201
|
Trace analysis of artificial sweeteners in environmental waters, wastewater and river sediments by liquid chromatography–tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
202
|
Luo H, Cheng Y, Zeng Y, Luo K, Pan X. Enhanced decomposition of H 2O 2 by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139335. [PMID: 32438168 DOI: 10.1016/j.scitotenv.2020.139335] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Accelerating the rate-limiting step of Fe3+/Fe2+ conversion is a major challenge for H2O2 decomposition in conventional Fenton process. In this study, the catalytic mechanism of H2O2 by molybdenum disulfide (MoS2) nanoparticles and Fe3+ ions was revealed and the abatement of organic micropollutants was investigated. The presence of both MoS2 and Fe3+ can efficiently decompose H2O2. Reaction system of H2O2/MoS2/Fe3+ is found to remove most of the tested pollutants by over 80% (except 65.9% for carbamazepine) within 60 min at pH of 3.0. Effective pH range of this reaction system can be extended to pH of 5.0. Adding MoS2 to Fe3+/H2O2 system promotes the Fe3+/Fe2+ cycle and improves the reaction rate between Fe3+ and H2O2. The formation of Mo6+ ions and Mo6+ peroxo-complexes is beneficial to H2O2 decomposition and pollutant degradation. Electron paramagnetic resonance (EPR) measurements and quenching experiments confirm the important role of hydroxyl radicals in H2O2/MoS2/Fe3+ system. Chloride ions (Cl-) promote degradation, while bicarbonate ions (HCO3-) inhibit degradation. As H2O2 concentration increases from nil to 1.0 mM, the value of total EE/O decreases from 0.083 to 0.003 kWh L-1, and the most energy efficient condition is determined. This study provides a new pathway for efficient decomposition of H2O2 by Fe3+ ions in an extended pH range, which is considered a facile and promising strategy for wastewater treatment.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kai Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
203
|
Li Z, Li M, Zhang Z, Li P, Zang Y, Liu X. Antibiotics in aquatic environments of China: A review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110668. [PMID: 32438219 DOI: 10.1016/j.ecoenv.2020.110668] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/24/2020] [Accepted: 04/19/2020] [Indexed: 05/22/2023]
Abstract
Antibiotics have adverse effects on human health and aquatic ecosystems in water environment, which is the main pool. In this study, antibiotics in the aquatic environment of China, containing both surface water and groundwater, were first systematically reviewed. That is essential for surface water and groundwater guideline and industry management. 128 articles were reviewed, containing 116 papers on surface water and 12 papers on groundwater. 94 antibiotics were detected at least once in the aquatic environment of China and most of the studies were in the eastern areas of China. The median concentrations of most antibiotics were below than 100 ng/L in the surface water and 10 ng/L in the groundwater. The concentrations of most antibiotics in China were similar or a little higher than in other countries. According to risk assessment, three antibiotics (enrofloxacin, ofloxacin and erythromycin) and three regions (Haihe River, Wangyang River and Taihu Lake) should be given more concerns. Strengthened policy and management are needed in these regions. In the future, more studies on groundwater and a priority list of antibiotics in the aquatic environment was needed.
Collapse
Affiliation(s)
- Zhen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Peng Li
- Beijing Institute of Hydrogeology and Engineering Geology, Beijing, 100195, China
| | - Yongge Zang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
204
|
Li S, Wen J, He B, Wang J, Hu X, Liu J. Occurrence of caffeine in the freshwater environment: Implications for ecopharmacovigilance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114371. [PMID: 32217417 DOI: 10.1016/j.envpol.2020.114371] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
Owing to the substantial consumption of caffeinated food, beverages, and medicines worldwide, caffeine is considered the most representative pharmaceutically active compound (PhAC) pollutant based on its high abundance in the environment and its suitability as an indicator of the anthropogenic inputs of PhACs in water bodies. This review presents a worldwide analysis of 132 reports of caffeine residues in freshwater environments. The results indicated that more than 70% of the studies reported were from Asia and Europe, which have densely populated and industrially developed areas. However, caffeine pollution was also found to affect areas isolated from human influence, such as Antarctica. In addition, the maximum concentrations of caffeine in raw wastewater, treated wastewater, river, drinking water, groundwater, lake, catchment, reservoir, and rainwater samples were reported to be 3.60 mg/L, 55.5, 19.3, 3.39, 0.683, 174, 44.6, 4.87, and 5.40 μg/L, respectively. The seasonal variation in caffeine residues in the freshwater environment has been demonstrated. In addition, despite the fact that there was a small proportion of wastewater treatment plants in which the elimination rates of caffeine were below 60%, wastewater treatment is generally believed to have a high caffeine removal efficiency. From a pharmacy perspective, we proposed to adopt effective measures to minimize the environmental risks posed by PhACs, represented by caffeine, through a new concept known as ecopharmacovigilance (EPV). Some measures of EPV aimed at caffeine pollution have been advised, as follows: improving knowledge and perceptions about caffeine pollution among the public; listing caffeine as a high-priority PhAC pollutant, which should be targeted in EPV practices; promoting green design and production, rational consumption, and environmentally preferred disposal of caffeinated medicines, foods, and beverages; implementing intensive EPV measures in high-risk areas and during high-risk seasons; and integrating EPV into wastewater treatment programs.
Collapse
Affiliation(s)
- Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jing Wen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan, 430070, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
205
|
High-Silica Zeolites as Sorbent Media for Adsorption and Pre-Concentration of Pharmaceuticals in Aqueous Solutions. Molecules 2020; 25:molecules25153331. [PMID: 32708013 PMCID: PMC7436148 DOI: 10.3390/molecules25153331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/12/2023] Open
Abstract
The present work focused on the use of high-silica commercial zeolites as sorbent media for pharmaceuticals in an aqueous matrix. As drug probes, ketoprofen, hydrochlorothiazide, and atenolol were selected, because of their occurrence in surface waters and effluents from wastewater treatment plants. Pharmaceuticals adsorption was evaluated for two Faujasite topology zeolites with Silica/Alumina Ratio 30 and 200. The selected zeolites were demonstrated to be efficient sorbents towards all investigated pharmaceuticals, thanks to their high saturation capacities (from 12 to 32% w/w) and binding constants. These results were corroborated by thermal and structural analyses, which revealed that adsorption occurred inside zeolite’s porosities, causing lattice modifications. Finally, zeolites have been tested as a pre-concentration media in the dispersive-solid phase extraction procedure. Recoveries higher than 95% were gained for ketoprofen and hydrochlorothiazide and approximately 85% for atenolol, at conditions that promoted the dissolution of the neutral solute into a phase mainly organic. The results were obtained by using a short contact time (5 min) and reduced volume of extraction (500 µL), without halogenated solvents. These appealing features make the proposed procedure a cost and time saving method for sample enrichment as well as for the regeneration of exhausted sorbent, rather than the more energetically expensive thermal treatment.
