurodegeneration in cognitively normal older adults. J Neurochem 2020; 159:389-402. [DOI: 10.1111/jnc.15128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Yeo‐Jin Cheong
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
| | - Atul Bhatnagar
- Department of Molecular Sciences Macquarie University North Ryde NSW Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- KaRa Institute of Neurological Disease Sydney NSW Australia
- Clinical Research Department Anglicare, Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia, Crawley WA Australia
| | - Yunqi Wu
- Department of Molecular Sciences Macquarie University North Ryde NSW Australia
| | - Matthew McKay
- Department of Molecular Sciences Macquarie University North Ryde NSW Australia
| | - Ian J. Martins
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Wei L. F. Lim
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Steve Pedrini
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Michelle Tegg
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Victor L. Villemagne
- The Florey Institute of Neuroscience and Mental Health University of Melbourne VA Australia
| | - Prita R. Asih
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Preeti Dave
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- Clinical Research Department Anglicare, Sydney NSW Australia
| | - Tejal M. Shah
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
- Australian Alzheimer’s Research Foundation Nedlands WA Australia
| | - Cintia B. Dias
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
| | - Stephanie J. Fuller
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
| | - Heidi Hillebrandt
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
| | - Sunil Gupta
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
| | - Eugene Hone
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Kevin Taddei
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
- Australian Alzheimer’s Research Foundation Nedlands WA Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Neurodegenerative Disease UCL Institute of NeurologyQueen Square London UK
- UK Dementia Research Institute at UCL London UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | - Hamid R. Sohrabi
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
- Australian Alzheimer’s Research Foundation Nedlands WA Australia
- Centre for Healthy Ageing School of Psychology and Exercise Science College of Science Health, Engineering and Education Murdoch University Murdoch WA Australia
| | - Ralph N. Martins
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
- KaRa Institute of Neurological Disease Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia, Crawley WA Australia
- Australian Alzheimer’s Research Foundation Nedlands WA Australia
| |
Collapse
|
232
|
Dumitrescu L, Mahoney ER, Mukherjee S, Lee ML, Bush WS, Engelman CD, Lu Q, Fardo DW, Trittschuh EH, Mez J, Kaczorowski C, Hernandez Saucedo H, Widaman KF, Buckley R, Properzi M, Mormino E, Yang HS, Harrison T, Hedden T, Nho K, Andrews SJ, Tommet D, Hadad N, Sanders RE, Ruderfer DM, Gifford KA, Moore AM, Cambronero F, Zhong X, Raghavan NS, Vardarajan B, Pericak-Vance MA, Farrer LA, Wang LS, Cruchaga C, Schellenberg G, Cox NJ, Haines JL, Keene CD, Saykin AJ, Larson EB, Sperling RA, Mayeux R, Bennett DA, Schneider JA, Crane PK, Jefferson AL, Hohman TJ. Genetic variants and functional pathways associated with resilience to Alzheimer's disease. Brain 2020; 143:2561-2575. [PMID: 32844198 PMCID: PMC7447518 DOI: 10.1093/brain/awaa209] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/22/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Approximately 30% of older adults exhibit the neuropathological features of Alzheimer's disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer's disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values < 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values < 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer's disease (P-values > 0.42) nor associated with APOE (P-values > 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer's disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets.
Collapse
Affiliation(s)
- Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Michael L Lee
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiongshi Lu
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Emily H Trittschuh
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- VA Puget Sound Health Care System, GRECC, Seattle, WA, USA
| | - Jesse Mez
- Deparment of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Hector Hernandez Saucedo
- UC Davis Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Alzheimer’s Research and Treatment, Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Michael Properzi
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Alzheimer’s Research and Treatment, Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Tessa Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Trey Hedden
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shea J Andrews
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Doug Tommet
- Department of Psychiatry and Human Behavior, Brown University School of Medicine, Providence, RI, USA
| | | | | | - Douglas M Ruderfer
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annah M Moore
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Francis Cambronero
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaoyuan Zhong
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Neha S Raghavan
- Department of Neurology, Columbia University, New York, NY, USA
- The Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and The New York Presbyterian Hospital, New York, NY, USA
| | - Badri Vardarajan
- Department of Neurology, Columbia University, New York, NY, USA
- The Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and The New York Presbyterian Hospital, New York, NY, USA
| | | | | | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, Miami, FL, USA
| | - Lindsay A Farrer
- Deparment of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Gerard Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University, New York, NY, USA
- The Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and The New York Presbyterian Hospital, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
233
|
Kling MA, Goodenowe DB, Senanayake V, MahmoudianDehkordi S, Arnold M, Massaro TJ, Baillie R, Han X, Leung YY, Saykin AJ, Nho K, Kueider-Paisley A, Tenenbaum JD, Wang LS, Shaw LM, Trojanowski JQ, Kaddurah-Daouk RF. Circulating ethanolamine plasmalogen indices in Alzheimer's disease: Relation to diagnosis, cognition, and CSF tau. Alzheimers Dement 2020; 16:1234-1247. [PMID: 32715599 DOI: 10.1002/alz.12110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Altered lipid metabolism is implicated in Alzheimer's disease (AD), but the mechanisms remain obscure. Aging-related declines in circulating plasmalogens containing omega-3 fatty acids may increase AD risk by reducing plasmalogen availability. METHODS We measured four ethanolamine plasmalogens (PlsEtns) and four closely related phosphatidylethanolamines (PtdEtns) from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 1547 serum) and University of Pennsylvania (UPenn; n = 112 plasma) cohorts, and derived indices reflecting PlsEtn and PtdEtn metabolism: PL-PX (PlsEtns), PL/PE (PlsEtn/PtdEtn ratios), and PBV (plasmalogen biosynthesis value; a composite index). We tested associations with baseline diagnosis, cognition, and cerebrospinal fluid (CSF) AD biomarkers. RESULTS Results revealed statistically significant negative relationships in ADNI between AD versus CN with PL-PX (P = 0.007) and PBV (P = 0.005), late mild cognitive impairment (LMCI) versus cognitively normal (CN) with PL-PX (P = 2.89 × 10-5 ) and PBV (P = 1.99 × 10-4 ), and AD versus LMCI with PL/PE (P = 1.85 × 10-4 ). In the UPenn cohort, AD versus CN diagnosis associated negatively with PL/PE (P = 0.0191) and PBV (P = 0.0296). In ADNI, cognition was negatively associated with plasmalogen indices, including Alzheimer's Disease Assessment Scale 13-item cognitive subscale (ADAS-Cog13; PL-PX: P = 3.24 × 10-6 ; PBV: P = 6.92 × 10-5 ) and Mini-Mental State Examination (MMSE; PL-PX: P = 1.28 × 10-9 ; PBV: P = 6.50 × 10-9 ). In the UPenn cohort, there was a trend toward a similar relationship of MMSE with PL/PE (P = 0.0949). In ADNI, CSF total-tau was negatively associated with PL-PX (P = 5.55 × 10-6 ) and PBV (P = 7.77 × 10-6 ). Additionally, CSF t-tau/Aβ1-42 ratio was negatively associated with these same indices (PL-PX, P = 2.73 × 10-6 ; PBV, P = 4.39 × 10-6 ). In the UPenn cohort, PL/PE was negatively associated with CSF total-tau (P = 0.031) and t-tau/Aβ1-42 (P = 0.021). CSF Aβ1-42 was not significantly associated with any of these indices in either cohort. DISCUSSION These data extend previous studies by showing an association of decreased plasmalogen indices with AD, mild cognitive impairment (MCI), cognition, and CSF tau. Future studies are needed to better define mechanistic relationships, and to test the effects of interventions designed to replete serum plasmalogens.
Collapse
Affiliation(s)
- Mitchel A Kling
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Behavioral Health Service, Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA.,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tyler J Massaro
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | | | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yuk-Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Jessica D Tenenbaum
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rima F Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA.,Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA.,Department of Medicine, Duke University, Durham, North Carolina, USA
| | -
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
234
|
Luchsinger JA, Zetterberg H. Tracking the potential involvement of metabolic disease in Alzheimer's disease-Biomarkers and beyond. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:51-77. [PMID: 32739014 DOI: 10.1016/bs.irn.2020.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is a vast literature linking systemic metabolic conditions to dementia due to Alzheimer's disease (AD). Advances in in vivo measurements of AD neuropathology using brain imaging, cerebrospinal fluid (CSF), and/or blood biomarkers have led to research in AD that uses in vivo biomarkers as outcomes, focusing primarily on amyloid, tau, and neurodegeneration as constructs. Studies of Type 2 Diabetes Mellitus (T2DM) and AD biomarkers seem to show that T2DM is not related to amyloid deposition, but is related to neurodegeneration and tau deposition. There is a dearth of studies examining adiposity, insulin resistance, and metabolic syndrome in relation to AD biomarkers and the associations in these studies are inconsistent. Metabolomics studies have reported associations of unsaturated fatty acids with AD neuropathology at autopsy, and sphingolipids and glycerophospholipids in relation to neurodegeneration and amyloid and tau. There are other neurodegenerative diseases, such as Lewy body disease that may overlap with AD, and specific biomarkers for these pathologies are being developed and should be integrated into AD biomarker research. More longitudinal studies are needed with concurrent assessment of metabolic factors and AD biomarkers in order to improve the opportunity to assess causality. Ideally, AD biomarkers should be integrated into clinical trials of interventions that affect metabolic factors. Advances in blood-based AD biomarkers, which are less costly and invasive compared with CSF and brain imaging biomarkers, could facilitate widespread implementation of AD biomarkers in studies examining the metabolic contribution to AD.