Collapse
|
206
|
Joshua DI, Praveenkumarreddy Y, Prabhasankar VP, D'Souza AP, Yamashita N, Balakrishna K. First report of pharmaceuticals and personal care products in two tropical rivers of southwestern India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:529. [PMID: 32681316 PMCID: PMC7367900 DOI: 10.1007/s10661-020-08480-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/06/2020] [Indexed: 05/18/2023]
Abstract
The occurrence of selected pharmaceuticals (trimethoprim, sulfamethoxazole, chloramphenicol, bezafibrate, ceftriaxone, and naproxen) in two west-flowing tropical rivers (Swarna and Nethravati) of southwestern India is reported for the first time. Water samples were collected during the monsoon and post-monsoon seasons from river water end members and further downstream up to their confluence with the adjacent Arabian Sea. Samples were analyzed using HPLC-MS/MS. Results revealed that there were no significant seasonal variations in concentrations of target analytes in both the rivers. Of the total number of samples analyzed (n = 24), trimethoprim was detected in 100% of the samples, whereas sulfamethoxazole (SMX), chloramphenicol (CAP), ceftriaxone (CTX), and naproxen (NPX) were detected in between 91 and 58% of the samples. Bezafibrate (BZF) was not detected in the samples. Nethravathi river showed higher concentrations of pharmaceuticals than the Swarna river which may be attributed to comparatively larger human population in the basin. Possible impacts of PPCPs on aquatic life offer further scope for study.
Collapse
Affiliation(s)
- Derrick Ian Joshua
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Yerabham Praveenkumarreddy
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | - Andrea Petula D'Souza
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
- Department of Geography and Environmental Management, Faculty of Environment, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Keshava Balakrishna
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
207
|
Cao SS, Duan YP, Tu YJ, Tang Y, Liu J, Zhi WD, Dai C. Pharmaceuticals and personal care products in a drinking water resource of Yangtze River Delta Ecology and Greenery Integration Development Demonstration Zone in China: Occurrence and human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137624. [PMID: 32171137 DOI: 10.1016/j.scitotenv.2020.137624] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The occurrence, partition, and human health risk of thirteen pharmaceuticals and personal care products (PPCPs) have been investigated in surface water, overlying water, pore water and sediment samples from Dianshan Lake of Yangtze River Delta Ecology and Greenery Integration Development Demonstration Zone in China. PPCPs were ubiquitous in aqueous phase and sediments from Dianshan Lake. Sulfamethazine (SMZ) was dominated in surface water and overlying water, while ketoprofen (KPF) was rich in sediment. The total concentration of PPCPs ranged from 0.38-85.27 ng/L, 24.26-130.03 ng/L and 5.39-149.84 μg/kg in surface water, overlying water and sediment, respectively, which were in middle levels compared with these reported in other aquatic environment in China. Naproxen (NPX), sulfadimethoxine (SDM), sulfamethoxazole (SMX) and sulfamethazine (SMZ) in surface water showed a relatively higher level in lake side than those in lake center suggesting that a mixed containment source of human- and animal-derived from the areas around lake. The significant season variations of most PPCPs were mainly attributed to their usage, water temperature and dilution effect. The partition behaviors of PPCPs in sediment-overlying water and sediment-pore water system were mainly affected by their logKow values, and showed weak correlation with total organic carbon (TOC) content in sediment and molecular weights of PPCPs. Preliminary results indicated that PPCPs in Dianshan Lake have not posed a high risk to human health by exposure to drinking water for all age groups. Nevertheless, their potential to cause the mixture toxicity and resistance genes cannot be neglected. This work will contribute to the clear picture of PPCPs contamination in drinking water source in the Demonstration Zone, and provide reliable and simple-to-use information to regulators on the exposure and risk levels of PPCPs, as well as recommendations for future research.
Collapse
Affiliation(s)
- Shuang-Shuang Cao
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yan-Ping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Yao-Jen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yu Tang
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Jin Liu
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Wei-Di Zhi
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
208
|
Akhbarizadeh R, Dobaradaran S, Schmidt TC, Nabipour I, Spitz J. Worldwide bottled water occurrence of emerging contaminants: A review of the recent scientific literature. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122271. [PMID: 32311916 DOI: 10.1016/j.jhazmat.2020.122271] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
Contaminants of emerging concern (CECs) have recently been detected in bottled water and have brought about discussions on possible risks for human health. However, a systematic review of CECs in bottled water is currently lacking due to the relatively new introduction and/or detection of these pollutants. Hence, this paper reviews the existing studies on the presence of six major groups of emerging contaminants including microplastics (MPs), pharmaceuticals and personal care products (PPCPs), bisphenol A (BPA), phthalates, alkylphenols (APs), and perfluoroalkyl and polyfluoroalkyl substances (PFASs) in bottled water from different countries. Also, the findings related to CECs' levels, their possible sources, and their risks are summarized. The gathered data indicate that MPs within the size range of 1-5 μm are the most predominant and potentially toxic classes of MPs in bottled water. In addition, PPCPs, PFASs, APs, and BPA occur in concentration levels of ng/L, while phthalates occur in the μg/L level in bottled water. The bottle type plays an important role in the contamination level. As expected, water in plastic bottles with plastic caps is more polluted than in glass bottles. However, other sources of contamination such as contact materials during cleaning, bottling, and storage are not negligible. Based on the gathered data in this review, the CEC levels except for MPs (no threshold values) in bottled water of most countries do not raise a safety concern for the human. However, the occurrence of individual CECs and their association in bottled water need more accurate data to understand their own/synergistic effects on human health.
Collapse
Affiliation(s)
- Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jörg Spitz
- Akademie für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| |
Collapse
|
209
|
Su C, Cui Y, Liu D, Zhang H, Baninla Y. Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: Which chemicals are the prioritized ones? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137652. [PMID: 32146411 DOI: 10.1016/j.scitotenv.2020.137652] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Endocrine disrupting compounds (EDCs), pharmaceuticals and personal care products (PPCPs) have been of great concern as emerging contaminants of aquatic environment. Therefore, there is an urgent need to identify top contaminants so as to allocate better management measures. A list of 77 pharmaceuticals, 20 personal care products (PCPs) and 36 EDCs that were frequently detected in Chinese surface waters was examined in this study. The reported chemicals were concentrated in the highly populated and industrialized areas of China (e.g. the Bohai region, Yangtze River Delta and Pearl River Delta). The concentrations of EDCs and PPCPs were closely related to human domestic sewage and industrial wastewater discharge, and they were generally higher than or at least comparable to most of global rivers. Based on the proximity between the medians of reported exposure concentrations and effect concentrations, the risk ranking results showed that EDCs, e.g. estrone (E1), estriol (E3), 17α-ethynylestradiol (EE2), and PCPs, e.g. triclocarban (TCC), triclosan (TCS), were deemed to represent higher risks to aquatic organisms across China, as well as the Northern rivers (including the Bohai region), Yangtze River Basin, and Pearl River Basin. Pharmaceuticals posed relatively lower risks to organisms owing to their higher effect concentrations. By comparison, the Northern rivers were hotspots where many chemicals were identified as posing greater risks than the Yangtze River Basin and Pearl River Basin. Fish was the most sensitive taxa to 17β-estradiol (βE2) and EE2, which was almost 100,000 times higher risk than algae and worms. Atrazine (ATZ) and galaxolide (HHCB), posed comparably higher risks to algae and worms. The results of this work provide a sound guidance for future monitoring and management of chemicals in China.