Collapse
Affiliation(s)
- José A Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, United States.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
235
|
Mini Nutritional Assessment May Identify a Dual Pattern of Perturbed Plasma Amino Acids in Patients with Alzheimer's Disease: A Window to Metabolic and Physical Rehabilitation? Nutrients 2020; 12:nu12061845. [PMID: 32575805 PMCID: PMC7353235 DOI: 10.3390/nu12061845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Conflicting results about alterations of plasma amino acid (AA) levels are reported in subjects with Alzheimer’s disease (AD). The current study aimed to provide more homogeneous AA profiles and correlations between AAs and cognitive tests. Venous plasma AAs were measured in 54 fasting patients with AD (37 males, 17 females; 74.63 ± 8.03 yrs; 3.2 ± 1.9 yrs from symptom onset). Seventeen matched subjects without neurodegenerative symptoms (NNDS) served as a control group (C-NNDS). Patients were tested for short-term verbal memory and attention capacity and stratified for nutritional state (Mini Nutritional Assessment, MNA). Compared to C-NNDS, patients exhibited lower plasma levels of aspartic acid and taurine (p < 0.0001) and higher 3-methylhistidine (p < 0.0001), which were independent of patients’ MNA. In comparison to normonourished AD, the patients at risk of and with malnutrition showed a tendency towards lower ratios of Essential AAs/Total AAs, Branched-chain AAs/Total AAs, and Branched-chain AAs/Essential AAs. Serine and histidine were positively correlated with verbal memory and attention capacity deficits, respectively. Total AAs negatively correlated with attention capacity deficits. Stratifying patients with AD for MNA may identify a dual pattern of altered AAs, one due to AD per se and the other linked to nutritional state. Significant correlations were observed between several AAs and cognitive tests.
Collapse
|
236
|
Yi M, Zhang C, Zhang Z, Yi P, Xu P, Huang J, Peng W. Integrated Metabolomic and Lipidomic Analysis Reveals the Neuroprotective Mechanisms of Bushen Tiansui Formula in an A β1-42-Induced Rat Model of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5243453. [PMID: 32655770 PMCID: PMC7322593 DOI: 10.1155/2020/5243453] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022]
Abstract
Bushen Tiansui Formula (BSTSF) is a traditional Chinese medicine prescription. It has been widely applied to treat Alzheimer's disease (AD) in the clinic; however, the mechanisms underlying its effects remain largely unknown. In this study, we used a rat AD model to study the effects of BSTSF on cognitive performance, and UPLC-MS/MS-based metabolomic and lipidomic analysis was further performed to identify significantly altered metabolites in the cerebral cortices of AD rats and determine the effects of BSTSF on the metabolomic and lipidomic profiles in the cerebral cortices of these animals. The results revealed that the levels of 47 metabolites and 30 lipids primarily associated with sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism were significantly changed in the cerebral cortices of AD rats. Among the altered lipids, ceramides, phosphatidylethanolamines, lysophosphatidylethanolamines, phosphatidylcholines, lysophosphatidylcholines, phosphatidylserines, sphingomyelins, and phosphatidylglycerols showed robust changes. Moreover, 34 differential endogenous metabolites and 21 lipids, of which the levels were mostly improved in the BSTSF treatment group, were identified as potential therapeutic targets of BSTSF against AD. Our results suggest that lipid metabolism is highly dysregulated in the cerebral cortices of AD rats, and BSTSF may exert its neuroprotective mechanisms by restoring metabolic balance, including that of sphingolipid metabolism, glycerophospholipid metabolism, alanine, aspartate, and glutamate metabolism, and D-glutamine and D-glutamate metabolism. Our data may lead to a deeper understanding of the AD-associated metabolic profile and shed new light on the mechanism underlying the therapeutic effects of BSTSF.
Collapse
Affiliation(s)
- Min Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chunhu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Pengji Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Panpan Xu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
237
|
Bonomo R, Cavaletti G, Skene DJ. Metabolomics markers in Neurology: current knowledge and future perspectives for therapeutic targeting. Expert Rev Neurother 2020; 20:725-738. [PMID: 32538242 DOI: 10.1080/14737175.2020.1782746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Metabolomics is an emerging approach providing new insights into the metabolic changes and underlying mechanisms involved in the pathogenesis of neurological disorders. AREAS COVERED Here, the authors present an overview of the current knowledge of metabolic profiling (metabolomics) to provide critical insight on the role of biochemical markers and metabolic alterations in neurological diseases. EXPERT OPINION Elucidation of characteristic metabolic alterations in neurological disorders is crucial for a better understanding of their pathogenesis, and for identifying potential biomarkers and drug targets. Nevertheless, discrepancies in diagnostic criteria, sample handling protocols, and analytical methods still affect the generalizability of current study results.
Collapse
Affiliation(s)
- Roberta Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy.,Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| |
Collapse
|
238
|
Park SJ, Lee J, Lee S, Lim S, Noh J, Cho SY, Ha J, Kim H, Kim C, Park S, Lee DY, Kim E. Exposure of ultrafine particulate matter causes glutathione redox imbalance in the hippocampus: A neurometabolic susceptibility to Alzheimer's pathology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137267. [PMID: 32088476 DOI: 10.1016/j.scitotenv.2020.137267] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Particulate matter (PM) exposure is related to an increased risk of sporadic Alzheimer's disease (AD), the pathogenesis of which is explained by chronic neurometabolic disturbance. Therefore, PM-induced alterations in neurometabolism might herald AD. We aimed to identify brain region-specific changes in metabolic pathways associated with ultrafine particle (UFP) exposure and to determine whether such metabolic alterations are linked to susceptibility to AD. We constructed UFP exposure chambers and generated UFP by the pyrolysis method, which produces no toxic oxidized by-products of combustion, such as NOx and CO. Twenty male C57BL6 mice (11-12 months old) were exposed either to UFP or room air in the chambers for 3 weeks. One week following completion of UFP exposure, regional brain tissues, including the olfactory bulb, cortex, hippocampus, and cerebellum, were obtained and analyzed by metabolomics based on GC-MS and LC-MS, western blot analysis, and immunohistochemistry. Our results demonstrated that the metabolomic phenotype was distinct within the 4 different anatomical regions following UFP exposure. The highest level of metabolic change was identified in the hippocampus, a vulnerable region involved in AD pathogenesis. In this region, one of the key changes was perturbed redox homeostasis via alterations in the methionine-glutathione pathway. UFP exposure also induced oxidative stress and neuroinflammation, and importantly, increased Alzheimer's beta-amyloid levels in the hippocampus. These results suggest that inhaled UFP-induced perturbation in hippocampal redox homeostasis has a role in the pathogenesis of AD. Therefore, chronic exposure to UFP should be regarded as a cumulative environmental risk factor for sporadic AD.
Collapse
Affiliation(s)
- Soo Jin Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jimin Lee
- Department of Psychiatry, Institute of Behavioral Science in Medicine, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seunghoon Lee
- Department of Mechanical Engineering, Dankook University, Gyeonggi-do, Yongin, Republic of Korea
| | - Sangchul Lim
- Department of Mechanical Engineering, Dankook University, Gyeonggi-do, Yongin, Republic of Korea
| | - Juhwan Noh
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
| | - So Yeon Cho
- Department of Psychiatry, Institute of Behavioral Science in Medicine, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junghee Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
| | - Sunho Park
- Department of Mechanical Engineering, Dankook University, Gyeonggi-do, Yongin, Republic of Korea.
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
239
|
Bernath MM, Bhattacharyya S, Nho K, Barupal DK, Fiehn O, Baillie R, Risacher SL, Arnold M, Jacobson T, Trojanowski JQ, Shaw LM, Weiner MW, Doraiswamy PM, Kaddurah-Daouk R, Saykin AJ. Serum triglycerides in Alzheimer disease: Relation to neuroimaging and CSF biomarkers. Neurology 2020; 94:e2088-e2098. [PMID: 32358220 DOI: 10.1212/wnl.0000000000009436] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/19/2019] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To investigate the association of triglyceride (TG) principal component scores with Alzheimer disease (AD) and the amyloid, tau, neurodegeneration, and cerebrovascular disease (A/T/N/V) biomarkers for AD. METHODS Serum levels of 84 TG species were measured with untargeted lipid profiling of 689 participants from the Alzheimer's Disease Neuroimaging Initiative cohort, including 190 cognitively normal older adults (CN), 339 with mild cognitive impairment (MCI), and 160 with AD. Principal component analysis with factor rotation was used for dimension reduction of TG species. Differences in principal components between diagnostic groups and associations between principal components and AD biomarkers (including CSF, MRI and [18F]fluorodeoxyglucose-PET) were assessed with a generalized linear model approach. In both cases, the Bonferroni method of adjustment was used to correct for multiple comparisons. RESULTS The 84 TGs yielded 9 principal components, 2 of which, consisting of long-chain, polyunsaturated fatty acid-containing TGs (PUTGs), were significantly associated with MCI and AD. Lower levels of PUTGs were observed in MCI and AD compared to CN. PUTG principal component scores were also significantly associated with hippocampal volume and entorhinal cortical thickness. In participants carrying the APOE ε4 allele, these principal components were significantly associated with CSF β-amyloid1-42 values and entorhinal cortical thickness. CONCLUSION This study shows that PUTG component scores were significantly associated with diagnostic group and AD biomarkers, a finding that was more pronounced in APOE ε4 carriers. Replication in independent larger studies and longitudinal follow-up are warranted.
Collapse
Affiliation(s)
- Megan M Bernath
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Sudeepa Bhattacharyya
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Kwangsik Nho
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Dinesh Kumar Barupal
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Oliver Fiehn
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Rebecca Baillie
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Shannon L Risacher
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Matthias Arnold
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Tanner Jacobson
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - John Q Trojanowski
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Leslie M Shaw
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Michael W Weiner
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - P Murali Doraiswamy
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Rima Kaddurah-Daouk
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC
| | - Andrew J Saykin
- From the Department of Radiology and Imaging Sciences (M.M.B., K.N., S.L.R., T.J., A.J.S.), Center for Neuroimaging, Indiana Alzheimer Disease Center (M.M.B., K.N., S.L.R., T.J., A.J.S.), Medical and Molecular Genetics Department (M.M.B., T.J., A.J.S.), and Medical Scientist Training Program (M.M.B.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (S.B.), University of Arkansas for Medical Sciences, Little Rock; Department of Environmental Medicine and Public Health (D.K.B.), Icahn School of Medicine at Mt Sinai, New York; NIH-West Coast Metabolomics Center (D.K.B., O.F.), University of California, Davis; Rosa & Co LLC (R.B.), San Carlos, CA; Institute of Bioinformatics and Systems Biology (M.A.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Pathology & Laboratory Medicine (J.Q.T., L.M.S.), University of Pennsylvania, Philadelphia; Department of Radiology (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center/University of California San Francisco; and Department of Psychiatry and Behavioral Sciences (M.A., P.M.D., R.K.-D.), Duke Institute of Brain Sciences (R.K.-D.), and Department of Medicine (R.K.-D.), Duke University, Durham, NC.