Collapse
Affiliation(s)
- Chao Su
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| | - Yan Cui
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Di Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Hong Zhang
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Yvette Baninla
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
210
|
Tak S, Tiwari A, Vellanki BP. Identification of emerging contaminants and their transformation products in a moving bed biofilm reactor (MBBR)-based drinking water treatment plant around River Yamuna in India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:365. [PMID: 32409992 DOI: 10.1007/s10661-020-08303-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The prevalence of emerging contaminants of concern in water regimes is very common these days. High anthropogenic intervention is leading to occurrence of various types of microcontaminants of concern in drinking water systems. Their removal using conventional form of treatment systems employed in water treatment plants is not widely researched upon. Their fate in the conventional as well as advanced water treatment system needs to be focused upon for efficient and safe water disposal. Some compounds may leave the system unchanged or some might transform into much more toxic byproduct. Moreover, understanding level of occurrence of these emerging contaminants in source water bodies is also quintessential for assessing their fate in treatment plant itself as well as in the final treated water. Here in this study, the occurrence and removal of various classes of emerging contaminants were investigated in a moving bed biofilm reactor (MBBR)-based advanced drinking water treatment plant (ADWTP) alongside one conventional drinking water treatment plant, both of which use River Yamuna as the source of water. Non-target analysis utilizing high-performance liquid chromatography combined with time of flight (HPLC-QToF) identified more than 300 compounds. Pharmaceuticals accounted for a major fraction (58%) of the identified compounds, followed by plasticizers and insecticides. Nine parent compound and their transformation products were additionally identified using solid-phase extraction followed by analysis using gas chromatography mass spectrometry and HPLC-QToF. The degradation pathway of the parent compounds in MBBR-based ADWTP was also analyzed in depth. The efficiency of each unit process of MBBR-based drinking water treatment plant was studied in terms of removal of few emerging contaminants. Pharmaceutical compound like diclofenac supposedly was persistent, even, toward the end of the treatment train. Semi-quantitative analysis revealed ineffective removal of pyridine, hydrochlorothiazide, and diethyl phthalate in the outlet of ADWTP. ADWTP was able to remove a few emerging contaminants, but a few were recalcitrant. Likewise, it was established that although some parent compounds were degraded, much more toxic transformation products were formed and were prevalent at the end of the treatment.
Collapse
Affiliation(s)
- Surbhi Tak
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | - Aman Tiwari
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Bhanu Prakash Vellanki
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| |
Collapse
|
211
|
Zhang L, Du S, Zhang X, Lyu G, Dong D, Hua X, Zhang W, Guo Z. Occurrence, distribution, and ecological risk of pharmaceuticals in a seasonally ice-sealed river: From ice formation to melting. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122083. [PMID: 31972523 DOI: 10.1016/j.jhazmat.2020.122083] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 05/13/2023]
Abstract
Occurrence, distribution, and ecological risk of 21 pharmaceuticals in the Jilin Songhua River were investigated during its freeze-thaw periods, including ice formation, sealed, and breakup. Florfenicol was the most abundant pharmaceutical, with mean concentrations of 123.4 ± 61.1 ng L-1 in water and 73.8 ± 66.3 ng kg-1 in ice. Sulfadiazine occurred at a higher mean concentration in downstream areas (45.6 ± 7.4 ng L-1) than in upstream areas (0.7 ± 0.7 ng L-1). Most pharmaceuticals appeared in relatively high concentrations in water during the ice-breakup period. Complex factors including pharmaceutical usage patterns, ice-regulated photodegradation, biodegradation, water flow, and freeze-concentration effects, as well as the release of pharmaceuticals from ice, were responsible for the temporal variation of pharmaceuticals. Pseudo-ice/water distribution coefficients showed the distribution of pharmaceuticals in ice and demonstrated the effects of their release from the ice on their temporal variations. Most pharmaceuticals posed a risk to algae; of these, amoxicillin exhibited the highest risk. In addition, thawing increased the concentration of thiamphenicol in water, which elevated its ecological risk level. The findings suggest that the pharmaceuticals retained in ice should be considered with regard to regulating pharmaceuticals' temporal variations in seasonal ice-covered rivers during the freeze-thaw process.
Collapse
Affiliation(s)
- Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Siying Du
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Xun Zhang
- Changchun Customs District P.R. China, Changchun, 130062, China
| | - Guangze Lyu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| |
Collapse
|
212
|
Sackaria M, Elango L. Organic micropollutants in groundwater of India-A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:504-523. [PMID: 31545539 DOI: 10.1002/wer.1243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 05/22/2023]
Abstract
Groundwater pollution due to organic micropollutants is a major cause of concern, especially in parts of the world where available water resources are on the decline. India is the largest user of groundwater where the presence of micropollutants in the subsurface environment has been the focus of many researchers. The objective of this study was to provide a detailed review of studies on micropollutants in Indian groundwater and to provide strategies for further work. It is found that the presence of pharmaceuticals, endocrine disrupting compounds, surfactants, phthalates, per- and poly-fluoroalkyl substances, personal care products, artificial sweeteners, and pesticides in groundwater from different parts of India is reported. Pesticides and phthalate concentrations reported exceed the standard guideline values. This review points out the regions where the groundwater is prone to contamination due to micropollutants. An assessment of temporal variation in the concentration of micropollutants in groundwater has been done only by a few researchers. This study highlighted the need for more research on the possible presence of micropollutants in groundwater, especially in the major polluted rivers in cities where more pharmaceuticals, pesticides, and plastic industries are located. PRACTITIONER POINTS: Organic micropollutants were not new contaminants into the environment but the one entered even decades ago which has threatening effect. The number of studies on organic micropollutants in groundwater is lesser than surface water or wastewater. Scarcity on the studies of micropollutants was a result of definite technical lack in its analysis and complexity in sample preparation. Most of the studies done were related to contamination sites and point sources.
Collapse
|
213
|
Li M, Cheng Y, Ding T, Wang H, Wang W, Li J, Ye Q. Phytotransformation and Metabolic Pathways of 14C-Carbamazepine in Carrot and Celery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3362-3371. [PMID: 32105463 DOI: 10.1021/acs.jafc.9b05693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbamazepine (CBZ) is an anticonvulsant pharmaceutical compound of environmental concern due to its persistence, bioactive toxicity, and teratogenic effects. Studies on the kinetics and metabolic pathways of CBZ in plant tissues are still limited. In the present study, the phytotransformation of 14C-CBZ was explored. The 14C detected in bound residues was lower than in extractable residues (>85% of the uptaken 14C radioactivity) in plant tissues. CBZ underwent appreciable transformation in plants. A large portion of accumulated 14C radioactivity (80.3 ± 6.4%) in the cells was distributed in the cell water-soluble fraction. A total of nine radioactive transformation products of CBZ were identified, three of which were generated in vivo due to the contraction of the heterocycle ring. The proposed metabolic pathways revealed that conjugation with glutathione or phenylacetic acid was the major transformation pathway of CBZ in plants, with the contribution of epoxidation, hydroxylation, methoxylation, methylation, amination, and sulfonation.