| | | |
Collapse
|
240
|
Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, Higginbotham LA, Guajardo A, White B, Troncoso JC, Thambisetty M, Montine TJ, Lee EB, Trojanowski JQ, Beach TG, Reiman EM, Haroutunian V, Wang M, Schadt E, Zhang B, Dickson DW, Ertekin-Taner N, Golde TE, Petyuk VA, De Jager PL, Bennett DA, Wingo TS, Rangaraju S, Hajjar I, Shulman JM, Lah JJ, Levey AI, Seyfried NT. Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 2020; 26:769-780. [PMID: 32284590 PMCID: PMC7405761 DOI: 10.1038/s41591-020-0815-6] [Citation(s) in RCA: 504] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Our understanding of Alzheimer's disease (AD) pathophysiology remains incomplete. Here we used quantitative mass spectrometry and coexpression network analysis to conduct the largest proteomic study thus far on AD. A protein network module linked to sugar metabolism emerged as one of the modules most significantly associated with AD pathology and cognitive impairment. This module was enriched in AD genetic risk factors and in microglia and astrocyte protein markers associated with an anti-inflammatory state, suggesting that the biological functions it represents serve a protective role in AD. Proteins from this module were elevated in cerebrospinal fluid in early stages of the disease. In this study of >2,000 brains and nearly 400 cerebrospinal fluid samples by quantitative proteomics, we identify proteins and biological processes in AD brains that may serve as therapeutic targets and fluid biomarkers for the disease.
Collapse
Affiliation(s)
- Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingyan Ping
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Maotian Zhou
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas G Beach
- Department of Pathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Arizona State University and University of Arizona, Phoenix, AZ, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- JJ Peters VA Medical Center MIRECC, Bronx, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Taub Institute, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ihab Hajjar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshua M Shulman
- Departments of Neurology, Neuroscience and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
241
|
Miller-Atkins G, Acevedo-Moreno LA, Grove D, Dweik RA, Tonelli AR, Brown JM, Allende DS, Aucejo F, Rotroff DM. Breath Metabolomics Provides an Accurate and Noninvasive Approach for Screening Cirrhosis, Primary, and Secondary Liver Tumors. Hepatol Commun 2020; 4:1041-1055. [PMID: 32626836 PMCID: PMC7327218 DOI: 10.1002/hep4.1499] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/30/2019] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and secondary liver tumors, such as colorectal cancer liver metastases are significant contributors to the overall burden of cancer‐related morality. Current biomarkers, such as alpha‐fetoprotein (AFP) for HCC, result in too many false negatives, necessitating noninvasive approaches with improved sensitivity. Volatile organic compounds (VOCs) detected in the breath of patients can provide valuable insight into disease processes and can differentiate patients by disease status. Here, we investigate whether 22 VOCs from the breath of 296 patients can distinguish those with no liver disease (n = 54), cirrhosis (n = 30), HCC (n = 112), pulmonary hypertension (n = 49), or colorectal cancer liver metastases (n = 51). This work extends previous studies by evaluating the ability for VOC signatures to differentiate multiple diseases in a large cohort of patients. Pairwise disease comparisons demonstrated that most of the VOCs tested are present in significantly different relative abundances (false discovery rate P < 0.1), indicating broad impacts on the breath metabolome across diseases. A predictive model developed using random forest machine learning and cross validation classified patients with 85% classification accuracy and 75% balanced accuracy. Importantly, the model detected HCC with 73% sensitivity compared with 53% for AFP in the same cohort. An added value of this approach is that influential VOCs in the predictive model may provide insight into disease etiology. Acetaldehyde and acetone, both of which have roles in tumor promotion, were considered important VOCs for differentiating disease groups in the predictive model and were increased in patients with cirrhosis and HCC compared to patients with no liver disease (false discovery rate P < 0.1). Conclusion: The use of machine learning and breath VOCs shows promise as an approach to develop improved, noninvasive screening tools for chronic liver disease and primary and secondary liver tumors.