Collapse
Affiliation(s)
- Ming Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Songliao Aquatic Environment Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yanan Cheng
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
214
|
Qin LT, Pang XR, Zeng HH, Liang YP, Mo LY, Wang DQ, Dai JF. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134552. [PMID: 31787280 DOI: 10.1016/j.scitotenv.2019.134552] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Sulfonamide antibiotics are contaminants of emerging concern (CEC). These CECs raise considerable alarm because they are commonly present in water environments. Studies on the environmental existence of CECs in karst areas of Guilin (Southern China) have yet to be reported. Thus, this study aims to investigate the presence, temporal and spatial distributions of sulfonamides in surface water and groundwater of four major aquatic environments (i.e., aquafarm water, ditch water, wetland water, and groundwater) in the Huixian karst wetland system of Guilin. Furthermore, this study aims to determine the ecological and human health risks of individual sulfonamides and their mixtures. Ten sulfonamides (i.e., sulfadiazine, sulfapyridine, sulfamerazine, trimethoprim, sulfamethazine, sulfamethoxypyridazine, sulfachloropyridazine, sulfamethoxazole, sulfadimethoxine, and sulfaquinoxaline) were observed in the study area. The highest average concentrations of aquafarm water, ditch water, wetland water, and groundwater were those of sulfadiazine (48.24 μg/L), sulfamethoxypyridazine (1281.50 μg/L), sulfamethoxazole (51.14 μg/L), and sulfamethazine (20.06 μg/L), respectively. The potential ecological risks of the detected compounds were much higher in ditch water than in aquafarm water, wetland water, and groundwater. The most ecological risks were observed for sulfachloropyridazine with a risk quotient (RQ) reaching 335.5 to green algae and 152 to Daphnia magna in ditch water. Similarly, sulfachloropyridazine posed the highest ecological risks to green algae among the ten sulfonamides in aquafarm water (RQ = 3.39), wetland water (RQ = 2.98), and groundwater (RQ = 3.6). Human health risk for age groups<12 months was observed from sulfonamide in drinking groundwater. Ecological and human health risks caused by sulfonamide mixtures were larger than the individual risks. Overall, ecological and human health risks caused by sulfonamides were observed in the study area.
Collapse
Affiliation(s)
- Li-Tang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Xin-Rui Pang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hong-Hu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yan-Peng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Ling-Yun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Dun-Qiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Jun-Feng Dai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
215
|
Zhai T, Wang J, Fang Y, Qin Y, Huang L, Chen Y. Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135153. [PMID: 31810665 DOI: 10.1016/j.scitotenv.2019.135153] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Rapid urbanization and industrialization in the coastal zone have caused increasingly serious impacts on coastal ecosystems. It is necessary to assess the ecological risk caused by human activities to determine key areas of terrestrial-oceanic ecosystems preservation and restoration to ensure sustainable ecological management in the coastal zone. Key areas of ecosystem preservation and restoration were studied through the assessment of the impacts of ecological pressure sources related to human activities from the perspective of terrestrial-oceanic ecosystems, using the habitat risk assessment (HRA) and habitat quality (HQ) models in the Chinese coastal zone. The results showed that the impact of human activities on the terrestrial ecosystems in the South of China was significantly lower than that in the North. An improvement rate of habitat quality was noticed only in the south and central coastal areas when further away from industrial land. Agricultural production, urban expansion, and industrial pollution had major negative impacts on the habitat quality of terrestrial ecosystems in the Chinese coastal zone, and also threatened the health of marine ecosystems. The ecological risks caused by human activities in the offshore areas of northern Shandong and eastern Jiangsu were relatively low. Mineral development in the north, excessive nitrogen and phosphorus emissions from agricultural production in the south, and port operations were important drivers of increased ecological risks in offshore areas. There were regional spatial differences in the key ecosystem preservation and restoration areas. The provinces of Shandong, Jiangsu, Hebei, Liaoning, and Guangdong are key areas for strengthening the preservation and restoration of terrestrial-oceanic ecosystems. This study provides a reference for large-scale territorial spatial planning and ecosystems conservation.
Collapse
Affiliation(s)
- Tianlin Zhai
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Jing Wang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.
| | - Ying Fang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Yun Qin
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Longyang Huang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Ye Chen
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| |
Collapse
|
216
|
Liu N, Jin X, Feng C, Wang Z, Wu F, Johnson AC, Xiao H, Hollert H, Giesy JP. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system. ENVIRONMENT INTERNATIONAL 2020; 136:105454. [PMID: 32032889 DOI: 10.1016/j.envint.2019.105454] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 05/17/2023]
Abstract
Interest in the risks posed by trace concentrations of pharmaceuticals and personal care products (PPCPs) in surface waters is increasing, particularly with regard to potential effects of long-term, low-dose exposures of aquatic organisms. In most cases, the actual studies on PPCPs were risk assessments at screening-level, and accurate estimates were scarce. In this study, exposure and ecotoxicity data of 50 PPCPs were collected based on our previous studies, and a multiple-level environmental risk assessment was performed. The 50 selected PPCPs are likely to be frequently detected in surface waters of China, with concentrations ranging from the ng L-1 to the low-g L-1, and the risk quotients based on median concentrations ranged from 2046 for nonylphenol to 0 for phantolide. A semi-probabilistic approach screened 33 PPCPs that posed potential risks to aquatic organisms, among which 15 chemicals (nonylphenol, sulfamethoxazole, di (2-ethylhexyl) phthalate, 17β-ethynyl estradiol, caffeine, tetracycline, 17β-estradiol, estrone, dibutyl phthalate, ibuprofen, carbamazepine, tonalide, galaxolide, triclosan, and bisphenol A) were categorized as priority compounds according to an optimized risk assessment, and then the refined probabilistic risk assessment indicated 12 of them posed low to high risk to aquatic ecosystem, with the maximum risk products ranged from 1.54% to 17.38%. Based on these results, we propose that the optimized risk assessment was appropriate for screening priority contaminants at national scale, and when a more accurate estimation is required, the refined probability risk assessment is useful. The methodology and process might provide reference for other research of chemical evaluation and management for rivers, lakes, and sea waters.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Center, Beijing 100012, China.
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK
| | - Hongxia Xiao
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
217
|
Water Security Assessment of Groundwater Quality in an Anthropized Rural Area from the Atlantic Forest Biome in Brazil. WATER 2020. [DOI: 10.3390/w12030623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The exploitation of natural resources has grown mainly due to the high rate of population growth that changed over time around the planet. Water is one of the most needed resources essential for survival. Despite all the efforts made to improve water security, an environmental impact related to anthropogenic influence remains of great concern, which is the alteration of surface and groundwater quality. In many regions around the world, there is limited or no access to rural and urban water supply while there is a need to improve sanitation facilities. This work evaluated the spatial distribution of groundwater and surface water quality as well as their changes in wet and dry seasons of the tropical climate in the Atlantic Forest Biome. The study area is under anthropogenic influence, which is in the municipality of Igarassú, Pernambuco State, Brazil. The analysis of the raw water was based on Standard Methods for Examination of Water and Wastewater, as referenced in the Brazilian Ministry of Health Consolidation Ordinance that sets standards for drinking water. The temporal analyses indicated a variation on water quality from the wet to the dry seasons, whereas the spatial results revealed deviations from the Brazilian’s Water Supply Standards for some physicochemical parameters. There was an increase in the values of some parameters during the wet season in some hydrological compartments. The anthropized rural area from the Atlantic Forest Biome is affecting the water quality. It is, therefore, necessary to develop environmental policies and put them into practice by implementing engineering projects that guarantee proper treatment for raw water in order to bring the water quality back to a good status in this region.