Collapse
Affiliation(s)
- Galen Miller-Atkins
- Department of Quantitative Health Sciences Lerner Research Institute Cleveland Clinic Cleveland OH
| | | | - David Grove
- Department of Inflammation and Immunity Lerner Research Institute Cleveland Clinic Cleveland OH
| | - Raed A Dweik
- Respiratory Institute Cleveland Clinic Cleveland OH
| | | | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences Cleveland Clinic Cleveland OH.,Center for Microbiome in Human Health Cleveland Clinic Cleveland OH
| | | | | | - Daniel M Rotroff
- Department of Quantitative Health Sciences Lerner Research Institute Cleveland Clinic Cleveland OH
| |
Collapse
|
242
|
Xuan Q, Zheng F, Yu D, Ouyang Y, Zhao X, Hu C, Xu G. Rapid lipidomic profiling based on ultra-high performance liquid chromatography–mass spectrometry and its application in diabetic retinopathy. Anal Bioanal Chem 2020; 412:3585-3594. [DOI: 10.1007/s00216-020-02632-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
|
243
|
Teng L, Li Y, Zhao Y, Hu T, Zhang Z, Yao Z, Hu B. Predicting MCI progression with FDG-PET and cognitive scores: a longitudinal study. BMC Neurol 2020; 20:148. [PMID: 32316912 PMCID: PMC7171825 DOI: 10.1186/s12883-020-01728-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/14/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is an intermediate stage between normal aging and dementia. Studies on MCI progression are important for Alzheimer's disease (AD) prevention. 18F fluoro-deoxy-glucose positron emission tomography (FDG-PET) has been proven to be a powerful tool for measuring cerebral glucose metabolism. In this study, we proposed a classification framework for MCI prediction with both baseline and multiple follow-up FDG-PET scans as well as cognitive scores of 33 progressive MCI (pMCI) patients and 46 stable MCI (sMCI) patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI). METHOD First, PET images were normalized using the Yakushev normalization procedure and registered to the Brainnetome Atlas (BNA). The average metabolic intensities of brain regions were defined as static features. Dynamic features were the intensity variation between baseline and the other three time points and change ratios with the intensity obtained at baseline considered as reference. Mini-mental State Examination (MMSE) scores and Alzheimer's disease Assessment Scale-Cognitive section (ADAS-cog) scores of each time point were collected as cognitive features. And F-score was applied for feature selection. Finally, support vector machine (SVM) with radial basis function (RBF) kernel was used for the three above features. RESULTS Dynamic features showed the best classification performance in accuracy of 88.61% than static features (accuracy of 78.48%). And the combination of cognitive features and dynamic features improved the classification performance in specificity of 95.65% and Area Under Curve (AUC) of 0.9308. CONCLUSION Our results reported that dynamic features are more representative in longitudinal research for MCI prediction work. And dynamic features and cognitive scores complementarily enhance the classification performance in specificity and AUC. These findings may predict the disease course and clinical changes in individuals with mild cognitive impairment.
Collapse
Affiliation(s)
- Lirong Teng
- Department of Obstetrics and Gynecology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032 P.R. China
| | - Yongchao Li
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, 730000 P.R. China
| | - Yu Zhao
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, 730000 P.R. China
| | - Tao Hu
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, 730000 P.R. China
| | - Zhe Zhang
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, 730000 P.R. China
| | - Zhijun Yao
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, 730000 P.R. China
| | - Bin Hu
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, 730000 P.R. China
| | - Alzheimer’ s Disease Neuroimaging Initiative (ADNI)
- Department of Obstetrics and Gynecology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032 P.R. China
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, 730000 P.R. China
| |
Collapse
|
244
|
Cui M, Jiang Y, Zhao Q, Zhu Z, Liang X, Zhang K, Wu W, Dong Q, An Y, Tang H, Ding D, Chen X. Metabolomics and incident dementia in older Chinese adults: The Shanghai Aging Study. Alzheimers Dement 2020; 16:779-788. [PMID: 32270572 DOI: 10.1002/alz.12074] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Metabolomics provide a promising tool to understand the pathogenesis and to identify novel biomarkers of dementia. This study aimed to determine circulating metabolites associated with incident dementia in a Chinese cohort, and whether a selected metabolite panel could predict dementia. METHODS Thirty-eight metabolites in baseline serum were profiled by nuclear magnetic resonance in 1440 dementia-free participants followed 5 years in the Shanghai Aging Study. RESULTS Higher serum levels of glutamine and O-acetyl-glycoproteins were associated with increased risk of dementia, whereas glutamate, tyrosine, acetate, glycine, and phenylalanine were negatively related to incident dementia. A panel of five metabolites selected by least absolute shrinkage and selection operator within cross-validation regression analysis could predict incident dementia with an area under the receiver-operating characteristic curve of 0.72. DISCUSSION We identified seven candidate serum metabolic biomarkers for dementia. These findings and the underlying biological mechanisms need to be further replicated and elucidated in future studies.
Collapse
Affiliation(s)
- Mei Cui
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Zhu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Kexun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Wanqing Wu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanpeng An
- Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Huiru Tang
- Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| |
Collapse
|
245
|
Mapstone M, Gross TJ, Macciardi F, Cheema AK, Petersen M, Head E, Handen BL, Klunk WE, Christian BT, Silverman W, Lott IT, Schupf N. Metabolic correlates of prevalent mild cognitive impairment and Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12028. [PMID: 32258359 PMCID: PMC7131985 DOI: 10.1002/dad2.12028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Disruption of metabolic function is a recognized feature of late onset Alzheimer's disease (LOAD). We sought to determine whether similar metabolic pathways are implicated in adults with Down syndrome (DS) who have increased risk for Alzheimer's disease (AD). METHODS We examined peripheral blood from 292 participants with DS who completed baseline assessments in the Alzheimer's Biomarkers Consortium-Down Syndrome (ABC-DS) using untargeted mass spectrometry (MS). Our sample included 38 individuals who met consensus criteria for AD (DS-AD), 43 who met criteria for mild cognitive impairment (DS-MCI), and 211 who were cognitively unaffected and stable (CS). RESULTS We measured relative abundance of 8,805 features using MS and 180 putative metabolites were differentially expressed (DE) among the groups at false discovery rate-corrected q< 0.05. From the DE features, a nine-feature classifier model classified the CS and DS-AD groups with receiver operating characteristic area under the curve (ROC AUC) of 0.86 and a two-feature model classified the DS-MCI and DS-AD groups with ROC AUC of 0.88. Metabolite set enrichment analysis across the three groups suggested alterations in fatty acid and carbohydrate metabolism. DISCUSSION Our results reveal metabolic alterations in DS-AD that are similar to those seen in LOAD. The pattern of results in this cross-sectional DS cohort suggests a dynamic time course of metabolic dysregulation which evolves with clinical progression from non-demented, to MCI, to AD. Metabolomic markers may be useful for staging progression of DS-AD.
Collapse
Affiliation(s)
- Mark Mapstone
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Thomas J Gross
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Fabio Macciardi
- Department of Psychiatry and Human BehaviorUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Amrita K Cheema
- Departments of Biochemistry and Molecular & Cellular BiologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Melissa Petersen
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Benjamin L Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William E Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bradley T Christian
- Departments of Medical Physics and PsychiatryWaisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Wayne Silverman
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Ira T Lott
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Nicole Schupf
- Taub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyColumbia University and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of EpidemiologyJoseph P. Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | | |
Collapse
|
246
|
Adams KJ, Pratt B, Bose N, Dubois LG, St John-Williams L, Perrott KM, Ky K, Kapahi P, Sharma V, MacCoss MJ, Moseley MA, Colton CA, MacLean BX, Schilling B, Thompson JW. Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics. J Proteome Res 2020; 19:1447-1458. [PMID: 31984744 DOI: 10.1021/acs.jproteome.9b00640] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vendor-independent software tools for quantification of small molecules and metabolites are lacking, especially for targeted analysis workflows. Skyline is a freely available, open-source software tool for targeted quantitative mass spectrometry method development and data processing with a 10 year history supporting six major instrument vendors. Designed initially for proteomics analysis, we describe the expansion of Skyline to data for small molecule analysis, including selected reaction monitoring, high-resolution mass spectrometry, and calibrated quantification. This fundamental expansion of Skyline from a peptide-sequence-centric tool to a molecule-centric tool makes it agnostic to the source of the molecule while retaining Skyline features critical for workflows in both peptide and more general biomolecular research. The data visualization and interrogation features already available in Skyline, such as peak picking, chromatographic alignment, and transition selection, have been adapted to support small molecule data, including metabolomics. Herein, we explain the conceptual workflow for small molecule analysis using Skyline, demonstrate Skyline performance benchmarked against a comparable instrument vendor software tool, and present additional real-world applications. Further, we include step-by-step instructions on using Skyline for small molecule quantitative method development and data analysis on data acquired with a variety of mass spectrometers from multiple instrument vendors.
Collapse
Affiliation(s)
- Kendra J Adams
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina 27701, United States.,Department of Neurology, Duke University, Durham, North Carolina 27710, United States
| | - Brian Pratt
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Neelanjan Bose
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Laura G Dubois
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina 27701, United States
| | - Lisa St John-Williams
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina 27701, United States
| | - Kevin M Perrott
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Karina Ky
- University of California San Francisco, San Francisco, California 94143, United States
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Vagisha Sharma
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - M Arthur Moseley
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina 27701, United States
| | - Carol A Colton
- Department of Neurology, Duke University, Durham, North Carolina 27710, United States
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - J Will Thompson
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina 27701, United States.,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | | |
Collapse
|
247
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
248
|
Vignoli A, Paciotti S, Tenori L, Eusebi P, Biscetti L, Chiasserini D, Scheltens P, Turano P, Teunissen C, Luchinat C, Parnetti L. Fingerprinting Alzheimer's Disease by 1H Nuclear Magnetic Resonance Spectroscopy of Cerebrospinal Fluid. J Proteome Res 2020; 19:1696-1705. [PMID: 32118444 DOI: 10.1021/acs.jproteome.9b00850] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we sought for a cerebrospinal fluid (CSF) metabolomic fingerprint in Alzheimer's disease (AD) patients characterized, according to the clinical picture and CSF AD core biomarkers (Aβ42, p-tau, and t-tau), both at pre-dementia (mild cognitive impairment due to AD, MCI-AD) and dementia stages (ADdem) and in a group of patients with a normal CSF biomarker profile (non-AD) using untargeted 1H nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. This is a retrospective study based on two independent cohorts: a Dutch cohort, which comprises 20 ADdem, 20 MCI-AD, and 20 non-AD patients, and an Italian cohort, constituted by 14 ADdem and 12 non-AD patients. 1H NMR CSF spectra were analyzed using OPLS-DA. Metabolomic fingerprinting in the Dutch cohort provides a significant discrimination (86.1% accuracy) between ADdem and non-AD. MCI-AD patients show a good discrimination with respect to ADdem (70.0% accuracy) but only slight differences when compared with non-AD (59.6% accuracy). Acetate, valine, and 3-hydroxyisovalerate result to be altered in ADdem patients. Valine correlates with cognitive decline at follow-up (R = 0.53, P = 0.0011). The discrimination between ADdem and non-AD was confirmed in the Italian cohort. The CSF metabolomic fingerprinting shows a signature characteristic of ADdem patients with respect to MCI-AD and non-AD patients.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino 50019, Italy