Collapse
|
218
|
Wu L, Du C, He J, Yang Z, Li H. Effective adsorption of diclofenac sodium from neutral aqueous solution by low-cost lignite activated cokes. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121284. [PMID: 31628061 DOI: 10.1016/j.jhazmat.2019.121284] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Activated cokes have attracted great interest inwater treatment to remove organic pollutants due to their low cost and specific textural properties. In this study, adsorptive removal of diclofenac sodium (DCF) from neutral aqueous solution by available lignite activated cokes (LACs) was reported for the first time. Diclofenac sodium could be quickly removed from aqueous solution by LAC-2, with the maximum Langmuir adsorption capacity qm of 224 mg/g at pH 6.5. Characterization results (including scanning electron microscopy, transmission electron microscopy, elemental analyses, Boehm titrations, N2 adsorption-desorption isotherms and Fourier transform infrared spectroscopy) and a series of adsorption kinetics, adsorption isotherms model studies revealed that high porosity with developed macro- and micropore structures on LAC-2, as well as high content of phenolic groups, could obviously enhance the DCF adsorption capacity and rate. Moreover, LAC-2 showed high affinity towards DCF at low concentrations, as well as good reusability after three adsorption-desorption cycles. pH effect studies revealed that hydrogen-bonding interaction plays an important role during adsorption, accompanied with certain contribution from electrostatic interaction and π-π interaction. This study indicates the promising potential of LAC-2 as an efficient, low-cost and recyclable material for DCF removal from water bodies.
Collapse
Affiliation(s)
- Liyuan Wu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Advanced Innovation Center For Future Urban Design, Beijing 100044, China.
| | - Chunxiao Du
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Juan He
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Advanced Innovation Center For Future Urban Design, Beijing 100044, China.
| | - Zhichao Yang
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China.
| | - Haiyan Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Advanced Innovation Center For Future Urban Design, Beijing 100044, China.
| |
Collapse
|
219
|
Assress HA, Nyoni H, Mamba BB, Msagati TAM. Occurrence and risk assessment of azole antifungal drugs in water and wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109868. [PMID: 31689623 DOI: 10.1016/j.ecoenv.2019.109868] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 05/24/2023]
Abstract
The occurrence of azole antifungals in the environment presents one of the emerging concerns due to their ecotoxicological threat as well as their potential contribution to the evolution of drug resistant fungi in the environment. In this study, the occurrence of eight commonly prescribed azole antifungal drugs was seasonally determined in influent and effluent water samples from three wastewater treatment plants and a drinking water treatment plant in South Africa. In addition, the risk quotient (RQ) method was employed to investigate the potential ecological and human health risks associated with their presence in the wastewater and/or drinking water. Clotrimazole, econazole, fluconazole, itraconazole, ketoconazole and miconazole were detected at least once in the water samples, while posaconazole and voriconazole were not detected in any of the samples for all seasons at which the samples were collected. Fluconazole was detected at higher frequency (about 96%) with a concentration up to 9959.0 ng L-1. Clotrimazole had the second highest frequency of detection (about 33%) with a concentration up to 143.3 ng L-1. Statistically significant temporal variation in clotrimazole (p < 0.05) and spatial variation in fluconazole (p < 0.05) were observed. In general, the preliminary ecological risk assessment based on risk quotient (RQ) calculation indicated that there is currently no high risk against aquatic organisms (Algae, Daphnia and Fish) related to the azole antifungals. Meanwhile, human health risk assessment demonstrated that fluconazole represented high risk in drinking water. Furthermore, risk estimates showed a potential for the detected concentrations of fluconazole and itraconazole in water samples to pose moderate to high risk for development of antifungal drug resistance. Some of the azole antifungal drugs are ubiquitous in the wastewater and future monitoring and validation studies should be conducted for those drugs that seem to pose human health and ecological risks.
Collapse
Affiliation(s)
- Hailemariam Abrha Assress
- University of South Africa, College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, P.O. Box 392 UNISA 0003, Florida, 1709, Johannesburg, South Africa
| | - Hlengilizwe Nyoni
- University of South Africa, College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, P.O. Box 392 UNISA 0003, Florida, 1709, Johannesburg, South Africa
| | - Bhekie B Mamba
- University of South Africa, College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, P.O. Box 392 UNISA 0003, Florida, 1709, Johannesburg, South Africa; State Key Laboratory of Separation Membranes and Membrane Process/National Center for International Joint Research on Membrane Science and Technology, Tianjin, 300387, PR China
| | - Titus A M Msagati
- University of South Africa, College of Science Engineering and Technology, Nanotechnology and Water Sustainability Research Unit, UNISA Science Campus, P.O. Box 392 UNISA 0003, Florida, 1709, Johannesburg, South Africa; School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P O Box 447, Tengeru, Arusha, United Republic of Tanzania.
| |
Collapse
|
220
|
Future impacts and trends in treatment of hospital wastewater. CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING 2020:599-615. [PMCID: PMC7252248 DOI: 10.1016/b978-0-12-819722-6.00017-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The world’s population growth and economic development result in the increased requirement of land, water, and energy. This increased demand leads to the deforestation, loss in biodiversity, imbalance in agriculture and food supply, climate change, and increase in food and travel trade, which result in emergence and reemergence of infectious diseases. This chapter discussed various emerging infectious diseases and their causative agents (Buruli ulcer and Bunyvirus). Furthermore, this chapter further illustrates the emergence of superbugs and the associated threat due to the presence of pharmaceutical compounds in the environment. The prevalence of pharmaceuticals in the environment exerts ecotoxic effects on living organisms and causes thousands of death every year. The threats associated with the pharmaceutical presence in the environment were briefly discussed in this chapter. Finally, this chapter provides the alternative methods to avoid the use of antibiotics and to develop novel treatment technologies (such as Phage therapy) to degrade and remove the pharmaceutical compounds.
Collapse
|
221
|
Sánchez-Montes I, Pérez JF, Sáez C, Rodrigo MA, Cañizares P, Aquino JM. Assessing the performance of electrochemical oxidation using DSA® and BDD anodes in the presence of UVC light. CHEMOSPHERE 2020; 238:124575. [PMID: 31446274 DOI: 10.1016/j.chemosphere.2019.124575] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 05/03/2023]
Abstract
Significance of surface and ground water contamination by synthetic organic compounds has been pointed out in a very high number of papers worldwide, as well as the need of application of treatment technologies capable to assure their complete removal. Among these processes, the electrochemical advanced oxidation is an interesting option, especially when irradiated with UVC light (photo-electrochemical, P-EC) to promote homolysis of electrogenerated oxidants. In this work, the herbicide glyphosate (GLP) was used as model compound and it was electrochemically treated under UVC irradiation in the presence of NaCl and using a DSA® and BDD anodes. Total organic carbon concentration was measured throughout the electrolysis, as well as the concentration of short chain carboxylic acids and inorganic ions (NO3-, PO43-,ClO-, ClO3- and ClO4-). The synergism of the P-EC was more pronounced when using a DSA® electrode, which led to complete GLP mineralization in 1 h (0.52 A h L-1), as also confirmed by the stoichiometric formation of NO3- and PO43- ions, with an energy consumption as low as 1.25 kW h g-1. Unexpectedly, the concentration evolution of oxyhalides for the P-EC process using both anodes, especially for DSA® at 10 mA cm-2, showed the production of ClO3-, whereas detection of ClO4- species was only found when using BDD at 100 mA cm-2 for the electrochemical process. Finally, small amounts of carboxylic acids were detected, including dichloroacetic acid, especially when using a BDD electrode.
Collapse
Affiliation(s)
- Isaac Sánchez-Montes
- Universidade Federal de São Carlos, Departamento de Química, 13565-905, São Carlos, SP, Brazil
| | - José F Pérez
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Cristina Sáez
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain.
| | - Pablo Cañizares
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - José M Aquino
- Universidade Federal de São Carlos, Departamento de Química, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
222
|
Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134057. [PMID: 31783460 DOI: 10.1016/j.scitotenv.2019.134057] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/17/2023]
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug has turned into a contaminant of emerging concern; hence, it was included in the previous Watch List of the EU Water Framework Directive. This review paper aims to highlight the metabolism of diclofenac at different trophic levels, its occurrence, ecological risks, and interactive effects in the water cycle and biota over the past two decades. Increased exposure to diclofenac not only raises health concerns for vultures, aquatic organisms, and higher plants but also causes serious threats to mammals. The ubiquitous nature of diclofenac in surface water (river, lake canal, estuary, and sea) is compared with drinking water, groundwater, and wastewater effluent in the environment. This comprehensive survey from previous studies suggests the fate of diclofenac in wastewater treatment plants (WWTPs) and may predict its persistence in the environment. This review offers evidence of fragmentary available data for the water environment, soil, sediment, and biota worldwide and supports the need for further data to address the risks associated with the presence of diclofenac in the environment. Finally, we suggest that the presence of diclofenac and its metabolites in the environment may represent a high risk because of their synergistic interactions with existing contaminants, leading to the development of drug-resistant strains and the formation of newly emerging pollutants.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | | | - Thavamani Palanisami
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thayumanavan Palvannan
- Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
223
|
Sardiña P, Leahy P, Metzeling L, Stevenson G, Hinwood A. Emerging and legacy contaminants across land-use gradients and the risk to aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133842. [PMID: 31426001 DOI: 10.1016/j.scitotenv.2019.133842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 05/22/2023]
Abstract
Information on potentially harmful emerging and legacy chemicals is essential to understand the risks to the environment and inform regulatory actions. The objective of this study was to assess the occurrence, concentration, and distribution of emerging and legacy contaminants across a gradient of land-use intensity and determine the risk posed to aquatic ecosystems. The land-use intensity gradient considered was: background/undeveloped < low-intensity agriculture < high-intensity agriculture < urban residential < urban industrial. Twenty-five sites were sampled for surface water, sediment, and soil. A total of 218 chemicals were analyzed: pesticides, per- and poly-fluoroalkyl substances (PFAS), polybrominated biphenyls and polybrominated diphenyl ethers (PBDEs), phthalates, and short-chain chlorinated paraffins (SCCPs). The risk posed by the analyzed chemicals to the aquatic environment was measured using hazard quotients (HQs), which were calculated by dividing the maximum measured environmental concentration by a predicted no-effect concentration for each chemical. A HQ > 1 was considered to indicate a high risk of adverse effects from the given chemical. A total of 68 chemicals were detected: 19 pesticides, 18 PFAS, 28 PBDEs, two phthalates, and SCCPs (as total SCCPs). There were no significant differences in the overall chemical composition between land uses. However, the insecticide bifenthrin, PFAS, PBDEs, and phthalates were more frequently found in samples from residential and/or industrial sites, suggesting urban land uses are hotspots and potential large-scale sources of these chemicals. Nineteen chemicals had a HQ > 1; most had a restricted spatial distribution limited to high-intensity agriculture and industrial sites in Melbourne. Bifenthrin and the perfluorooctanesulfonic acid (PFOS) had the highest HQs in residential and industrial sites, suggesting an increased risk to aquatic ecosystems in urban settings. The results of this study will enhance future research, predictive methods, and effective targeting of monitoring, and will help guide regulatory management actions and mitigation solutions.
Collapse
Affiliation(s)
- Paula Sardiña
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| | - Paul Leahy
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| | - Leon Metzeling
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| | - Gavin Stevenson
- National Measurement Institute, 105 Delhi Road, North Ryde, NSW 2113, Australia.
| | - Andrea Hinwood
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| |
Collapse
|
224
|
Kumar M, Ram B, Honda R, Poopipattana C, Canh VD, Chaminda T, Furumai H. Concurrence of antibiotic resistant bacteria (ARB), viruses, pharmaceuticals and personal care products (PPCPs) in ambient waters of Guwahati, India: Urban vulnerability and resilience perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133640. [PMID: 31377355 DOI: 10.1016/j.scitotenv.2019.133640] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/03/2019] [Accepted: 07/26/2019] [Indexed: 05/28/2023]
Abstract
Multi-drug resistant microbes, pathogenic viruses, metals, and pharmaceuticals and personal care products (PPCPs) in water has become the crux of urban sustainability issues. However, vulnerability due to pollutant concurrences, source apportionment, and identification of better faecal indicators needs to be better understood. The present study focuses on the vulnerability of urban Guwahati, the largest city in Northeastern India, through analyzing the concurrence of PPCPs, enteric viruses, antibiotic resistant bacteria, metal, and faecal contamination in water. The study strives to identify a relevant marker of anthropogenic pollution for the Indian scenario. Samples from the Brahmaputra River (n = 4), tributary Bharalu River (an unlined urban drain; n = 3), and Ramsar recognized Lake (Dipor Bil; n = 1) indicate caffeine > acetaminophen > theophylline > carbamazepine > crotamiton for PPCPs and pepper mild mottle virus (PMMoV) > aichi > hepatitis A > norovirus GII > norovirus GI for enteric viruses. PMMoV was the better indicator of faecal pollution due to its prevalence, specificity and ease of detection. Antibiotic resistance was neither correlated with the prevalence of PPCPs nor E. coli. As, Co and Mn appear to be inducing antibiotic resistance in E. coli. While the risk quotient of the urban drain (Bharalu River) indicates one order higher magnitude than reported for other Indian rivers, the Lake exhibited the least pollution and better resilience. The concurrence of pollutants and multi-drug resistant E. coli, owing to the complete absence of wastewater treatment, puts the city in a highly vulnerable state. Pollution is being regulated only by the dilution capability of the Brahmaputra River, which needs to be further researched for seasonal variation.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India.