| | - Silvia Paciotti
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia 06123, Italy.,Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia 06123, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino 50019, Italy
| | - Paolo Eusebi
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia 06123, Italy
| | - Leonardo Biscetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia 06123, Italy
| | - Davide Chiasserini
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia 06123, Italy
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
| | - Charlotte Teunissen
- Department of Clinical Chemistry, Neurochemistry Lab and Biobank, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino 50019, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia 06123, Italy
| |
Collapse
|
249
|
Nambo-Venegas R, Valdez-Vargas C, Cisneros B, Palacios-González B, Vela-Amieva M, Ibarra-González I, Cerecedo-Zapata CM, Martínez-Cruz E, Cortés H, Reyes-Grajeda JP, Magaña JJ. Altered Plasma Acylcarnitines and Amino Acids Profile in Spinocerebellar Ataxia Type 7. Biomolecules 2020; 10:biom10030390. [PMID: 32138195 PMCID: PMC7175318 DOI: 10.3390/biom10030390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, is caused by an abnormal CAG repeat expansion in the ATXN7 gene coding region. The onset and severity of SCA7 are highly variable between patients, thus identification of sensitive biomarkers that accurately diagnose the disease and monitoring its progression are needed. With the aim of identified SCA7-specific metabolites with clinical relevance, we report for the first time, to the best of our knowledge, a metabolomics profiling of circulating acylcarnitines and amino acids in SCA7 patients. We identified 21 metabolites with altered levels in SCA7 patients and determined two different sets of metabolites with diagnostic power. The first signature of metabolites (Valine, Leucine, and Tyrosine) has the ability to discriminate between SCA7 patients and healthy controls, while the second one (Methionine, 3-hydroxytetradecanoyl-carnitine, and 3-hydroxyoctadecanoyl-carnitine) possess the capability to differentiate between early-onset and adult-onset patients, as shown by the multivariate model and ROC analyses. Furthermore, enrichment analyses of metabolic pathways suggest alterations in mitochondrial function, energy metabolism, and fatty acid beta-oxidation in SCA7 patients. In summary, circulating SCA7-specific metabolites identified in this study could serve as effective predictors of SCA7 progression in the clinics, as they are sampled in accessible biofluid and assessed by a relatively simple biochemical assay.
Collapse
Affiliation(s)
- Rafael Nambo-Venegas
- Laboratory of Chronic Diseases Biochemistry, National Genomics Medicine Institute (INMEGEN), Mexico City 14610, Mexico;
| | - Claudia Valdez-Vargas
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City 14389, Mexico; (C.V.-V.); (H.C.)
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | | | - Marcela Vela-Amieva
- Laboratory of Inborn errors of metabolism, National Pediatrics Institute (INP), Mexico City 04530, Mexico;
| | | | - César M. Cerecedo-Zapata
- Rehabilitation and Special Education Center of Veracruz (CRISVER-DIF), Xalapa 91097, Veracruz, Mexico; (C.M.C.-Z.)
| | - Emilio Martínez-Cruz
- Rehabilitation and Special Education Center of Veracruz (CRISVER-DIF), Xalapa 91097, Veracruz, Mexico; (C.M.C.-Z.)
| | - Hernán Cortés
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City 14389, Mexico; (C.V.-V.); (H.C.)
| | - Juan P. Reyes-Grajeda
- Laboratory of Chronic Diseases Biochemistry, National Genomics Medicine Institute (INMEGEN), Mexico City 14610, Mexico;
- Correspondence: (J.P.R.-G.); or (J.J.M.); Tel.: +52-55-5350-1900 (ext. 1192) (J.P.R.-G.); +52-55- 5999-1000 (ext. 14708) (J.J.M.)
| | - Jonathan J. Magaña
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City 14389, Mexico; (C.V.-V.); (H.C.)
- Correspondence: (J.P.R.-G.); or (J.J.M.); Tel.: +52-55-5350-1900 (ext. 1192) (J.P.R.-G.); +52-55- 5999-1000 (ext. 14708) (J.J.M.)
| |
Collapse
|
250
|
Sex and APOE ε4 genotype modify the Alzheimer's disease serum metabolome. Nat Commun 2020; 11:1148. [PMID: 32123170 PMCID: PMC7052223 DOI: 10.1038/s41467-020-14959-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Late-onset Alzheimer’s disease (AD) can, in part, be considered a metabolic disease. Besides age, female sex and APOE ε4 genotype represent strong risk factors for AD that also give rise to large metabolic differences. We systematically investigated group-specific metabolic alterations by conducting stratified association analyses of 139 serum metabolites in 1,517 individuals from the AD Neuroimaging Initiative with AD biomarkers. We observed substantial sex differences in effects of 15 metabolites with partially overlapping differences for APOE ε4 status groups. Several group-specific metabolic alterations were not observed in unstratified analyses using sex and APOE ε4 as covariates. Combined stratification revealed further subgroup-specific metabolic effects limited to APOE ε4+ females. The observed metabolic alterations suggest that females experience greater impairment of mitochondrial energy production than males. Dissecting metabolic heterogeneity in AD pathogenesis can therefore enable grading the biomedical relevance for specific pathways within specific subgroups, guiding the way to personalized medicine. Sex and the APOE ε4 genotype are important risk factors for late-onset Alzheimer’s disease. In the current study, the authors investigate how sex and APOE ε4 genotype modify the association between Alzheimer’s disease biomarkers and metabolites in serum.
Collapse
|