| | - Bhagwana Ram
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Ryo Honda
- Faculty of Environmental Design, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | | | - Vu Duc Canh
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan
| | - Tushara Chaminda
- Department of Civil and Environmental Engineering, University of Ruhuna, Sri Lanka
| | - Hiroaki Furumai
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
225
|
Guruge KS, Goswami P, Tanoue R, Nomiyama K, Wijesekara RGS, Dharmaratne TS. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:683-695. [PMID: 31301508 DOI: 10.1016/j.scitotenv.2019.07.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 05/24/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are known as an emerging class of water contaminants due to their potential adverse effects on aquatic ecosystems. In this study, we conducted the first nationwide survey to understand the distribution and environmental risk of 72 PPCPs in surface waterways of Sri Lanka. Forty-one out of 72 targeted compounds were detected with total concentrations ranging between 5.49 and 993 ng/L in surface waterways in Sri Lanka. The highest level of PPCP contamination was detected in an ornamental fish farm. Sulfamethoxazole was found with the highest concentration (934 ng/L) followed by N,N-diethyl-meta-toluamide (202 ng/L) and clarithromycin (119 ng/L). Diclofenac, mefenamic acid, ibuprofen, trimethoprim, and erythromycin were detected ubiquitously throughout the country. Our data revealed that hospital and domestic wastewater, and aquaculture activities potentially contribute to the presence of PPCPs in Sri Lankan waterways. The calculated risk quotients indicated that several locations face medium to high ecological risk to aquatic organisms from ibuprofen, sulfamethoxazole, diclofenac, mefenamic acid, tramadol, clarithromycin, ciprofloxacin, triclocarban, and triclosan. The aforementioned compounds could affect aquatic organisms from different trophic levels like algae, crustacean and fish, and also influence the emergence of antibiotic resistant bacteria. These findings emphasize that a wide variety of pharmaceuticals have become pervasive environmental contaminants in the country. This data will serve to expand the inventory of global PPCP pollution. Further monitoring of PPCPs is needed in Sri Lanka in order to identify PPCP point sources and to implement strategies for contaminant reduction in wastewater to protect the aquatic ecosystem, wildlife, and human health.
Collapse
Affiliation(s)
- Keerthi S Guruge
- Toxicology Unit, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, 305-0856, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan; Centre for Crop Health, University of Southern Queensland, Toowoomba Campus, QLD4350, Australia.
| | - Prasun Goswami
- Atal Centre for Ocean Science and Technology for Islands, ESSO - National Institute of Ocean Technology, Dollygunj, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - R G S Wijesekara
- Department of Aquaculture & Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Sri Lanka
| | - Tilak S Dharmaratne
- Ocean University of Sri Lanka, Crow Island, Mattakkuliya, Colombo 15, Sri Lanka
| |
Collapse
|
226
|
López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, Iqbal HMN, Parra-Saldívar R. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1068-1088. [PMID: 31470472 DOI: 10.1016/j.scitotenv.2019.07.052] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Existence of anthropogenic contaminants (ACs) in different environmental matrices is a serious and unresolved concern. For instance, ACs from different sectors, such as industrial, agricultural, and pharmaceutical, are found in water bodies with considerable endocrine disruptors potency and can damage the biotic components of the environment. The continuous ACs exposure can cause cellular toxicity, apoptosis, genotoxicity, and alterations in sex ratios in human beings. Whereas, aquatic organisms show bioaccumulation, trophic chains, and biomagnification of ACs through different entry route. These problems have been found in many countries around the globe, making them a worldwide concern. ACs have been found in different environmental matrices, such as water reservoirs for human consumption, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, which demonstrate their free movement within the environment in an uncontrolled manner. This work provides a detailed overview of ACs occurrence in water bodies along with their toxicological effect on living organisms. The literature data reported between 2017 and 2018 is compiled following inclusion-exclusion criteria, and the obtained information was mapped as per type and source of ACs. The most important ACs are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine, and testosterone), agricultural products or pesticides (atrazine, carbendazim, fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, and caffeine), and personal care products (triclosan, and other related surfactants). Considering this threatening issue, robust detection and removal strategies must be considered in the design of WWTPs and DWTPs.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Alejandra Arévalo-Gallegos
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Laura A Lizarazo-Holguin
- Universidad de Antioquia, School of Microbiology, Cl. 67 #53 - 108, Medellín, Antioquia, Colombia
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| |
Collapse
|
227
|
Fan B, Li J, Wang X, Gao X, Chen J, Ai S, Li W, Huang Y, Liu Z. Study of aquatic life criteria and ecological risk assessment for triclocarban (TCC). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112956. [PMID: 31362255 DOI: 10.1016/j.envpol.2019.112956] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/09/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Triclocarban (TCC) is used as a broad-spectrum antimicrobial agent, the intensive detection of TCC in aquatic environments and its potential risks to aquatic organisms are concerned worldwide. In this study, 8 Chinese resident aquatic organisms from 3 phyla and 8 families were used for the toxicity tests, and four methods were employed to derive the aquatic life criteria (ALC). A criterion maximum concentration (CMC) of 1.46 μg/L and a criterion continuous concentration (CCC) of 0.21 μg/L were derived according to the USEPA guidelines. The acute predicted no effect concentrations (PNECs) derived by species sensitivity distribution (SSD) methods based on log-normal, log-logistic and Burr Type Ⅲ models were 2.64, 1.88 and 3.09 μg/L, respectively. The comparisons of ALCs derived with resident and non-resident species showed that the CMC and CCC of TCC derived with Chinese resident species could provide a sufficient protection for non-resident species. The higher toxicity of TCC on aquatic organisms was found compared with other antimicrobial agents (except for Clotrimazole) in aquatic environment. The strong positive linear correlation was observed between the TCC and TCS concentrations in aquatic environment with a correlation coefficient (R2) of 0.8104, it is of great significance in environmental monitoring and risk assessment for TCC and TCS. Finally, the ecological risk assessment showed that the TCC in Yellow River basin and Pearl River basin had higher risk with the mean potential affected fractions (PAFs) of 9.27% and 7.09%, and 22.10% and 15.00% waters may pose potential risk for 5% aquatic organisms, respectively. In general, the risk of TCC in Asian waters was higher than that in Europe and North America.
Collapse
Affiliation(s)
- Bo Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jin Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Wenwen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yun Huang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
228
|
Presence and Natural Treatment of Organic Micropollutants and their Risks after 100 Years of Incidental Water Reuse in Agricultural Irrigation. WATER 2019. [DOI: 10.3390/w11102148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of the research was to show the presence of micropollutants contained in the wastewater of Mexico City within the distribution canals of the Mezquital Valley (MV), as well as their retention in agricultural soil and aquifers. This system constitutes the world's oldest and largest example of the use of untreated wastewater for agricultural irrigation. The artificial recharge associated with the MV aquifers, with groundwater extracted for human consumption showing its importance as a water resource for Mexico City. The results of sampling show the presence of 18 compounds, with 10 of these considered as endocrine disruptor compounds (EDCs). The concentration of these pollutants ranged from 2 ng/L for 17 β-estradiol to 99 ng/L for DEHP, with these values decreasing throughout the course of the canals due to the wastewater dilution factor, their retention in agricultural soil, and their accumulation in the local aquifer. The main mechanisms involved in natural attenuation are adsorption, filtration, and biodegradation. Drinking water equivalent levels (DWELs) were estimated for 11 compounds with regard to acceptable daily intakes (ADIs), by assuming local exposure parameters for a rural Mexican population. These were compared with the maximum groundwater concentrations (Cgw) to screen the potential risks. The very low ratios of Cgw to DWELs indicate no appreciable human health risk from the presence of trace concentrations of these compounds in the source of drinking water in the MV. Despite this, far from being exceeded after more than 100 years of irrigation with residual water, the natural soil attenuation seems to remain stable.
Collapse
|
229
|
Khan AHA, Nawaz I, Yousaf S, Cheema AS, Iqbal M. Soil amendments enhanced the growth of Nicotiana alata L. and Petunia hydrida L. by stabilizing heavy metals from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:46-55. [PMID: 31026802 DOI: 10.1016/j.jenvman.2019.04.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/03/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Due to the non-degradable nature of heavy metals (HMs), the industrial effluent, whether treated or untreated, carrying HMs, eventually end up into the water bodies, soil, and sediments. Numerous countermeasures were applied, but the use of ornamental plants for the stress mitigation associated with HMs on the environment is a neglected research domain. The composition of wastewater influences bioremediation strategies. As the wastewater is contaminated with multiple HMs, many lab studies, with the plants, failed in the industrial field. This work focuses on the potential of Nicotiana alata L. and Petunia hydrida L. against multiple HMs contaminated synthetic wastewater. To improve plant tolerance, soil amendments (biochar, compost, and moss, each at 5% v/v in soil) were used, individually and in combination. After 6 weeks of the exposure, plant physiological, biochemical and enzymatic parameters, as well as the distribution of HMs, (Cd, Cr, Cu, Pb, Mn, Ni, and Zn) in the plant (flower, leaves, root, and shoot) and soil, were measured. The HMs uptake positivity influenced the malondialdehyde content, hydrogen peroxide content and electrolyte leakage, while negatively to photosynthetic pigments, and resulted in increased catalase, guaiacol peroxidase, glutathione s-transferase, ascorbate peroxidase, while reduced superoxide dismutase activity. It was found that all amendments improved the plant growth by metal stabilization, and best results were obtained with the combined application of biochar + compost + moss. So, HMs stabilization can be achieved by growing ornamental plants, like Nicotiana alata L. and Petunia hydrida L. along with soil amendments.
Collapse
Affiliation(s)
- Aqib Hassan Ali Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Ismat Nawaz
- Department of Environmental Sciences, Biotechnology Program, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Ammar Sabir Cheema
- National Centre for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
230
|
Licul-Kucera V, Ladányi M, Hizsnyik G, Záray G, Mihucz VG. A filtration optimized on-line SPE–HPLC–MS/MS method for determination of three macrolide antibiotics dissolved and bound to suspended solids in surface water. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
231
|
He S, Dong D, Sun C, Zhang X, Zhang L, Hua X, Guo Z. Contaminants of emerging concern in a freeze-thaw river during the spring flood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:576-584. [PMID: 30909035 DOI: 10.1016/j.scitotenv.2019.03.256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals, personal care products, and environment estrogens, as contaminants of emerging concern (CECs), have been widely detected in aquatic environments around the world. However, surveys of seasonal freeze-thaw rivers with special hydrological features are limited. To address this, in this study the occurrence, distribution, ecological risk, and mass flux of 22 CECs in the Jilin Songhua River in northeast China, a famously seasonal freeze-thaw river at mid- and high-latitude regions, were investigated during its spring flood period. The results indicate that estriol had a maximum concentration of 27.4 ng·L-1 in the mainstream river water. Doxycycline had a maximum concentration of 204.4 ng·L-1 in the tributary river water and 103.0 ng·L-1 in the riverine wastewater treatment plant (WWTP) effluents. The mean concentrations of the targeted CECs in the spring flood were 1.4 times higher than those found in our previous investigation during the summer flood. A risk assessment showed that estrone posed a high risk in the mainstream, doxycycline posed a high risk in the tributaries, and ofloxacin posed a high risk in the riverine WWTP effluents. In addition, erythromycin and lincomycin posed a medium to high risk in the river water and WWTP effluents. The major contribution of the CECs in the mainstream came from its tributaries, which contributed a total of >50% in the spring flood period. The results suggest that some appropriate measures should be taken to reduce the contribution of the CECs from the tributaries to the seasonal freeze-thaw river in its spring flood period.
Collapse
Affiliation(s)
- Sinan He
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Chang Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xun Zhang
- Changchun Customs District P.R. China, the former Jilin Entry - Exit Inspection and Quarantine Bureau, Changchun 130062, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
232
|
Dual enantioselective LC–MS/MS method to analyse chiral drugs in surface water: Monitoring in Douro River estuary. J Pharm Biomed Anal 2019; 170:89-101. [DOI: 10.1016/j.jpba.2019.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/20/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
|
233
|
Xu YQ, Liu SS, Li K, Wang ZJ, Xiao QF. Polyethylene glycol 400 significantly enhances the stimulation of 2-phenoxyethanol on Vibrio qinghaiensis sp.-Q67 bioluminescence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:240-246. [PMID: 30612011 DOI: 10.1016/j.ecoenv.2018.12.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/11/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Previous studies demonstrated long-term stimulation of some commercial personal care products (PCPs) on freshwater luminescent bacteria Vibrio qinghaiensis sp.-Q67 (Q67). However, whether a certain component can affect mixture's hormetic effect is still unknown. In this paper, two of ingredients in PCPs, 2-phenoxyethanol (PhE) and polyethylene glycol 400 (PEG400), were selected as object compounds to explore the relationship between concentration-response (CR) of mixtures and that of a single component. It was found that PEG400 has monotonic CR (MCR) on Q67 both at the short-term (0.25 h) and long-term (12 h) exposures while PhE has MCR at 0.25 h and hormetic CR (HCR) at 12 h. Here, the concentration-response curves (CRCs) of PEG400 at 0.25 and 12 h are overlapped each other and the CRCs of PEG400 are on the right of PhE. If the pEC50 is taken as a toxic index, the toxicities of PEG400 at two times are basically the same, and those of PhE are the same, too, but PhE is twice as toxic as PEG400. For the mixtures of PEG400 and PhE, all rays except R1 have MCRs at 0.25 h while all rays have HCRs at 12 h where the higher the mixture ratio of PhE is, the more negative the maximum stimulation effect is. More importantly, the Emin values of all rays are more negative (1.79-3.17-fold) than that of PhE worked alone, which implies that the introduction of PEG400 significantly enhances stimulative effect of PhE. At 0.25 h, all binary mixture rays but R1 produce a low-concentration additive action and high-concentration synergism. At 12 h, all rays display additive action, antagonism, additive action, and synergism in turn when the concentration changes from low to high. The overall findings suggested toxicological interactions should be considered in the risk assessment of PCPs and their potential impacts on ecological balances.
Collapse
Affiliation(s)
- Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Kai Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ze-Jun Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qian-Fen Xiao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
234
|
Gouveia D, Almunia C, Cogne Y, Pible O, Degli-Esposti D, Salvador A, Cristobal S, Sheehan D, Chaumot A, Geffard O, Armengaud J. Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment. J Proteomics 2019; 198:66-77. [DOI: 10.1016/j.jprot.2018.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
|